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1 Introduction and Summary

There is a renewed interest in Newton-Cartan (NC) geometry which has been ob-
served in the last years. The first significant paper was [1] which introduced NC
to field theory that analyzes strongly correlated electrons. It was further shown in
[2, 3] that NC geometry with torsion naturally emerges as the background bound-
ary geometry in holography for z = 2 Lifshitz geometries, for relevant works, see
[4, 5, 6, 7] and for review and extensive list of references, see [8]. In fact, NC geom-
etry is non-relativistic background geometry to which non-relativistic field theories
can be covariantly coupled, see for example [5, 9, 10, 11, 12, 13]. In particular, it
was shown in significant paper [11] how non-relativistic electrodynamics can couple
to the most general NC geometry with torsion. Further, non-relativistic scalar fields
coupled to NC geometry and background electromagnetic field were also analyzed
there.

Since these results are very interesting non-relativistic theories in NC background
certainly deserve to be studied in more details further. In this short note we focus on
canonical analysis of non-relativistic scalar field and non-relativistic electrodynamics
coupled to NC geometry. It turns out that this is rather non-trivial problem with
interesting property that the constraints explicit depend on time. In more details,
we start with the action for Schrödinger field in the background NC geometry and
background non-relativistic electromagnetic field. Such an action was derived in
[11] with the help of null reduction of complex scalar field in higher dimensional
space-time 2. Then in order to find Hamiltonian form of this action we have to
impose important restriction on the NC space-time in the sense that it has to have
a notion of foliation by spatial surfaces that are orthogonal to one form τµ where
τµ is known as clock form. This form defines a preferred notion of spatial direction
at each point and also arrow of time in the sense that vector field tµ is said to be
future directed if it obeys the condition τµt

µ > 0. τµ defines a pointwise notion of
spatial direction with the help of the vectors wµ that obey the condition τµw

µ = 0.
However this notion can be integrated to a local codimension one subspace when
τµ obeys Frobenious condition τ ∧ dτ = 0 where τ = τµdx

µ. Then we define causal
space-times as space-times where this condition holds everywhere, for more detailed
analysis and discussion, see for example [9, 12]. For such space-time we will be able
to find Hamiltonian for the Schrödinger field in NC background. However we also
find that when we write the complex scalar field in polar form as ψ =

√
ρeiS that

the momentum conjugate to ρ is zero which is first primary constraint of the theory.
Further, in case of the momentum conjugate to S we find that it is determined by
second primary constraint that explicitly depends on time. This is very interesting
situation that deserves careful treatment. For that reason we perform analysis of
constraint systems with explicit time dependent primary constraints in appendix 3.
Taking into account explicit time dependence of the constraints we will be able to

2Null reduction was studied in some earlier papers [14, 15].
3Discussion of the constraint analysis with explicit time dependence can be found in [17] however

the analysis presented there is slightly different from ours.
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derive canonical equations of motion that reproduce Lagrangian equations of motion
which is a nice consistency check.

As the next step we extend this analysis to the case of non-relativistic electro-
dynamics in Newton-Cartan background. Since canonical analysis is based on an
existence of Lagrangian we start with the non-relativistic electrodynamics action
in NC background that is derived using null dimensional reduction [11]. We again
restrict to the case of causal space-time and in the first step we determine set of
primary constraints which Poisson commute among themselves. This is different
situation than in case of the scalar field where the primary constraints were the
second class constraints. Then the requirement of the preservation of the primary
constraints gives set of secondary constraints which together with the primary con-
straints form set of the second class constraints. As a result we find that gauge
field and corresponding conjugate momenta can be eliminated from the theory at
least in principle. We also determine Lagrange multipliers corresponding to the
primary constraints using the equations of motion for gauge field and we show that
the resulting equations of motion coincide with the equations of motion derived by
variation of action.

Let us outline main results derived in this paper. We obtain Hamiltonian form
of non-relativistic theories on NC background and we determine physical degrees of
freedom. This is very important result since we show that in case of non-relativistic
electrodynamics the only physical degree of freedom is the scalar field and conjugate
momenta. We also discuss the problem of the constraint structure in case of theories
with explicit time dependent constraints.

The structure of this paper is as follows. In the next section (2) we review
basic facts about NC geometry and introduce an action for Schrödinger field in
the NC background and background non-relativistic electromagnetic field through
null dimensional reduction. Then we perform Hamiltonian analysis of this theory
and determine structure of constraints. In section (3) we analyze non-relativistic
electrodynamics in NC background. We firstly perform canonical analysis of non-
relativistic electrodynamics in flat background and then we extend this analysis to
the case of non-relativistic electrodynamics in NC background. Finally in appendix
(A) we study constrained systems with explicit time dependence and discuss their
properties.

2 Hamiltonian Analysis of Schrödinger field in

NC background

2.1 Summary of Newton-Cartan Geometry

We start this analysis with the brief review of Newton-Cartan geometry in d + 1
dimensions. Newton-Cartan background in d+1 dimensions is given by a set of one
forms (τµ, e

a
µ ) where a = 1, . . . , d and where µ, ν = 0, 1, . . . , d. We also have one
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form Mµ. We define inverse vielbeins vµ and e a
µ through the relations

vµe a
µ = 0 , vµτµ = −1 , eµaτµ = 0 , eµae

b
µ = δba . (1)

The determinant of the (d+ 1)× (d+ 1) matrix (τµ, e
a
µ ) is denoted by e. With the

help of vierbeins we can construct degenerative ”spatial metric”

hµν = e a
µ e

b
ν δab , hµν = eµae

ν
bδ

ab . (2)

By definitions, one forms τµ, e
a
µ and Mµ transform under diffeomorphism as usual

but they also transform under various local transformations: Galilean boosts with
λa as local parameter, local SO(d) rotations which is parameterized by λab = −λba
and U(1)σ gauge transformation that is parameterized by σ where we have

δτµ = 0 , δe a
µ = τµλ

a + λabe
b
µ ,

δvµ = λaeµa , δeµa = λ b
a e

µ
b ,

δMµ = λae
a
µ + ∂µσ .

(3)

The inverse vielbein eµa is invariant under local Galilean transformations. Note that
we have an important relation

e a
µ e

ν
a − τµv

ν = δνµ (4)

that implies
hµνh

νρ = δρµ + τµv
ρ (5)

which will be useful below. It is also useful to define objects that are invariant under
local Galilean transformations v̂µ , êµa , ĥ

µν and Φ defined as

v̂µ = vµ − hµνMν , êµa = eµa −Mνe
ν
bδ

baτµ ,

ĥµν = hµν −Mµτν −Mντµ , Φ = −vµMµ +
1

2
hµνMµMν .

(6)

It is important to stress that ĥµν 6= ê a
µ ê

b
ν δab. Instead, using the definition of ê a

µ

given above, we obtain following relation

ê a
µ ê

b
ν δab = ĥµν + 2τµτνΦ .

(7)

Finally note that hatted objects obey following the relations

v̂µê a
µ = 0 , v̂µτµ = −1 , eµaê

b
µ = δba . (8)

After this review of NC geometry we proceed to the Hamiltonian analysis of Schrödinger
field.
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2.2 Schrödinger Field in NC geometry through Null Dimen-

sional Reduction

We would like to find Hamiltonian formulation of scalar field on Newton-Cartan
background with fixed electromagnetic background. The most convenient way how
to find such an action is to perform null dimensional reduction, see for example
[9, 11]. Let us consider an action for complex scalar field in d+ 2 dimension in the
form

I =

∫

dd+2x
√
−γ
(

−γABDAΨDBΨ
∗
)

, (9)

where DA = ∂AΨ − iqAAΨ and where AA, A = 0, . . . , d + 1 is background electro-
magnetic field. Let us now consider a background metric which possesses a null
isometry that is generated by coordinates ∂u

ds2 = γABdx
AdxB = 2τµdx

µ(du−Mνdx
ν) + hµνdx

µdxν (10)

so that
γµu = γuµ = τµ , γµν = hµν − τµMν − τνMν ≡ ĥµν . (11)

Then √
−γ = e , e = det

(

τµ, e
a
µ

)

. (12)

Since the metric γAB is non-singular we can easily find inverse metric with compo-
nents

γuu = 2Φ , γuµ = −v̂µ , γµν = hµν , (13)

where v̂µ and Φ are defined in (6). We further presume that the gauge field has the
form AA = (Au, Aµ) = (ϕ, Āµ−ϕMµ). Now with the help of this metric we perform
dimensional reduction of the action. To do this we have to presume that all fields
do not depend on u. We impose following ansatz for the scalar field Ψ

Ψ = eimuψ (14)

and insert it to the action. Then also using (13) we obtain

I =

∫

dd+1xe (v̂µ(Dµψ)
∗i(m− qϕ)ψ − i(m− qϕ)v̂µDµψψ

∗

− 2Φ(m− qϕ)2ψψ∗ − hµνDµψ(Dνψ)
∗
)

,

(15)

where
Dµψ = ∂µψ − iqAµψ , (Dµψ)

∗ = ∂µψ
∗ + iqAµψ

∗ . (16)

The action (15) is the action for Schrödinger field of the mass m and charge q in
Newton-Cartan background and in the background electromagnetic field where the
electromagnetic field has components Aµ. Note that ψ couples to ϕ through the
combination m − qϕ and hence ϕ effectively shifts the mass of the scalar field and
hence it is natural to call it as mass potential [11]. Our goal is to find Hamiltonian
from the action (15).
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2.3 Hamiltonian Analysis

We would like to work with real variables rather than with complex ones. For that
reason se introduce following parameterization of the scalar field ψ as ψ =

√
ρeiS so

that the action has the form

Isch =

∫

d4xe (2(m− qϕ)ρv̂µ∂µS − 2(m− qϕ)v̂µAµρ− 2Φ(m− qϕ)ρ−

− 1

4ρ
hµν(Dµρ)

∗Dνρ+ 2qhµν
√
ρAµ∂νS − ρhµν∂µS∂νS

)

,

(17)

where
Dµρ = ∂µρ− 2iqAµρ , (Dµρ)

∗ = ∂µρ+ 2iqAµρ . (18)

It is clear that the previous action is well defined for general Newton-Cartan back-
ground for arbitrary τµ apart from the fact that τµ has to obey Newton-Cartan
compatibility condition. On the other hand in order to have well defined Hamilto-
nian formulation we have to have a notion of foliation by spatial surfaces that are
orthogonal to τµ. This is guaranteed when we impose hypersurface orthogonality
condition τ[µ∂ντρ] = 0 on the whole space-time M . This condition is known as
Frobenius condition and for more detailed discussion of causality in Newton-Cartan
background, see [9, 12]. SpaceM that obeys this condition is called as causal. Since
τµ is nowhere non-zero we can write it as τ0 = e−ΦL where ΦL is known as Luttinger
potential. In what follows we restrict to such space-time. Since τi = 0 we obtain
following consequences on the form of the metric hµν thanks to the condition

τµh
µν = 0 . (19)

Explicitly, for ν = 0 this equation implies τ0h
00 = 0 and hence we have to have

h00 = 0 while for ν = i we have τµh
µi = τ0h

0i = 0 which again implies that h0i = 0.
Then the action Isch simplifies considerably

Isch =

∫

dd+1xe (2(m− qϕ)ρv̂µ∂µS − 2(m− qϕ)v̂µAµρ− 2Φ(m− qϕ)ρ−

− 1

4ρ
hij(Diρ)

∗Djρ+ 2qhij
√
ρAi∂jS − ρhij∂iS∂jS

)

,

(20)

where v̂µ = vµ − hµνMν has generally non-zero all its components.

Before we proceed to the Hamiltonian formulation of the theory we derive equa-

5



tions of motion for ρ and S from (20)

∂µ[ev̂
µ(m− qϕ)ρ] + q∂i[e

√
ρhijAj ]− ∂i[eρh

ij∂jS] = 0 ,

2e(m− qϕ)v̂µ∂µS − 2e(m− qϕ)v̂µAµ − 2eΦ(m− qϕ) +

+
e

4ρ2
(Diρ)

∗Djρh
ij +D∗

i

[

e

4ρ
hijDjρ

]

+Di

[

e

4ρ
hij(Djρ)

∗

]

+
q√
ρ
ehijAi∂jS − ehij∂iS∂jS = 0 .

(21)

Now we are ready to proceed to the Hamiltonian formalism. From (20) we obtain
following conjugate momenta

pS =
∂Lsch

∂(∂tS)
= 2(m− qϕ)ρv̂0 , pρ =

∂Lsch

∂(∂tρ)
= 0 . (22)

From these two equations we see that there are two primary constraints

GS ≡ pS − 2e(m− qϕ)ρv̂0 ≈ 0 , Gρ ≡ pρ ≈ 0

(23)

while the bare Hamiltonian is equal to

HB =

∫

ddx(pρ∂tρ+ pS∂tS −L) =
∫

ddxHB ,

HB = −2e(m− qϕ)ρv̂i∂iS + 2e(m− qϕ)v̂µAµρ+ 2eΦ(m− qϕ)ρ+

+
1

4ρ
ehij(Diρ)

∗Djρ− 2qehij
√
ρAi∂jS + ρehij∂iS∂jS .

(24)

We see that generally GS ≈ 0 and HB explicit depend on time. This is not usual
situation and we discuss theory of constraints systems with explicit time dependence
in more details in Appendix (A).

As the next step we calculate Poisson bracket between GS and Gρ and we obtain

{GS(x),Gρ(y)} = −2e(m− qϕ)v̂0δ(x− y) ≡ △Sρ(x,y) (25)

which show that they are two second class constraints. Note that the inverse matrix
has the form △ρS = − 1

2e(m−qϕ)v̂0
δ(x − y). As a result we can eliminate pρ = 0 and

pS = 0 from the set of canonical variables when we introduce Dirac bracket between
ρ and S defined as

{ρ(x), S(y)}D = {ρ(x), S(y)} −
∫

ddzddz′ {ρ(x),GS(z)}△Sρ(z, z′) {pρ(z′), S(y)} −

−
∫

ddzddz′ {ρ(x), pρ(z)}△ρS(z, z′) {GS(z
′), S(y)} = − 1

2ev̂0(m− qϕ)
δ(x− y) .

(26)
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As was explicitly shown in Appendix (A), in the presence of the time dependent
constraints the equations of motion for canonical variables have the form 4

∂tρ = {ρ,HB}D −

−
∫

ddzddz′ {ρ,GS(z)}△Sρ(z, z′)
∂pρ

∂t
−
∫

ddzddz′ {ρ, pρ(z)}△ρS(z, z′)
∂GS(z

′)

∂t
=

= − 1

ev̂0(m− qϕ)
∂i[(m− qϕ)ev̂iρ]− 1

ev̂0(m− qϕ)
∂t[e(m− qϕ)v̂0]ρ−

− q

ev̂0(m− qϕ)
∂i[e

√
ρhijAj] +

1

ev̂0(m− qϕ)
∂i[eh

ijρ∂jS]

(27)

that can be rewritten into more symmetric form

∂t[ev̂
0(m− qϕ)ρ] + ∂i[ev̂

i(m− qϕ)ρ] + ∂i[e
√
ρhijAj ]− ∂i[eh

ijρ∂jS] = 0

(28)

that coincides with the first equation of motion given in (21). Let us now proceed
to the canonical equation of motion for S

∂tS = {S,HB}D −
∫

ddzddz′ {S,GS(z)}△Sρ(z, z′)
∂Gρ

∂t

= − v̂i

v̂0
∂iS +

v̂µ

v̂0
Aµ +

1

v̂0
Φ− 1

8ρ2v̂0(m− qϕ)
hij(Diρ)

∗Djρ

− 1

2ev̂0(m− qϕ)
Di

[

ehij

4ρ
Djρ

]

− 1

2ev̂0(m− qϕ)
D∗

i

[

ehij

4ρ
D∗

jρ

]

− eq

2v̂0(m− qϕ)
√
ρ
hijAi∂jS +

e

v̂0(m− qϕ)
hij∂iS∂jS

(29)

that can be again rewritten into the form

2e(m− qϕ)v̂µ∂µS − 2e(m− qϕ)v̂µAµ − 2e(m− qϕ)Φ +

+
e

4ρ2
hij(Diρ)

∗Djρ+Di

[

e

4ρ
hijD∗

jρ

]

+D∗

i

[

e

4ρ
hijDjρ

]

+

+
qe√
ρ
hijAi∂jS − ehij∂iS∂jS = 0

(30)

that coincides with the second equation of motion given in (21).

In summary, we found the Hamiltonian formulation of Schrödinger field in NC
background. We found that the dynamical fields are ρ and S that have non-zero
Dirac bracket (26). Then we derived their canonical equations of motion and found
that they coincide with the equations of motion derived from Lagrangian.

4See equation (77) in Appendix (A).
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3 Hamiltonian Formalism for Electromagnetic Field

in Newton-Cartan Gravity

In this section we focus on canonical analysis of non-relativistic electromagnetic field
in NC background. We start with the simpler case of the action for non-relativistic
electrodynamics in flat background.

3.1 Non-Relativistic Electrodynamics through Null Dimen-

sional Reduction

Following [11] we derive an action for non-relativistic electrodynamics by performing
a null reduction of the Maxwell action in one higher dimension. More precisely, let
us consider d+ 2 dimensional Maxwell action

S = −1

4

∫

dtduddxFABη
ACηBDFCD , (31)

where ηABdx
AdxB = 2dtdu+ dxidxi. Following [11] we set Au = ϕ ,At = −ϕ̃ , Ai =

ai and presume that all fields do not depend on u. Since the inverse metric has the
form ηtu = ηut = 1 , ηij = δij we get

FABη
ACηBDFCD = −2(Ftu)

2+FijF
ij−4FiuFtk = −2(∂tϕ)

2−4(∂tai+∂iϕ̃)∂iϕ+fijF
ij .

(32)
As a result we obtain an action for non-relativistic electrodynamics in flat back-
ground in the form

S =

∫

dtddx

(

−1

4
fijf

ij + (∂iϕ̃+ ∂tai)∂iϕ+
1

2
(∂tϕ)

2

)

, (33)

where fij = ∂iaj−∂jai. From the action (33) we derive following conjugate momenta
5

πi = ∂iϕ , pϕ̃ = 0 , pϕ = ∂tϕ (34)

so that we have following primary constraints

Gi ≡ πi − ∂iϕ ≈ 0 , pϕ̃ ≈ 0 ,

(35)

together with the bare Hamiltonian in the form

HB =

∫

ddx(πi∂tai+pϕ∂tϕ+pϕ̃∂tϕ̃−L) =
∫

ddx

(

1

4
fijf

ij − ∂iϕ̃∂iϕ+
1

2
p2ϕ

)

(36)

and consequently the extended Hamiltonian is equal to

HE = HB +

∫

ddx(λiGi + λϕ̃pϕ̃) , (37)

5In this section we do not carry about upper or lower spatial index since they are equivalent in
flat background.
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where λi, λ
ϕ̃ are Lagrange multipliers corresponding to the constraints Gi ≈ 0 and

pϕ̃ ≈ 0. As the next step we have to ensure the preservation of all primary con-
straints. In case of the constraint Gi ≈ 0 we obtain

dGi

dt
=
{

Gi, HE

}

= ∂kf
ki − ∂ipφ ≡ Gi

II ≈ 0 , (38)

where Gi
II ≈ 0 are secondary constraints. In case of the constraint pϕ̃ ≈ 0 we obtain

dpϕ̃

dt
= {pϕ̃, HE} = ∂i∂

iϕ = ∂iπ
i − ∂iGi ≈ ∂iπ

i ≡ GII
ϕ̃ ≈ 0 (39)

which is the generator of gauge transformations. In fact, if we define

G(Λ) =

∫

ddxΛGII
ϕ̃ (40)

we obtain standard transformation rules

{G(Λ), Ai} = ∂iΛ , {G(Λ), fij} = 0 . (41)

Finally we have to ensure the preservation of the constraint Gi
II ≈ 0. To do this we

have to calculate the Poisson bracket between constraints Gi and Gi
II . After some

calculations we obtain

{

Gi(x),Gj
II(y)

}

= −∂k∂kδ(x− y)δij ≡ △ij(x,y) .

(42)

Let us introduce an inverse matrix Dij(x,y) that obeys the relation

∫

ddz△ik(x, z)Dkj(z,y) = δijδ(x− y) . (43)

Since △ij is given in (42) we find that Dij is a solution of the equation

∂

∂xk
∂

∂xk
Dij(x,y) = −δijδ(x− y) . (44)

As the next step we determine canonical equations of motion for ϕ and pϕ

∂tϕ = {ϕ̃, HE} = {ϕ̃, HB}+
{

ϕ,

∫

ddzλiGi(z)

}

= pϕ

∂tpϕ = {pϕ, HE} = {pϕ, HB}+
{

pϕ̃,

∫

ddzλiGi(z)

}

= −∂k∂kϕ̃− ∂iλ
i .

(45)

Finally the equation of motion for ai has the form

∂tai = {ai, HE} =

∫

ddzλj(z)
{

ai,Gj(z)
}

= λi (46)
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so that the equation of motion for pϕ can be written as

∂tpϕ = −∂k(∂kϕ̃+ ∂tak) = ∂kẼk , (47)

where Ẽk = −∂tak − ∂kϕ̃. If we perform partial time derivation of the first equation
in (45) and use the second one we obtain

∂2t ϕ = ∂tpϕ = ∂kẼk (48)

with agreement with the equation (2.11) in [11]. Further, if we apply the partial
derivative ∂i on the first equation in (45) we obtain

∂i∂tϕ = ∂ipϕ = ∂kf
ki (49)

with agree with the second equation in (2.3) in [11]. In the same way we find that
the divergence of Gi = 0 implies

∂iGi = GII
ϕ̃ − ∂i∂

iϕ ≈ −∂i∂iϕ̃ = 0 (50)

that agrees with the first equation in (2.3) [11]. Finally we should determine the
Lagrange multiplier λi using the requirement of the preservation of the constraint
Gi
II but this is not necessary since we know that λi = ∂tai. On the other hand since

Gi ≈ 0 and Gi
II ≈ 0 are two second class constraints they can be explicitly solved

for πi and ai. In other words there is only one dynamical variable which is ϕ and
its conjugate momentum pϕ.

3.2 Null Reduction of Maxwellian Electromagnetism in NC

Background

We determine action for electromagnetic field in Newton-Cartan background again
with the help of null dimensional reduction, following [11]. We start with the action
for electromagnetic field in d+ 2 dimensions that has the form

S = −1

4

∫

dd+2x
√
−γFABγ

ACγBDFCD . (51)

Our goal is to dimensionally reduce this action along null isometry so that we will
presume that AM do not depend on u. We further write AM = (Au, Aµ) and define
Aµ ≡ ϕ. Since the gauge field transforms under U(1) transformations as

A′

A = AA + ∂AΛ (52)

it is clear that ϕ is invariant under gauge transformation since Λ does not depend
on u. On the other hand the gauge field Aµ transform as

A′

µ = Aµ + ∂µΛ . (53)
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In order to perform null dimensional reductions we use the components of metric
inverse given in (13) and we obtain the action in the form

S =

∫

dd+1xe

(

−1

4
Fµνh

µρhνσFρσ − Φ∂µϕh
µν∂νϕ+

1

2
(v̂µ∂µϕ)

2 − v̂νFνµh
µσ∂σϕ

)

,

(54)
where

Fµν = ∂µAν − ∂νAµ . (55)

It is convenient to use slightly different form of the action which depends on vµ

instead of v̂µ. Following [11] we introduce vector field Āµ defined as

Aµ = Āµ − ϕMµ . (56)

Performing this substitution in the action (54) we find

S =

∫

dd+1xe

(

−1

4
hµρhνσF̄µνF̄ρσ − hµνvρF̄ρν∂µϕ+

1

2
(vµ∂µϕ)

2

)

, (57)

where
F̄µν = ∂µĀν − ∂νĀν − ϕ(∂µMν − ∂νMµ) . (58)

The action (57) will be the starting point for the Hamiltonian formulation of the
theory. As we argued above we restrict to causal space-time with non-zero τ0 only.
Then vµ has generally non-zero all components with v0 = −τ0. In case of causal
space-time the action has the form

S =

∫

dd+1xe

(

−1

4
F̄ijh

ikhjlF̄kl − Φ∂iϕh
ij∂jϕ+

1

2
(vµ∂µϕ)

2 − vνF̄νih
ij∂jϕ

)

. (59)

Note that from this action we also obtain equations of motion in the form

2∂i[eΦh
ij∂jϕ]− ∂µ[ev

µvν∂νϕ] + ∂j [ev
νF̄νih

ij ] +

+
1

2
e(∂iMj − ∂jMi)h

ikhjlF̄kl + ev0(∂0Mi − ∂iM0)h
ij∂jϕ+ evk(∂kMi − ∂iMk)h

ij∂jϕ = 0 ,

∂j [eh
ilF̄lkh

kj] + ∂0[ev
0hij∂jϕ] + ∂k[ev

khij∂jϕ]− ∂k[ev
ihkj∂jϕ] = 0 ,

∂i[ev
0hij∂jϕ] = 0 .

(60)

Let us now proceed to the canonical analysis. From (59) we obtain following conju-
gate momenta

πi =
∂L

∂(∂tĀi)
= −ev0hij∂jϕ , π0 =

∂L
∂(∂tĀ0)

≈ 0 ,

pϕ =
∂L

∂(∂tϕ)
= ev0(vµ∂µϕ)

(61)
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so that we have following explicitly time dependent primary constraints

Gi ≡ πi + ev0hij∂jϕ ≈ 0 (62)

together with familiar constraint G0 ≡ π0 ≈ 0. Further, with the help of (61), we
obtain the bare Hamiltonian in the form

HB =

∫

ddx

(

e
1

4
F̄ijh

ikhjlF̄kl + eΦ∂iϕh
ij∂jϕ+ evkF̄kih

ij∂jϕ+

+
1

2e
(τ0)

2p2ϕ + τ0v
i∂iϕpϕ − A0∂iπ

i + πiϕ(∂0Mi − ∂iM0)

)

.

(63)

Now we have to analyze the requirement of the preservation of primary constraints
Gi ≈ 0 ,G0 ≈ 0. Note that the extended Hamiltonian has the form

HE = HB +

∫

ddx(λiGi + λ0π
0) . (64)

In case of G0 ≈ 0 we obtain that the requirement of its preservation during the time
development of the system implies standard Gauss law constraint

GII ≡ ∂iπ
i ≈ 0 , (65)

while in case of Gi we get

dGi

dt
=

∂Gi

∂t
+
{

Gi, HE

}

= ∂t(ev
0hij)∂jϕ− ∂k[eh

ikF̄klh
lj ] + ∂k(ev

khin∂nϕ)−

− ∂m(ev
ihmn∂nϕ) + ev0hij∂j [

1

e
(τ0)

2pϕ] + ev0hij∂j [τ0v
m∂mϕ] ≡ Gi

II ≈ 0 ,

(66)

where we used the fact that {Gi(x),Gj(y)} = 0. We see that the requirement of
the preservation of the constraints Gi ≈ 0 implies the second set of the constraints
Gi
II ≈ 0. It is again easy to see that Gi ≈ 0 ,Gj

II ≈ 0 are two sets of second
class constraints with rather complicated Poisson bracket between them. Then
it is difficult to determine Lagrange multipliers λi from the requirement of the
preservation of the constraints Gi

II ≈ 0 during the time evolution of the system. On
the other hand, as we will show below, these Lagrange multipliers can be determined
with the help of the equations of motion for Āi. Further, it is easy to see that
G0 and GII ≈ 0 are first class constraints where GII ≈ 0 is generator of gauge
transformations.

As we argued above Gi ≈ 0 ,Gi
II ≈ 0 are two sets of second class constraints

where Gi = 0 can be solved for πi while Gi
II = 0 can be solved for Āi at least in

principle. On the other hand when we try to write equations of motion for ϕ and

12



pϕ it is convenient to express Lagrange multiplier λi as a function of non-dynamical
variable Āi using its equation of motion

∂tĀi =
{

Āi, HE

}

= ∂iA0 + λi + ϕ(∂0Mi − ∂iM0) (67)

that implies that λi = F̄0i. Then we can write canonical equations of motion for ϕ
and pϕ as

∂tϕ = {ϕ,HB}+
∫

ddzλi
{

ϕ,Gi(z)
}

=
1

e(v0)2
pϕ + τ0v

i∂iϕ ,

∂tpϕ = {pϕ, HB}+
∫

ddzλi(z)
{

pϕ,Gi(z)
}

=

=
1

2
e(∂iMj − ∂jMi)h

ikhjlF̄kl − πi(∂0Mi − ∂iM0) + ∂m(λjh
jme) +

+ 2∂i[eΦh
ij∂jϕ] + ∂j [ev

kF̄kih
ij ] + ∂i[τ0v

ipϕ] + evk(∂kMi − ∂iMk)h
ij∂jϕ

≈ 1

2
e(∂iMj − ∂jMi)h

ikhjlF̄kl + v0ehij∂jϕ(∂0Mi − ∂iM0) + ∂m(F̄0jh
jmev0) +

+ 2∂i[eΦh
ij∂jϕ] + ∂j [ev

kF̄kih
ij ] + ∂i[τ0v

ipϕ] + evk(∂kMi − ∂iMk)h
ij∂jϕ .

(68)

If we combine these two equations together we obtain

∂t(e(v
0)2∂tϕ) = ∂tpϕ − ∂t(ev

0vi∂iϕ)

=
1

2
e(∂iMj − ∂jMi)h

ikhjlF̄kl + ev0hij∂jϕ(∂0Mi − ∂iM0) + ∂m(F̄0jh
jmev0)

+2∂i[eΦh
ij∂jϕ] + ∂j [ev

kF̄kih
ij ]− ∂i[ev

iv0∂tϕ] + evk(∂kMi − ∂iMk)h
ij∂jϕ

(69)

that coincides with the first equation in (60). Further, it is easy to see that the
second equation in (60) coincides with the secondary constraint Gi

II = 0. Finally,
the last equation in (60) is equivalent to the combination of the primary constraint
GII and Gi since

GII = ∂i[Gi − ev0hij∂jϕ] = −∂i[ev0hij∂jϕ] = 0 . (70)

In summary, we have shown that canonical equations of motion and constraints re-
produce Lagrangian equations of motion. We have also determined physical degrees
of freedom of non-relativistic electrodynamics and we have shown that there are
only two phase space physical degrees left corresponding to ϕ and pϕ.
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A Appendix: Systems with explicit time depen-

dent constraints

Let us consider phase space system with variables pm, q
m, m = 1, . . . , N , bare Hamil-

tonianHB and set of primary constraints φj = φj(p, q, t), j = 1, . . . , J , that explicitly
depend on time t. Then the phase space action with primary constraints included
has the form

S =

∫

dt(pmq̇
m −HB − λjφj) , (71)

where λj are independent variables known as Lagrange multipliers. Variation of the
action with respect to pm, q

m and λj we obtain following set of equations of motion

q̇m − ∂HB

∂pm
− λj

∂φj

∂pm
= 0 ,

−ṗm − ∂HB

∂qm
− λj

∂φj

∂qm
= 0 ,

φj ≈ 0 .

(72)

Introducing standard Poisson bracket they can be written as

q̇m = {qm, HB}+ λj {qm, φj} ,

ṗm = {pm, HB}+ λj {pm, φj} , φj = 0 .

(73)

In order to determine Lagrange multipliers λj we demand that the constraints φj = 0
are preserved during the time evolution of the system. Note that it is clear from
the form of the equations of motion written above that we have to firstly calculate
Poisson bracket between canonical variables and φj and then we can impose the
condition φj = 0. This is the reason why we write φj ≈ 0 instead of φj = 0. Now
the time evolution of the constraint φi is equal to

φ̇i =
∂φi

∂t
+
∂φi

∂qm
˙qm +

∂φi

∂pm
ṗm =

=
∂φi

∂t
+ {φi, HB}+ {φi, φj}λj .

(74)

If we impose the condition that the constraint φi is preserved during the time evo-
lution of the system we find that the conditions φ̇i = 0 provide J equations for J
unknown λi. Let us now presume non-degenerative case when {φi, φj} = △ij is
non-singular matrix so that it has an inverse △jk ,△ij△jk = δki . Then (74) can be
solved as

λi = −△ik

(

∂φk

∂t
+ {φk, HB}

)

.

(75)
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As a result we find that the time evolution of the phase space variables qm and pm
is governed by equations

q̇m = {qm, HB} − {qm, φi}△ij {φj, HB} − {qm, φi}△ij ∂φj

∂t
,

ṗm = {pm, HB} − {pm, φi}△ij {φj , HB} − {pm, φi}△ij ∂φj

∂t
,

φj = 0

(76)

that can be written in an equivalent form

q̇m = {qm, HB}D − {qm, φi}△ij ∂φj

∂t
,

ṗm = {pm, HB}D − {pm, φi}△ij ∂φj

∂t
,

φj = 0 ,

(77)

where we introduced Dirac bracket between two phase space functions defined as
{X, Y }D = {X, Y } − {X, φi}△ij {φj , Y }.

A.1 Secondary time dependent constraints

Let us now consider situation when the primary constraints φj(p, q, t) have weakly
vanishing Poisson bracket among themselves. Then the requirement of their preser-
vation during the time development of the system has the form

dφi

dt
=
∂φi

∂t
+ {φi, HB}+ λj {φi, φj} ≈ ∂φi

∂t
+ {φi, HB} ≡ φII

i (p, q, t) ≈ 0 , (78)

where now φII
i (p, q, t) are secondary constraints. Finally we have to ensure the

preservation of the secondary constraints which implies

dφII
i

dt
=
∂φII

i

∂t
+
{

φII
i , HB

}

+ λj
{

φII
i , φj

}

≈ 0 . (79)

We will presume that the matrix
{

φII
i , φj

}

≡ △ij is non-singular and hence the
equation above can be solved for λi as

λi = −△ij

(

∂φII
j

∂t
+
{

φII
j , HB

}

)

(80)

and hence the equation of motion for pm, qm have the form

dqm

dt
= {qm, HB}+ λj {qm, λj} = {qm, HB} − {qm, φi}△ij

(

∂φII
j

∂t
+
{

φII
j , HB

}

)

(81)
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and equivalent one for pm.

Let us outline results of the analysis performed in Appendix. We have shown that
in case of the explicit time dependent constraints, either primary or secondary, there
are additional terms in the equations of motion for canonical variables which are
proportional to explicit time derivative of these constraints. These terms are crucial
for the equivalence between Lagrangian and Hamiltonian equations of motion.
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