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Abstract

This is the first of a series of articles providing a foundation for the theory of

Drinfeld modular forms of arbitrary rank r. In the present part, we develop the

analytic theory. Most of the work goes into defining and studying the u-expansion of

a weak Drinfeld modular form, whose coefficients are weak Drinfeld modular forms

of rank r − 1. Based on that we give a precise definition of when a weak Drinfeld

modular form is holomorphic at infinity and thus a Drinfeld modular form in the

proper sense.
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Introduction

In [Dr74], Drinfeld introduced elliptic modules, now called Drinfeld modules, in order to
prove a special case of the Langlands conjectures for GL2 over function fields. These objects
share many properties with elliptic curves, though their rank can be an arbitrary integer
r ⩾ 1. In particular, Drinfeld constructed a moduli space of Drinfeld modules of rank r with
a suitable level structure, both as an algebraic variety and with an analytic uniformisation
as a quotient of an r−1 dimensional symmetric space Ωr. This Ωr is a rigid analytic space
over a field C∞ of positive characteric and plays the role of the complex upper half plane.
In the case r = 2 Drinfeld [Dr77] used automorphic forms on Ωr with values in Qℓ to prove a
case of the Langlands conjectures for the associated automorphic representations on GL2.

But there is also a natural definition of Drinfeld modular forms on Ωr with values in
the field C∞ of positive characteristic. Goss [Go80b] was the first to explicitly refer to
these, defining them both algebraically, in the way Katz did in [Ka73], and analytically as
(rigid analytic) holomorphic functions on Ωr. In the case r = 2, where these are functions
of one variable, it was relatively straightforward to write down the necessary condition of
holomorphy at infinity. This led to the development of a theory of Drinfeld modular forms
of rank 2, for instance by Gekeler [Ge86]; see [Ge99b] for a survey.

For r ⩾ 3 the situation concerning holomorphy at infinity is more subtle. In the related
case of Siegel modular forms of genus ⩾ 2 the problem disappears, because the necessary
condition at infinity holds automatically by the Köcher principle. One explanation for
this is the fact that in the Satake compactification of the Siegel moduli space of abelian
varieties the boundary has codimension ⩾ 2. By contrast, the moduli space of Drinfeld
modules is always affine, so in any compactification as an algebraic variety the boundary
has codimension 1; hence a condition at infinity is always required.

That condition is important for several reasons. On the one hand many relevant modu-
lar forms that one can construct naturally, such as Eisenstein series, satisfy it automatically.
On the other hand a condition at infinity is necessary for one of the main structural results,
the fact that the space of modular forms of given level and weight is finite dimensional.

The condition at infinity can be expressed in two quite different ways. The analytic way
says that the u-expansion (which is a kind of Fourier expansion) of a modular form consists
only of terms with non-negative index. For the algebraic way one identifies the analytic
modular forms with sections of an invertible sheaf on a moduli space. Then one requires
a compactification of this moduli space as a projective algebraic variety over C∞ together
with an extension of the invertible sheaf. The crucial step is to prove that a modular form
satisfies the analytic condition at infinity if and only if the corresponding section on the
moduli space extends to a section on that compactification. The finite dimensionality is
then a direct consequence of the fact that the space of sections of a coherent sheaf on a
projective algebraic variety is always finite dimensional. Using the Satake compactification
of a Drinfeld moduli space, the third author [Pi13] has already established much of the
necessary algebro-geometric theory for this.

The present paper is the first of a series of articles together with [BBP2] and [BBP3],
whose aim is to provide the rest of the theory and thereby a foundation for the theory of
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Drinfeld modular forms of arbitrary rank. The present Part I develops the basic analytic
theory, including u-expansions and holomorphy at infinity. Part II will identify the analytic
modular forms discussed here with the algebraic modular forms defined in [Pi13] and deduce
qualitative consequences such as the finite dimensionality of the space of modular forms
of given level and weight. Part III will illustrate the general theory by constructing and
studying some important families of modular forms.

For a discussion on the history of Drinfeld modular forms of higher rank, see [BB17, §7].
We mention here also two recent papers by Gekeler [Ge17a, Ge17b] in which he constructs
the building map from Ωr to the Bruhat-Tits building of GLr and uses this to study the
growth and vanishing behaviours of important families of modular forms for GLr(Fq[t]).
Outline of this paper

In Section 1 we introduce our notation and define the Drinfeld period domain Ωr with its
action by GLr(F ) for a global function field F . Weak modular forms for an arithmetic
subgroup Γ < GLr(F ) are defined as holomorphic functions from Ωr to C∞ satisfying the
functional equation (1.5) linking f(γ(ω)) to f(ω) for every γ ∈ Γ.

Further preparations are made in the next two sections. In Section 2 we collect basic
properties of exponential functions associated to strongly discrete subgroups of C∞, and
we outline the rigid analytic structure of Ωr in Section 3.

Based on our choice of coordinates on Ωr, we identify a standard boundary component,
whose translates by GLr(F ) form all boundary components of codimension 1. Thus a weak
modular form is holomorphic at all boundary components if and only if all its translates
by GLr(F ) are holomorphic at the standard boundary component. The holomorphy at
the standard boundary component is tested using the expansion with respect to a certain
parameter u.

This parameter is defined in Section 4: We decompose elements ω ∈ Ωr as ω = (ω1

ω′
),

where ω1 ∈ C∞ is the first coordinate of ω and ω′ ∈ Ωr−1 consists of the remaining coordi-
nates. Next, we assign to Γ a subgroup Λ′ ⊂ F r−1 isomorphic to the subgroup ΓU < Γ of
translations which fix ω′. Then Λ′ω′ ⊂ C∞ is a strongly discrete subgroup and we can form
the associated exponential function eΛ′ω′ . Now eΛ′ω′(ω1) is invariant under the translations
ΓU and we define our parameter as its reciprocal u ∶= uω′(ω1) = eΛ′ω′(ω1)−1 in (4.14).

In Definition 4.12 we define neighbourhoods of infinity in Ωr, then Theorem 4.16 states
that the map (ω1

ω′
)↦ ( u

ω′
) induces rigid analytic isomorphisms from quotients of neighbour-

hoods of infinity by ΓU to so-called pierced tubular neighbourhoods in C×∞ ×Ωr−1.
This allows us to show in Section 5 that every weak modular form f admits a u-

expansion
f(ω) = ∑

n∈Z

fn(ω′)uω′(ω1)n
converging on a neighbourhood of infinity (Proposition 5.4), whose coefficients fn are them-
selves weak modular forms on Ωr−1 (Theorem 5.9). These are the main results of this paper.

Finally, we define modular forms in Section 6 as weak modular forms all of whose
rotations by elements of GLr(F ) admit u-expansions with terms of non-negative index. It
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follows from Propositions 6.2 and 6.3 that this condition only needs to be tested for finitely
many elements of GLr(F ). It will be shown in Part II of this series that this definition
agrees with the algebraic definition of modular forms in [Pi13].

1 Weak modular forms

Throughout this paper we fix a global function field F of characteristic p > 0, with exact
field of constants Fq of cardinality q. We fix a place ∞ of F and let A denote the ring
of elements of F which are regular away from ∞. This is a Dedekind domain with finite
class group and group of units A× = F×q . Let π ∈ F be a uniformising parameter at ∞, so
that ∣π∣ = q−deg∞. Let F∞ ≅ Fqdeg∞((π)) denote the completion of F at ∞, and C∞ the
completion of an algebraic closure of F∞.

We fix an unspecified non-zero constant ξ ∈ C×∞, whose value can be set for normalisation
purposes. For example, if F = Fq(t) and A = Fq[t], there are certain advantages in letting
ξ be a period of the Carlitz module. For more general function fields F , a natural choice of
ξ is a period of a certain sign-normalised rank-one Drinfeld module, see [Ge86, Chapter IV
(2.14) and (5.1)]. However, we will not explicitly need the uniformisation in this article,
so the reader loses nothing by assuming that ξ = 1.

The Drinfeld period domain of rank r ⩾ 1 over F∞ is usually defined as the set of
points (ω1 ∶ . . . ∶ ωr) ∈ Pr−1(C∞) for which ω1, . . . , ωr are F∞-linearly independent. Any
such point possesses a unique representative with ωr = ξ. We shall only work with these
representatives, so we identify Ωr with the following subset of Cr

∞:

(1.1) Ωr ∶= {(ω1, . . . , ωr)T ∈ Cr
∞ ∣ ω1, . . . , ωr F∞-linearly independent and ωr = ξ}.

We write the elements of Ωr as r × 1 matrices, i.e. column vectors.
For any point ω ∈ Ωr and any matrix γ ∈ GLr(F∞), the matrix product γω is again a

column vector with F∞-linearly independent entries. In particular its last entry is non-zero.
Defining

(1.2) j(γ,ω) ∶= ξ−1 ⋅ (last entry of γω) ∈ C×∞,
we thus find that

(1.3) γ(ω) ∶= j(γ,ω)−1γω
again lies in Ωr. This defines a left action of GLr(F∞) on Ωr. Also, for any γ, δ ∈ GLr(F∞)
a direct calculation shows that

(1.4) j(γδ,ω) = j(γ, δ(ω))j(δ,ω).
For any function f ∶ Ωr

→ C∞ and any integers k and m we define the function f ∣k,mγ ∶
Ωr
→ C∞ by

(1.5) (f ∣k,mγ)(ω) ∶= det(γ)mj(γ,ω)−kf(γ(ω)).
4



By direct calculation we deduce from (1.4) that

(1.6) (f ∣k,mγδ)(ω) = ((f ∣k,mγ)∣k,mδ)(ω).
Thus (1.5) defines a right action of GLr(F∞) on the space of all functions f ∶ Ωr

→ C∞.
For later use note also that, if γ = a ⋅ Idr for the identity matrix Idr ∈ GLr(F ), then

j(γ,ω) = a and γ(ω) = ω and det(γ) = ar; and hence

(1.7) f ∣k,m(a ⋅ Idr) = arm−kf.
Remark 1.8 There are different conventions about whether Ωr consists of row or column
vectors and about how GLr(F∞) acts on it. For instance, the first and third authors
[Ba14], [Pi13] like Drinfeld [Dr74] use row vectors and the action (γ,ω) ↦ ωγ−1, whereas
Kapranov [Ka87] uses column vectors and the action by left multiplication (γ,ω) ↦ γω.
These conventions differ not only by transposition, but also by the outer automorphism
γ ↦ (γT )−1 of GLr. The present article uses column vectors and left multiplication in order
to make things compatible with the existing literature on rank 2 Drinfeld modular forms.

The set Ωr can be endowed with the structure of a rigid analytic space. Experts may
be content with the fact that Ωr is an admissible open subset of Pr−1(C∞) and inherits
its rigid analytic structure, while others may consult Section 3 for more details. A holo-
morphic function on Ωr is a global section of the structure sheaf of Ωr, but a more useful
characterisation is that a function f ∶ Ωr

→ C∞ is holomorphic if and only if it is a uniform
limit of rational functions on Pr−1(C∞) whose poles all lie outside Ωr.

Definition 1.9 Consider integers k and m and an arithmetic subgroup Γ < GLr(F ). A
weak modular form of weight k and type m for Γ is a holomorphic function f ∶ Ωr

→ C∞
which for all γ ∈ Γ satisfies

f ∣k,mγ = f.
The space of these functions is denoted by Wk,m(Γ).

Since Γ is an arithmetic subgroup of GLr(F ), its determinant det(Γ) is a finite subgroup
of F × and therefore contained in the multiplicative group of the field of constants F×q . Thus
its order is a divisor of q − 1, and the definition depends only on m modulo this divisor; in
other words we have

(1.10) Wk,m(Γ) =Wk,m′(Γ) whenever m ≡m′ modulo ∣det(Γ)∣.
On the other hand, for any α ∈ F×q we have f ∣k,m(α ⋅ Idr) = αrm−kf by (1.7). Thus

(1.11) Wk,m(Γ) = 0 unless k ≡ rm modulo ∣Γ ∩ {scalars}∣.
In the case m = 0 we will suppress all mention of m and abbreviate f ∣kγ ∶= f ∣k,mγ and

Wk(Γ) ∶=Wk,m(Γ). By (1.10) we may always do this when Γ < SLr(F ).
For later use we note the following direct consequence of (1.6):
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Proposition 1.12 For any δ ∈ GLr(F ) we have f ∈ Wk,m(Γ) if and only if f ∣k,mδ ∈
Wk,m(δ−1Γδ).

In general the space Wk,m(Γ) is infinite dimensional. A finite dimensional subspace of
‘non-weak’ modular forms will be characterised by conditions at infinity. The formulation
of these conditions requires some preparation in the next two sections.

2 Exponential functions

A subgroup H ⊂ C∞ is called strongly discrete if its intersection with every ball of finite
radius is finite. For any such subgroup, any z ∈ C∞, and any ε > 0, there are at most
finitely many elements h ∈H ∖ {0} with ∣ z

h
∣ ⩾ ε. In this case the product

(2.1) eH(z) ∶= z ⋅ ∏
h∈H∖{0}

(1 − z

h
)

converges in C∞, defining the exponential function eH ∶ C∞ → C∞ associated to H .

Proposition 2.2 For any strongly discrete subgroup H ⊂ C∞, the function eH ∶ C∞ → C∞
is holomorphic, surjective, and has simple zeros at the points in H and no other zeros. It
induces an isomorphism of additive groups and rigid analytic spaces

C∞/H ∼
Ð→ C∞.

The function eH possesses an everywhere convergent power series expansion

eH(z) = ∞∑
i=0

eH,piz
pi

with eH,pi ∈ C∞ and eH,1 = 1. If H is an Fq-subspace, the expansion has the form

eH(z) = ∞∑
j=0

eH,qjz
qj .

If H is finite, then eH(z) is a polynomial of degree ∣H ∣ in z.

Proof. When H ⊂ C∞ is an A-lattice (see below), this is proved in [Go96, §4.2] and
[Go80b, Prop. 1.27]. The case where H ⊂ C∞ is merely a strongly discrete subgroup
follows in exactly the same way. ◻

Proposition 2.3 (a) For any two strongly discrete subgroups H ′ ⊂ H ⊂ C∞, the subgroup
eH′(H) ⊂ C∞ is strongly discrete and isomorphic to H/H ′, and we have

eH = eeH′(H) ○ eH′ .
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(b) For any strongly discrete subgroup H ⊂ C∞ and any a ∈ C×∞, the subgroup aH ⊂ C∞
is strongly discrete, and we have

eaH(az) = aeH(z).
Proof. For (a) see [Ge88b, (1.12)], and (b) follows immediately from the definition. ◻

An A-lattice of rank r in C∞ is a strongly discrete projective A-submodule Λ ⊂ C∞ of
rank r.

Proposition 2.4 Let H ⊂ C∞ be an A-lattice of rank r. Then for any a ∈ A there exists a
unique Fq-linear polynomial ϕH

a (z) of degree ∣a∣r satisfying

ϕH
a (eH(z)) = eH(az)

for all z ∈ C∞. The map ϕH ∶ a↦ ϕH
a is a Drinfeld A-module of rank r.

Proof. [Go96, Thm. 4.3.1] ◻

3 The rigid analytic structure of Ωr

Throughout the following we denote by B(0, ρ) ∶= {z ∈ C∞ ∶ ∣z∣ ⩽ ρ} the closed disk of
radius ρ > 0 centred at 0, and by B(0, ρ)′ = B(0, ρ) ∖ {0} the associated punctured disk.
We will also consider the annulus D(0, σ, ρ) ∶= {z ∈ C∞ ∣ σ ⩽ ∣z∣ ⩽ ρ}. Note that B(0, ρ) and
D(0, σ, ρ) are affinoid whenever σ, ρ ∈ ∣C×∞∣.

We will describe the rigid analytic structure of Ωr by covering it by suitable affinoid
subspaces. Two such coverings already appear in [Dr74], and one of them is described in
more detail in [SS91]. We follow the approach in [SS91], but adapt it to our convention
that ωr = ξ.

We say that a linear form F r
∞ → F∞ is unimodular if its largest coefficient has absolute

value 1. For any F∞-rational hyperplane H ⊂ Pr−1(C∞), we choose a unimodular linear
form ℓH that defines it. Then ∣ℓH(ω)∣ is well-defined and non-zero for any ω ∈ Ωr. Using
the standard norm ∣ω∣ ∶=max1⩽i⩽r ∣ωi∣ on Cr

∞, we set

(3.1) h(ω) ∶= 1
∣ω∣ ⋅ inf{∣ℓH(ω)∣ ∶ H an F∞ hyperplane},

which measures the distance from ω ∈ Ωr to all boundary components combined. For any
n ∈ Z>0 we also define

(3.2) Ωr
n ∶= {ω ∈ Ωr ∶ h(ω) ⩾ ∣π∣n}.

Since ∣π∣ < 1, these subsets satisfy Ωr
1 ⊂ Ω

r
2 ⊂ . . . and their union is Ωr.

Lemma 3.3 Every ω ∈ Ωr
n satisfies ∣ξ∣ ⩽ ∣ω∣ ⩽ ∣ξ∣∣π∣−n.
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Proof. The first inequality follows from ωr = ξ. Next, since ω ↦ ωr is a unimodular F∞-
linear form, (3.1) implies that ∣ω∣h(ω) ⩽ ∣ξ∣, from which the second inequality follows. ◻

Proposition 3.4 For each n ∈ Z>0, the set Ωr
n is an affinoid subdomain of Pr−1(C∞).

Together they form an admissible covering of Ωr, endowing it with the structure of an
admissible open subset of Pr−1(C∞).
Proof. See version (C) of the proof of [SS91, Prop. 1]. ◻

Using the second (finer) covering in [Dr74, Prop. 6.2], Drinfeld showed that any arith-
metic subgroup Γ < GLr(F ) acts discontinuously on Ωr, which means that there exists an
admissible covering Ωr = ⋃i∈I Ui such that for each i ∈ I, the set {γ ∈ Γ ∣γ(Ui) ∩ Ui ≠ ∅} is
finite. Thus, for every subgroup G < Γ, the quotient G/Ωr exists as a rigid analytic space
(see [FvdP04, §6.4]).

For the following recall that a function f ∶ U → C∞ on an admissible open subset U ⊂ Ωr

is called holomorphic if it is a section of the sheaf of functions on this space, or equivalently,
if it is a uniform limit f = limn→∞ fn of rational functions fn ∶ Pr−1(C∞) ⇢ C∞ with no
poles in U .

In the next section we shall need bounds on the values of certain exponential functions
when we restrict to ω ∈ Ωr

n. For this we require the following estimates:

Lemma 3.5 For any γ ∈ GLr(F∞) there exist positive constants c1, c2 and c3 such that
for every ω ∈ Ωr we have

(a) h(ω) ⩽ c1∣j(γ,ω)∣∣ω∣−1 ⩽ 1;
(b) ∣γ(ω)∣ ⩽ c2h(ω)−1; and
(c) h(γ(ω)) ⩾ c3h(ω).

Proof. Let x be an entry of the last row of γ of maximal absolute value, and set
c1 ∶= ∣x−1ξ∣ > 0. Then by the definition (1.2) of j(γ,ω), the value x−1ξj(γ,ω) is a unimodular
F∞-linear combination of the ωi’s, so we obtain

h(ω) ⩽ ∣x−1ξj(γ,ω)∣∣ω∣ ⩽ 1.

This proves (a).
Next, let c′2 be the largest absolute value of an entry of γ. Then the matrix product

satisfies ∣γω∣ ⩽ c′2∣ω∣ and so ∣γ(ω)∣ = ∣j(γ,ω)−1∣∣γω∣ ⩽ ∣j(γ,ω)−1∣c′2∣ω∣ ⩽ c1c′2h(ω)−1, where the
last inequality follows from (a). This proves (b) with c2 = c1c′2.

For (c) let c′3 denote the largest absolute value of an entry of γ−1. Let ℓ be an arbitrary
unimodular F∞-linear form, which we write as a row vector, so that ℓ(ω) = ℓω. Choose
mℓ ∈ C×∞ such that ℓγ ∶= mℓℓγ is a unimodular linear form. Then the entries of mℓℓ =
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mℓℓγ ⋅ γ−1 have absolute value at most c′3; hence ∣mℓ∣ ⩽ c′3. Since γ(ω) = j(γ,ω)−1γω, using
the linearity of ℓ and the definition of h(ω) we find that

∣ℓ(γ(ω))∣∣γ(ω)∣ =
∣ℓγω∣∣γω∣ =

∣mℓ∣−1∣ℓγω∣∣γω∣ ⩾
c′−13 ∣ℓγω∣
c′2∣ω∣ ⩾

h(ω)
c′2c
′
3

.

Varying ℓ, the definition of h(γ(ω)) now implies (c) with c3 ∶= (c′2c′3)−1. ◻

4 Neighbourhoods of infinity

From now on we assume that r ⩾ 2. Let U denote the algebraic subgroup of GLr,F of
matrices of the form

(4.1)

⎛⎜⎜⎝
1 ∗ . . . ∗

0
⋮
0

Idr−1

⎞⎟⎟⎠
where Idr−1 denotes the identity matrix of size (r−1)×(r−1). Fix an arithmetic subgroup
Γ < GLr(F ) and set

(4.2) ΓU ∶= Γ ∩U(F ).
Then for all γ ∈ ΓU and ω ∈ Ωr we have det(γ) = j(γ,ω) = 1; hence every weak modular
form for Γ is a ΓU -invariant function on Ωr.

Viewing elements of F r−1 as 1×(r−1)-matrices (row vectors), consider the isomorphism

(4.3) ι ∶ F r−1 ∼
Ð→ U(F ), v′ ↦ (1 v′

0 Idr−1
) .

Since Γ is commensurable with GLr(A), the subgroup

(4.4) Λ′ ∶= ι−1(ΓU) ⊂ F r−1

is commensurable with Ar−1. On the other hand, recall that Ωr is the set of column vectors
ω = (ω1, . . . , ωr)T ∈ Cr

∞ with F∞-linearly independent entries and ωr = ξ. For any such ω

we have ω′ ∶= (ω2, . . . , ωr)T ∈ Ωr−1, hence

Ωr ⊂ C∞ ×Ωr−1

inside Cr
∞ = C∞ ×Cr−1

∞ . Accordingly we write ω = (ω1

ω′
). The definition (3.1) then directly

implies that h(ω) ⩽ h(ω′) and hence Ωr
n ⊂ C∞ ×Ωr−1

n .
For any element λ′ ∈ Λ′ we can form the matrix product λ′ω′ ∈ C∞. The definition (1.3)

of the action on Ωr then implies that

(4.5) ι(λ′)((ω1

ω′
)) = (ω1+λ

′ω′

ω′
),
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which extends the action to C∞×Ωr−1 by the same formula. For any ω′ ∈ Ωr−1 observe that
Λ′ω′ ∶= {λ′ω′ ∣ λ′ ∈ Λ′} is a strongly discrete subgroup of C∞, because Λ′ is commensurable
with Ar−1 and the entries of ω′ are F∞-linearly independent. Thus the function

(4.6) C∞ ×Ωr−1
→ C∞, [(ω1

ω′
)] ↦ eω′Λ′(ω1)

is well-defined and ΓU -invariant.
As usual in a metric space, for any point z ∈ C∞ and any subset X ⊂ C∞ we write

d(z,X) ∶= inf{∣z − x∣ ∶ x ∈X}. Then we have:

Proposition 4.7 (a) The function (4.6) is holomorphic.

(b) For any n ∈ Z>0 and c > 0 there exists a constant cn > 0, such that for any ω′ ∈ Ωr−1
n

and any ω1 ∈ C∞ with ∣ω1∣ < c we have ∣eΛ′ω′(ω1)∣ < cn.
(c) For any n ∈ Z>0 and Rn > 0 there exists a constant cn > 0, such that for any ω′ ∈ Ωr−1

n

and any ω1 ∈ C∞ with d(ω1, F r−1
∞ ω′) < Rn we have ∣eΛ′ω′(ω1)∣ < cn.

(d) For any ω′ ∈ Ωr−1 and ω1 ∈ C∞ we have ∣eΛ′ω′(ω1)∣ ⩾ d(ω1, F r−1
∞ ω′).

Proof. The function is defined by the product eω′Λ′(ω1) = ω1 ⋅∏0/=λ′∈Λ′(1 − ω1

λ′ω′
), whose

factors we examine in turn. First, as Λ′ ⊂ F r−1 is commensurable with Ar−1, there exists a
constant a ∈ A ∖ {0} with Λ′ ⊂ a−1Ar−1. Next observe that any λ′ ∈ Λ′ ∖ {0} determines a
unimodular F∞-linear form

λ′

∣λ′∣ . For any ω′ ∈ Ωr−1
n it follows that

(4.8) ∣λ′ω′∣ = ∣λ′∣ ⋅ ∣ λ′∣λ′∣ω′∣ (3.1)⩾ ∣λ′∣ ⋅ h(ω′) ⋅ ∣ω′∣ (3.2)⩾ ∣λ′∣ ⋅ ∣πn∣ ⋅ ∣ω′∣ 3.3⩾ ∣λ′∣ ⋅ ∣πn∣ ⋅ ∣ξ∣.
As λ′ runs through Λ′ ∖ {0}, the value ∣λ′ω′∣ thus goes to ∞ uniformly over Ωr−1

n . Varying
n this implies that the function is holomorphic, proving (a).

To prove (b) observe next that all factors 1 − ω1

λ′ω′
with ∣λ′ω′∣ ⩾ ∣ω1∣ have absolute value

less than or equal to 1. Since now ∣ω1∣ < c, we deduce that

(4.9) ∣eω′Λ′(ω1)∣ < c ⋅ ∏
0<∣λ′ω′∣<c

c∣λ′ω′∣ .
Since Λ′ ⊂ a−1Ar−1, for any λ′ ∈ Λ′ ∖ {0} we have ∣λ′∣ ⩾ 1

∣a∣ . From (4.8) we thus deduce that

∣λ′ω′∣ ⩾ ∣πnξ∣
∣a∣ . In particular each factor in the product (4.9) satisfies c

∣λ′ω′∣ ⩽
c∣a∣
∣πnξ∣ ; hence it

is bounded by a constant that is independent of ω′. On the other hand, if ∣λ′ω′∣ < c, the
inequality (4.8) implies that ∣λ′∣ < c

∣πnξ∣ . Thus each coefficient of aλ′ ∈ Ar−1 has absolute

value < c∣a∣
∣πnξ∣ , the number of possibilities for which is bounded independently of ω′. The

number of factors in (4.9) is thus also bounded independently of ω′, and so is therefore the
total value of the product, proving (b).

To prove (c) write ω1 = xω′ + y, where x ∈ F r−1
∞ and y ∈ C∞ with ∣y∣ < Rn. Since

Λ′ ⊂ F r−1 is commensurable with Ar−1, the factor group F r−1
∞ /Λ′ is compact. Thus there
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exists a constant α > 0 depending only on A and Λ′, such that every x ∈ F r−1
∞ can be

written in the form x = λ′ + x0 for some λ′ ∈ Λ′ and x0 ∈ C∞ with ∣x0∣ < α. Together
we then have ω1 = λ′ω′ + (x0ω′ + y) with ∣x0ω′∣ < α∣ω′∣ ⩽ α∣ξπ−n∣ by Lemma 3.3 and hence∣x0ω′+y∣ <max{α∣ξπ−n∣,Rn}. By part (b) this implies that ∣eΛ′ω′(ω1)∣ = ∣eΛ′ω′(x0ω′+y)∣ < cn
for some constant cn > 0 that is independent of ω1 and ω′, proving (c).

To prove (d) write ω1 = λ′0ω′+y with λ′0 ∈ Λ′ and y ∈ C∞ such that ∣y∣ is minimal. Then
for all λ′ ∈ Λ′ we have ∣y − λ′ω′∣ ⩾ ∣y∣. If ∣y∣ ⩾ ∣λ′ω′∣, this implies that ∣y − λ′ω′∣ ⩾ ∣λ′ω′∣
and hence ∣1 − y

λ′ω′
∣ ⩾ 1. If ∣y∣ < ∣λ′ω′∣, we directly deduce that ∣1 − y

λ′ω′
∣ = 1. Writing

eω′Λ′(ω1) = eω′Λ′(y) = y∏0/=λ′∈Λ′(1− y
λ′ω′
), we conclude that all factors in the product satisfy∣1 − y

λ′ω′
∣ ⩾ 1. Thus it follows that ∣eω′Λ′(ω1)∣ ⩾ ∣y∣ ⩾ d(ω1, F r−1

∞ ω′), proving (d). ◻

Proposition 4.10 The action of ΓU on C∞ × Ωr−1 from (4.5) is free and discontinuous
and the quotient ΓU/(C∞ × Ωr−1) exists as a rigid analytic space. Moreover we have an
isomorphism of rigid analytic spaces

E ∶ ΓU/(C∞ ×Ωr−1)Ð→ C∞ ×Ωr−1, [(ω1

ω′
)]↦ (eω′Λ′(ω1)

ω′
).

Proof. The subsets Uρ,n ∶= B(0, ρ) × Ωr−1
n for all ρ ∈ ∣C×∞∣ and n > 0 form an admissible

affinoid covering of C∞ ×Ωr−1. For fixed ρ and n, consider a non-trivial element γ = ι(λ′) ∈
ΓU such that γUρ,n ∩ Uρ,n ≠ ∅. Choose (ω1

ω′
) ∈ Uρ,n such that γ(ω1

ω′
) = (ω1+λ

′ω′

ω′
) ∈ Uρ,n. Then

∣λ′ω′∣ ⩽max{∣ω1∣, ∣ω1 + λ′ω′∣} ⩽ ρ. Since λ′

∣λ′∣ is a unimodular F∞-linear form, we obtain

ρ∣λ′∣ ⩾ ∣λ
′ω′∣∣λ′∣

(3.1)

⩾ h(ω′)∣ω′∣ (3.2)

⩾ ∣π∣n∣ω′∣ 3.3⩾ ∣π∣n∣ξ∣.
Thus we have ∣λ′∣ ⩽ ρ∣π∣−n∣ξ∣−1, where the right hand side depends only on ρ and n. Since
λ′ lies in Λ′, which is commensurable with Ar−1, this leaves only finitely many possibilities
for γ = ι(λ′). Thus the action is discontinuous. The action is clearly free, and the existence
of the quotient as rigid analytic space follows from [FvdP04, §6.4].

By Proposition 2.2 we obtain a well-defined bijective and holomorphic map E . As the
derivative of eΛ′ω′(X) with respect to X is identically 1, the morphism is also étale. By
Proposition 4.11 below it is therefore an isomorphism. ◻

Proposition 4.11 Let f ∶ X → Y be a morphism of rigid analytic spaces defined over an
algebraically closed field K which is étale and bijective. Then f is an isomorphism.

Proof. (The proof is based on the analogous argument for schemes at [Stacks, Tag
02LC].) First we show that f is universally injective, i.e., for any morphism g ∶ Y ′ → Y

the morphism f ′ ∶ X ′ ∶= X ×Y Y ′ → Y ′ is injective. So consider any points x′, x′′ ∈ X ′

mapping to the same point y′ ∈ Y ′. Then they also map to the same point y ∈ Y , and by
the bijectivity of f they therefore also map to the same point x ∈ X . Thus x′ and x′′ lie
in the fiber product x ×y y′ which, since all these points have the same residue field K, is
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Sp(K ⊗K K) ≅ Sp(K) and therefore consists of a single point. This proves that x′ = x′′, as
desired.

In particular, taking Y ′ = X , the projection fX ∶ X ×Y X → X is injective, and hence
the diagonal morphism ∆ ∶ X → X ×Y X is surjective (since fX ○∆ is the identity on X).
On the other hand ∆ is an open immersion, because f is étale. It follows that ∆ and
hence fX are isomorphisms. On the other hand f is flat by étaleness and even faithfully
flat by surjectivity. Since being an isomorphism is local for the étale topology, and fX is
an isomorphism, it follows that f is an isomorphism, as desired. ◻

Now we look at the situation near the standard boundary component.

Definition 4.12 For any n ∈ Z>0 and Rn > 0 consider the ΓU -invariant subset

I(n,Rn) ∶= {ω = (ω1

ω′
) ∈ Ωr ∣ ω′ ∈ Ωr−1

n , d(ω1, F
r−1
∞ ω′) ⩾ Rn}.

An arbitrary ΓU -invariant admissible open subset N ⊂ Ωr, such that for each n > 0 there
exists an Rn > 0 with I(n,Rn) ⊂ N , will be called a neighbourhood of infinity.

Note that every subset of the form I(n,Rn) is contained in Ωr by construction; hence
neighbourhoods of infinity exist and Ωr is itself one.

Definition 4.13 Any subset of C∞ ×Ωr−1 of the form

T = ⋃
n⩾1

B(0, rn) ×Ωr−1
n

for numbers rn ∈ ∣C×∞∣ will be called a tubular neighbourhood of {0}×Ωr−1, or just a tubular
neighbourhood for the sake of brevity. The intersection of a tubular neighbourhood with
C×∞ ×Ω

r−1 will be called a pierced tubular neighbourhood.

Any tubular neighbourhood is an admissible subset, because it is the union of affinoid
sets of the form B(0, ρ) × Ωr−1

n for ρ ∈ ∣C×∞∣ and the intersection of any two such affinoid
sets is again of this form. The same holds for pierced tubular neighbourhoods, but in this
case we must use affinoids of the form D(0, σ, ρ) ×Ωr−1

n .

Next recall that eΛ′ω′(ω1) /= 0 whenever ω1 /∈ Λ′ω′. In particular this holds for any
ω = (ω1

ω′
) ∈ Ωr, and so

(4.14) uω′(ω1) ∶= 1

eΛ′ω′(ω1) ∈ C×∞

is well-defined for all ω = (ω1

ω′
) ∈ Ωr.

Example 4.15 Suppose that A = Fq[t], r = 2, Λ = A2 and ξ = π̄ is a period of the Carlitz
module. Then for ω = (ω1

ξ
) ∈ Ω2 we have

uω′(ω1) = 1

eξA(ω1) =
1

π̄eA(z) ,
where z = ω1/ξ ∈ C∞ ∖ F∞ is the usual parameter at infinity in the rank 2 literature (see,
e.g., [Ge88a]).
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Theorem 4.16 (a) The morphism

ϑ ∶ ΓU/Ωr
Ð→ C×∞ ×Ω

r−1, [(ω1

ω′
)] z→ (uω′(ω1)

ω′
)

induces an isomorphism of rigid analytic spaces from ΓU/Ωr to an admissible open
subset of C×∞ ×Ω

r−1.

(b) For any neighbourhood of infinity N ⊂ Ωr, the image ϑ(ΓU /N ) contains a pierced
tubular neighbourhood.

(c) For any pierced tubular neighbourhood T ′ ⊂ C×∞ × Ω
r−1 there is a neighbourhood of

infinity N ⊂ Ωr such that ϑ(ΓU /N ) = T ′, and ϑ induces an isomorphism

ΓU/N ∼
Ð→ T ′.

Proof. Part (a) is a direct consequence of Proposition 4.10. To prove (b) we must show
that for any n > 0 and Rn > 0 there exists rn > 0 such that

B(0, rn)′ ×Ωr−1
n ⊂ ϑ(ΓU/I(n,Rn)).

For this let cn be the constant from Proposition 4.7 (c) and set rn ∶= c−1n . Consider any
point ( z

ω′
) ∈ B(0, rn)′×Ωr−1

n . As the map eΛ′ω′ ∶ C∞∖Λ′ω′ → C×∞ is surjective by Proposition
2.2, and uω′ = e−1Λ′ω′ by definition, there exists a point ω1 ∈ C∞ ∖ Λ′ω′ with uω′(ω1) = z.
Since z ∈ B(0, rn)′, we then have ∣eΛ′ω′(ω1)∣ ⩾ cn. By Proposition 4.7 (c) we thus have
d(ω1, F r−1

∞ ω′) ⩾ Rn, and so (ω1

ω′
) ∈ I(n,Rn). Therefore ( z

ω′
) = ϑ([(ω1

ω′
)]) ∈ ϑ(ΓU/I(n,Rn)),

proving (b).
To prove (c) we must show that for any n > 0 and rn > 0 there exists Rn > 0 such that

ϑ(ΓU/I(n,Rn)) ⊂ B(0, rn)′ ×Ωr−1
n .

For this set Rn ∶= r−1n and consider any point (ω1

ω′
) ∈ I(n,Rn). Then by Proposition 4.7 (d)

we have ∣eΛ′ω′(ω1)∣ ⩾ d(ω1, F r−1
∞ ω′) ⩾ Rn and hence ∣uω′(ω1)∣ ⩽ rn. Therefore ϑ([(ω1

ω′
)]) ∈

B(0, rn)′ ×Ωr−1
n , as desired. The isomorphy ΓU/N ∼

Ð→ T ′ then follows from (a). ◻

5 Expansion at infinity

In this section we show that every ΓU -invariant holomorphic function admits a Laurent
series expansion in uω′(ω1) which converges near infinity. As usual, we measure the size of
a holomorphic function g ∶ Ωr−1

n → C∞ by the supremum norm

∥g∥n ∶= sup{∣g(ω′)∣ ∶ ω′ ∈ Ωr−1
n }.

Note that any rational function is bounded outside of a neighbourhood of its poles. In
particular, a rational function with no poles on Ωr is bounded on Ωr

n. Since g is a uniform
limit of rational functions on Ωr

n, the supremum defined above will always be finite.
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Lemma 5.1 Let n ∈ Z>0 and ρ ∈ ∣C∞∣. Any holomorphic function f ∶ B(0, ρ)′ ×Ωr−1
n → C∞

has a unique Laurent series expansion

(5.2) f(z,ω′) = ∑
k∈Z

fk(ω′)zk,
which converges uniformly on every affinoid subset, where the functions fk ∶ Ωr−1

n → C∞ are
holomorphic and satisfy the conditions

limsup
k→∞

k
√∥fk∥n ⩽ ρ−1 and lim

k→−∞

−k
√∥fk∥n = 0.

Proof. Write ρ = qa with a ∈ Q. Then the punctured disk B(0, ρ)′ is the union of the
affinoid annuli

D(0, σ, ρ) = {z ∈ C∞ ∣ σ ⩽ ∣z∣ ⩽ ρ} = Spm C∞⟨ Xπa ,
πb

X
⟩

for all σ = qb < ρ with b ∈ Q. Since Ωr−1
n is also affinoid, say Ωr−1

n = Spm Ar−1
n , the product

is affinoid and more precisely

D(0, σ, ρ) ×Ωr−1
n = Spm Ar−1

n ⟨ Xπa ,
πb

X
⟩.

Thus the restriction of f to D(0, σ, ρ) ×Ωr−1
n has a uniformly convergent expansion of the

form (5.2) with unique holomorphic functions fk ∶ Ωr−1
n → C∞ that satisfy

limsup
k→∞

k
√∥fk∥n ⩽ ρ−1 and limsup

k→−∞

−k
√∥fk∥n ⩽ σ.

By uniqueness, the functions fk are independent of σ, so the proposition follows by letting
σ go to 0. ◻

Lemma 5.3 For any pierced tubular neighbourhood T ′ ⊂ C×∞×Ωr−1, any holomorphic func-
tion f ∶ T ′ → C∞ has a unique Laurent series expansion

f(z,ω′) = ∑
k∈Z

fk(ω′)zk
with holomorphic functions fk ∶ Ωr−1

→ C∞, which converges uniformly on every affinoid
subset of T ′.

Proof. Suppose that T ′ = ⋃n⩾1B(0, rn)′ × Ωr−1
n with rn ∈ ∣C×∞∣. By Lemma 5.1, for any

n ⩾ 1 the restriction of f to B(0, rn)′ × Ωr−1
n admits a unique Laurent series expansion

∑k∈Z f
(n)
k zk with holomorphic functions f

(n)
k ∶ Ωr−1

n → C∞ which converges uniformly on
every affinoid subset. For any n > m ⩾ 1, the uniqueness in Lemma 5.1 for the restriction
of f to B(0,min{rm, rn})′ ×Ωr−1

m implies that f
(n)
k ∣Ωr−1

m = f (m)k . By the sheaf property for
admissible coverings, there are therefore unique holomorphic functions fk ∶ Ωr−1

→ C∞ with
fk∣Ωr−1

n = f (n)k for all n, and they satisfy the desired conditions. ◻
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Proposition 5.4 For any ΓU -invariant holomorphic function f ∶ Ωr
→ C∞ there exist

unique holomorphic functions fn ∶ Ωr−1
→ C∞, such that the series

∑
n∈Z

fn(ω′) ⋅ uω′(ω1)n
converges to f((ω1

ω′
)) on some neighbourhood of infinity, and uniformly on every affinoid

subset thereof.

Proof. Being ΓU -invariant f corresponds to a function f̄ ∶ ΓU/Ωr
→ C∞. By Theorem

4.16 (c) the function f̄ ○ ϑ−1 then induces a holomorphic function on a pierced tubular
neighbourhood T ′ ⊂ C×∞ ×Ωr−1, where T ′ = ϑ(ΓU/N ) ⊂ C×∞ ×Ωr−1 for a neighbourhood of
infinity N ⊂ Ωr. By Lemma 5.3 that function has a unique expansion of the form

f̄ ○ ϑ−1(( z
ω′
)) = ∑

n∈Z

fn(ω′)zn.
By the definition of ϑ this yields a unique expansion

f((ω1

ω′
)) = ∑

n∈Z

fn(ω′) ⋅ uω′(ω1)n
on N , which again converges uniformly on every affinoid subset, as desired. ◻

Remark 5.5 The series in Proposition 5.4 does not necessarily converge on all of Ωr.
For example, in [Ge99, Corollary 2.2], Gekeler shows that the u-expansion of the rank
2 Drinfeld discriminant function has the radius of convergence q−1/(q−1) only. This is in
contrast with the classical case, where the q-expansion of a modular form converges on the
entire upper half plane.

Any weak modular form for the group Γ is a ΓU -invariant function; hence it possesses a
u-expansion as in Proposition 5.4. Our next aim is to study its behaviour under conjugation
by the “stabiliser of the standard boundary component”. For this consider the algebraic
subgroups

(5.6) P ∶=
⎛⎜⎜⎝
∗ ∗ . . . ∗

0
⋮
0

∗ . . . ∗
⋮ ⋮
∗ . . . ∗

⎞⎟⎟⎠
,

and M ∶=
⎛⎜⎜⎝
∗ 0 . . . 0
0
⋮
0

∗ . . . ∗
⋮ ⋮
∗ . . . ∗

⎞⎟⎟⎠
.

of GLr,F , so that P = U ⋊M is parabolic with unipotent radical U and Levi subgroup M .

Lemma 5.7 Consider any element of the form γ = (α 0
0 γ′
) ∈ M(F ) with α ∈ F × and γ ∈

GLr−1(F ) and any point ω = (ω1

ω′
) ∈ Ωr. Then:

(a) η ∶= j(γ,ω) = j(γ′, ω′) and γ(ω) = (η−1αω1

γ′(ω′)
).

15



(b) Λ′γ ∶= ι−1(γ−1ΓUγ) = α−1Λ′γ′.
(c) uγ,ω′(ω1) ∶= eΛ′γω′(ω1)−1 = η−1α ⋅ uγ′(ω′)(η−1αω1).
(d) There exist constants k ⩾ 0 and c4 > 0 such that for all n > 0 and R > 0 we have

γ (I(n,R)) ⊂ I(n + k, c4R).
(e) For any neighbourhood of infinity N ⊂ Ωr the subset γ−1(N ) is also a neighbourhood

of infinity.

(f) For any ΓU -invariant holomorphic function f ∶ Ωr
→ C∞ with the expansion in Propo-

sition 5.4 on N and any integers k and m we have the following expansion on γ−1(N ):
(f ∣k,mγ)((ω1

ω′
)) = ∑

n∈Z

αm−n(fn∣k−n,mγ′)(ω′) ⋅ uγ,ω′(ω1)n.
Proof. Assertion (a) follows directly from the definitions (1.2) and (1.3), with γ′(ω′) =
η−1γ′ω′. Assertion (b) follows by direct calculation from the definition (4.3) of ι. Using (b)
and Proposition 2.3 (b) we deduce that

eΛ′γω′(ω1) = eα−1Λ′γ′ω′(ω1) = eα−1ηΛ′ ⋅γ′(ω′)(ω1) = α−1η ⋅ eΛ′⋅γ′(ω′)(η−1αω1)
Taking reciprocals thus shows (c).

To prove (d) consider any n > 0 and ω′ ∈ Ωr−1
n . Then by definition (3.2) and Lemma 3.5

(c), both with r − 1 in place of r, we have h(ω′) ⩾ ∣π∣n and h(γ′(ω′)) ⩾ c3h(ω′) for some
constant c3 depending only on γ′. Together we deduce that h(γ′(ω′)) ⩾ ∣π∣n+k for some
k ⩾ 0 depending only on γ′. By the definition (3.2) again this means that γ′(ω′) ∈ Ωr−1

n+k.
Next, by Lemmas 3.5 (a) and 3.3, again with r − 1 in place of r, we have ∣η∣ = ∣j(γ′, ω′)∣ ⩽∣ω′∣c−11 ⩽ ∣ξ∣∣π∣−nc−11 for another constant c1 depending only on γ′. Note also that, since
γ′(ω′) = η−1γ′ω′, the associated F∞-vector space is F r−1

∞
γ′(ω′) = η−1F r−1

∞
ω′. For any ω1 ∈ C∞

we therefore have

d(η−1αω1, F
r−1
∞

γ′(ω′)) = d(η−1αω1, η
−1αF r−1

∞
ω′)

= ∣η−1α∣ ⋅ d(ω1, F
r−1
∞

ω′) ⩾ ∣απnξ−1∣c1 ⋅ d(ω1, F
r−1
∞

ω′).
In view of Definition 4.12 this implies (d) with c4 ∶= ∣απnξ−1∣c1.

To deduce (e) choose Rn > 0 such that ⋃n>0 I(n,Rn) ⊂ N . Then (d) implies that

γ(⋃n>0 I(n, c−14 Rn+k)) ⊂ ⋃n>0 I(n + k,Rn+k) ⊂ N ,

and hence ⋃n>0 I(n, c−14 Rn+k) ⊂ γ−1(N ). Thus γ−1(N ) is a neighbourhood of infinity,
proving (e).
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Finally, using the definition (1.5), for any (ω1

ω′
) ∈ γ−1(N ) we can now calculate

(f ∣k,mγ)((ω1

ω′
)) (a)

= η−k(det γ)mf((η−1αω1

γ′(ω′) ))
5.4= η−k(det γ)m ⋅∑

n∈Z

fn(γ′(ω′)) ⋅ uγ′(ω′)(η−1αω1)n
(c)
= η−k(αdet γ′)m ⋅∑

n∈Z

fn(γ′(ω′)) ⋅ (α−1ηuγ,ω′(ω1))n
= ∑

n∈Z

αm−n ⋅ ηn−k(detγ′)mfn(γ′(ω′)) ⋅ uγ,ω′(ω1)n
= ∑

n∈Z

αm−n ⋅ (fn∣k−n,mγ′)(ω′) ⋅ uγ,ω′(ω1)n,
proving (f). ◻

For a first application consider the subgroup

(5.8) ΓM ∶= {γ′ ∈ GLr−1(F ) ∣ (1 0
0 γ′
) ∈ Γ ∩M(F )}.

Theorem 5.9 Let f be a weak modular form of weight k and type m for the group Γ, and
let fn be its coefficients in the u-expansion from Proposition 5.4. Then, for each n ∈ Z, the
function fn is a weak modular form of weight k−n and type m for the group ΓM < GLr−1(F ).
Proof. Consider any γ′ ∈ ΓM and set γ ∶= (1 0

0 γ′
), so that α = 1 in the notation of Lemma

5.7. Since the subgroup ΓU is normalised by γ, Lemma 5.7 (b) implies that Λ′γ = Λ′ and
hence uγ,ω′(ω1) = uω′(ω1). Let N be a neighbourhood of infinity on which the expansion
from Proposition 5.4 converges. Then by Lemma 5.7 (e) the intersection N ∩ γ−1(N ) is
another neighbourhood of infinity. For any ω = (ω1

ω′
) ∈ N ∩ γ−1(N ) we can compare the

expansions of f(ω) = (f ∣k,mγ)(ω) from Proposition 5.4 and 5.7 (f). Since α = 1, by the
uniqueness part of Proposition 5.4 we conclude that fn = fn∣k−n,mγ′ for all n ∈ Z, proving
the theorem. ◻

Corollary 5.10 Let f be a weak modular form of weight k and type m for the group Γ.
Then for any n ∈ Z, the coefficient fn in the u-expansion from Proposition 5.4 is identically
zero unless

n ≡ k − (r − 1)m modulo ∣ΓM ∩ {scalars}∣.
Proof. Combine Theorem 5.9 with (1.11) for r − 1 in place of r. ◻

Lemma 5.11 Consider any element of the form γ = (1 β

0 Idr−1
) ∈ U(F ) for some row vector

β ∈ F r−1 and any point ω = (ω1

ω′
) ∈ Ωr. Then:

(a) j(γ,ω) = det(γ) = 1 and γ(ω) = (ω1+βω
′

ω′
).
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(b) For any neighbourhood of infinity N ⊂ Ωr the subset

N ′ ∶= {(ω1

ω′
) ∈ γ−1(N ) ∣ ∣eΛ′ω′(βω′) ⋅ uω′(ω1)∣ < 1}

is also a neighbourhood of infinity.

(c) For any ΓU -invariant holomorphic function f ∶ Ωr
→ C∞ with the expansion in Propo-

sition 5.4 on N and any integers k and m we have the following expansion on N ′:

(f ∣k,mγ)((ω1

ω′
)) = ∑

n∈Z

(∑
k⩾0

(k−n
k
) ⋅ fn−k(ω′) ⋅ eΛ′ω′(βω′)k) ⋅ uω′(ω1)n.

Proof. Assertion (a) follows directly from the definitions (1.2) and (1.3).
To prove (b) choose Rn > 0 such that ⋃n>0 I(n,Rn) ⊂ N . Since βω′ ∈ F r−1

∞
ω′, we have

d(ω1 + βω′, F r−1
∞

ω′) = d(ω1, F r−1
∞

ω′) and therefore γ−1(I(n,Rn)) = I(n,Rn) by Definition
4.12. On the other hand we have d(βω′, F r−1

∞
ω′) = 0; applying Proposition 4.7 (c) thus

yields constants cn > 0, such that ∣eΛ′ω′(βω′)∣ < cn for any ω′ ∈ Ωr−1
n . By Proposition 4.7 (d)

and Definition 4.12, for any (ω1

ω′
) ∈ I(n, cn) we therefore have

∣eΛ′ω′(ω1)∣ ⩾ d(ω1, F
r−1
∞

ω′) ⩾ cn > ∣eΛ′ω′(βω′)∣.
By the definition of uω′(ω1) this implies that ∣eΛ′ω′(βω′) ⋅uω′(ω1)∣ < 1. Together this shows
that I(n,max{Rn, cn}) ⊂ N ′. Varying n we conclude that N ′ is a neighbourhood of infinity,
proving (b).

Next, by (a) and the definition (1.5), the expansion from Proposition 5.4 yields

(f ∣k,mγ)((ω1

ω′
)) = f((ω1+βω

′

ω′
)) = ∑

n∈Z

fn(ω′) ⋅ uω′(ω1 + βω
′)n

Using the additivity of the exponential function we can rewrite

uω′(ω1 + βω
′)n = eΛ′ω′(ω1 + βω

′)−n
= (eΛ′ω′(ω1) + eΛ′ω′(βω′))−n
= (1 + eΛ′ω′(βω′)uω′(ω1))−n ⋅ uω′(ω1)n.

For (ω1

ω′
) ∈ N ′ we have ∣eΛ′ω′(βω′) ⋅ uω′(ω1)∣ < 1, so we can plug the binomial series into the

above expansion and rearrange terms, yielding

(f ∣k,mγ)((ω1

ω′
)) = ∑

n∈Z

fn(ω′) ⋅ (∑
k⩾0

(−n
k
) ⋅ eΛ′ω′(βω′)k ⋅ uω′(ω1)n+k)

= ∑
n∈Z

∑
k⩾0

(−n
k
) ⋅ fn(ω′) ⋅ eΛ′ω′(βω′)k ⋅ uω′(ω1)n+k

= ∑
n′∈Z

(∑
k⩾0

(k−n′
k
) ⋅ fn′−k(ω′) ⋅ eΛ′ω′(βω′)k) ⋅ uω′(ω1)n′

with the substitution n + k = n′. Thus the stated expansion holds on N ′, proving (c). ◻
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Definition 5.12 Let f ∶ Ωr
→ C∞ be a ΓU-invariant holomorphic function and let fn be

its coefficients in the u-expansion from Proposition 5.4. Then the order at infinity of f is

ordΓU
(f) ∶= inf{n ∈ Z ∣ fn(ω′) ≠ 0 for some ω′ ∈ Ωr−1} ∈ Z ∪ {±∞}.

The function f is called meromorphic at infinity if ordΓU
(f) > −∞, that is, if fn is identi-

cally zero for all n ≪ 0. It is called holomorphic at infinity if ordΓU
(f) ⩾ 0, that is, if fn

is identically zero for all n < 0.

Proposition 5.13 Consider a ΓU -invariant holomorphic function f ∶Ωr
→ C∞ and an el-

ement γ ∈ P (F ). Then f ∣k,mγ is invariant under Γγ,U ∶= (γ−1Γγ) ∩U(F ), and we have

ordΓU
(f) = ordΓγ,U

(f ∣k,mγ).
In particular f is meromorphic, respectively holomorphic at infinity if and only if f ∣k,mγ
has the corresponding property.

Proof. Since P = U ⋊M , it suffices to prove this separately for elements of M(F ) and
U(F ). In both cases the Γγ,U -invariance follows by direct calculation from the formula
(1.6). The rest follows from the expansion in Lemma 5.7 for γ ∈ M(F ), respectively by
close inspection of the expansion in Lemma 5.11 for γ ∈ U(F ). ◻

Proposition 5.14 Let Γ1 < Γ and hence Γ1,U ∶= Γ1 ∩ U(F ) < ΓU be subgroups of finite
index. Then for any ΓU -invariant holomorphic function f we have

ordΓ1,U
(f) = ordΓU

(f) ⋅ [ΓU ∶ Γ1,U].
In particular f is meromorphic, respectively holomorphic at infinity with respect to ΓU if
and only if it is so with respect to Γ1,U .

Proof. The lattice associated to Γ1,U is Λ′1 ∶= ι−1(Γ1,U) ⊂ Λ′ = ι−1(ΓU), so that [Λ′ ∶ Λ′1] =[ΓU ∶ Γ1,U] = pd for an integer d ⩾ 0. For any ω′ ∈ Ωr−1 we then also have [Λ′ω′ ∶ Λ′1ω′] = pd.
Let B be a set of representatives for Λ′ ∖ Λ′1 modulo Λ′1. By Proposition 2.3 (a) we then
have

eΛ′ω′(ω1) = eΛ′
1
ω′(ω1) ⋅∏

β∈B

(1 − eΛ′
1
ω′(ω1)

eΛ′
1
ω′(βω′)).

Taking reciprocals, we can therefore express the expansion parameter uω′(ω1) ∶= eΛ′ω′(ω1)−1
with respect to Λ′ in terms of the expansion parameter u1,ω′(ω1) ∶= eΛ′1ω′(ω1)−1 with respect
to Λ′1 by the formula

uω′(ω1) = u1,ω′(ω1)pd ⋅∏
β∈B

eΛ′
1
ω′(βω′)

eΛ′1ω′(βω′)u1,ω′(ω1) − 1 .
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The expansion from Proposition 5.4 thus yields

f((ω1

ω′
)) = ∑

n∈Z

fn(ω′) ⋅ uω′(ω1)n = ∑
n∈Z

fn(ω′) ⋅ u1,ω′(ω1)npd ⋅∏
β∈B

( eΛ′
1
ω′(βω′)

eΛ′1ω′(βω′)u1,ω′(ω1) − 1)
n

for all points (ω1

ω′
) in some neighbourhood of infinity. By Lemma 5.11 (b) with Γ1,U in

place of ΓU , for each β ∈ B we have ∣eΛ′1ω′(βω′)u1,ω′(ω1)∣ < 1 on some neighbourhood of
infinity. On the intersection of these neighbourhoods, we can plug the binomial series into
the above expansion and rearrange terms. We conclude that the expansion with respect
to uω′(ω1) has the first non-zero term fn(ω′) ⋅ uω′(ω1)n if and only if the expansion with
respect to u1,ω′(ω1) has the first non-zero term

fn(ω′) ⋅ u1,ω′(ω1)npd ⋅∏
β∈B

(−eΛ′
1
ω′(βω′))n .

Then ordΓ1,U
(f) = npd = ordΓU

(f) ⋅ [ΓU ∶ Γ1,U], and the proposition follows. ◻

6 Modular forms

Now we impose holomorphy conditions at all boundary components, not just the standard
one. We achieve this by conjugating the standard boundary component by arbitrary el-
ements δ ∈ GLr(F ). Recall from Proposition 1.12 that for any weak modular form f of
weight k and type m for Γ, and for any δ ∈ GLr(F ), the function f ∣k,mδ is a weak mod-
ular form of weight k and type m for the arithmetic subgroup δ−1Γδ. Determining the
behaviour of f at all boundary components is equivalent to determining the behaviour of
all conjugates f ∣k,mδ at the standard boundary component.

Definition 6.1 Let f be a weak modular form of weight k and type m for Γ.

(a) If ord(δ−1Γδ)∩U(F )(f ∣k,mδ) ⩾ 0 for all δ ∈ GLr(F ), we call f a modular form.

(b) If ord(δ−1Γδ)∩U(F )(f ∣k,mδ) ⩾ 1 for all δ ∈ GLr(F ), we call f a cusp form.

In particular, a modular form is a weak modular form f such that f ∣k,mδ is holomorphic
at infinity for all δ ∈ GLr(F ). The space of these functions is denoted by Mk,m(Γ). The
space of cusp forms is denoted by Sk,m(Γ). As with weak modular forms, we abbreviate
Mk(Γ) ∶=Mk,0(Γ) and Sk(Γ) ∶= Sk,0(Γ).

It may seem extravagant to impose conditions for infinitely many δ. However, the next
two facts show that for fixed Γ, we only need to check these conditions for δ in a fixed
finite set.

Proposition 6.2 The numbers in Definition 6.1 depend only on the double coset ΓδP (F ).
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Proof. Since f is a weak modular form of weight k and typem for Γ, for any δ′ = γ′δγ with
γ′ ∈ Γ and γ ∈ P (F ) we have f ∣k,mδ′ = (f ∣k,mδ)∣k,mγ and hence ord(δ′−1Γδ′)∩U(F )(f ∣k,mδ′) =
ord(δ−1Γδ)∩U(F )(f ∣k,mδ) by Proposition 5.13. ◻

Proposition 6.3 The double coset space Γ/GLr(F )/P (F ) is finite. More precisely, let
Cl(A) denote the class group of A. Then:

(a) GLr(A)/GLr(F )/P (F ) is in bijection with Cl(A).
(b) For any arithmetic subgroup Γ < GLr(F ), the set Γ/GLr(F )/P (F ) has cardinality

at most ∣Cl(A)∣ ⋅ [GLr(A) ∶ GLr(A) ∩ Γ].
(c) If Γ < GLr(A) then the double cosets of Γ/GLr(F )/P (F ) can be represented by

elements of GLr(A) if and only if Cl(A) = {1}.
Proof. By the orbit-stabiliser theorem the set GLr(F )/P (F ) is in bijection with the set
of one-dimensional subspaces of F r and hence with Pr−1(F ). This bijection is equivariant
under the left action of GLr(F ). To prove (a) it thus suffices to find a bijection between
GLr(A)/Pr−1(F ) and Cl(A).

For this we associate to any column vector x = (xi)i ∈ F r ∖ {0} the fractional ideal
I(x) ∶= ∑iAxi ⊂ F . This ideal depends only on the GLr(A)-orbit of x, and its ideal
class depends only on the corresponding point of Pr−1(F ). Together we therefore obtain
a well-defined map GLr(A)/Pr−1(F ) → Cl(A). This map is surjective, because r ⩾ 2 and
every ideal of a Dedekind domain can be generated by 2 elements. We claim that it is also
injective.

To see this we view Ar as a space of row vectors, so that right multiplication by x

determines a surjective homomorphism of A-modules px ∶ Ar
→ I(x). Since I(x) is a

projective A-module, the associated short exact sequence 0 → ker(px) → Ar
→ I(x) → 0

splits. Moreover, since the isomorphism class of a finitely generated projective A-module
depends only on its rank and its highest exterior power, the isomorphism class of ker(px)
is determined by that of I(x).

Suppose now that two vectors x, y ∈ F r ∖ {0} correspond to the same ideal class. Then
I(y) = u ⋅ I(x) for some u ∈ F ×, and by the preceding remarks there exists an isomorphism
of A-modules f ∶ ker(px) → ker(py). Combining these via suitable splittings we find an
isomorphism of A-modules g ∶ Ar

→ Ar making the following diagram commute:

0 // ker(px)
f ≀

��

// Ar

g ≀

��

px
// I(x)
u⋅ ≀

��

// 0

0 // ker(py) // Ar
py

// I(y) // 0.

Writing g as right multiplication by a matrix γ ∈ GLr(A), the commutativity on the right
hand side then means that aγy = axu for all a ∈ Ar. Thus γy = xu for some γ ∈ GLr(A)
and u ∈ F ×, which is precisely the desired injectivity.

This finishes the proof of (a). Parts (b) and (c) are direct consequences of (a). ◻
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Corollary 6.4 Suppose that Γ = GLr(A) for a principal ideal domain A. Then:

(a) The condition in Definition 6.1 is independent of δ.

(b) If m /≡ 0 mod (q−1), any modular form of weight k and type m for Γ is a cusp form.

Proof. Part (a) follows from Propositions 6.2 and 6.3 (a). To prove (b) let f be a
modular form of weight k and type m for Γ, and let fn be its coefficients in the u-expansion
from Proposition 5.4, which are weak modular forms for the group ΓM = GLr−1(A). By
assumption we then have fn = 0 for all n < 0. If f is not a cusp form, then f0 is not
identically zero, so Corollary 5.10 implies that k ≡ (r − 1)m modulo ∣ΓM ∩ {scalars}∣ =
q − 1. But then f itself is also not identically zero, so (1.11) gives k ≡ rm modulo ∣Γ ∩{scalars}∣ = q − 1. Both congruences together imply that m ≡ 0 modulo (q − 1), contrary to
the assumption. ◻

Remark 6.5 By Theorem 5.9 the coefficient fn of the u-expansion of a modular form f

is a weak modular forms of weight k −n for a subgroup ΓM < GLr−1(F ). In contrast to the
case of modular forms in characteristic zero, the weight k − n here goes to −∞ for n→∞.
In Theorem 11.1 (b) of Part II we will see that any modular forms of weight < 0 for ΓM

must be zero if r − 1 ⩾ 2. Thus for r ⩾ 3, the coefficients fn cannot all be modular forms if
they are non-zero.

Proposition 6.6 For any δ ∈ GLr(F ) we have f ∈ Mk,m(Γ) if and only if f ∣k,mδ ∈
Mk,m(δ−1Γδ).
Proof. Direct consequence of Proposition 1.12 and the formula (1.6). ◻

In particular, whenever Γ1◁Γ is a normal subgroup of finite index, the map f ↦ f ∣k,mγ
for all γ ∈ Γ defines a right action of Γ onMk,m(Γ1). As a direct consequence of Definition
6.1 and Proposition 5.14 the subspace of invariants is then

(6.7) Mk,m(Γ1)Γ =Mk,m(Γ).
Moreover, (1.10) and (1.11) imply that

Mk,m(Γ) = Mk,m′(Γ) whenever m ≡m′ modulo ∣det(Γ)∣, and(6.8)

Mk,m(Γ) = 0 unless k ≡ rm modulo ∣Γ ∩ {scalars}∣.(6.9)

As a direct consequence of the definitions we also have

(6.10) Mk,m(Γ) ⋅Mk′,m′(Γ) ⊂Mk+k′,m+m′(Γ)
for all k, k′,m,m′. In particular we can form the graded ring of modular forms

(6.11) M∗(Γ) ∶=⊕
k⩾0

Mk(Γ).
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