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CONORMAL VARIETIES ON THE COMINUSCULE

GRASSMANNIAN – II

RAHUL SINGH

Abstract. Let Xw be a Schubert subvariety of a cominuscule Grassmannian
X, and let µ : T ∗X → N be the Springer map from the cotangent bundle
of X to the nilpotent cone N . In this paper, we construct a resolution of
singularities for the conormal variety T ∗

X
Xw of Xw in X. Further, for X the

usual or symplectic Grassmannian, we compute a system of equations defining
T ∗

X
Xw as a subvariety of the cotangent bundle T ∗X set-theoretically. This

also yields a system of defining equations for the corresponding orbital varieties
µ(T ∗

X
Xw). Inspired by the system of defining equations, we conjecture a type-

independent equality, namely T ∗

X
Xw = π−1(Xw) ∩ µ−1(µ(T ∗

X
Xw)). The set-

theoretic version of this conjecture follows from this work and previous work
for any cominuscule Grassmannian of type A, B, or C.

We work over an algebraically closed field k of good characteristic (for a definition,
see [Car85]). Let G be a connected algebraic group whose Lie algebra g is simple.

For P a conjugacy class of parabolic subgroups of G, we denote by XP the
variety of parabolic subgroups of G whose conjugacy class is P . The cotangent
bundle T ∗XP of XP is given by

T ∗XP =
{
(P, x) ∈ XP ×N

∣∣x ∈ uP
}
,

where N is the variety of nilpotent elements in g . The map µ : T ∗X → N, given
by µ(P, x) = x, is the celebrated Springer map.

Let B be the conjugacy class of Borel subgroups of G. The Steinberg variety,

ZP =
{
(B,P, x) ∈ XB ×XP ×N

∣∣ x ∈ uB ∩ uP
}
,

is reducible. Each irreducible component ZP
w of ZP is the conormal variety of a

G-orbit closure (under the diagonal action) in XB ×XP .

In this paper, for certain choices of P , namely the ones for which XP is cominus-
cule (see Section 1.9), we construct a resolution of singularities for each irreducible
component ZP

w ⊂ ZP . In types A and C, we also provide a system of defining
equations, for each component ZP

w as a subvariety in XB × XP × N. This also
yields a system of defining equations for certain orbital varieties. We discuss this
later in this section.

Before getting into the details, let us first present the irreducible components
of ZP from an alternate point of view. We fix a Borel subgroup B in G, and a
standard parabolic subgroup P corresponding to omitting a cominuscule simple
root γ, see Section 1.9. Let X be the variety of ‘parabolic subgroups conjugate to
P ’. We have an isomorphism X ∼= G/P , and further, a G-equivariant isomorphism,

G×B X
∼
−→ XB ×X,
1
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2 RAHUL SINGH

given by (g, P ) 7→ (gBg−1, gPg−1).

A B-orbit Cw ⊂ X is called a Schubert cell, and its closure Xw is called a
Schubert variety. The conormal variety T ∗

XXw of Xw in X is simply the closure of
the conormal bundle of Cw in X , see Section 1.8.

Consider the map ZP
w → XB, given by (B,P, x) 7→ B. We identify ZP

w as a fibre
bundle over XB via this map, with the fibre over the point B ∈ XB being precisely
the conormal variety T ∗

XXw. In particular, we have an isomorphism

G×B T ∗
XXw

∼
−→ ZP

w .

From this viewpoint, it is clear that the geometry of T ∗
XXw is closely related to the

geometry of ZP
w .

Remark. A similar (and essentially equivalent) statement can be found in [CG97,
Proposition 3.3.4]; the proof there is different, leveraging the fact that the Springer
map µ : T ∗X → N can be identified with the moment map arising from the G-
symplectic structure on T ∗X .

We now present our main results. Let Xw be a Schubert subvariety of a comi-

nuscule Grassmannian X . In Section 2, we present a variety Z̃w, which is a vector
bundle over a Bott-Samelson variety resolving Xw, along with a proper birational

B-equivariant map, θw : Z̃w → T ∗
XXw.

Theorem A. The map θw : Z̃w → T ∗
XXw is a B-equivariant resolution of singu-

larities.

Since the map θw is B-equivariant, it also yields a resolution of singularities,

G×B θw : G×B Z̃w → ZP
w .

of the Steinberg component ZP
w .

Next, we study the system of defining equations for the conormal variety T ∗
XXw

inside T ∗X . For i ≥ 1, let E(i) denote a vector space with basis e1, · · · ei. We fix a
non-degenerate skew-symmetric bilinear form ω on E(2d). Let G either SL(E(n))
or Sp(E(2d), ω), and accordingly, let X be either the usual Grassmannian,

Gr(d, n) = {V ⊂ E(n) | dimV = d} ,

or the symplectic Grassmannian,

SGr(2d) =
{
V ⊂ E(2d)

∣∣V = V ⊥
}
.

The cotangent bundle of X is given by

T ∗X = {(V, x) ∈ X ×N | Imx ⊂ V ⊂ kerx} ,

where, recall that N denotes the corresponding nilpotent cone. Let B be the Borel
subgroup which is the stabilizer of the flag (E(i))i in G. In Theorem B, we provide
a system of defining equations for T ∗

XXw in T ∗X .

Theorem B. Consider (V, x) ∈ T ∗X. Then (V, x) ∈ T ∗
XXw if and only if V ∈ Xw,

and further, for all 1 ≤ j < i ≤ l + 1, we have

dim(xE(ti)/E(tj)) ≤

{
ri−1 − rj ,

ci − cj+1.

The numbers ri, ci, ti are defined in terms of w, see Section 3.14.
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A system of defining equations for ZP
w in XB ×X ×N follows as a consequence.

We simply replace the subspaces E(ti) with the subspace E′(ti), where (E′(i))i is
the flag fixed by B′, the Borel subgroup at the first coordinate in XB ×X ×N.

Theorem B does not hold for the orthogonal Grassmannian. The key difference
between Cn and Dn is the following: Consider the embedding of the Weyl group W
into S2n. Then, for Cn, the Bruhat order on W is identical to the order induced by
restricting the (type A) Bruhat order on S2n. This is not true for Dn.

In Equation (7.1), we interpret Theorem B in a type-independent manner,

T ∗
XXw = µ−1(µ(T ∗

XXw)) ∩ π−1(Xw).

Here µ : T ∗X → N is the Springer map, and π : T ∗X → X is the structure map
defining the cotangent bundle.

We conjecture that Equation (7.1) holds for any Schubert variety Xw in any
cominuscule Grassmannian X . The containment ⊂ holds trivially. Besides Theo-
rem B, further evidence in support of this conjecture is provided by Proposition 7.2,
which states that Equation (7.1) holds set-theoretically if Xw is smooth, and by
Proposition 7.4, which states that Equation (7.1) holds scheme-theoretically if the
opposite Schubert variety Xw0w is smooth. Combining these results, we see that
Equation (7.1) holds set-theoretically for any cominuscule Grassmannian in types
A, B, and C.

Finally, let us discuss orbital varieties, and their relationship with the conor-
mal varieties of Schubert varieties. Consider a G-orbit N ◦

λ
⊂ N. The irreducible

components of the closure Nλ ∩ uB are called orbital varieties. The reader might
consult [DR09] for a general survey.

Caution. Some authors define an orbital variety to be an irreducible component of
N ◦

λ
∩ uB, where N ◦

λ
is G-orbit in N. What we call an orbital variety here is an

orbital variety closure in their language.

The key fact relating orbital varieties with conormal varieties is the following:
Given a conjugacy class P , and a Schubert variety XP

w , the image of the conormal
variety T ∗

XPX
P
w under the Springer map µ is an orbital variety. Conversely, every

orbital variety is of the form µ(T ∗
XBXB

w) for some Schubert variety XB
w ⊂ XB.

Theorem B yields equations for the corresponding orbital varieties.

Theorem C. Let G, B, P , X, w, and µ be as in Theorem B. Then

µ(T ∗
XXw) =

{
x ∈ uB

∣∣∣∣∣ x
2 = 0, dim(xE(ti)/E(tj)) ≤

{
ri−1 − rj ,

ci − cj+1,
∀ 1 ≤ i < j ≤ l

}
.

It is in general an open problem to give a combinatorial description of the in-
clusion order on orbital varieties. For varieties of matrices x satisfying x2 = 0,
this problem was solved by Melnikov [Mel05] in type A, and in types B and C by
Melnikov and Barnea [BM17]. In Corollary 6.6, we show how their results can be
recovered as a simple consequence of Theorem C.

Acknowledgements. We thank Anna Melnikov for pointing out a serious error in
an earlier version of this article. We thank Manoj Kummini, V. Lakshmibai, Anna
Melnikov, and Dinakar Muthiah for some very illuminating conversations.
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1. The Conormal Variety of a Schubert Variety

In this section, we recall some standard results about Schubert varieties, their
conormal varieties, and cominuscule Grassmannians.

Let k be an algebraically closed field of good characteristic, g a simple Lie algebra
over k, and G a connected algebraic group for which g = Lie(G). We fix a maximal
torus T in G, and a Borel subgroup B containing T .

Let ∆ be the root system of g with respect to t = Lie(T ), and let S and ∆+ be
the set of simple roots and positive roots respectively, corresponding to the choice
of Borel subalgebra b = Lie(B). For α ∈ ∆, we will write gα for the corresponding
root space.

1.1. Standard Parabolic Subgroups. A subgroup Q ⊂ G is called parabolic if

the quotient XQ def

= G/Q is proper. We will say that Q is a standard parabolic
subgroup if B ⊂ Q.

Let {sα |α ∈ S} be the set of simple reflections in the Weyl group W = NG(T )/T ;
here NG(T ) is the normalizer of T in G. For any subset R ⊂ S, we have a subgroup
WR ⊂ W , given by WR = 〈sα |α ∈ R〉. The subgroup BWRB ⊂ G, given by,

BWRB = {b1wb2 | b1, b2 ∈ B, w ∈ WR} ,

is a standard parabolic subgroup; further, the map R ↔ BWRB is a bijective
correspondence from subsets of S to the standard parabolic subgroups of G.

1.2. Schubert Varieties. Let Q be a standard parabolic subgroup of G, corre-
sponding to some subset SQ ⊂ S. A B-orbit CQ

w ⊂ XQ is called a Schubert cell.
The pull-back of CQ

w along the quotient map G → G/Q = XQ is

BwQ = {bwq | b ∈ B, q ∈ Q} .

The closure XQ
w of the Schubert cell CQ

w is called a Schubert variety. The Schu-
bert varieties in XQ

w ⊂ XQ are indexed by w ∈ WQ, where,

WQ def

= {w ∈ W |w(α) > 0, ∀α ∈ SQ} .(1.3)

The set WQ is called the set of minimal representatives of W with respect to Q.

1.4. Bott-Samelson Varieties. Let w = (s1, · · · , sr) be a minimal word for w,
i.e., the si are simple reflections such that w = s1 · · · sr, and further, there is no
sub-sequence of w whose product is w.

Let Pi be the standard parabolic subgroup BsiB. The Bott-Samelson variety,

X̃w
def

= P1×
B ···×BPr/B,

provides a resolution of singularities of XQ
w via the map ρQw : X̃w → XQ

w , given by,

(p1, · · · , pr) 7→ p1 · · · pr(modQ).

Let P ◦
i denote the open set BsiB ⊂ Pi. The map ρQw induces an isomorphism,

(X̃w)
◦ = P◦

1 ×B ···×BP◦
r/B

∼
−→ CQ

w .
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1.5. The Cotangent Bundle T ∗XQ. The cotangent bundle π : T ∗XQ → XQ is
the vector bundle whose fibre T ∗

pX
Q at any point p ∈ XQ is precisely the cotangent

space of XQ at p. We call π the structure map defining the cotangent bundle.

Recall that the characteristic of k is a good prime. We have (cf. [BK05, Ch. 5]),

T ∗XQ = G×Q uQ = (G×uQ)/Q,(1.6)

where the quotient is with respect to the action q · (g, x) = (gq, Ad(q−1x)).

1.7. The Springer Map. Let N be the nilpotent cone of g, i.e.,

N = {x ∈ g |Ad(x) is nilpotent} .

The Springer map µQ : T ∗XQ → N, given by,

µQ(g, x) = Ad(g)x,

is a proper map. The product map,

(π, µQ) : T ∗XQ → XQ ×N, (g, x) 7→ (g, µQ(x)),

is a closed immersion, see [CG97] for details.

1.8. The Conormal Variety of a Schubert Variety. Let CQ
w (resp. XQ

w ) be
a Schubert cell (resp. Schubert variety) in XQ, corresponding to some w ∈ WQ.
The conormal bundle of CQ

w in XQ is the vector bundle,

π◦
w : T ∗

XQC
Q
w → CQ

w ,

whose fibre at a point p ∈ CQ
w is precisely the annihilator of the tangent subspace

TpC
Q
w in T ∗

pX
Q, i.e.,

(T ∗
XQC

Q
w )p =

{
x ∈ T ∗

pX
Q
∣∣ x(v) = 0, ∀v ∈ TpC

Q
w

}
.

The conormal variety T ∗
XQX

Q
w of XQ

w in XQ is the closure (in T ∗XQ) of the

conormal bundle T ∗
XQC

Q
w . The restriction of the structure map π : T ∗XQ → XQ

to the conormal variety induces a structure map, πw : T ∗
XQXQ

w → XQ
w .

1.9. Cominuscule Grassmannians. A simple root γ ∈ S is called cominuscule

if the coefficient of γ in any positive root is either 0 or 1, i.e.,

α ∈ ∆+ =⇒ 2γ 6≤ α.

The cominuscule roots for various Dynkin diagrams are labelled in Table 1.10.

Example 1.11. Let E(n) be an n–dimensional vector space. The variety of d–
dimensional subspaces of E(n) is called the usual Grassmannian variety,

Gr(d, n)
def

= {V ⊂ E(n) | dim V = d} .

It is a cominuscule Grassmannian corresponding to the group G = SLn, and the
cominuscule root αd ∈ An−1, see Table 1.10.

Example 1.12. Let E(2d) be a 2d–dimensional vector space, and ω a symplectic
form on E(2d). The variety of Lagrangian subspaces in E(2d),

SGr(2d)
def

=
{
V ⊂ E(2d)

∣∣V = V ⊥
}
,

is called the symplectic Grassmannian. It is a cominuscule Grassmannian corre-
sponding to the group G = Sp2d, and the cominuscule root αd ∈ Cd, see Table 1.10.
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An

1 d−1 d d+1 n

Bn

1 2 n−2 n−1 n

Cn

1 2 n−2 n−1 n

Dn

1 2 3 n−3 n−2

n−1

n

E6

1 3 4 5 6

2

E7

1 3 4 5 6 7

2

Table 1.10. Dynkin diagrams with cominuscule simple roots
marked in black.

2. A Resolution of Singularities of the Conormal Variety

Let G, B, T , ∆, ∆+, and S be as in the previous section. We fix a cominuscule
root γ ∈ S. Let P be the standard parabolic subgroup corresponding to S\{γ}, and
let u be the Lie algebra of the unipotent radical of P . We will denote the variety
XP = G/P as simply X , and the Schubert varieties XP

w as simply Xw.

In this section, we study the conormal variety T ∗
XXw of a Schubert variety Xw

in X . In particular, we describe the structure of the conormal bundle T ∗
XCw in

Lemma 2.2, and construct a resolution of singularities of T ∗
XXw in Theorem A.

Lemma 2.1. For any w ∈ WP , the subspace uw
def

= u ∩ Ad(w−1)uB is B-stable.

Proof. The subspaces u and Ad(w−1)uB are T -stable, and so their intersection uw
is also T -stable. Further, since Ad(w−1)gα = gw−1(α), we have,

uw =
⊕

α≥γ

gα
⋂ ⊕

α∈∆+

gw−1(α) =
⊕

α∈R

gα,

where R = {α ∈ ∆ |α ≥ γ, w(α) > 0}. Since B is generated by the torus T and
the root subgroups Uα, α ∈ S, it suffices to show that uw is Uα-stable for all α ∈ S.
This follows from the claim,

α ∈ R, β ∈ S, α+ β ∈ ∆ =⇒ α+ β ∈ R,

which we now prove. We first consider the case β = γ. For any α ∈ R, we have
γ ≤ α, hence 2γ ≤ α+ β. Now, since γ is cominuscule, we have α+ β 6∈ ∆.

Next, we consider β ∈ S\{γ}. In this case, since w ∈ WP , it follows from
Equation (1.3) that w(β) > 0. Now, for any α ∈ R, we have w(α) > 0, hence

w(α + β) = w(α) + w(β) > 0.

It follows from the definition of R that if α+ β ∈ ∆, then α+ β ∈ R. �

Lemma 2.2. The conormal bundle T ∗
XCw → Cw is isomorphic to the vector bundle

BwB ×B uw → Cw, given by (bw, x) 7→ bw(modP ).

Proof. Let pr : XB
w → Xw be restriction of the quotient map G/B → G/P to XB

w .

Since w ∈ WP , the map pr restricts to an isomorphism of Schubert cells CB
w

∼
−→ Cw,
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see [Kum02]. The claim now follows from the observation (cf. [LS17, §4.3]) that
for any (bw, x) ∈ T ∗X , we have (bw, x) ∈ T ∗

XCw if and only if x ∈ uw. �

2.3. The Subgroup Q. As a consequence of the previous lemma, we see that
StabG(uw) is a standard parabolic subgroup. Let Q be any standard parabolic
subgroup contained in P that stabilizes uw, i.e.,

Q ⊂ StabG(uw) ∩ P.(2.4)

We define a vector bundle πQ
w : ZQ

w → XQ
w , where,

ZQ
w = BwQ ×Q uw, πQ

w (g, x) = g(modQ).

Let w = (s1, · · · , sr) be a minimal word for w. Recall the Bott-Samelson variety

X̃w from Section 1.4. We lift ZQ
w to a vector bundle πw : Z̃w → X̃w given by,

Z̃w = P1 ×
B · · · ×B Pr ×

B uw,

and πw(p, x) = p(modB), for p ∈ P1 ×B · · · ×B Pr.

Proposition 2.5. Let τ be the quotient map G×Q u → G×P u. Viewing ZQ
w as a

subvariety of G ×Q u, we have τ(ZQ
w ) ⊂ T ∗

XXw. Let τw : ZQ
w → T ∗

XXw denote the

induced map. We have a commutative diagram,

Z̃w ZQ
w T ∗

XXw

X̃w XQ
w Xw

πw

θQ
w τw

πQ
w

πw

ρQ
w pr

Here pr : XQ
w → Xw is the restriction of the quotient map G/Q → G/P to XQ

w , and

θQw : Z̃w → ZQ
w is the map given by θQw (p1, · · · , pr, x) = (p1 · · · pr, x).

Proof. Let (ZQ
w )◦ be the restriction of of the vector bundle πQ

w : ZQ
w → XQ

w to
the Schubert cell CQ

w . The quotient map G/B → G/Q induces an isomorphism

CB
w

∼
−→ CQ

w of Schubert cells. Consequently, the quotient map,

Z◦
w = BwB ×B uw −→ BwQ×Q uw, (bw, x) 7→ (bw, x),(2.6)

is an isomorphism. Observe that this map is the inverse of τ |(ZQ
w )◦, and so,

τ((ZQ
w )◦) = T ∗

XCw ⊂ T ∗
XXw.

Now, since T ∗
XXw is a closed subvariety, it follows that τ(ZQ

w ) ⊂ T ∗
XXw.

Finally, the commutativity of the diagram is a simple verification based on the
formulae defining the various maps. �

Before we prove Theorem A, let us recall some standard results about proper
maps, which the reader can find, for example, in [Har77, Ch.2].

Proposition 2.7. The following properties are true:

(1) Closed immersions are separated and proper.

(2) The composition of proper maps is proper.

(3) If g : X → Y is a proper map, then g × idZ : X × Z → Y × Z is proper.

(4) Let f : Y →֒ Z be a closed immersion. A map g : X → Y is proper if and

only if f ◦ g is proper.
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Theorem A. The maps θQw and τw are proper and birational, and the composite

map θw
def

= τw ◦ θQw is a B-equivariant resolution of singularities θw : Z̃w → T ∗
XXw.

The map θw is independent of the choice of Q.

Proof. The birationality of τw is a consequence of Equation (2.6). Recall from

Section 1.4 that ρQw induces an isomorphism (X̃w)
◦ ∼
−→ CQ

w . Consequently, θQw

induces an isomorphism (Z̃w)
◦ ∼
−→ (ZQ

w )◦. It follows that θQw is birational.

Consider now the commutative diagram

(2.8)

Z̃w ZQ
w T ∗

XXw

X̃w ×N XQ
w ×N Xw ×N,

f

θQ
w τw

g h

ρQ
w×idN pr× idN

where f, g, h are the closed immersions given by

f(p1, · · · , pr, x) = (πw(p1, · · · , pr, x), Ad(p1 · · · pr)x),

g(a, x) = (πQ
w (a, x), Ad(a)x),

h(a, x) = (πw(a, x), Ad(a)x).

Observe that the map,

(pr× idN) ◦ (ρQw × id) = ρw × idN ,

is independent of the choice of Q, and therefore, the map θw = τw ◦ θQw is also
independent of the choice of Q.

Next, the maps ρQw and pr are proper; hence ρQw × idN and X̃w ×N are proper.

Consequently, θQw and τw are proper.

Finally, observe that Z̃w, being a vector bundle over the smooth variety X̃w, is
itself a smooth variety. Therefore, the map θw is a resolution of singularities. �

3. The Type A Grassmannian

In this section, we recall the classical theory of Schubert varieties in type A.
Further, for any Schubert variety Xw ⊂ Gr(d, n), we choose a particular standard
parabolic subgroup Q satisfying Equation (2.4). This choice of Q allows us to
present a uniform proof of Theorem B in Section 5. The primary reference for this
section is [LR08].

3.1. The Root System of SLn. Let E(n) be a n–dimensional vector space with
privileged basis {e1, · · · , en}. The group G = SLn acts on E(n) by left multipli-
cation with respect to the basis e1, · · · , en. The Lie algebra g of G is precisely the
set of traceless n× n matrices, i.e.,

g = {x ∈ Matn(k) | trace(x) = 0} .

Let t be the set of diagonal matrices in g. For 1 ≤ i ≤ n, let ǫi ∈ t∗ be the linear
functional given by 〈

ǫi,

n∑

j=1

ajEj,j

〉
= ai,
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where Ej,j is the diagonal matrix with entry 1 in the jth position and zero elsewhere.

We fix B to be the set of upper triangular matrices in G. The Lie algebra b of
B is then precisely the set of upper triangular matrices in g . The root system ∆
of g with respect to (b, t) is precisely,

∆ = {ǫi − ǫj | 1 ≤ i 6= j ≤ n} ,

with the simple root αi ∈ S = An−1 being given by αi = ǫi − ǫi+1. The root ǫi − ǫj
is positive if and only if i < j.

We denote by Ei,j the elementary n×n matrix with 1 in the (i, j) position and 0
elsewhere; and by [Ei,j ] the one-dimensional subspace of g spanned by Ei,j . Then
[Ei,j ] is precisely the root space corresponding to the root ǫi − ǫj .

3.2. Partial Flag Varieties. Let q = (q0, · · · , qr) be an integer-valued sequence
satisfying 0 = q0 ≤ q1 ≤ · · · ≤ qr = n.

For 0 ≤ i ≤ n, we denote by E(i), the subspace of E(n) with basis e1, · · · , ei, and
by E(q), the partial flag E(q0) ⊂ · · · ⊂ E(qr). Let Q be the parabolic subgroup
of SLn corresponding to the subset SQ = {αj | j 6= qi, 1 ≤ i ≤ r}. The variety
XQ = G/Q is precisely the variety of partial flags of shape q,

XQ = {F (q0) ⊂ · · · ⊂ F (qr) | dimF (qi) = qi} .

For brevity, we will denote a partial flag F (q0) ⊂ · · · ⊂ F (qr) of shape q by F (q).

As a particular example, let P be the standard parabolic subgroup corresponding
to the subset S\{αd}. Then Xd := G/P is precisely,

Xd = Gr(d, n) = {V | dim V = d} .

3.3. The Weyl Group. The Weyl group of G is isomorphic to Sn, the symmetric
group on n elements. The action of W on ∆ is given by the formula,

w(ǫi − ǫj) = ǫw(i) − ǫw(j).

In particular, w(ǫi − ǫj) > 0 if and only if w(i) < w(j).

The set of minimal representatives with respect to Q is given by,

SQ
n = {w ∈ Sn |w(qi + 1) < w(qi + 2) < · · · < w(qi+1), ∀ 0 ≤ i ≤ r} .(3.4)

3.5. Schubert Varieties. For w ∈ Sn, let mw(i, j) be the number of non-zero
entries in the top left i× j sub-matrix of the permutation matrix

∑
Ew(k),k, i.e.,

mw(i, j)
def

= # {w(1), · · · , w(j)} ∩ {1, · · · , i}

= # {(k, w(k)) | k ≤ j, w(k) ≤ i} .
(3.6)

The Schubert cells, CQ
w ⊂ XQ and Cd

w ⊂ X , are given by,

CQ
w =

{
F (q) ∈ XQ

∣∣ dim(F (qi) ∩ E(j)) = mw(j, qi), 1 ≤ j ≤ n, 1 ≤ i ≤ l
}
,

Cd
w =

{
V ∈ Xd

∣∣dim(V ∩ E(j)) = mw(j, d), 1 ≤ j ≤ n
}
,

while the Schubert varieties, XQ
w ⊂ XQ and Xd

w ⊂ Xd, are given by

XQ
w =

{
F (q) ∈ XQ

∣∣dim (F (qi) ∩ E(j)) ≥ mw(j, qi), 1 ≤ j ≤ n, 1 ≤ i ≤ l
}
,

Xd
w = {V ∈ X |dim (V ∩ E(j)) ≥ mw(j, d), 1 ≤ j ≤ n} .

(3.7)

In particular, we have F (q) ∈ XQ
w , if and only if F (qi) ∈ Xqi

w for all i.
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3.8. The Projection Map. Suppose d = qi for some i, and consider the projection
map prd : XQ → Xd, given by F (q) 7→ F (d).

For any w ∈ Sn, we have prd(X
Q
w ) = Xd

w. Further, if w satisfies

w(1) > · · · > w(d),

w(d + 1) > · · · > w(n),
(3.9)

then pr−1
d (Xd

w) = XQ
w , see [LR08]. Any w ∈ Sn satisfying Equation (3.9) is called

a maximal representative with respect to P .

The following lemmas are easy consequences of standard results on Schubert
varieties. They are used repeatedly in the proofs of Propositions 5.6, 5.9 and 6.1.

Lemma 3.10. Suppose we have integers 0 ≤ k ≤ d ≤ n, a permutation w ∈ Sn,

and a k-dimensional subspace U ⊂ E(n). If U ∈ Xk
w, then

dim(U ∩ E(i)) ≥ mw(i, d)− (d− k) ∀ 1 ≤ i ≤ n.

Conversely, suppose the above inequalities hold, and further, w(1) > · · · > w(d).
Then U ∈ Xk

w.

Proof. Observe that for 1 ≤ i ≤ n, we have,

mw(i, k) ≥ max{0,mw(i, d)− (d− k)},

with equality holding for all i if and only if w(1) > · · · > w(d). �

Lemma 3.11. Consider integers 0 ≤ k ≤ d ≤ n, and a permutation w ∈ Sn,

satisfying w(k + 1) > · · · > w(n). Given U ∈ Xd, we have U ∈ Xd
w, if and only if,

dim(U ∩ E(i)) ≥ mw(i, k) ∀ 1 ≤ i ≤ n.

Proof. There exists 1 ≤ i ≤ n such that dim(U ∩ E(i)) = k. Set V = U ∩ E(i). It
is clear that V ∈ Xk

w. Now, since the statement of the lemma only involves w via
the integers mw(i, k) and mw(i, d), we may assume without loss of generality that
w(1) > · · · > w(k).

Let Q be the parabolic group corresponding to the sequence q = (k, d). Then,

we have prk(V ⊂ U) = V and prd(V ⊂ U) = U . It follows from Section 3.8 that,

pr−1
k (Xk

w) = XQ
w =⇒ prd(pr

−1
k (Xk

w)) = Xd
w.

Consequently, we obtain U ∈ Xd
w. �

Proposition 3.12. Consider integers 0 ≤ k ≤ d ≤ m ≤ n, and a permutation

w ∈ Sn. Given subspaces U ⊂ V ⊂ E(n) satisfying dimU = k, and

dim(U ∩ E(i)) ≥ mw(i, d)− (d− k) ∀ 1 ≤ i ≤ n,

dim(V ∩ E(i)) ≥ mw(i,m) ∀ 1 ≤ i ≤ n,

there exists U ′ ∈ Xd
w satisfying U ⊂ U ′ ⊂ V .

Proof. Set l = dimV . Observe that

l = dim(V ∩ E(n)) ≥ mw(n,m) = m.

Let Q′ be the parabolic group corresponding to the sequence (k, l), and Q the
parabolic group corresponding to the sequence (k, d, l). We have a projection map

pr : XQ → XQ′

, given by F (k, d, l) 7→ F (k, l).
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Since the statement of the proposition only involves w via the integers mw(i, d)
and mw(i,m), we may replace w by any permutation v satisfying

{v(1), · · · , v(d)} = {w(1), · · · , w(d)},

{v(d+ 1), · · · , v(m)} = {w(d+ 1), · · · , w(m)},

{v(m+ 1), · · · , v(n)} = {w(m+ 1), · · · , w(n)},

without changing the statement. In particular, we may assume that

w(1) > w(2) > · · · > w(d),

w(d+ 1) > · · · > w(m),

w(m+ 1) > · · · > w(n).

(3.13)

Using Lemmas 3.10 and 3.11, we deduce that (U ⊂ V ) ∈ XQ′

w . Further, it follows

from Equation (3.13) that the projection map XQ
w → XQ′

w is surjective, see [LR08].
In particular, there exists a partial flag F (k, d, l) ∈ XQ

w , for which F (k) = U
and F (l) = V . This partial flag yields the required subspace F (d), satisfying
U ⊂ F (d) ⊂ V , and F (d) ∈ Xd

w. �

3.14. The Numbers ri, ci. For integers a, b, let (a, b] denote the sequence,

a+ 1, a+ 2, · · · , b.

We fix w ∈ SP
n . Following Equation (3.4), we have,

w(1) < w(2) < . . . < w(d), w(d + 1) < . . . < w(n).

Consequently, w ∈ SP
n is uniquely identified by the sequence w(1), · · · , w(d), which

we now write as the following concatenation of contiguous sequences,

(t′1, t1], (t′2, t2], · · · , (t′l, tl].

Here the ti, t
′
i are certain integers satisfying,

0 ≤ t′1 < t1 < t′2 < · · · < tl−1 < t′l < tl ≤ n,

and
∑

(ti − t′i) = d. For convenience, we set t0 = 0 and t′l+1 = n. The sequence
w(d+ 1), · · · , w(n) is precisely,

(t0, t
′
1], (t1, t

′
2], · · · , (tl, · · · , t

′
l+1].

Consider the partial sums r0, · · · , rl, and c0, · · · , cl+1, given by,

(3.15) ri
def

=
∑

1≤j≤i

(tj − t′j), ci
def

=
∑

1≤j≤i

(t′j − tj−1).

For 1 ≤ i ≤ l, we have ti = ri + ci. Further, we have rl = d, cl+1 = n− d, and

mw(ti, rj) = min{ri, rj} = rmin{i,j},

mw(ti, d+ cj) = ri +min{ci, cj} = ri + cmin{i,j},
(3.16)

for all 1 ≤ i, j ≤ l. The permutation matrix of w is described in Fig. 3.17.

Proposition 3.18. Consider the sequence q = (q0, · · · , q2l+1) given by

qi =

{
ri for 0 ≤ i ≤ l,

d+ ci−l for l < i ≤ 2l+ 1.

Let Q be the standard parabolic subgroup associated to the sequence q, in the sense

of Section 3.2. Then Q satisfies Equation (2.4), i.e., Q ⊂ StabG(uw) ∩ P .
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Figure 3.17. The permutation matrix of w. The empty boxes
are zero matrices, while the dotted cells are identity matrices of
size r1, r2 − r1, · · · , rl − rl−1, c1, c2 − c1, · · · , cl+1 − cl, going left to
right.

Proof. Observe that ql = d; hence, we have Q ⊂ P . It remains to show that Q
stabilizes uw. Recall the set R and the subspace uw from Lemma 2.1. It follows
from Section 3.14 that

R = {ǫi − ǫj | ∃k such that i ≤ qk, j > qk+l} ,

uw = {x ∈ g |xE(ql+i) ⊂ E(qi−1), ∀ 1 ≤ i ≤ l + 1} .
(3.19)

Now, since Q stabilizes the flag E(q), it also stabilizes uw. �

4. The Symplectic Grassmannian

In this section, we recall some facts about Schubert subvarieties of the symplec-
tic Grassmannian. In particular, for any Schubert variety Xw in the symplectic
Grassmannian, we choose a particular standard parabolic subgroup Q satisfying
Equation (2.4). This choice of Q allows us to present a uniform proof of Theo-
rem B in Section 5. The primary reference for this section is [LR08].

4.1. The Bilinear Form. Let E(2d) be a 2d–dimensional vector space with a
privileged basis {e1, · · · , e2d}. For 1 ≤ i ≤ 2d, we define,

i
def

= 2d+ 1− i.

Consider the non-degenerate skew-symplectic bilinear form ω on E(2d) given by,

ω(ei, ej) =

{
δi,j if i ≤ d,

−δi,j if i > d.

For V a subspace of E(2d), we define,

V ⊥ = {u ∈ E(2d) |ω(u, v) = 0, ∀ v ∈ V } .

A simple calculation yields E(i)⊥ = E(2d − i), for 1 ≤ i ≤ 2d. Further, as a
consequence of the non-degeneracy of ω, we have the formulae,

dim V + dimV ⊥ = 2d, U⊥ ∩ V ⊥ = (U + V )⊥,(4.2)

and (V ⊥)⊥ = V , for any subspaces U, V ⊂ E(2d).
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4.3. The Symplectic Group Sp2d. Let G = StabSL2d
(ω), i.e.,

G = {g ∈ SL2d |ω(gu, gv) = ω(u, v), ∀u, v ∈ E(2d)} .

The group G is the symplectic group Sp2d. Its Lie algebra g is given by

g = {x ∈ sl2d |ω(xu, v) + ω(u, xv) = 0, ∀u, v ∈ E(2d)} .

Let T ′ (resp. t′) be the set of diagonal matrices, and B′ (resp. b′) the set of upper
triangular matrices in SL2d (resp. sl2d). The subgroup T = T ′ ∩ G is a maximal
torus in G, and the subgroup B = B′ ∩G is a Borel subgroup of G.

4.4. The Root System of Sp2d. The group G is a simple group with Dynkin
diagram Cd. Recall from Section 3.1, the linear functionals ǫ1, · · · , ǫ2d on t′. By
abuse of notation, we also denote by ǫi, the restriction ǫi|t.

Following [LR08], we present the root system of G with respect to (B, T ). The
simple root αi ∈ S = Cd is given by

αi =

{
ǫi − ǫi+1 for 1 ≤ i < d,

2ǫd for i = d.

The set of roots ∆, and the set of positive roots ∆+, are given by

∆ = {±ǫi ± ǫj | 1 ≤ i 6= j ≤ d} ⊔ {±2ǫi | 1 ≤ i ≤ d} ,

∆+ = {ǫi ± ǫj | 1 ≤ i < j ≤ d} ⊔ {2ǫi | 1 ≤ i ≤ d} .

The corresponding root spaces are given by g2ǫi = [Ei,i], g−2ǫi = [Ei,i],

gǫi+ǫj = [Ei,j + Ej,i], g−ǫi−ǫj = [Ei,j + Ej,i], gǫi−ǫj = [Ei,j − Ej,i].

4.5. The Weyl Group. Let s1, · · · , sd denote the simple reflections in Weyl group
W of G, and let r1, · · · , r2d−1 denote the simple reflections of S2d−1. We have an
embedding W →֒ S2d, given by,

si 7→

{
rir2d−i for 1 ≤ i < d,

rd for i = d.

Via this embedding, we have,

W =
{
w ∈ S2d

∣∣∣w(i) = w(i), 1 ≤ i ≤ d
}
.

The Bruhat order on S2d induces a partial order on W . This induced order is
precisely the Bruhat order on W . Further, by virtue of being a subgroup of S2d,
the group W acts on sl2d. One obtains the action of W on g by restricting this
action.

4.6. Standard Parabolic Subgroups. Let q = (q0, · · · , qr) be any integer-valued
sequence satisfying 0 = q0 ≤ q1 ≤ · · · ≤ qr = 2d, and further, qi + qr−i = 2d for
1 ≤ i ≤ r. Suppose Q′ is the standard parabolic subgroup of SL2d corresponding
to the subset,

{αj ∈ A2d−1 | j 6= qi, 1 ≤ i ≤ r − 1} .

Then Q = Q′ ∩G is the parabolic subgroup of G corresponding to the subset,

{αj ∈ S | j 6= qi, 1 ≤ i ≤ ⌈r/2⌉} .
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The variety XQ = G/Q is precisely the variety of isotropic flags of shape q, i.e.,

XQ =
{
F (q) ∈ SL2d/Q′

∣∣F (qi)
⊥ = F (qr−i)

}
.

As a particular example, let P ′ be the standard parabolic subgroup of SLn

corresponding to the subset A2d−1\{αd}, and let P = P ′ ∩ G. Then P is the
standard parabolic corresponding to S\{αd}, and further,

X = G/P =
{
V ⊂ E(2d)

∣∣V = V ⊥
}
.

Observe that the condition V = V ⊥ ensures that dimV = d, see Equation (4.2).

4.7. Schubert Varieties. Consider an element w ∈ W . By viewing w as an
element of S2d, we define the numbers mw(i, k) precisely as in Equation (3.6). The
Schubert cells Cw, C

Q
w are then given by,

CQ
w =

{
F (q) ∈ XQ

∣∣ dim(F (qi) ∩ E(j)) = mw(j, qi), 1 ≤ i ≤ l, 1 ≤ j ≤ n
}
,

Cw = {V ∈ X | dim(V ∩ E(j)) = mw(j, d), 1 ≤ j ≤ n} ,

and the Schubert varieties Xw and XQ
w are given by,

XQ
w =

{
F (q) ∈ XQ

∣∣dim (F (qi) ∩ E(j)) ≥ mw(j, qi), 1 ≤ i ≤ l, 1 ≤ j ≤ n
}
,

Xw = {V ∈ X |dim(V ∩ E(i)) ≥ mw(i, d), 1 ≤ i ≤ n} .
(4.8)

In particular, any Schubert subvariety of XQ can be identified (set-theoretically)
as the intersection of a Schubert subvariety of SL2d/Q′ with Sp2d/Q ⊂ SL2d/Q′.

4.9. Numerical Redundancy. By viewing w as an element of S2d, we define the
numbers ti, t

′
i, ri, ci exactly as in Section 3.14 and Equation (3.15). Observe that

since w(i) = w(i) for all 1 ≤ i ≤ 2d, the permutation matrix of w is symmetric
across the anti-diagonal, see Fig. 3.17. Consequently, for any 0 ≤ i ≤ l, we have,

ri + cl−i = d, ti + tl−i = 2d.(4.10)

In particular, we have E(ti)
⊥ = E(tl−i).

The conditions defining the Schubert variety XQ
w ⊂ XQ, described in Equa-

tion (4.8), are not minimal. We describe this redundancy in the next lemma.

Lemma 4.11. Consider F (q) ∈ XQ. Then F (q) ∈ XQ
w if and only if

dim (F (qi) ∩ E(j)) ≥ mw(j, qi), 1 ≤ i ≤ l, 1 ≤ j ≤ 2d.

Proof. Since the permutation matrix of w is symmetric across the anti-diagonal,
the number of non-zero entries in the top left i × j corner of w equals the number
of entries in the bottom right i × j corner. Further, since each row and column of
this matrix has precisely one non-zero entry, we have,

mw(i, j) =# {(k, w(k) | k > 2d− j, w(k) > 2d− i}

=2d−#({(k, w(k)) | k ≤ 2d− j} ∪ {(k, w(k)) |w(k) ≤ 2d− i})

=2d− ((2d− j) + (2d− i)−mw(2d− i, 2d− j)).

Hence, for 1 ≤ i, j ≤ 2d, we have the formula,

2d− (i+ j −mw(i, j)) = mw(2d− i, 2d− j).
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Consider some F (q) ∈ XQ satisfying the inequalities of the lemma. Given 1 ≤ i ≤ l
and 1 ≤ j ≤ 2d, we have,

dim(F (qi) ∩E(j)) ≥ mw(j, qi)

=⇒ dim(F (qi) + E(j)) ≤ qi + j −mw(j, qi)

=⇒ dim((F (qi) + E(j))⊥) ≥ 2d− (qi + j −mw(j, qi))

=⇒ dim(F (qi)
⊥ ∩ E(2d− j)) ≥ mw(2d− j, 2d− qi).

The final inequality follows from the penultimate as a consequence of Equation (4.2).
We see that F (q) satisfies Equation (4.8), and hence obtain F (q) ∈ XQ

w . �

4.12. The Subspace uw. Let v be the Lie algebra of the unipotent radical of P ′,
and u the Lie algebra of the unipotent radical of P . We have

v =
⊕

i≤d<j

[Ei,j ], u =
⊕

1≤i<j≤d

gǫi+ǫj =
⊕

1≤i<j≤d

[Ei,j + Ej,i].

In particular, we have u = v ∩ g. Recall the subspace uw from Lemma 2.1. Since g

is stable under the action of Ad(w−1), we have,

uw = u ∩ Ad(w−1)b = (v ∩ g) ∩ Ad(w−1)(b′ ∩ g) = v ∩ Ad(w−1)b′ ∩ g.(4.13)

Let q0, q1, · · · , q2l+1 be the sequence defined by

qi =

{
ri for 0 ≤ i ≤ l,

d+ ci−l for l < i ≤ 2l + 1.

It follows from Equation (4.10) that qi + q2l−i = 2d for all 1 ≤ i ≤ 2l.

Proposition 4.14. Let Q be the standard parabolic subgroup of G associated to

the sequence q = (q0, · · · , q2l), in the sense of Section 4.6. Then Q satisfies Equa-

tion (2.4), i.e., Q ⊂ StabG(uw) ∩ P .

Proof. It follows from Equation (4.10) that cl+1 = cl = d, hence q2l+1 = q2l = 2d.
Therefore, the standard parabolic subgroup Q′ ⊂ SL2d associated to (q0, · · · , q2l+1)
is the same as the standard parabolic subgroup of SL2d associated to (q0, · · · , q2l).

Next, it follows from Equations (3.19) and (4.13) that

uw = {x ∈ g |xE(ql+i) ⊂ E(qi−1), ∀ 1 ≤ i ≤ l + 1} .(4.15)

Now, since Q′ stabilizes uw, and since Q = Q′∩G, we have Q ⊂ StabG(uw). Finally,
since ql = d, we have Q ⊂ P , hence Q ⊂ StabG(uw) ∩ P . �

5. Defining Equations for the Conormal Variety in Types A and C

Fix integers d < n. Let G be either SLn or SO2d, let B be the subgroup of
upper triangular matrices in G, and let P be the standard parabolic subgroup of
G corresponding to the subset S\{αd} of simple roots. As discussed in Sections 3
and 4, the variety X = G/P is either the usual Grassmannian Gr(d, n) or the
symplectic Grassmannian SGr(2d).

We fix a Schubert variety Xw ⊂ X corresponding to some w ∈ WP . In this
section, we prove Theorem B, which gives a system of defining equations for the
conormal variety T ∗

XXw as a subvariety of T ∗X . Let π : T ∗X → X be the structure



16 RAHUL SINGH

map, and µ the Springer map. Theorem B states that a point p ∈ T ∗X is in T ∗
XXw

if and only if π(p) ∈ Xw and µ(p) satisfies Equation (5.13).

Recall the commutative diagram from Proposition 2.5. We show in Proposi-
tion 5.5 that for any point in ZQ

w , its image under µ ◦ τw satisfies Theorem B.
Conversely, we show in Propositions 5.6 and 5.9 that any point in T ∗X lying over
Xw, and further satisfying Equation (5.13), belongs to τw(Z

Q
w ) = T ∗

XXw.

5.1. Combinatorial Description of Xw. Fix w ∈ WP . Let the integers mw(i, j),
ri, and ci be as in Equations (3.6) and (3.15) respectively. It follows from Equa-
tions (3.7), (3.16) and (4.8) that F (q) ∈ XQ

w if and only if

dim(F (qi) ∩ E(tj)) ≥ min{ri, rj} = rmin{i,j} ∀ 1 ≤ i, j ≤ l,

dim(F (qi+l) ∩ E(tj)) ≥ rj +min{ci, cj} = rj + cmin{i,j} ∀ 1 ≤ i, j ≤ l.

In particular, when i = j, this yields F (qi) ⊂ E(ti) ⊂ F (qi+l).

5.2. The Cotangent Bundle. Let π : T ∗X → X be the structure map defining
the cotangent bundle, and µ : T ∗X → N the Springer map, see Section 1.7. We
identify the cotangent bundle T ∗X with its image under the closed embedding
(π, µ) : T ∗X →֒ X ×N,

T ∗X = {(V, x) ∈ X ×N |xE(n) ⊂ V, xV = 0} .

5.3. The Variety ZQ
w . For G = SLn, let q and Q be as in Proposition 3.18. For

G = Sp2d, let q and Q be as in Proposition 4.14. Recall the variety ZQ
w from

Section 2.3, and the descriptions of uw from Equations (3.19) and (4.15). Using the
closed embedding f from Equation (2.8), we obtain,

ZQ
w =

{
(F (q), x) ∈ XQ

w ×N
∣∣xF (qi+l) ⊂ F (qi−1), ∀ 1 ≤ i ≤ l + 1

}
.(5.4)

Theorem B states that given (V, x) ∈ T ∗X , we have (V, x) ∈ T ∗
XXw, if and only if

V ∈ Xw, and x satisfies Equation (5.13). The purpose of the following proposition
is to show that Equation (5.13) is necessary, i.e., if (V, x) ∈ T ∗

XXw, then x satisfies
Equation (5.13).

Proposition 5.5. For any point (F (q), x) ∈ ZQ
w , we have, for 1 ≤ j < i ≤ l,

dim(xE(ti)/E(tj)) ≤

{
ri−1 − rj ,

ci − cj+1.

Proof. Consider (F (q), x) ∈ ZQ
w , and integers 1 ≤ j < i ≤ l. We see from Sec-

tion 5.1 that E(ti) ⊂ F (qi+l), and from Equation (5.4) that xF (qi+l) ⊂ F (qi−1).
Consequently, we have xE(ti) ⊂ F (qi−1), and hence,

dim(xE(ti)/E(tj)) ≤ dim(F (qi−1)/E(tj))

= dimF (qi−1)− dim(F (qi−1) ∩ E(tj))

≤ ri−1 − rj ,

where the final inequality follows from Section 5.1. Next, we see from Section 5.1
and Equation (5.4) that xF (qj+l+1) ⊂ F (qj) ⊂ E(tj). In particular, F (qj+l+1) is
contained in the kernel of the map,

F (qi+l) → E(n)/E(tj), v 7→ xv(modE(tj)).
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Since the image of this map is precisely xF (qi+l)/E(tj), we have,

dim(xF (qi+l)/E(tj)) ≤ dimF (qi+l)− dimF (qj+l+1)

= qi+l − qj+l+1 = ci − cj+1.

Finally, since E(ti) ⊂ F (qi+l), we deduce that dim(xE(ti)/E(tj)) ≤ ci − cj+1. �

The following two propositions lay the groundwork required to prove that Equa-
tion (5.13) is sufficient.

Proposition 5.6. Consider (V, x) ∈ Xw ×N satisfying Imx ⊂ V ⊂ kerx, and

dim(xE(ti)/E(tj)) ≤ ri−1 − rj , 0 ≤ j < i ≤ l + 1.(5.7)

Then, there exists a sequence of subspaces V0 ⊂ · · · ⊂ Vl = V , satisfying,

(5.8)

dimVi = qi,

xE(ti+1) ⊂ Vi ⊂ E(ti),

dim(Vi ∩ E(tj)) ≥ min{ri, rj} = mw(tj , qi),

for all 1 ≤ i, j ≤ l.

Proof. Since V ∈ Xw, it follows from Section 5.1 that Vl = V satisfies Equa-
tion (5.8). We construct the subspaces Vi inductively. In particular, given subspaces
Vi, · · · , Vl satisfying Equation (5.8), we construct Vi−1.

Applying Equation (5.7) with j = i − 1, we have xE(ti) ⊂ E(ti−1). Further,
Equation (5.8) yields xE(ti) ⊂ xE(ti+1) ⊂ Vi. Hence, we have,

xE(ti) ⊂ Vi ∩ E(ti−1).

Set U1 = xE(ti), and U2 = Vi ∩ E(ti−1). Applying Equation (5.7) with j = 0,
we see that dimU1 ≤ ri−1. Let k = ri−1 − dimU1.

Observe that U1 ∩ E(tj) is the kernel of the quotient map U1 → U1/E(tj). Now,
since dim(xE(ti)/E(tj)) ≤ ri−1 − rj , we have, for 1 ≤ j ≤ l,

dim(U1 ∩ E(tj)) = dimU1 − dim (U1/E(tj))

≥ (ri−1 − k)− (ri−1 − rj) = rj − k

≥ min{ri−1, rj} − k

= mw(tj , qi−1)− k.

On the other hand, observe that,

U2 ∩ E(tj) =

{
Vi ∩ E(ti−1) if i ≤ j,

Vi ∩ E(tj) if i > j,

=⇒ dim(U2 ∩ E(tj)) ≥

{
ri−1 if i ≤ j,

rj if i > j,

= min{ri−1, rj} = mw(tj , qi−1).

It now follows from Proposition 3.12 that there exists a subspace Vi−1 satisfying
xE(ti) ⊂ Vi−1 ⊂ U2 ⊂ E(ti−1), and Equation (5.8). �
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Proposition 5.9. Consider (V, x) ∈ Xw ×N satisfying Imx ⊂ V ⊂ kerx, and

dim(xE(ti)/E(tj)) ≤ ci − cj+1, ∀ 0 ≤ j < i ≤ l + 1.(5.10)

Then, there exists a sequence of subspaces V = Vl ⊂ · · · ⊂ V2l+1, satisfying,

(5.11)

dimVl+i = ql+i,

Vl+i ⊂ kerx+ E(ti),

dim(Vl+i ∩ E(tj)) ≥ rj +min{ci, cj} = mw(tj , ql+i).

for all 1 ≤ i, j ≤ l.

Proof. Since V ∈ Xw, it follows from Section 5.1 that Vl = V satisfies Equa-
tion (5.11). We construct the subspaces Vl+i inductively. In particular, given
subspaces Vl, · · · , Vl+i−1 satisfying Equation (5.11), we construct Vl+i.

We see from Equation (5.11) that Vl+i−1 ⊂ kerx+E(ti). Set U = kerx+E(ti).
We first prove that,

dim(U ∩ E(tj)) ≥ rj +min{ci, cj} = mw(tj , ql+i) ∀ 1 ≤ j ≤ l + 1.(5.12)

For j ≤ i, we have E(tj) ⊂ U , hence U ∩ E(tj) = E(tj). It follows that,

dim(U ∩ E(tj)) = tj = rj + cj = rj +min{ci, cj}.

For j > i, consider the map,

E(tj) → xE(tj)/E(ti−1), v 7→ xv(modE(ti−1)).

Since xE(ti) ⊂ E(ti−1), the subspace U ∩ E(tj) is contained in the kernel of this
map. Further, Equation (5.10) states that dim(xE(tj)/E(ti)) ≤ cj − ci+1, hence

dim(U ∩ E(tj)) ≥ tj − (cj − ci)

= rj + ci = rj +min{ci, cj}.

This finishes the proof of Equation (5.12). It now follows from Equation (5.12),
Lemma 3.10, and Proposition 3.12 that there exists a subspace Vl+i containing
Vl+i−1, and further satisfying Equation (5.11). �

Theorem B. Consider (V, x) ∈ T ∗X. Then (V, x) ∈ T ∗
XXw if and only if V ∈ Xw,

and further, for all 1 ≤ j < i ≤ l + 1, we have,

dim(xE(ti)/E(tj)) ≤

{
ri−1 − rj ,

ci − cj+1.
(5.13)

Proof. Recall the map τw : ZQ
w → T ∗

XXw from Proposition 2.5, given by,

τw(F (q), x) = (F (d), x).

The map τw is proper and birational (see Theorem A), hence surjective. It follows
that (V, x) ∈ T ∗

XXw if and only if there exists F (q) ∈ XQ
w such that F (d) = V , and

(F (q), x) ∈ ZQ
w .

Consider (V, x) ∈ T ∗
XXw. It follows from Theorem A that V ∈ Xw, and from

Proposition 5.5 that Equation (5.13) holds. Conversely, consider (V, x) ∈ T ∗X
satisfying V ∈ Xw, and Equation (5.13). We will construct F (q) ∈ XQ

w such that

(F (q), x) ∈ ZQ
w , and τw(F (q), x) = (V, x).
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Using Proposition 5.6, we construct subspaces V0, · · · , Vl = V satisfying Equa-
tion (5.8). Similarly, we use Proposition 5.9 to construct subspaces Vl+1, · · · , V2l+1

satisfying Equation (5.11).

Suppose first that G = SLn. We set,

F (q) = V0 ⊂ V1 ⊂ · · · ⊂ V2l+1.

Observe that F (d) = Vl = V . It follows from Equations (5.8) and (5.11) that
F (q) ∈ XQ

w . Further, for 1 ≤ i ≤ l + 1, we have,

F (ql+i) ⊂ kerx+ E(ti) =⇒ xF (ql+i) ⊂ xE(ti) ⊂ F (qi−1).

This is precisely the condition for (F (q), x) to belong to ZQ
w .

Suppose next that G = Sp2d. Let F (q) be the partial flag given by,

F (qi) =

{
Vi for i ≤ l,

V ⊥
2l−i for l < i ≤ 2l.

In particular, we have F (d) = Vl = V . It follows from Lemma 4.11 and Proposi-
tion 5.6 that F (q) ∈ XQ

w . It remains to show that (F (q), x) ∈ ZQ
w .

For 0 ≤ i ≤ l, we have xE(ti+1) ⊂ Vi, hence ω(xE(ti+1), V
⊥
i ) = 0. It follows

from Section 4.3 that ω(E(ti+1), x(V
⊥
i )) = 0, hence,

xF (q2l−i) = x(V ⊥
i ) ⊂ E(ti+1)

⊥ = E(tl−i−1).

The final equality is a consequence of Equation (4.10). Substituting i 7→ l − i
yields xE(ql+i) ⊂ E(ti−1) for all 0 ≤ i ≤ l. It follows that (F (q), x) ∈ ZQ

w , hence
(F (d), x) ∈ T ∗

XXw. �

6. Orbital Varieties

Let G, B be as in the previous sections. Consider a G-orbit closure Nλ ⊂ N .
The irreducible components of Nλ∩uB are called orbital varieties. Orbital varieties
are closely related to the conormal varieties of Schubert varieties.

Proposition 6.1 (cf. [Spa82]). Given a standard parabolic subgroup Q, and a

Schubert variety XQ
w ⊂ XQ, the image of the conormal variety T ∗

XQX
Q
w under the

Springer map µQ : T ∗XQ → N is an orbital variety.

For more details on the relationship between conormal varieties and orbital vari-
eties, the reader may consult [DR09, Spa82]. Providing a combinatorial description
of the inclusion order on orbital varieties, and providing the defining equations for
an orbital variety viewed as a subvariety of uB, are both open problems in general.
For certain orbital varieties in types A, B, C (those corresponding to the nilpotent
orbits satisfying x2 = 0), these problems were solved in [Mel05, BM17].

Suppose G is either SL2n or Sp2d, and P is the standard parabolic group corre-
sponding to S\{αd}. We derive, in Theorem C, a system of defining equations for
orbital varieties of the form µ(T ∗

XXw). This is an easy consequence of Theorem B,
and recovers some of the results of [Mel05, BM17].

Theorem C. Let G, B, P , X, w, and µ be as in Theorem B. Then,

µ(T ∗
XXw) =

{
x ∈ uB

∣∣∣∣∣ x
2 = 0, dim(xE(ti)/E(tj)) ≤

{
ri−1 − rj ,

ci − cj+1,
∀ 1 ≤ i < j ≤ l

}
.
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Proof. Consider x ∈ uB satisfying x2 = 0, and

dim(xE(ti)/E(tj)) ≤

{
ri−1 − rj ,

ci − cj+1,
∀ 1 ≤ j < i ≤ l.(6.2)

Substituting j = 0 in Equation (6.2), we obtain,

dim(Im(x|E(ti)) = dim(xE(ti))

≤ ci − c1

=⇒ dim(kerx ∩ E(ti)) = dim(ker(x|E(ti)))

≥ ti − (ci − c1)

= ri + c1 ≥ ri.

Let k = d− dim(Imx). Substituting i = l in Equation (6.2) yields,

dim(Im x/E(tj)) ≤ rl−1 − rj ≤ d− rj

=⇒ dim(Imx+ E(tj)) ≤ (d− rj) + tj

=⇒ dim(Imx ∩ E(tj)) = dim(Imx) + dimE(tj)− dim(Im x+ E(tj))

≥ (d− k) + tj − (d− rj + tj) = rj − k.

Observe that since x2 = 0, we have Imx ⊂ kerx. It now follows from Proposi-
tion 3.12 and Section 5.1 that there exists V ∈ Xw such that,

Imx ⊂ V ⊂ kerx,

i.e., (V, x) ∈ T ∗
XXw. Consequently, we have x ∈ µ(T ∗

XXw). �

6.3. Orbital Varieties in Type A. When G = SLn, the G-orbits in N are
indexed by the partitions of n. For λ a partition of n, the irreducible components
of Nλ ∩ uB are indexed by the standard Young tableaux of shape λ. For T a
standard Young tableau, we denote the corresponding orbital variety by OT.

In this case, the relationship between conormal varieties of Schubert varieties,
and orbital varieties, as described in Proposition 6.1, provides a geometric realiza-
tion of the Robinson-Schensted correspondence.

Proposition 6.4 (cf. [Ste88]). Suppose T is the left Robinson-Schensted tableau

of some w ∈ Sn. Then OT = µB(T ∗
XBX

B
w ).

Proposition 6.5. Let T be a standard Young tableau with exactly two columns.

Then there exists a standard parabolic subgroup P ⊂ G, and a Schubert variety Xw

in X = G/P , such that OT = µ(T ∗
XXw).

Proof. Let k be the number of boxes in the first column of T, and let P be the stan-
dard parabolic subgroup of G corresponding to An−1\{αk}. The longest element
wP of WP is given by

wP (i) =

{
k + 1− i for i ≤ k,

n+ 1− k for i > k.

Let a1, · · · , ak be the entries in the first column of T, written in increasing order,
i.e., top to bottom; and b1, · · · , bn−k the entries in the second column, also written
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in increasing order. We consider the element w ∈ Sn given by,

w(i) =

{
ai for i ≤ k,

bi−k for i > k.

Let v = wwP . Since w ∈ SP
n , the Schubert variety XB

v is a fibre bundle over Xw

with fibre B/P , and we have a Cartesian diagram,

XB
v XB

XP
w XP .

pr

The map XB → XP is precisely the quotient map G/B → G/P . Consequently,
T ∗
XBX

B
v is a B/P -fibre bundle over T ∗

XXw, with the map T ∗
XBX

B
v → T ∗

XXw being

simply the restriction (to T ∗
XBX

B
v ⊂ T ∗X ⊂ XB ×N) of the map,

pr× idN : XB ×N → X ×N.

This yields us µB(T ∗
XBX

B
w ) = µ(T ∗

XXw). Finally, we verify that T is the left RSK-

tableau of v, thus obtaining OT = µB(T ∗
XBX

B
w ) = µ(T ∗

XXw). �

Corollary 6.6. Let T be a two-column standard Young tableau. Consider integers

0 ≤ j < i ≤ n, and the skew-tableau T\{1, · · · , j, i + 1, · · · , n}. Let T
j
i denote the

tableau obtained from this skew-tableau via ‘jeu de taquin’. Then,

OT =
{
x ∈ N

∣∣∣ J(xj
i ) � T

j
i

}
,

where xj
i is the square sub-matrix of x with corners (tj + 1, tj + 1) and (ti, ti),

J(xj
i ) denotes the Jordan type of xj

i , and � denotes the inclusion order on the set

of G-orbits Nλ.

Proof. This statement is proved in [Mel05]. We explain here how it also follows as
a consequence of Theorem C and Section 6.3.

Since x2 = 0, we have (xj
i )

2 = 0 for all i, j. Consequently, the inequality

J(xj
i ) � T j

i is equivalent to the inequality rk(xj
i ) ≤ f j

i , where f j
i is the number of

boxes in the second column of Tj
i . On the other hand, it follows from Theorem C

and Section 6.3 that

OT =
{
x ∈ N

∣∣∣ rk(xj
i ) ≤ gji

}
,

for certain integers gji . It is a simple exercise to verify that the integers f j
i and gji

defined here are equal. �

7. A Type Independent Conjecture

In this section, we assume that X is a cominuscule Grassmannian corresponding
to some Dynkin diagram. We conjecture, for any Schubert variety Xw ⊂ X , the
following equality,

T ∗
XXw = µ−1(µ(T ∗

XXw)) ∩ π−1(Xw).(7.1)

The question is well-posed in both set-theoretic and scheme-theoretic settings.
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Suppose Xw ⊂ X is a smooth Schubert subvariety. We prove in Proposition 7.2
that Equation (7.1) holds set-theoretically in this case.

Next, let w0 denote the longest element in the Weyl group W . We show in
Proposition 7.4 that ifXw ⊂ X is a Schubert variety such that the opposite Schubert
variety Xw0w is smooth, then Equation (7.1) holds scheme-theoretically. This is a
straightforward corollary to [LS17, Theorem 1.1].

When X is the usual Grassmannian or the symplectic Grassmannian, the set-
theoretic version is a consequence of Theorems B and C. In type B, the only comi-
nuscule Grassmannian is the one corresponding to G = SO2n+1, and the comi-
nuscule root α1. In this cases, one easily verifies that for each w ∈ WP , either
Xw is smooth, or Xw0w is smooth, hence settling the set-theoretic version of our
conjecture for all cominuscule Grassmannians in types A, B, and C.

One would like to know in which of these cases Equation (7.1) holds scheme-
theoretically, and also whether Equation (7.1) holds for types D and E. If it does,
can we find a uniform, type independent proof?

Proposition 7.2. Suppose Xw is smooth. Then the conormal variety T ∗
XXw sat-

isfies Equation (7.1) set-theoretically.

Proof. A Schubert variety Xw in a cominuscule Grassmannian X is smooth if and
only if Xw is homogeneous for some standard parabolic subgroup L, see [BM10].

Suppose Xw is homogeneous for some standard parabolic subgroup L; let SL be
the corresponding subset of S, and wL the longest word of W supported on SL.
Then w is the minimal representative of wL in WP . Further, the subspace uw ⊂ u

from Lemma 2.1 is precisely,

uw =
⊕

α≥γ, Supp(α) 6∈SL

gα

In particular, uw is L-stable.

The quotient map G/B → G/P induces an isomorphism L/B
∼
−→ Xw, and the

conormal variety T ∗
XXw → Xw is simply the vector bundle L ×B uw → L/B. Con-

sequently, we have,

µ(T ∗
XXw) = {Ad(l0)x0 | l0 ∈ L, x0 ∈ uw} .(7.3)

Now, consider some (l, x) ∈ G×P u, satisfying π(l) ∈ Xw and µ(l, x) ∈ µ(T ∗
XXw).

We may assume, without loss of generality, that l ∈ L. As a consequence of
Equation (7.3), there exist l0 ∈ L, and x0 ∈ uw, such that,

µ(l, x) = Ad(l)x = Ad(l0)x0

=⇒ x = Ad(l−1l0)x0.

Now, since uw is L-stable, we have x ∈ uw, hence (l, x) ∈ T ∗
XXw. �

Proposition 7.4. Suppose the opposite Schubert variety Xw0w is smooth for some

w ∈ WP . Then T ∗
XXw satisfies Equation (7.1) scheme-theoretically.

Proof. Let D0 denote the Dynkin diagram of G, and let D be the corresponding
extended Dynkin diagram. The loop group LG = G(k[t, t−1]) is an affine Kac-
Moody group corresponding to the extended Dynkin diagram D. Let G0, Gd, and P
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be parabolic subgroups of LG corresponding to the subsets D\{α0},D\{αd}, and
D\{α0, αd} respectively.

Following [LS17], there exists an embedding φ : T ∗
XXw → LG/P such that

φ(T ∗
XXw) is an open subset of some Schubert subvariety of LG/P. Further, we can

identify the structure map π and the Springer map µ as the restriction to φ(T ∗
XXw)

of the quotient maps πd : LG/P → LG/Gd and π0 : LG/P → LG/G0 respectively.

Now, for any Schubert variety Y ⊂ LG/P, we have the scheme-theoretic equality,

Y = π−1
0 (π0(Y )) ∩ π−1

d (πd(Y )).

From this, we deduce that Equation (7.1) holds for T ∗
XXw scheme-theoretically. �
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[DR09] J. Matthew Douglass and Gerhard Röhrle, The Steinberg variety and representations of

reductive groups, J. Algebra 321 (2009), no. 11, 3158–3196. MR 2510045
[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977,

Graduate Texts in Mathematics, No. 52. MR 0463157

[Kum02] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory,
Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002.
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