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Abstract

This is the third part of a series of articles providing a foundation for the theory

of Drinfeld modular forms of arbitrary rank. In the present article we construct and

study some examples of Drinfeld modular forms. In particular we define Eisenstein

series, as well as the action of Hecke operators upon them, coefficient forms and

discriminant forms. In the special case A = Fq[t] we show that all modular forms

for GLr(Γ(t)) are generated by certain weight one Eisenstein series, and all mod-

ular forms for GLr(A) and SLr(A) are generated by certain coefficient forms and

discriminant forms. We also compute the dimensions of the spaces of such modular

forms.
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Introduction

This is part III of a series of articles together with [BBP1] and [BBP2], whose aim
is to provide a foundation for the theory of Drinfeld modular forms of arbitrary rank.
Part I developed the basic analytic theory, including u-expansions and holomorphy at
infinity. In Part II we identified the analytic modular forms from Part I with the algebraic
modular forms defined in [Pi13]. In the present Part III we illustrate the general theory
by constructing some important families of modular forms.

The sections of all parts are numbered consecutively, thus Sections 1–6 appear in Part
I and Sections 7–12 in Part II. All the definitions and notation from Parts I and II remain
in force, and we refer to proclamations in the other parts without any special indication.

For the convenience of the reader we recall some definitions and notations which we
will need to describe the contents of this paper.

Let F be a global function field with exact field of constants Fq of cardinality q. Fix a
place ∞ of F and denote by A the ring of elements of F which are regular away from ∞.
Let F∞ be the completion of F at ∞, and let C∞ denote the completion of an algebraic
closure of F∞. Fix an integer r ⩾ 2 and an auxiliary constant ξ ∈ C×∞. As in (1.1) we
identify the Drinfeld period domain of rank r over C∞ with the set of column vectors

Ωr ∶= {(ω1, . . . , ωr)T ∈ Cr
∞ ∣ ω1, . . . , ωr F∞-linearly independent and ωr = ξ}.

Let L be a finitely generated projective A-submodule of rank r of F r, viewed as a set of
row vectors. For any ω ∈ Ωr we thus obtain a strongly discrete A-lattice Lω ⊂ C∞ of rank r.
Our convention on row vectors implies that GLr(F ) acts on F r from the right. We denote
the stabiliser of L by

ΓL ∶= {γ ∈ GLr(F ) ∣ Lγ = L}.
For L = Ar we simply have ΓL = GLr(A). Note that for any non-zero ideal N ⊂ A, an
element of GLr(F ) stabilises the lattice L if and only if it stabilises the lattice N−1L; thus
ΓN−1L = ΓL. More generally, for any coset v +L ⊂ F r we consider the congruence subgroup

Γv+L ∶= {γ ∈ GLr(F ) ∣ vγ +Lγ = v +L} < ΓL.

Also, for any non-zero ideal N ⊂ A we consider the principal congruence group

ΓL(N) ∶= ⋂
v∈N−1L

Γv+L = ker(ΓL → Aut(N−1L/L)).
All these groups are arithmetic subgroups of GLr(F ).

For any γ ∈ GLr(F∞) and ω ∈ Ωr, we let

(1.2) j(γ,ω) ∶= ξ−1 ⋅ (last entry of γω) ∈ C×∞.
Then matrix multiplication from the left followed by a normalisation defines a left action
of GLr(F∞) on Ωr via

(1.3) γ(ω) ∶= j(γ,ω)−1γω.
2



For any integers k and m, the group GLr(F∞) acts on the space of functions f ∶ Ωr
→ C∞

via the Petersson slash operator, as follows:

(1.5) (f ∣k,mγ)(ω) ∶= det(γ)mj(γ,ω)−kf(γ(ω)).
For any arithmetic subgroup Γ < GLr(F ) we defined the space of weak modular forms of
weight k and type m for Γ in Definition 1.9 as

Wk,m(Γ) ∶= {f ∶ Ωr
→ C∞ ∣ f is holomorphic and f ∣k,m = f}.

When m = 0 or det(Γ) = {1} we suppress the m from our notation.
To define modular forms, we constructed u-expansions of weak modular forms in Section

5 as follows. Write an element of Ωr in the form ω = (ω1

ω′
) with ω1 ∈ C∞ and ω′ ∈ Ωr−1. Set

(4.14) uω′(ω1) ∶= 1

eΛ′ω′(ω1) ∈ C×∞,
where eΛ′ω′ is the exponential function associated to the strongly discrete subgroup Λ′ω′ ⊂
C∞ and Λ′ ⊂ F r−1 is a certain group of column vectors associated to Γ by (4.4). In
Proposition 5.4 and Theorem 5.9 we proved that every weak modular form f ∶ Ωr

→ C∞ of
weight k admits a unique u-expansion

f(ω) =∑
n∈Z

fn(ω′)uΛ′ω′(ω1)n

which converges on a suitable neighbourhood of infinity, and where the coefficients fn are
weak modular forms of weight k − n for an associated arithmetic group ΓM < GLr−1(F ).
We say that f is holomorphic at infinity if fn ≡ 0 for all n < 0, and that f vanishes at
infinity if fn ≡ 0 for all n ⩽ 0. The spaces of modular forms, resp. cusp forms of weight k
and type m for Γ are then defined by

Mk,m(Γ) ∶= {f ∈Wk,m(Γ) ∣ f ∣k,mγ is holomorphic at infinity for all γ ∈ GLr(F )} and

Sk,m(Γ) ∶= {f ∈Wk,m(Γ) ∣ f ∣k,mγ vanishes at infinity for all γ ∈ GLr(F )}, respectively.

These are finite-dimensional C∞-vector spaces, by Theorem 11.1. Again we leave out the
index m if m = 0.

Outline of this paper

In Section 13 we construct the Eisenstein series of all weights k ⩾ 1 associated to all cosets
v + L and compute their u-expansions in Proposition 13.10. In Theorem 13.16 we show
that they are modular forms of weight k for the groups Γv+L.

In Section 14 we determine the action of Hecke operators (defined in Section 12) on
Eisenstein series, restricting ourselves to Hecke operators that are supported away from the
level of the Eisenstein series (see Assumption 14.1). In each case, Theorem 14.11 identifies
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the Hecke image of an Eisenstein series as a linear combination of Eisenstein series. In
particular, we deduce that Eisenstein series are eigenforms under many Hecke operators.

Coefficient forms are defined in Section 15, they are modular forms for ΓL which occur
as coefficients of Drinfeld modules, isogenies or exponential functions associated to the
lattice Lω.

Section 16 deals with discriminant forms, which arise as highest coefficients of Drinfeld
modules or as roots thereof. These are always cusp forms. Certain (q − 1)-st roots are
examples of modular forms with non-zero type m.

Lastly, we discuss the special case of A = Fq[t] and L = Ar in Section 17. Here we
exploit the explicit description of algebraic modular forms for Γ(t) from [PS14] and [Pi13]
together with our identification of analytic and algebraic modular forms from Part II. This
allows us to prove in Theorem 17.1 that the graded ringM∗(Γ(t)) of modular forms of all
weights for Γ(t) is generated over C∞ by the weight one Eisenstein series E1,v+L for all v ∈
t−1L ∖L. Using invariants, we then deduce that the ringsM∗(GLr(A)) andM∗(SLr(A))
are generated by suitable algebraically independent coefficient forms. This generalises
known results from the r = 2 case due to Cornelissen, Goss and Gekeler, respectively.
Lastly, we give some dimension formulae in Theorem 17.11.

13 Eisenstein series

For any integer k ⩾ 1 and any vector v ∈ F r we define the Eisenstein series of weight k
associated to the coset v +L by

(13.1) Ek,v+L(ω) ∶= ∑
0 /=x ∈ v+L

(xω)−k.
Proposition 13.2 This series defines a holomorphic function Ωr

→ C∞.

Proof. By Proposition 3.4 it suffices to show that the series converges uniformly on the
affinoid set Ωr

n from (3.2) for every n. For this observe that any x ∈ F r ∖ {0} determines a
unimodular F∞-linear form

x
∣x∣ on F

r
∞. For any ω ∈ Ω

r
n it follows that

∣xω∣ = ∣x∣ ⋅ ∣ x∣x∣ω∣ (3.1)⩾ ∣x∣ ⋅ h(ω) ⋅ ∣ω∣ (3.2)⩾ ∣x∣ ⋅ ∣πn∣ ⋅ ∣ω∣ 3.3⩾ ∣x∣ ⋅ ∣πn∣ ⋅ ∣ξ∣.
As x runs through (v + L) ∖ {0}, the norm ∣x∣ goes to infinity; hence ∣xω∣−k goes to zero
uniformly over Ωr

n, as desired. ◻

Some basic transformation properties of Eisenstein series are:

Proposition 13.3 (a) For every γ ∈ GLr(F ) we have Ek,v+L∣kγ = Ek,vγ+Lγ.

(b) In particular Ek,v+L is a weak modular form of weight k for the group Γv+L.

(c) For any A-submodule of finite index L′ ⊂ L we have Ek,v+L = ∑v′+L′ Ek,v′+L′, where
the sum extends over all L′-cosets v′ +L′ ⊂ v +L.

4



Proof. (a) results from the calculation

(Ek,v+L∣kγ)(ω) (1.5)= j(γ,ω)−k ⋅ ∑
0 /=x ∈ v+L

(x ⋅ γ(ω))−k
= ∑

0 /=x ∈ v+L

(j(γ,ω) ⋅ x ⋅ γ(ω))−k
(1.3)
= ∑

0 /=x ∈ v+L

(xγω)−k
= Ek,vγ+Lγ(ω).

(b) is a direct consequence of (a), and (c) is obvious from the definition (13.1). ◻

Our next goal is to determine the u-expansion of Ek,v+L, which requires some prepara-
tion. For any strongly discrete Fq-subspace H ⊂ C∞ consider the power series expansion
of the exponential function

(13.4) eH(z) ∶= z ⋅ ∏
h∈H∖{0}

(1 − z
h
) = ∞∑

i=0

eH,qiz
qi

with eH,qi ∈ C∞ and eH,1 = 1 that is furnished by Proposition 2.2.

Proposition 13.5 (a) For any strongly discrete Fq-subspace H ⊂ C∞ we have

eH(z)−1 = ∑
h∈H

(z − h)−1.

(b) For every k ⩾ 1, there exists a unique so-called Goss polynomial Gk(X,Y1, Y2, . . .)
with coefficients in Fp in the variables X and Yi for all integers 1 ⩽ i < logq k, such
that for every strongly discrete Fq-subspace H ⊂ C∞ we have

Gk(eH(z)−1, eH,q, eH,q2 , . . .) = ∑
h∈H

(z − h)−k.

(c) These polynomials further satisfy:

(i) Gk is monic of degree k in X and divisible by X.

(ii) G1 =X and Gk =X(Gk−1 +∑1⩽i<logq k
YiGk−qi) for all k > 1.

(iii) Gpk = G
p
k.

(iv) X2 ∂
∂X
Gk = kGk+1.

Proof. The existence of these polynomials was first obtained by Goss in [Go80c, Prop.
6.6], but in this generality see Gekeler [Ge13, Thm. 2.6]. ◻

5



Remark 13.6 We shall see in Proposition 13.13 that the vanishing order at infinity of the
Eisenstein series Ek,v+L is controlled by the vanishing order of the Goss polynomial Gk at
X = 0. By part (i) of Proposition 13.5 (c) this vanishing order is ⩾ 1, and part (ii) implies
that it is equal to k for all k ⩽ q. In [Ge13], Gekeler gives a formula for the order of the
Goss polynomial at X = 0 in the case A = Fp[t] and H = π̄A, where p is prime and π̄ is the
Carlitz period. This determines the vanishing order of the Eisenstein series in the rank 2
case for A = Fp[t].
Corollary 13.7 For any v ∈ F r ∖L we have

E1,v+L(ω) = eLω(vω)−1.
Proof. Direct computation using the substitution x = v − ℓ and Proposition 13.5 (a):

E1,v+L(ω) = ∑
0 /=x ∈ v+L

(xω)−1 = ∑
ℓ ∈L

(vω − ℓω)−1 = eLω(vω)−1.
◻

Now define A-submodules L′ and L1 by the commutative diagram with exact rows

(13.8) 0 // F r−1 // F r // F // 0
∪ x′↦(0,x′) ∪ (x1,x

′)↦x1 ∪

0 // L′ // L // L1
// 0.

Since L is finitely generated projective of rank r, the A-modules L′ and L1 are finitely
generated projective of ranks r − 1 and 1, respectively. Also fix a subgroup L̃1 ⊂ L which
maps isomorphically to L1, so that L = L̃1 ⊕ ({0} ×L′). Write v = (v1, v′) ∈ F r = F ×F r−1.

Lemma 13.9 The subgroup Λ′ ⊂ F r−1 from (4.4) that corresponds to Γv+L ∩ U(F ) is the
finitely generated A-submodule of rank r − 1

Λ′ = {λ′ ∈ F r−1 ∣ (v1 +L1)λ′ ⊂ L′}.
Moreover, for any x1 ∈ (v1 +L1) ∖ {0} the inclusion x1Λ′ ⊂ L′ has finite index.

Proof. For any λ′ ∈ F r−1 and (x1, x′) ∈ F r = F×F r−1 we have (x1, x′)(1 λ′

0 1 ) = (x1, x1λ′ + x′).
By the definition of Γv+L in the introduction it follows that λ′ ∈ Λ′ if and only if for every(x1, x′) ∈ v + L we have (0, x1λ′) ∈ L, or equivalently x1λ′ ∈ L′. As (x1, x′) runs through
v +L, its first component x1 runs through v1 +L1, so the formula for Λ′ follows.

Since L′ and L1 are finitely generated A-modules of ranks r − 1 and 1, respectively,
the formula implies that Λ′ is a finitely generated A-submodule of rank r − 1. For x1 ∈(v1 + L1) ∖ {0} it follows that x1Λ′ ⊂ L′ is an inclusion of finitely generated A-modules of
the same rank and hence of finite index. ◻

As before we write ω = (ω1

ω′
) ∈ Ωr ⊂ C∞ × Ωr−1. Then the expansion parameter from

(4.14) is the function u ∶= uω′(ω1) ∶= eΛ′ω′(ω1)−1.
6



Proposition 13.10 We have

Ek,v+L((ω1

ω′
)) = ∑

x=(x1,x′) ∈ v+L̃1

⎧⎪⎪⎨⎪⎪⎩
Ek,x′+L′(ω′) if x1 = 0,

Gk(eL′ω′(xω)−1, eL′ω′,q, eL′ω′,q2, . . .) if x1 /= 0,
where Gk is the k-th Goss polynomial from Proposition 13.5 and in the second case

eL′ω′(xω)−1 = u[L
′∶x1Λ

′]

x1
⋅

∏
ℓ′∈L′∖x1Λ′ mod x1Λ′

eΛ′ω′(x−11 ℓ′ω′)
∏

ℓ′∈L′ mod x1Λ′
(1 − eΛ′ω′(x−11 (ℓ′ − x′)ω′) ⋅ u) .

Moreover, the right hand side converges locally uniformly for all (u,ω′) in a suitable tubular
neighbourhood of {0} ×Ωr−1.

Proof. Using the fact that L = L̃1 ⊕ ({0} ×L′), we break up the series defining Ek,v+L as

(13.11) Ek,v+L(ω) = ∑
0 /=x ∈ v+L

(xω)−k = ∑
x ∈ v+L̃1

( ∑
0 /= y ∈x+({0}×L′)

(yω)−k).
Write x = (x1, x′) ∈ F r = F × F r−1, and observe that for any y = (y1, y′) ∈ F r = F × F r−1 we
have yω = y1ω1 + y′ω′.

If x1 = 0, the inner sum of (13.11) is just

∑
0 /=y′ ∈x′+L′

(y′ω′)−k = Ek,x′+L′(ω′).
Such a term occurs only if v lies in L + ({0} ×F r−1), and then it occurs for a unique x.

If x1 /= 0, we write y = x − (0, ℓ′), so that yω = xω − ℓ′ω′. By Proposition 13.5 (b) the
inner sum of (13.11) then becomes

∑
ℓ′∈L′
(xω − ℓ′ω′)−k = Gk(eL′ω′(xω)−1, eL′ω′,q, eL′ω′,q2 , . . .).

To transform eL′ω′(xω) we proceed as in the proof of Proposition 7.16. First, by Lemma
13.9 we have an inclusion of finite index Λ′ω′ ⊂ x−11 L

′ω′, and by the F∞-linear independence
of the coefficients of ω the index is precisely [L′ ∶ x1Λ′]. By the additivity of the exponential
function we have

eΛ′ω′(x−11 xω) = eΛ′ω′(ω1 + x
−1
1 x

′ω′) = u−1 + eΛ′ω′(x−11 x′ω′)
with u = eΛ′ω′(ω1)−1. Using Proposition 2.3 we deduce that

eL′ω′(xω) = x1 ⋅ ex−11 L′ω′(x−11 xω)
= x1 ⋅ eeΛ′ω′(x−11 L′ω′)(eΛ′ω′(x−11 xω))
= x1 ⋅ eeΛ′ω′(x−11 L′ω′)(u−1 + eΛ′ω′(x−11 x′ω′)).

7



By the definition and the additivity of the exponential function this in turn yields

eL′ω′(xω) = x1 ⋅ (u−1 + eΛ′ω′(x−11 x′ω′)) ⋅ ∏
ℓ′∈L′∖x1Λ

′

modulo x1Λ
′

(1 − u−1 + eΛ′ω′(x−11 x′ω′)
eΛ′ω′(x−11 ℓ′ω′) )

= x1 ⋅ (u−1 + eΛ′ω′(x−11 x′ω′)) ⋅ ∏
ℓ′∈L′∖x1Λ

′

modulo x1Λ
′

eΛ′ω′(x−11 (ℓ′ − x′)ω′) − u−1
eΛ′ω′(x−11 ℓ′ω′)

= x1 ⋅
1 + eΛ′ω′(x−11 x′ω′) ⋅ u

u[L
′∶x1Λ′]

⋅ ∏
ℓ′∈L′∖x1Λ

′

modulo x1Λ
′

eΛ′ω′(x−11 (ℓ′ − x′)ω′) ⋅ u − 1
eΛ′ω′(x−11 ℓ′ω′)

=
x1

u[L
′∶x1Λ′]

⋅

∏
ℓ′∈L′ mod x1Λ′

(1 − eΛ′ω′(x−11 (ℓ′ − x′)ω′) ⋅ u)
∏

ℓ′∈L′∖x1Λ′ mod x1Λ′
eΛ′ω′(x−11 ℓ′ω′) ,

where the last transformation uses the fact that (−1)[L′ ∶x1Λ
′]−1 = 1 because [L′ ∶ x1Λ′] is a

power of q. Combining everything we obtain the desired formula.
For the convergence take any n > 0. By Proposition 4.7 (c) there exists a constant

cn > 0, such that for any ω′ ∈ Ωr−1
n and any x′ ∈ F r−1

∞ we have ∣eΛ′ω′(x′ω′)∣ < cn. In particular
this inequality holds for x−11 ℓ

′ and x−11 (ℓ′ − x′) in place of x′. Thus if ∣u∣ ⩽ rn ∶= (2cn)−1, we
have ∣eΛ′ω′(x−11 (ℓ′ − x′)ω′) ⋅ u∣ < 2−1, so the geometric series for

1

1 − eΛ′ω′(x−11 (ℓ′ − x′)ω′) ⋅ u
converges uniformly to a value of norm 1. Combining the inequalities yields the bound

RRRRRRRRRRRRRRRR
u[L

′∶x1Λ′]

x1
⋅

∏
ℓ′∈L′∖x1Λ′ mod x1Λ′

eΛ′ω′(x−11 ℓ′ω′)
∏

ℓ′∈L′ mod x1Λ′
(1 − eΛ′ω′(x−11 (ℓ′ − x′)ω′) ⋅ u)

RRRRRRRRRRRRRRRR
⩽
r
[L′∶ℓ1Λ′]
n c

[L′ ∶ℓ1Λ′]−1
n∣x1∣ =

2−[L
′∶ℓ1Λ′]

∣x1∣cn .

Also recall that Gk is a polynomial of fixed degree in X which is divisible by X , and
the values eL′ω′,q, eL′ω′,q2, . . . for the other variables are holomorphic functions on Ωr−1

and hence bounded on Ωr−1
n . As both ∣x1∣ and [L′ ∶ x1Λ′] go to infinity with x1, this

proves that the right hand side of the formula for Ek,x′+L′(ω′) converges uniformly for all(u,ω′) ∈ B(0, rn)×Ωr−1
n . Varying n it therefore converges locally uniformly on the tubular

neighbourhood ⋃n⩾1B(0, rn) ×Ωr−1
n . ◻

Remark 13.12 In principle, the u-expansion of Ek,v+L in terms of powers of u can be
computed from Proposition 13.10 by multiplying out the geometric series involved. As it
stands, however, the sum is essentially a sum over a coset of L1 ⊂ F , which is a fractional
ideal of A. In the rank 2 case, Petrov [Pe13] has shown that there are many Drinfeld mod-
ular forms with such expansions and that they exhibit many desirable properties because
of it. One may ask if there are other examples in the higher rank case.
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Proposition 13.13 (a) The u-expansion of Ek,v+L(ω) has constant term Ek,x′+L′(ω′) if
v ∈ L + (0, x′) for some x′ ∈ F r−1, and constant term 0 otherwise.

(b) If v /∈ L + ({0} × F r−1), the order at infinity of Ek,v+L(ω) with respect to the group
Γv+L ∩U(F ) is at least

ordX(Gk) ⋅min{[L′ ∶ x1Λ′] ∣ x1 ∈ v1 +L1}.
Proof. Assertion (a) follows from Proposition 13.10 and the fact that the Goss polynomial
Gk is divisible by X . In (b) let d ∶= ordX(Gk) denote the vanishing order atX = 0 of Gk as a
polynomial in independent variables X,Y1, Y2, . . . and write Gk = XdH(Y1, Y2, . . .)+(higher
terms in X). Then each summand in Proposition 13.10 contributes

⎛⎜⎜⎝u
[L′∶x1Λ

′] ⋅

∏
ℓ′∈L′∖x1Λ′ mod x1Λ′

eΛ′ω′(x−11 ℓ′ω′)
x1

⎞⎟⎟⎠

d

⋅H(eL′ω′,q, eL′ω′,q2, . . .) + (higher terms in u)

to the u-expansion of Ek,v+L(ω). Recall that v = (v1, v′), so that as x = (x1, x′) runs through
v+ L̃1, its first component x1 runs through v1+L1. Combining this yields the desired lower
bound. ◻

Remark 13.14 For the purposes explained in Remark 16.8 below, one should hope that
the inequality in Proposition 13.13 is always an equality in the case k = 1. By (16.2) this
would yield a formula for the order at infinity of every discriminant form. For example we
have:

Proposition 13.15 If A = Fq[t], for any v ∈ t−1L ∖ L the order at infinity of E1,v+L with
respect to the group Γv+L ∩U(F ) is 0 if v ∈ L + ({0} × F r−1) and 1 otherwise.

Proof. As above write v = (v1, v′). If v1 ∈ L1, the u-expansion of E1,v+L has constant term
E1,v′+L′ by Proposition 13.13 (a), which is non-zero by Corollary 13.7; hence the order is 0
in this case.

Otherwise we have t−1L1 = Fq ⋅ v1 + L1 and this A-module is generated by a unique
element x1 ∈ v1+L1. By Lemma 13.9 we deduce that Λ′ = x−11 L

′. This x1 is then the unique
element of the coset v1 + L1 that satisfies [L′ ∶ x1Λ′] = 1. Since, moreover, G1(X) = X by
Proposition 13.5 (b), Proposition 13.10 implies that E1,v+L(ω) = u

x1
+ (higher terms in u).

The order is therefore 1 in that case. ◻

Theorem 13.16 The Eisenstein series Ek,v+L is a modular form of weight k for the group
Γv+L.

Proof. By Proposition 13.3 (b) it is already a weak modular form for Γv+L. Moreover,
for every γ ∈ GLr(F ) we have Ek,v+L∣kγ = Ek,vγ+Lγ by Proposition 13.3 (a), and the latter
is holomorphic at infinity by Proposition 13.10. ◻

9



14 Hecke action on Eisenstein series

For any coset v +L the quotient (Av +L)/L is a finite A-module that is generated by one
element; hence it is isomorphic to A/N for a unique non-zero ideal N . Equivalently N is
the largest ideal of A such that Γv+L contains the principal congruence subgroup ΓL(N).
We can therefore view N as a kind of level of the Eisenstein series Ek,v+L. In this section
we compute the effect on Ek,v+L of a Hecke operator that is supported away from N .

For any finitely generated A-submodule L ⊂ F r of rank r and any prime p ⊂ A let Lp

denote the closure of L in F r
p , which is a finitely generated Ap-submodule of rank r. Note

that L can be recovered from the submodules Lp for all p as the intersection F r ∩∏pLp

within (Af
F )r. Consider finitely generated projective A-submodules L, L′ ⊂ F r of rank r,

vectors v, v′ ∈ F r, and an element δ ∈ GLr(F ), which together satisfy:

Assumption 14.1 For every prime p ⊂ A we have:

(a) vδ +Lpδ ⊂ v′ +L′p,

(b) vδ +Lpδ = v′ +L′p whenever v /∈ Lp, and

(c) Lpδ /⊂ pL′p.
Here (a) is equivalent to vδ + Lδ ⊂ v′ +L′, which includes the fact that Lδ ⊂ L′. Given

(a), condition (b) means that Ek,v+L and Ek,v′+L′ are Eisenstein series of the same level N
and that Tδ is supported only at primes not dividing N . Property (c) is equivalent to
Lδ /⊂ pL′ for any prime p, which serves as normalisation. If L = L′ = Ar, then (a) means
that δ has coefficients in A and maps v into v′+Ar. Then, in addition, condition (b) means
that the determinant of δ is relatively prime to N , and (c) means that δ is not congruent
to the zero matrix modulo any prime of A. Assumption 14.1 will remain in force until
Theorem 14.11 below.

To begin with we abbreviate

Γ′ ∶= Γv′+L′ ,

Γ ∶= δ−1Γv+Lδ ∩ Γv′+L′ = Γvδ+Lδ ∩ Γv′+L′ < Γ′.

For any prime p ⊂ A we consider the open compact subgroups

K ′p ∶= { k ∈ GLr(Fp) ∣ v′k +L′pk = v′ +L′p },
Kp ∶= { k ∈ GLr(Fp) ∣ v′k +L′pk = v′ +L′p and vδk +Lpδk = vδ +Lpδ } < K ′p.

Since L′/Lδ is finite, for any prime p not dividing its annihilator we have Lpδ = L′p and
hence vδ +Lpδ = v′ +L′p. Thus for almost all p we have Kp = K ′p. By Assumption 14.1 (b)
this is so in particular if v /∈ Lp. Also, the equalities L′ = F r ∩∏pL

′
p and L = F r ∩∏pLp

imply that Γ′ = GLr(F ) ∩∏pK
′
p and Γ = GLr(F ) ∩∏pKp.

Lemma 14.2 For every p we have det(Kp) = det(K ′p).
10



Proof. If v /∈ Lp, this follows from the fact thatK ′p =Kp. Otherwise by assumption we have
Lpδ = vδ + Lpδ ⊂ v′ + L′p = L

′
p and both are free Ap-modules of rank r within F r

p . To prove
the desired statement we can conjugate everything by an arbitrary element of GLr(F ). By
the elementary divisor theorem we may thus without loss of generality assume that L′p = A

r
p

and that Lpδ = Ar
ph for some diagonal matrix h ∈ GLr(Fp). For any a ∈ A×p the diagonal

matrix diag(1, . . . ,1, a) then lies in Kp with determinant a; hence A×p < det(Kp). As A×p
is the unique largest compact subgroup of F ×p , it follows that det(Kp) = det(K ′p) = A×p , as
desired. ◻

Lemma 14.3 There is a natural bijection

Γ/Γ′ //∏pKp/K ′p,
Γγ ✤

// (Kpγ)p.
Proof. If two cosets Γγ1 and Γγ2 have the same image, we have Kpγ1 = Kpγ2 and hence
γ1γ

−1
2 ∈ Kp for all p. Thus γ1γ−12 ∈ GLr(F ) ∩∏pKp = Γ, and so Γγ1 = Γγ2. The map is

therefore injective. For the surjectivity consider any collection of cosets Kpkp ⊂K ′p. By
Lemma 14.2 we may without loss of generality assume that kp ∈ SLr(Fp) ∩K ′p. By strong
approximation in the group SLr there then exists an element γ ∈ SLr(F ) ∩∏pKpkp. This
element lies in GLr(F ) ∩∏pK

′
p = Γ

′; hence the map is surjective. ◻

Next observe that for any γ ∈ Γ′ the subset vδγ +Lδγ ⊂ F r depends only on the coset
Γγ. For any x ∈ F r we let C(x) denote the number of such cosets for which x ∈ vδγ +Lδγ.
Similarly, for any k ∈ K ′p the subset vδk + Lpδk ⊂ F r

p depends only on the coset Kpk. For
any x ∈ F r

p we let Cp(x) denote the number of such cosets for which x ∈ vδk + Lpδk. For
any fixed x ∈ F r the module (Ax +Av′ + L′)/Lδ is finite, so for any prime p not dividing
its annihilator we have x ∈ v′ +L′p = vδ +Lpδ and K ′p =Kp and hence Cp(x) = 1.
Lemma 14.4 For any x ∈ F r we have C(x) =∏pCp(x).
Proof. Since v ∈ F r and L = F r ∩∏pLp, for any γ ∈ Γ′ we have the equality vδγ + Lδγ =
F r ∩ (vδγ +∏pLpδγ) within (Af

F )r. Since x ∈ F r, it follows that x ∈ vδγ +Lδγ if and only
if x ∈ vδγ +Lpδγ for all p. But the latter condition depends only on the coset Kpγ, so the
product formula follows from Lemma 14.3. ◻

Now let qp denote the order of the residue field k(p) ∶= A/p. In principle one can give
an explicit formula for Cp(x) as a polynomial in qp with coefficients in Z. But we are only
interested in Cp(x) modulo (p), so we restrict ourselves to determining this residue class.
Let charX denote the characteristic function of a subset X ⊂ F r

p .

Lemma 14.5 For any prime p consider the unique integers µp,1 ⩾ . . . ⩾ µp,r ⩾ 0 such that
L′p/Lpδ ≅⊕r

j=1A/pµp,j . Then for any x ∈ F r
p we have

Cp(x) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

charv′+L′p(x) if µp,1 ⩽ 1

charL′p∖pL′p(x) if 2 ⩽ µp,1 ⩽ µp,r−1 + 1

0 if µp,1 ⩾ µp,r−1 + 2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
mod (qp).
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Proof. By Assumption 14.1 (a) we have vδ +Lpδ ⊂ v′ +L′p, so for any k ∈K ′p we also have
vδk +Lpδk ⊂ v′ +L′p. Thus Cp(x) = 0 if x /∈ v′ + L′p. So till the end of the proof we assume
that x ∈ v′ +L′p. If in addition vδ +Lpδ = v′ +L′p, we have Kp =K ′p and vδk +Lpδk = v′ +L′p
and hence Cp(x) = 1. Till the end of the proof we therefore assume that vδ +Lpδ /= v′ +L′p.
By Assumption 14.1 (b) this implies that v ∈ Lp and hence Lpδ = vδ + Lpδ ⫋ v′ + L′p = L

′
p.

For ease of notation we abbreviate the chosen exponents to µi ∶= µp,i. Then µ1 ⩾ 1, and
Assumption 14.1 (c) requires that µr = 0.

Both Lpδ ⊂ L′p are free Ap-modules of rank r within F r
p . To prove the desired statement

we can conjugate everything by an arbitrary element of GLr(F ). By the elementary divisor
theorem we may thus without loss of generality assume that L′p = A

r
p and Lpδ =⊕r

j=1 p
µjAp.

Then K ′p = GLr(Ap) and
Kp = h−1GLr(Ap)h ∩GLr(Ap) = { (aij)ij ∈ GLr(Ap) ∣ ∀i ⩾ j∶ aij ∈ pµj−µiAp }.

Next observe that pµ1L′p ⊂ Lpδ ⊂ L′p. Consider the factor module L̄′ ∶= L′p/pµ1L′p =(A/pµ1)r and its submodule L̄ ∶= Lpδ/pµ1L′p = ⊕r
j=1 p

µjAp/pµ1Ap. Then K ′p surjects to
K̄ ′ ∶= GLr(A/pµ1), and the image K̄ < K̄ ′ of Kp < K ′p is the stabiliser of L̄. In partic-
ular we have [K̄ ′ ∶ K̄] = [K ′p ∶ Kp]. To compute this number note that the image of Kp in
GLr(k(p)) is the parabolic subgroup

P (k(p)) ∶= { (āij)ij ∈ GLr(k(p)) ∣ ∀i ⩾ j∶ µj > µi⇒ āij = 0 },
and a straightforward calculation shows that [GLr(k(p)) ∶ P (k(p))] ≡ 1 modulo (qp). From
this we deduce that

(14.6) [K ′p ∶Kp] ∈ ∏
i⩾j

q
max{0,µj−µi−1}
p ⋅ (1 + qpZ).

Also, let x̄ ∈ L̄′ denote the image of x ∈ v′ +L′p = L
′
p. Then

Cp(x) = ∣{k̄ ∈ K̄ ′ ∣ x̄ ∈ L̄k̄}∣∣K̄ ∣ = [K ′p ∶Kp] ⋅ ∣{k̄ ∈ K̄ ′ ∣ x̄k̄−1 ∈ L̄}∣∣K̄ ′∣ .

If x̄ = 0, we deduce that Cp(x) = [K ′p ∶Kp]. Otherwise x̄ lies in the subset S̄ν ∶= pνL̄′∖pν+1L̄′

for a unique exponent 0 ⩽ ν < µ1. Since S̄ν is an orbit under K̄ ′, the last fraction is equal
to the proportional size of L̄ ∩ S̄ν versus S̄ν ; hence

(14.7) Cp(x) = [K ′p ∶Kp] ⋅ ∣L̄ ∩ S̄ν ∣∣S̄ν ∣ .

To compute these cardinalities observe that

L̄ ∩ pνL̄′ =
r⊕

j=1

(pµjAp ∩ p
νAp)/pµ1Ap =

r⊕
j=1

p
max{µj ,ν}Ap/pµjAp

and hence

∣L̄ ∩ pνL̄′∣ = r∏
j=1

q
µ1−max{µj ,ν}
p .

12



The same calculation with ν + 1 in place of ν shows that

∣L̄ ∩ pν+1L̄′∣ = r∏
j=1

q
µ1−max{µj ,ν+1}
p .

Together this implies that

∣L̄ ∩ S̄ν ∣ = q
∑r

j=1(µ1−max{µj ,ν})
p − q

∑r
j=1(µ1−max{µj ,ν+1})

p .

Since µ1 > µr = 0, we certainly have µ1 −max{µr, ν} > µ1 −max{µr, ν + 1}, so the first
exponent is greater than the second. Therefore

(14.8) ∣L̄ ∩ S̄ν ∣ ∈ q∑r
j=1(µ1−max{µj ,ν+1})

p ⋅ (−1 + qpZ).
A similar, but simpler, computation shows that

(14.9) ∣S̄ν ∣ ∈ qr(µ1−ν−1)
p ⋅ (−1 + qpZ).

Combining the formulas (14.6) through (14.9) we deduce that

Cp(x) ∈ qc(ν)p ⋅ (1 + qpZ)
for

c(ν) ∶= ∑
i⩾j

max{0, µj − µi − 1} + r∑
j=1

(µ1 −max{µj, ν + 1}) − r(µ1 − ν − 1).
By (14.6), the same formula is true in the case x̄ = 0 if we set ν ∶= µ1.

It remains to find out when this exponent is greater than 0. Combining the terms for
i = r with the rest of the formula and using the fact that µr = 0 yields

c(ν) = ∑r>i⩾j max{0, µj − µi − 1} +∑r
j=1(max{0, µj − 1} −max{0, µj − ν − 1})

= ∑r>i⩾j max{0, µj − µi − 1} +∑r
j=1max{0,min{µj − 1, ν}}.

Here all summands are ⩾ 0. Since µ1 ⩾ . . . ⩾ µr, the first sum contains a positive term if
and only if µ1 − µr−1 − 1 ⩾ 1, and the second sum contains a positive term if and only if
min{µ1 − 1, ν} ⩾ 1. Thus

c(ν) > 0 if µ1 ⩾ µr−1 + 2 or (µ1 ⩾ 2 and ν ⩾ 1),

c(ν) = 0 if µ1 ⩽ µr−1 + 1 and (µ1 ⩽ 1 or ν = 0).

Combining all the cases we conclude that

Cp(x) = 0 if x /∈ v′ +L′p,
Cp(x) = 1 if x ∈ v′ +L′p = vδ +Lpδ,

Cp(x) ≡ 0 mod (qp) if x ∈ v′ +L′p /= vδ +Lpδ and (µ1 ⩾ µr−1 + 2 or (µ1 ⩾ 2 and x ∈ pL′p)),

Cp(x) ≡ 1 mod (qp) if x ∈ v′ +L′p /= vδ +Lpδ and µ1 ⩽ µr−1 + 1 and (µ1 ⩽ 1 or x /∈ pL′p),
13



Since v′ + L′p = vδ + Lpδ if and only if L′p = Lpδ if and only if µ1 = 0, the desired formula
follows. ◻

Now recall from Definition 12.11 that the Hecke operator associated to the double coset
Γv+LδΓv′+L′ is defined by

(14.10) Tδ ∶ Mk(Γv+L)Ð→Mk(Γv′+L′), f z→∑γ
f ∣k γ,

where γ runs through a set of representatives of the quotient Γv+L/Γv+LδΓv′+L′ .

Theorem 14.11 Under Assumption 14.1 consider the integers µp,i from Lemma 14.5. If
µp,1 ⩾ µp,r−1 + 2 for some p, we have

TδEk,v+L = 0. .

Otherwise let S be the finite set of primes p for which 2 ⩽ µp,1 ⩽ µp,r−1 + 1. For any subset
I ⊂ S set L′I ∶=∏p∈I p ⋅L

′. Then v′ +L′ = v′′ +L′ for some element v′′ ∈ (v′ +L′) ∩⋂p∈S pL
′
p

and
TδEk,v+L = ∑

I⊂S

(−1)∣I ∣ ⋅Ek,v′′+L′
I
.

Proof. By the construction of Γ and Γ′ we have Tδf = ∑γ Ek,v+L∣k δγ, where γ runs
through a set of representatives R of Γ/Γ′. Using the transformation rule from Proposition
13.3 (a) and the definition (13.1) of Eisenstein series we deduce that

(TδEk,v+L)(ω) = ∑
γ∈R

Ek,vδγ+Lδγ(ω) = ∑
γ∈R

∑
0 /=x ∈ vδγ+Lδγ

(xω)−k = ∑
0 /=x ∈F r

C(x) ⋅ (xω)−k.
Here C(x) is determined by Lemmas 14.4 and 14.5: If µp,1 ⩾ µp,r−1 + 2 for some p, we have
C(x) = 0 for all x ∈ F r. Otherwise, for any prime p in the indicated set S, we have v ∈ Lp

and hence v′ ∈ L′p by Assumption 14.1 (b). Thus p does not divide the annihilator N of
the coset v′ + L′/L′. By the Chinese remainder theorem there therefore exists an element
a ∈ ⋂p∈S p with a ≡ 1 modulo N , and then v′′ ∶= av′ lies in (v′ + L′) ∩ ⋂p∈S pL

′
p. For any

subset I ⊂ S we then have

F r ∩∏
all p

{ v′ +L′p if p /∈ I,
pL′p if p ∈ I,

} = v′′ + (F r ∩∏
all p

{ L′p if p /∈ I,
pL′p if p ∈ I,

}) = v′′ +L′I .

Lemmas 14.4 and 14.5 then imply that

C(x) ≡ ∏
p∉S

charv′+L′p(x) ⋅∏
p∈S

charL′p∖pL′p(x) modulo (q)
= ∏

p∉S

charv′+L′p(x) ⋅∏
p∈S

[charL′p(x) − charpL′p(x)]
= ∏

p∉S

charv′+L′p(x) ⋅∑
I⊂S

(−1)∣I ∣ ⋅ ∏
p∈S∖I

charL′p(x) ⋅∏
p∈I

charpL′p(x)
= ∑

I⊂S

(−1)∣I ∣ ⋅∏
p∉I

charv′+L′p(x) ⋅∏
p∈I

charpL′p(x)
= ∑

I⊂S

(−1)∣I ∣ ⋅ charv′′+L′
I
(x).
14



The desired formula now follows from the definition (13.1) of Eisenstein series. ◻

Corollary 14.12 Consider any δ ∈ GLr(F ) such that for every prime p ⊂ A we have:

(a) vδ +Lpδ ⊂ v′ +L′p,

(b) vδ +Lpδ = v′ +L′p whenever v /∈ Lp, and

(c) pL′p ⫋ Lpδ.

Then the Hecke operator Tδ associated to the double coset Γv+LδΓv′+L′ satisfies

TδEk,v+L = Ek,v′+L′ .

Proof. In that case Assumption 14.1 holds with µp,1 ⩽ 1 for all p; hence we are in the
second case of Theorem 14.11 with S = ∅. ◻

Proposition 14.13 Consider any arithmetic subgroups Γ, Γ′ < GLr(F ), any element δ ∈
GLr(F ), and any scalar a ∈ F ×. Then the Hecke operators Tδ and Ta−1δ associated to the
double cosets ΓδΓ′ and Γa−1δΓ′ satisfy

Ta−1δ = ak ⋅ Tδ.

Proof. As γ runs through a set of representatives of Γ/ΓδΓ′, the element a−1γ runs
through a set of representatives of Γ/Γa−1δΓ′. Since f ∣k(a−1γ) = f ∣k(a−1 ⋅ Idr)∣kγ = ak ⋅ f ∣kγ
by (1.6) and (1.7), the formula follows from the definition of Hecke operators 12.11. ◻

Remark 14.14 Using Proposition 14.13, one can express any Hecke operator in terms of
another Hecke operator that is associated to a matrix with coefficients in A. If one prefers,
one can also require that the inverse matrix has coefficients in A.

Remark 14.15 Combining Proposition 14.13 with Theorem 14.11 or Corollary 14.12, one
obtains an explicit formula for Ta−1δEk,v+L as well. In the special case v′ + L′ = v + L one
obtains many Hecke operators for which Ev+L is an eigenform with eigenvalue 1 or ak.

Remark 14.16 In the case r = 2 Theorem 14.11 was proved by Gekeler [Ge86, VIII.1].
For instance, for L = L′ = A2, the Hecke operator in [Ge86] associated to a prime element
π ∈ A is Tδ for the matrix δ = ( 1 0

0 π−1
) and satisfies TδEk,L = πk ⋅Ek,L.
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15 Coefficient forms

As before we fix a finitely generated projective A-submodule L ⊂ F r of rank r. We will
show that the coefficients of the exponential function eLω and of the associated Drinfeld
A-module are modular forms for the group ΓL; these are the coefficient forms in the title.
We will also exhibit them as polynomials in Eisenstein series. The coefficients of eLω have
been studied in a special case, for instance in [Ge86, II.2] and [Ge11].

For every k ⩾ 0 we write ek,L(ω) ∶= eLω,qk , so that eLω(z) =∑∞k=0 ek,L(ω)zqk with e0,L = 1.
Then by [BR09, (9)] we have

(15.1) ek,L = Eqk−1,L +
k−1∑
j=1

ej,L ⋅E
qj

qk−j−1,L
.

By direct calculation [Ba14, Lemma 3.4.13] this is equivalent to the more suggestive fact
that z −∑i⩾1Eqi−1,L(ω)zqi is the compositional inverse of eLω, in other words, that for all
ω ∈ Ωr and z ∈ C we have

(15.2) eLω(z −∑
i⩾1

Eqi−1,L(ω)zqi) = z.

By induction on k the recursion formula (15.1) implies that ek,L is a universal polynomial
with coefficients in Fp in the Eisenstein series Eqi−1,L for all 1 ⩽ i ⩽ k.

Proposition 15.3 For all k ⩾ 0 we have:

(a) ek,L∣qk−1γ = ek,Lγ for all γ ∈ GLr(F ).
(b) ek,L is a modular form of weight qk − 1 for the group ΓL.

(c) The u-expansion of ek,L has constant term ek,L′ with L′ as in (13.8). In particular
ek,L is not a cusp form.

Proof. For any γ ∈ GLr(F ) the exponential function associated to the lattice Lγ(ω) ⊂ C∞
satisfies

eLγ(ω) = ej(γ,ω)−1Lγω(z) 2.3
= j(γ,ω)−1eLγω(j(γ,ω)z).

Comparing coefficients of zq
k
in the respective power series expansions yields

eL,qk(γ(ω)) = j(γ,ω)qk−1eLγ,qk(ω),
proving (a). Part (b) follows from Theorem 13.16 and the formula (15.1) by induction
on k. To prove (c), write ω = (ω1

ω′
) as before. For any fixed ω′ ∈ Ωr−1, if ω1 goes to infinity,

the defining formula (13.4) shows that eLω goes to eL′ω′ coefficientwise. Thus ek,L goes to
ek,L′, and since the latter is non-zero, it follows that ek,L is not a cusp form. ◻
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Next let (Ga,Ωr , ψL) be the Drinfeld A-module of rank r over Ωr that was associated
to L in (7.3). Following (7.2) and (2.1) and Corollary 13.7, for any a ∈ A ∖ {0} and any
ω ∈ Ωr we then have

(15.4) ψLω
a (X) = a ⋅X ⋅ ∏

v ∈a−1L∖L
modulo L

(1 −E1,v+L(ω) ⋅X).

This is an Fq-linear polynomial of degree [a−1L ∶ L] = qr deg(a) in X . We expand it as

(15.5) ψLω
a (X) = ∑

i⩾0

gLa,i(ω) ⋅Xqi

with holomorphic functions gLa,i on Ωr, which are non-zero for i = 0 and i = r deg(a) but
zero whenever i > r deg(a). The formula (15.4) implies that each gLa,k is a homogeneous
symmetric polynomial of degree qk − 1 in the functions E1,v+L.

For an alternative description recall that ψLω
a can be characterised as the unique Fq-

linear polynomial such that ψLω
a (eLω(z)) = eLω(az). Plugging the expansions for ψLω

a and
eLω into this functional equation and using the fact that eL,1 = 1, we deduce that for all
k ⩾ 0 we have

(15.6) gLa,k +
k−1∑
i=0

gLa,i ⋅ e
qi

k−i,L = ek,L ⋅ a
qk .

By induction on k this recursion relation implies that gLa,k is a universal polynomial with
coefficients in A in the functions ej,L for all 1 ⩽ j ⩽ k, or again in the Eisenstein series
Eqi−1,L for all 1 ⩽ i ⩽ k.

More generally, consider any non-zero ideal N ⊂ A. Then some positive power of N is
a principal ideal, say Nn = (a) for a ∈ A ∖ {0}, and we choose an element N∗ ∈ C∞ such
that (N∗)n = a. This element is well-defined up to multiplication by a root of unity, and
for any principal ideal (a) the value (a)∗ is equal to a times a root of unity. We also set
deg(N) ∶= dimFq

(A/N), so that [N−1L ∶ L] = qr deg(N). In analogy with the definition (7.2)
of ψLω

a we define

(15.7) ψLω
N ∶= N∗ ⋅ eeLω(N−1Lω).

Note that for any principal ideal we have gL
(a),i
= gLa,i times a root of unity; hence everything

that follows about gLN,i applies equally to gLa,i.

For general N , by (2.1) and Corollary 13.7 we have

(15.8) ψLω
N (X) = N∗ ⋅X ⋅ ∏

v ∈N−1L∖L
modulo L

(1 −E1,v+L(ω) ⋅X).

As in (15.5) we define holomorphic functions gLN,i on Ωr by expanding

(15.9) ψLω
N (X) = ∑

i⩾0

gLN,i(ω) ⋅Xqi,
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which are non-zero for i = 0 and i = r deg(N) but zero whenever i > r deg(N). The formula
(15.8) implies that each gLN,k is a homogeneous symmetric polynomial of degree qk − 1 in
the functions E1,v+L.

For an alternative description observe that by the definition of ψLω
N and Proposition 2.3

(a) we have

(15.10) ψLω
N (eLω(z)) = N∗ ⋅ eN−1Lω(z).

Plugging the respective expansions into this functional equation and using the fact that
eL,1 = 1, we deduce that for all k ⩾ 0 we have

(15.11) gLN,k +
k−1∑
i=0

gLN,i ⋅ e
qi

k−i,L = N∗ ⋅ ek,N−1L.

By induction on k this recursion relation implies that gLN,k is a polynomial with coefficients
in Fp[N∗] in the functions ej,L and ej,N−1L for all 1 ⩽ j ⩽ k, or again in the Eisenstein series
Eqi−1,L and Eqi−1,N−1L for all 1 ⩽ i ⩽ k.

Proposition 15.12 For any non-zero ideal N ⊂ A and any k ⩾ 0 we have:

(a) gLN,k∣qk−1γ = gLγN,k for all γ ∈ GLr(F ).
(b) gL

N,k
is a modular form of weight qk − 1 for the group ΓL.

(c) The u-expansion of gLN,k has constant term gL
′

N,k with L′ as in (13.8). In particular

gLN,k is a cusp form whenever k > (r − 1)deg(N), but not for k = (r − 1)deg(N).
Proof. By construction gLN,i is a homogeneous symmetric polynomial of degree qi − 1
in the functions E1,v+L. Thus the transformation formula in Proposition 13.3 (a) directly
implies (a). Part (b) follows from Theorem 13.16 and the formula (15.11) by induction
on k. To prove (c), write ω = (ω1

ω′
) as before. For any fixed ω′ ∈ Ωr−1, if ω1 goes to

infinity, the defining formula (13.4) shows that eLω and eN−1Lω go to eL′ω′ and eN−1L′ω′ ,
respectively. The functional equation ψLω

N (eLω(z)) = N∗ ⋅ eN−1Lω(z) and its counterpart for
L′ω′ in place of Lω thus imply that ψLω

N goes to ψL′ω′

N . Taking coefficients this shows that
the u-expansion of each gL

N,k
has constant term gL

′

N,k
. Finally, that constant term is zero

for k > (r − 1)deg(N) and non-zero for k = (r − 1)deg(N). ◻

16 Discriminant forms

Definition 16.1 For any non-zero proper ideal N ⫋ A we call ∆L
N ∶= g

L
N,r deg(N)

the dis-

criminant form associated to N . Likewise we set ∆L
a ∶= g

L
a,r deg(a)

.

18



Since [N−1L ∶ L] is a power of q, we have (−1)[N−1L∶L]−1 = 1 in Fq; hence by (15.8) and
(15.9) the above definition means that

(16.2) ∆L
N(ω) = N∗ ⋅ ∏

v ∈N−1L∖L
modulo L

E1,v+L(ω).

Proposition 16.3 (a) ∆L
N(ω) /= 0 for all ω ∈ Ωr.

(b) ∆L
N is a cusp form of weight qr deg(N) − 1 for the group ΓL.

(c) ∆aL
N = a

1−qr deg(N)
⋅∆L

N for any a ∈ F .

Proof. (a) follows from (16.2) and Corollary 13.7, and (b) is a special case of Proposition
15.12. Assertion (c) results from applying Proposition 15.12 (a) to γ = a ⋅ Idr. ◻

Next recall that for any a ∈ A∖{0} the degree deg(a) is a multiple of the degree deg(∞)
of the residue field at ∞ over Fq. Therefore qr deg(a) − 1 is a multiple of qr deg(∞) − 1.

Proposition 16.4 There exists a non-zero cusp form ∆L of weight qr deg(∞) − 1 for the
group ΓL, such that for every a ∈ A ∖ {0} we have

∆L
a = (∆L) qr deg(a)−1

qr deg(∞)−1 ⋅ (some root of unity).
Moreover this ∆L is unique up to multiplication by some root of unity.

Proof. Since ψL is a Drinfeld module, for all a, b ∈ A∖{0} we have ψL
ab(X) = ψL

a (ψL
b (X)).

Substituting the expansions from (15.5) for ψL
ab and ψ

L
a and ψL

b and taking highest coeffi-

cients implies that ∆L
ab = ∆

L
a ⋅ (∆L

b )qr deg(a)
. As the ring A is commutative, interchanging a

and b yields the same value; hence

∆L
b ⋅ (∆L

a )qr deg(b)

= ∆L
a ⋅ (∆L

b )qr deg(a)

.

By Proposition 16.3 we may divide by ∆L
a∆

L
b , obtaining the equality

(16.5) (∆L
a )qr deg(b)−1 = (∆L

b )qr deg(a)−1.

To exploit this fact, recall that by the Riemann-Roch theorem, every sufficiently large
multiple of deg(∞) arises as deg(a) for some element a ∈ A∖{0}. In particular we can find
non-constant elements b, c ∈ A such that deg(b) = deg(c) + deg(∞). Then by Proposition
16.3 the quotient

(16.6) ∆L ∶=∆L
b /(∆L

c )qr deg(∞)

is a well-defined holomorphic function on Ωr. The fact that ∆L
b and ∆L

c are modular forms
of respective weights qr deg(b) − 1 and qr deg(c) − 1 for ΓL implies that ∆L is a weak modular
form of weight (qr deg(b) − 1) − (qr deg(c) − 1) ⋅ qr deg(∞) = qr deg(∞) − 1

19



for ΓL. Also, by direct calculation the formula (16.5) in the case a = c implies that

(∆L)qr deg(b)−1 = (∆L
b )qr deg(∞)−1.

Combining this with the formula (16.5) for arbitrary a we deduce that

(∆L
a )(qr deg(∞)−1)(qr deg(b)−1) = (∆L)(qr deg(a)−1)(qr deg(b)−1).

Thus ∆L
a /(∆L) qr deg(a)−1

qr deg(∞)−1 is a holomorphic function on Ωr whose (qr deg(∞)−1)(qr deg(b)−1)-th
power is identically 1. As the rigid analytic space Ωr is connected, this function is therefore
constant and a root of unity. The last formula also shows that a positive power of ∆L is
holomorphic at every boundary component; hence the same holds for ∆L. Thus ∆L has
all the desired properties. Finally, the uniqueness is clear from the stated condition. ◻

Proposition 16.7 For every non-zero proper ideal N ⫋ A we have

∆N−1L ⋅ (∆L
N)qr deg(∞)−1 = (∆L)qr deg(N)−1 ⋅ (some constant).

Proof. The formulas (15.7) and (15.10) imply that ψLω
N = N∗ ⋅ hLN , where hLN is an

isogeny of Drinfeld modules (Ga,Ωr , ψL) → (Ga,Ωr , ψN−1L). For any a ∈ A we then have
ψN−1L
a ○ hLN = h

L
N ○ ψ

L
a . Taking highest coefficients implies that

∆N−1L
a ⋅ (∆L

N)qr deg(a)

= ∆L
N ⋅ (∆L

a )qr deg(N)

⋅ (some constant).
Dividing by ∆L

N and substituting the formulas for ∆N−1L
a and ∆L

a from Proposition 16.4 we
obtain

(∆N−1L) qr deg(a)−1

qr deg(∞)−1 ⋅ (∆L
N)qr deg(a)−1 = (∆L)qr deg(N)

⋅
qr deg(a)−1

qr deg(∞)−1 ⋅ (some constant).
Varying a or extracting roots as in Proposition 16.4 yields the desired formula. ◻

Remark 16.8 If the class group Cl(A) of A is trivial, the above relations show that ∆L

is the unique fundamental discriminant form for ΓL.
In general, for any non-zero proper ideal M ⫋ A we have ΓM−1L = ΓL. The discriminant

forms ∆M−1L
a and ∆M−1L and ∆M−1L

N are therefore cusp forms for the same group ΓL. Let
H denote the multiplicative group of nowhere vanishing holomorphic functions on Ωr up
to constants that is generated by all of them. Then the formulas in Propositions 16.3 (c)
and 16.4 and 16.7 imply that as N runs through a set of representatives of the ideal class
group Cl(A), the functions ∆N−1L generate a subgroup of finite index, say H′.

On the other hand each discriminant form corresponds to a section of a certain invert-
ible sheaf on the Satake compactification of ΓL/Ω. As such, its divisor is a formal Z-linear
combination of the irreducible components of codimension 1 of the boundary. These irre-
ducible components are in bijection with Cl(A), so the group D of divisors supported on
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the boundary is a free abelian group of rank Cl(A). Taking divisors maps the above group
H injectively into D.

One can expect that the image of H has finite index in D. In fact, precisely such a
statement is proved for an arbitrary congruence subgroup in the case r = 2 by Gekeler
[Ge86, VII Thm. 5.11] and [Ge97, Thm. 4.1], and by Kapranov [Ka87, top of page 546] for
arbitrary r in the case A = Fq[t].

Note that, since H′ is generated by ∣Cl(A)∣ elements and has finite index in H, the
expectation is equivalent to saying that H is a free abelian group of rank ∣Cl(A)∣. This in
turn means that, up to taking roots, the formulas in Propositions 16.3 (c) and 16.4 and
16.7 generate all multiplicative relations up to constant factors between the discriminant
forms.

Example 16.9 Suppose that SpecA is a rational curve and ∞ is a point of degree 2
over Fq. Let P ⊂ A be the prime ideal associated to a point of degree 1 over Fq. Then
the ideal class group of A has order 2 and is generated by the class of P . Write P 2 = (a)
for an element a ∈ A of degree 2. Then by Proposition 16.4 we have ∆L

a ∼ ∆
L, where “∼”

denotes equality up to a constant. Also, in the notation of the proof of Proposition 16.7 we
have a ⋅hP

−1L
P ○hLP = ψ

L
a . Taking highest coefficients implies that ∆P−1L

P ⋅ (∆L
P )qr ∼ ∆L

a ∼∆
L.

Together with the same relation for P −1L in place of L and with the fact that ∆P−2L
P =

∆a−1L
P ∼∆L

P by Proposition 16.3 (c), we conclude that

∆P−1L
P ⋅ (∆L

P )qr ∼ ∆L and

∆L
P ⋅ (∆P−1L

P )qr ∼ ∆P−1L.

In this case we can therefore view ∆L
P and ∆P−1L

P as the two fundamental discriminant
forms for ΓP , and by Remark 16.8 they should be multiplicatively independent.

Remark 16.10 In the case A = Fq[t] one can take ∆L =∆L
t in Proposition 16.4. In [Ba16]

this function is shown to satisfy a product formula which generalises the Jacobi product
formula in the rank 2 case of Gekeler [Ge85]. Another product formula, involving r − 1
separate parameters with constant coefficients, rather than u-expansions treated in the
present paper, was obtained by Hamahata [Ha02].

Remark 16.11 For any v ∈ F r∖L, the Eisenstein series E1,v+L is a non-zero modular form
of weight 1 for the group Γv+L by Corollary 13.7 and Theorem 13.16. Using Proposition
16.4 it follows that for any integer k ⩾ 0, the product ∆L ⋅Ek

1,v+L is a non-zero cusp form of

weight qr deg(∞) − 1+ k for Γv+L. In this way we can explicitly produce non-zero cusp forms
for Γv+L of any sufficiently large weight, giving more substance to the abstract result of
Proposition 11.2.

To finish this section we construct Drinfeld modular forms of non-zero type by extract-
ing roots from discriminant forms. This rests on the observation that for every α ∈ F×q ,
applying Proposition 13.3 (a) to γ = α ⋅ Idr implies that

(16.12) E1,αv+L = E1,v+L ∣1 α ⋅ Idr
(1.7)
= α−1 ⋅E1,v+L.
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Plugging this into (16.2), we can write each discriminant form as a (q − 1)-st power of
another holomorphic function on Ωr.

Specifically, choose a set of representatives RL
N of N−1L ∖L modulo addition by L and

multiplication by F×q . Choose an element λN ∈ C∞ satisfying λq−1N = −N∗. Consider the
function

(16.13) δLN(ω) ∶= λN ⋅ ∏
v∈RL

N

E1,v+L(ω).

Proposition 16.14 (a) We have (δLN)q−1 = ∆L
N . In particular, another choice of repre-

sentatives or of λN changes δLN only by a factor in F×q .

(b) The function δLN is a cusp form of weight qr deg(N)
−1

q−1 and type deg(N) for the group ΓL.

Proof. Abbreviate k ∶= ∣RL
N ∣ = qr deg(N)

−1
q−1 and note that (∏α∈F×q

α)k = (−1)k = −1. Using

this, the definitions of δNL and ∆N
L and (16.12) imply that

(δLN)q−1 = −N∗ ⋅∏
v∈RL

N

E
q−1
1,v+L = N∗ ⋅∏

v∈RL
N

∏
α∈F×q

α−1E1,v+L = N∗ ⋅∏
v∈RL

N

∏
α∈F×q

E1,αv+L = ∆L
N(ω),

proving (a). The proof of (b) rests on properties of the Moore determinant, assembled in
[Go96, Chapter 1.3]: For any elements x1, . . . , xn of an Fq-algebra the Moore determinant
is defined as

(16.15) M(x1, x2, . . . , xn) ∶=
RRRRRRRRRRRRRRRRRRR

x1 ⋯ xn
x
q
1 x

q
n

⋮ ⋮

x
qn−1

1 ⋯ x
qn−1

n

RRRRRRRRRRRRRRRRRRR
.

Its most important property is [Go96, Cor. 1.3.7]

(16.16) M(x1, x2, . . . , xn) = ∏
(α1,...,αn)

( n∑
i=1

αixi),
where the product extends over all tuples in Fn

q ∖ {(0, . . . ,0)} whose first non-zero entry
is 1. Also, for any matrix B = (βij)i,j=1,...,n with coefficients in Fq we have βq

ij = βij; hence
the multiplicativity of the determinant implies that

(16.17) M( n∑
i=1

βi1xi, . . . ,
n∑
i=1

βinxi) = det(B) ⋅M(x1, x2, . . . , xn).
To apply this, choose elements v1, . . . , vn ∈ N−1L∖L whose residue classes form a basis

of the Fq-vector space N−1L/L. Then the set RL
N of all elements of the form ∑n

i=1αivi, for
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tuples (α1, . . . , αn) ∈ Fn
q ∖ {(0, . . . ,0)} whose first non-zero entry is 1, is a set of represen-

tatives of N−1L ∖L modulo addition by L and multiplication by F×q . The formula (16.16)
and the additivity of the exponential function then imply that

M(eLω(v1ω), . . . , eLω(vnω)) = ∏
(α1,...,αn)

( n∑
i=1

αieLω(viω)) = ∏
v∈RL

N

eLω(vω).
Take an arbitrary element γ ∈ ΓL. Then the same calculation with the basis v1γ, . . . , vnγ
yields

M(eLω(v1γω), . . . , eLω(vnγω)) = ∏
v∈RL

N

eLω(vγω).
For each j choose βij ∈ Fq such that vjγ ≡ ∑n

i=1 βijvi modulo L. Then by the Fq-linearity
of the exponential function we have eLω(vjγω) = ∑n

i=1 βijeLω(viγω); hence with B ∶=(βij)i,j=1,...,n the formula (16.17) implies that

M(eLω(v1γω), . . . , eLω(vnγω)) = det(B) ⋅M(eLω(v1ω), . . . , eLω(vnω)).
Combining these computations we deduce that

∏
v∈RL

N

eLω(vγω) = det(B) ⋅ ∏
v∈RL

N

eLω(vω).
Using Proposition 13.3 (a) and Corollary 13.7 we find that

(δLN ∣kγ)(ω) = λN ⋅ ∏
v∈RL

N

(E1,v+L∣1γ)(ω) = λN ⋅ ∏
v∈RL

N

E1,vγ+L(ω)
= λN ⋅ det(B)−1 ⋅ ∏

v∈RL
N

E1,v+L(ω) = det(B)−1 ⋅ δLN(ω).
To determine det(B) note that since L is a projective module of rank r over A, the module
N−1L/L is a free module of rank r over A/N . Without loss of generality we may therefore
assume that the Fq-basis v1, . . . , vn is formed by multiplying an A/N -basis of N−1L/L with
an Fq-basis of A/N . For a suitable order of this basis, the matrix A is then simply a block
diagonal matrix with m ∶= dimFq

(A/N) = deg(N) copies of γ on the diagonal. Therefore
det(B) = det(γ)m. In view of (1.5) the above calculation thus implies that

δLN ∣k,mγ = det(γ)m ⋅ δLN ∣kγ = δLN .

In other words δLN is a weak modular form of weight k and type m for the group ΓL. But by
Theorem 13.16 and construction it is already a modular form for the congruence subgroup
ΓL(N). It is therefore a modular form for ΓL. Finally, since ∆L

N is a cusp form, assertion
(a) implies that δLN is a cusp form as well. This finishes the proof of (b). ◻

Remark 16.18 In the case A = Fq[t] and L = Ar, the cusp form δLt was first constructed
by Gekeler in the 1980’s, and is called h(ω) in the literature. The r = 2 case appears in
[Ge88a] while the r > 2 case was unpublished until [Ge17]. In the meantime, it made an
appearance as a weak modular form in [Ge89] and was shown to be holomorphic at infinity
by Perkins [Pe14]. In [BB17, Thm. 5.3] it is shown to satisfy a product formula derived
from the product formula of ∆L

t .
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17 The special case A = Fq[t]
Throughout this section we set A ∶= Fq[t] and L ∶= Ar. Then ΓL = GLr(A), and Γ(t) ∶=
ΓL((t)) is the subgroup of matrices in GLr(A) which are congruent to the identity matrix
modulo (t). Recall from (6.11) that the graded ring of modular forms of all weights for an
arithmetic group Γ is defined as

M∗(Γ) ∶= ⊕
k⩾0

Mk(Γ).
For Γ = Γ(t) this ring can be described very explicitly, and for a subgroup containing Γ(t) a
description can be deduced by taking invariants. In the case r = 2 the ring was determined
by Cornelissen [Co96] for Γ(t), by Goss [Go80a] for GL2(A), and by Gekeler [Ge88a] for
SL2(A).
Theorem 17.1 The ring M∗(Γ(t)) is generated over C∞ by the Eisenstein series E1,v+L

of weight 1 for all v ∈ t−1L ∖ L, and all polynomial equations between them are induced by
the relations

E1,αv+L = α−1 ⋅E1,v+L for all v ∈ t−1L ∖L and α ∈ F×q , and

E1,v+L ⋅E1,v′+L = E1,v+v′+L ⋅ (E1,v+L +E1,v′+L) for all v, v′ ∈ t−1L ∖L with v + v′ /∈ L.
Proof. Let K(t) < GLr(Â) denote the subgroup of matrices that are congruent to the
identity matrix modulo (t). By construction it is open compact and fine in the sense of
[Pi13, Def. 1.4]. Let M r

A,K(t)
be the associated fine moduli space of Drinfeld A-modules of

rank r with a full level (t) structure. Then GLr(Af
F ) = GLr(F ) ⋅K(t), and so (8.4) with

g = 1 provides an isomorphism π1 ∶ Γ(t)/Ωr ∼

Ð→M r
A,K(t)

(C∞). The Satake compactification
M r

A,K(t)
was described explicitly in [PS14] and [Pi13], as follows.

Abbreviate V̄ ∶= t−1L/L, and let AV̄ denote the graded polynomial ring over Fq in
independent variables Yv̄ of degree 1 for all v̄ ∈ V̄ ∖ {0}. Let aV̄ ⊂ AV̄ be the homogeneous
ideal that is generated by the elements of the form

Yαv̄ −α−1Yv̄ for all v̄ ∈ V̄ ∖ {0} and α ∈ F×q , and
Yv̄Yv̄′ − Yv̄+v̄′ ⋅ (Yv̄ + Yv̄′) for all v̄, v̄′ ∈ V̄ ∖ {0} with v̄ + v̄′ /= 0.

Let RV̄ ∶= AV̄ /aV̄ denote the graded factor ring. Then by [Pi13, Thm. 7.4] there is a natural
isomorphism

(17.2) M r
A,K(t) ≅ Proj(RV̄ ⊗Fq

F ),
which also identifies the invertible sheaf L from Section 10 with the ample sheaf O(1) on
Proj(RV̄ ⊗Fq

F ). Combined with Theorem 10.9 we thus obtain an isomorphism of graded
C∞-algebras

(17.3) M∗(Γ(t)) ≅ RV̄ ⊗Fq
C∞.
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By the proof of [Pi13, Thm. 7.4], the isomorphism (17.2) also realises the universal gen-
eralised Drinfeld A-module over M r

A,K(t)
as the pair (Ē, ϕ̄) consisting of the line bundle

whose sheaf of sections is the invertible sheaf dual to O(1) and the generalised Drinfeld
A-module with

ϕ̄t(X) = t ⋅X ⋅ ∏
v̄∈V̄ ∖{0}

(1 − Ȳv̄ ⋅X),
where Ȳv̄ ∈ RV denotes the residue class of Yv̄. On the other hand from (8.9) we have a
natural isomorphism

π∗g (Ē, ϕ̄) ≅ (Ga,Ωr , ψL),
and by equation (15.4) we have

ψLω
t (X) = t ⋅X ⋅ ∏

v ∈ t−1L∖L
modulo L

(1 −E1,v+L(ω) ⋅X).

Furthermore, the respective level structures send a non-zero residue class v̄ = v + L to the
element Ȳ −1v̄ in one case and to the function E1,v+L(ω)−1 = eLω(vω) in the other. Under the
isomorphism (17.3) the element Ȳv̄ therefore corresponds precisely to the Eisenstein series
E1,v+L. By the construction of RV̄ these Eisenstein series therefore generateM∗(Γ(t)) and
satisfy precisely the stated algebraic relations. ◻

Corollary 17.4 The quotient field of M∗(Γ(t)) is a rational function field over C∞ that
is generated by the algebraically independent elements E1,vi+L as vi + L runs through any
Fq-basis of t−1L/L.
Proof. By [PS14] the ring RV is an integral domain and its quotient field is a rational
function field over Fq that is generated by the algebraically independent elements Ȳv̄i for
any basis v̄1, . . . , v̄r of V̄ . The corollary thus follows from the isomorphism (17.3). ◻

Theorem 17.5 (a) The ringM∗(GLr(A)) is generated over C∞ by the coefficient forms
gLt,i of weight q

i−1 for all 1 ⩽ i ⩽ r, which are algebraically independent over C∞. The
same statement holds with the coefficient forms ei,L or the Eisenstein series Eqi−1,L

in place of gLt,i.

(b) The ring M∗(SLr(A)) is generated over C∞ by the coefficient forms gLt,i of weight

qi − 1 for all 1 ⩽ i ⩽ r − 1 and the determinant form δLt of weight qr−1
q−1 , which are

algebraically independent over C∞. The same statement holds with the coefficient
forms ei,L or the Eisenstein series Eqi−1,L in place of gLt,i.

(c) Let Γ1(t) denote the subgroup of matrices in GLr(A) which are congruent modulo(t) to an upper triangular matrix with diagonal entries 1. The ring M∗(Γ1(t)) is
generated over C∞ by the modular forms

∑
αi+1,...,αr∈Fq

E1,t−1(0,...,0,1,αi+1,...,αr)+L

of weight 1 for all 1 ⩽ i ⩽ r, which are algebraically independent over C∞.
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Proof. For any subgroup Γ < GLr(A) containing Γ(t), the formula (6.7) shows that
M∗(Γ) is the subring of Γ-invariants in M∗(Γ(t)) for the natural action by f ↦ f ∣kγ on
eachMk(Γ(t)). By Proposition 13.3 (a) the action is given on the generators ofM∗(Γ(t))
by E1,v+L∣1γ = E1,vγ+L. This action factors through the factor group Γ/Γ(t), which is
GLr(Fq) in the case (a), respectively SLr(Fq) in the case (b), respectively the subgroup
of upper triangular matrices with diagonal entries 1 in the case (c). Using a theorem of
Dickson, the respective ring of invariants was shown in [PS14, Theorem 3.1] to have the
set of generators that is first named in each case. The recursion relations (15.6) and (15.1)
imply that by induction on i, each generator gLa,i can be replaced by ei,L or again by Eqi−1,L.

Since we are taking invariants under a finite group, the ring M∗(Γ(t)) is an integral
extension ofM∗(Γ(t))Γ. The respective quotient fields therefore have the same transcen-
dence degree over C∞. For the former this transcendence degree is r by Corollary 17.4. In
each case the r given generators of the subringM∗(Γ(t))Γ must therefore be algebraically
independent over C∞. ◻

Theorem 17.6 For any integer k we have

Mk(SLr(A)) = ⊕
0⩽m<q−1

Mk,m(GLr(A)).
In addition, for any integer 0 ⩽m < q − 1 we have

Mk,m(GLr(A)) = (δLt )m ⋅Mk−m
qr−1
q−1
(GLr(A)).

In particular, every modular form for GLr(A) of type /≡ 0 modulo (q − 1) is a cusp form.

Proof. The determinant induces an isomorphism GLr(Fq)/SLr(Fq) ∼

Ð→ F×q ; hence the
action f ↦ f ∣kγ of GLr(Fq) on Mk(SLr(A)) factors through an action of F×q . As any
linear action of F×q on an Fq-vector space is diagonalisable, it follows thatMk(SLr(A)) is a
direct sum of eigenspaces. By Definition 1.9 and (1.5) these eigenspaces are just the spaces
Mk,m(GLr(A)), proving the first equality.

The descriptions from Theorem 17.5 (a) and (b) imply thatM∗(SLr(A)) is a free mod-
ule with basis 1, δLt , . . . , (δLt )q−2 over the subring M∗(GLr(A)). Since (δLt )m is a modular
form of weight m qr−1

q−1 , this results in the second assertion. The last one now follows from

the fact that δLt is a cusp form. ◻

Remark 17.7 The last statement of Theorem 17.6 was already established independently
in Corollary 6.4 (b) using the u-expansion. Combined with Proposition 17.8 below and
the fact that δLt is a modular form of weight qr−1

q−1 and type 1 it directly implies the second
statement of Theorem 17.6 by induction on m.

Proposition 17.8 The Satake compactification M r
A,GLr(A)

has only one boundary compo-

nent of codimension 1, and the cusp form δLt has vanishing order 1 there.
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Proof. The first statement can be deduced from the fact from Proposition 6.3 (a) that
GLr(Af

F ) = GLr(A) ⋅P (F ) with the parabolic subgroup P < GLr from (5.6).
For the second statement note first that under the isomorphism ι of (4.3) the subgroups

Γ(t) ∩U(F ) < GLr(A) ∩ U(F ) correspond to the subgroups (At)r−1 ⊂ Ar−1 of F r−1, which
have index qr−1 in each other. Now consider any element v ∈ t−1L ∖ L. By the proof
of Proposition 13.15 the subgroup Γv+L ∩U(F ) corresponds to the subgroup (At)r−1 if
v /∈ L + ({0} × F r−1). By Proposition 13.15 we thus have

ordΓ(t)∩U(F )(E1,v+L) = ordΓv+L∩U(F )(E1,v+L) = { 0 if v ∈ L + ({0} ×F r−1),
1 otherwise.

Taking the product over a set of representatives as in (16.13), where the second case occurs
qr−qr−1

q−1 = qr−1 times, we deduce that

ordΓ(t)∩U(F )(δLt ) = qr−1.

Since [GLr(A) ∩ U(F ) ∶ Γ(t) ∩ U(F )] = qr−1, it follows that ordGLr(A)∩U(F )(δLt ) = 1, as
desired. ◻

Corollary 17.9 The cusp forms of all weights and type 0 for GLr(A) form the principal
ideal ofM∗(GLr(A)) that is generated by ∆L

t . In other words, for every integer k we have

Sk(GLr(A)) = ∆L
t ⋅Mk−qr+1(GLr(A)).

Proof. The cusp form δLt is non-zero everywhere by Propositions 16.3 (a) and 16.14 (a).
Thus for every cusp form f ∈ Sk,0(Γ), the quotient f/δLt is again a weak modular form,
and by Proposition 17.8 it is holomorphic at infinity; hence f/δLt ∈Mk−

qr−1
q−1

,−1(GLr(A)).
By Theorem 17.6 with m = q − 2 this in turn implies that f ∈ (δLt )q−1Mk−qr+1,0(GLr(A)),
as desired. ◻

Corollary 17.10 The space of cusp forms Sk(GLr(A)) is zero for k < qr − 1 and one-
dimensional with basis ∆L

t for k = qr − 1. In particular ∆L
t is an eigenform for the Hecke

operator associated to any double coset GLr(A)δGLr(A) ⊂ GLr(F ).
Proof. By Theorem 17.5 (a) we haveMk(GLr(A)) = 0 for k < 0 and = C∞ for k = 1. By
Corollary 17.9 this implies the first statement, which in turn implies the second. ◻

Theorem 17.11 We have the following dimension formulas for all k ⩾ 0 and m:

(a) dimC∞Mk(Γ(t)) = ∑
i1,...,ir−1∈{0,1}

q∑ν ν⋅iν ⋅ ( k

∑ν iν
).
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(b) Denote by PS(k) the number of partitions of k with parts in S = {q−1, q2−1, . . . , qr−1}.
Then

dimC∞Mk(GLr(A)) = PS(k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if (q − 1) ∤ k,
1

∏r
i=2(qi − 1) ⋅

kr−1

(r − 1)! +O(kr−2) if (q − 1)∣k.

(c) dimC∞Mk,m(GLr(A)) = { PS(k −m qr−1
q−1 ) if k ⩾m qr−1

q−1 ,

0 otherwise.

(d) dimC∞Mk(Γ1(t)) = (k−1r−1).
Proof. Assertion (a) follows from Theorem 17.1 together with [PS14, Thm. 1.10]. The
first equality in (b) results from Theorem 17.5 (a). Clearly PS(k) is the number of partitions

of k
q−1 with parts in { q−1

q−1 ,
q2−1
q−1 , . . . ,

qr−1
q−1 }, which by [Na00, Thm. 15.2] has the asymptotic

behaviour given in (b). Assertion (c) is a direct consequence of Theorem 17.6. Finally,
by Theorem 17.5 (c) the dimension in (d) is just the number of partitions of k into r

summands, which is well-known to be (k−1
r−1). ◻

Remark 17.12 Taking invariants one may obtain similar dimension formulas for arbitrary
arithmetic subgroups Γ containing Γ(t). In particular [Pi13, Thm. 8.4] gives an explicit
formula when Γ(t) < Γ < Γ1(t). It seems an interesting problem to find a dimension formula
in general.

Remark 17.13 Combining Theorem 17.1 and [PS14, Thm. 1.7] shows that M∗(Γ(t)) is
a Cohen-Macaulay normal integral domain. By taking invariants, the argument in [PS14,
§2] shows the same for M∗(Γ) whenever Γ(t) < Γ < Γ1(t). For Γ = GLr(A) and SLr(A)
the same follows from the explicit description in Theorem 17.5. One may ask: Is this only
a rare event for small level, or is it a general phenomenon?
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