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Abstract

Quasi-shuffle algebras have been a useful tool in studying multiple
zeta values and related quantities, including multiple polylogarithms,
finite multiple harmonic sums, and ¢g-multiple zeta values. Here we
show that two ideas previously considered only for multiple zeta val-
ues, the interpolated product of S. Yamamoto and the symmetric sum
theorem, can be generalized to any quasi-shuffle algebra.

1 Introduction

Multiple zeta values and related quantities, although studied by Euler in
the simplest cases, only began to receive systematic attention in the early
1990s. Suddenly they seemed to be everywhere: in high-energy physics, in
knot theory, and in theoretical computer science. Many early papers on
these quantities emphasized proofs of specific identities, and used methods
of analysis. But from the beginning the importance of algebraic structure
proved its importance.

In [7] the author recognized multiple zeta values as homomorphic images
of quasi-symmetric functions, allowing the use of familiar results on symmet-
ric functions in proving relations of multiple zeta values. This was generalized
in [8], which introduced the quasi-shuffle product. (In the same year Li Guo
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and W. Keigher [5] independently introduced an essentially equivalent con-
struction, but it took several years for the relation between the two to be
generally recognized.)

Meanwhile, the circle of ideas around multiple zeta values and multiple
polylogarithms continued to expand, and came to include examples that went
beyond the framework of [§], particularly g-multiple zeta values. K. Ihara, J.
Kajikawa, Y. Ohno and J. Okuda [12] generalized the definition of the quasi-
shuffle product to include such cases, but neglected much of the algebraic
machinery developed in [§], particularly the Hopf algebra structure and the
linear maps induced by formal power series. In 2012 Thara and the author set
out to develop a generalization of the definition used in [§] while retaining
the algebraic structures developed in that paper, and indeed extending them.
This led to [11], which which presented such a generalization and applied it
to an array of examples. We review this construction §2.

The methods introduced in [I1] proved especially effective in treating the
interpolated multiple zeta values (or r-MZVs) introduced by S. Yamamoto
[20], which interpolate between ordinary multiple zeta values (r = 0) and
multiple zeta-star values r = 1). Yamamoto showed that r-MZVs multiply
according to an interpolated product; in §3 we define interpolated products
on any quasi-shuffle algebra. A quasi-shuffle algebra with the interpolated
product has a Hopf algebra structure, generalizing the results of [L1].

The algebraic machinery of [I1], which allows transparent proofs of many
results in [13] and [12], is briefly introduced in §4 and applied to multiple zeta
values in §5. We also give a new result for multiple zeta-half values (i.e., -
MZVs with r = %) The same quasi-shuffle algebra that has the multiple zeta
values as homomorphic images also has as images various “exotic” multiple
zeta values, such as the multiple ¢-values [10], the Bessel-function zeta values
introduced by T. V. Wakhare and C. Vignat [18], and the Airy multiple zeta
values, all discussed in §6.

In §7 we consider a different quasi-shuffle algebra, which has as its image
the alternating or “colored” multiple zeta values. Finally, in §8 we show
how the symmetric sum theorems given in [6] for multiple zeta values can be
generalized to any quasi-shuffle algebra.



2 The basic construction

We begin by reviewing the construction given in [I1]. Let A be a countable
set A of letters, k a field. We assume there is a commutative, associative
product ¢ on kA.

Now let k£(A) be the noncommutative polynomial algebra over A. So k(A)
is the vector space over k generated by “words” (monomials) a;as - - - a,,, with
a; € A: for a word w = a; - - - a,, we write {(w) = n (and we set £(1) = 0).
Define a k-bilinear product % on k(A) by making 1 € k(A) the identity
element for each product, and requiring that * satisfy the relation

(aw) * (bv) = a(w * bv) + blaw * v) + (a o b)(w * v) (1)

for all a,b € A and all monomials w, v in k{A). Then (k(A),*) is a commu-
tative algebra. If the product ¢ is identically zero, then % coincides with the
usual shuffle product L on k(A). We will need the following lemma in the
next section.

Lemma 1. For letters a,b and words v, w such that v # 1 # w,
ao(vxb)+baov=(aov)*b+aoby, (2)
(aov)* (bow)=ao(vx(bow))+bo((acov)*xw)—aocbo(vxw), (3)

and

a(vx(bow))+ao (vxbw)+b((aov)*xw)+bo(av*w) =
av* (bow)+ (aov)*xbw+2(aob)(vxw). (4)

Proof. Writing v = ¢v’ for a letter ¢, Eq. (2) is
ao(cv' xb)+baoc =aocv xb+aobet,
or
aoc(v xb)+aocbv+aobov+baov=aoc(v*xb)+bacv+aobov+aoby,

which is evidently true. Setting also w = dw’, the left- and right-hand sides
of Eq. @) are

aoc(vx(bow))+bod((aov)*xw)+acbocod xuw)
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and

aoc(v x(bow))+aobodv* w)+aoccobod *uw)
+boaoc(v xw)+bod((aov)*w)+boaocod xw)
—aoboc(v xw)—aobodvrxw)—aobocod xw'),

respectively, and these agree after cancellation. Using the same notation, we
can rewrite the left-hand side of Eq. () as

a(v* (bow))+b((aov)*w)+ ao (c(v *xbw) + blv*w) + cobv' *xw))
+bo(alvxw)+dlav*w') +aodvxw))
=a(vx (bow))+b((aov)*w)+aoc(v xbw)+aoblvxw)+aocoblvxw)
+boalvxw)+bodav*xw)+boaodvxuw)

and the right-hand side of Eq. (4) as

a(vx (bow))+bod(av*w') +aobod(vx*uw)
+aoc(v xbw) +b((aov)*xw)+aocob xw)+2aob(vxw),

and these evidently agree. O

If A denotes the usual deconcatenation on k(A), i.e.,

A(alaz...an) :1®a1a2...an+a1®a2...an+..._|_a1...an_1®an
+aias---a, @1,
then (k(A),*,A) is a Hopf algebra [I1, Thm. 4.2]. It is easy to see that it
is a bialgebra, and (using the filtration of k(A) by word length) it is filtered
connected; this makes existence of the antipode automatic.

For a composition I = (i1, ...,4,) of n and a word w = ay - - - a,, of k(A),
define

I[’LU] = (0,1 L. 0 ail)(aiﬁl L. 0 CI,Z'H_Z'Z) tee (ai1+...+,~m71+1 L0 an).
Let
f=cit+cot® + et + - € th[[]]

be a formal power series. We can define a k-linear map Wy : k(A) — k(A)
by
\I]f(w) = Z Ciy ** 'Cim[[w]a (5)

I=(i1,.yim ) €C(£(w))

where C(n) is the set of compositions of n. Then we have the following result.
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Theorem 1. [[11, Thm. 3.1]] For f,g € k[[t]] as specified above, ¥V, =
oy,

Here are some examples. First, it is immediate from equation (H) that
U, is the identity homomorphism of k(A). Also, T'= W_; sends a word w
to (—1)"w; evidently T is an involution. We note that ¥ = V. and

Y71 = W_ are given by

S(w)= Y Tw] and SHw)= > (=1 D),

TeC(b(w)) 1€C(t(w))

where £(I) is the number of parts of the composition /. Evidently ¥(aw) =
aX(w) + a o X(w) for letters a and words w, and (as in [I2]) this property
can be used to define . While ¥ and T are not inverses, it is easy to see
from Theorem [I] that TX7T = X!, from which it follows that X7 and T2
are involutions.

From [8] we have the (inverse) functions exp = Wy and log = Wigg(144).
As shown in [8, Theorem 2.5], exp is an algebra isomorphism from (k(A), L)
to (k(A), x). We have the following identity.

Theorem 2. ¥ =expTlogT .

Proof. This follows from Theorem I} since expT = W.-i_y, log T = Wiog(1—y),
and log(1 — t) composed with e™* — 1 gives

1 1—-(1—-¢ t
_1-(-1

1—t 11—t  1-t
U
3 The interpolated product
For any r € k, define X" = \Ifﬁ; it then follows immediately from Theorem

[ that X% = "% and it is easily seen that
Y (aw) = aX"w + rao Xw
for any letter a and word w. We now define the interpolated product X by
wxv=X"(S"uxX)
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for any words wu,v. Henceforth we shall treat both concatenation and ¢ has
having higher binding than * and %, so the second identity of Lemma [Il reads

acovxbow=ao(vxbow)+bo(acvkw)—aobo(vxw).

Lemma 2. Lemmaldl remains true when * is replaced by *.

Proof. For each identity, first replace v and w by ¥"v and ¥ w respectively
and then apply 7" to both sides. After appropriate simplification and (in
the case of identity (4])) cancellation, the conclusion follows. O

We now show that the product % can be defined inductively by a rule
similar to Eqn. () for the quasi-shuffle product *. This rule was first given
by Yamamoto [20] in the case of multiple zeta values.

Theorem 3. The product * can be specified by setting 1 fw=wxl=w for
any word w, a %b=ab+ ba+ (1 =2t)aob for any letters a,b, and
av * bw = a(v * bw) + b(av * w) + (1 — 2r)a o b(v * w)

+(r*=raobo (viw)
for any letters a,b and words v,w such that vw # 1.

Proof. Evidently 1 Yw=wx1 for any word w, and for letters a,b we have

akb=%"(axb)=S"(ab+ba+aob)=ab—racb+ba—rboa+ach
=ab+ba+ (1 —2r)acb.

Now let a, b be letters, v # 1 a word. Then

av kb =X"T(S(av) xb) = D" (aX v b+rao Y v b) =
Y (a(X"vxb) +baX"v +aoblv+raoXvxb) =
a(vib) —rao(vxb) + b aX v —rbo X aX v+ acbv —racbov+racuvkb
= a(vb)+bav+ (1 —r)acbv+ (r? —r)aobov —r(ao (vb) +baov—acv *b)
= a(v *b) + bav + (1 — 2r)aobv + (r> —r)aobow,



where we used Lemma 2 in the last step. Finally, let a,b be letters, v, w
words with v # 1 # w. Then

avxbw = X7 (S av * Lbw) = 7 ((aX v + ra o X7v) x (b5 w + rbo Xw))
=X (@aX v b w+raX vxbo X w4 rac Y vxbS w+1r2ao X vk bo N w)
=YX (a(XvxbX"w) + b(aX vk Xw) + (aob) (v Xw) +raX v xbo Xw

+rao X v*bE w4 r*ao L v xbo Xw

= a(v* S TBE W) —rao (V¥ LTEY W) 4+ b(X T aX vk w) —rbo (X aX vk w)
+(aob) (viw) —racbo (v w)+rL " aX v¥bow+racvs LT bE w+riacvkbow
= a(vikbw) —ra(vkbow) —rao(vibw)+r2as(vibow)+blaviw) —rb(acvw)
—rbo(avsxw)+1%bo (aovkw)+ (aob)(viw) —racbo (viw)+ravxbow

2

T I8 2
—régov*bow+racvkbw —r

aovxbow+riacvibow

= a(v*bw) + b(av * w) + (a0 b)(vkw) —raobo (v w) — ra(v *bow)

—rao (vkbw) —rblaovkw) —rbo (av % w) + rav *bow + ra o v  bw
+r3ao (vkbow)+bo(acvikw)—aovxbow)

= a(v* bw) + blav *w) + (1 = 2r)(aob)(vkw) + (12— r)acbo (v*w),

where we used Lemma [2] in the last step. O

If r =1, we write x instead of %. The product * has inductive rule
av * bw = a(v * bw) + b(av * w) — a o b(v * w),

which is of the same form as Eq. (I). As noted in [11], T : (k(A),x) —
(k(A),x) and T : (k(A), x) — (k(A), ) are isomorphisms. These are special
cases of the following result.

1—r

Proposition 1. T : (k(A),*) — (k(A), ) is an isomorphism.

r—S

Proof. First note that £ : (k(A), %) — (k(A), ) is an isomorphism, and
that ¥'T =TX™" for all »r € k. Then

T(usv) =TS (S0 X0) = 2T (S0 Do) = S7(TE + TEv) =
(ST Tux X T0) = Tu % T

for u,v € k(A), and the result follows. O
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In what follows, R is the linear function on k(A) that reverses words, i.e.,
R(aay - --a,) = apap_1---a;. We note that R commutes with U for all
f € tk[[t]] [LTI, Prop. 4.3]. The following result generalizes [L1], Thm. 4.2].

Theorem 4. (k(A),*,A) is a filtered connected Hopf algebra with antipode
SIS2TR. Also, X7 : (k(A), %, A) — (k(A),*,A) is a Hopf algebra isomor-
phism.

Proof. To see that (k(A), X, A) is a Hopf algebra, the main thing to check is
that A(w; * ws) = A(w;) * A(ws) for any two words w; and wy. We do this
inductively on the word length. We can assume w; # 1 # ws, so let w; = au
and wy = bv for letters a,b. Using Sweedler’s notation

u) = Zu(l) ®up), Av)= Zv(l) ® V(2),

we have
A(CLU) = Z au(y @ ue) + 1 ®au
and
A(bv) = Z bv(l) @ V) + 1® b
so that
Alwy) * Aws) = Z(au(l X buay) @ (w2 X U2 Z au >|< bv)

+va(1 au*v(2)+1®(au*bv)
= Z a(uqy % bvy) @ (uge >|< V(2)) + Zb aug *v( 1)) ® (ue) iv(2))+

(1—27” ZCLO() U(1) ;U(l))@)(U(g)*U(g))—l— ’f‘ - Zaobo u(l);v(l))(@(u(g);v(g))
—I-Zauu)@ *wg —|—va wl*v(g)+1®a(uiw2)+1®b(w1;v)
+(1=-2r)1®aoblurv)+ (r?—r)1®@acbo (uxuv).

Using the induction hypothesis, this is
(a® 1)(Aluxws)) +1® alu*wy) + (0@ 1)(A(wy *v)) + 1 & b(w; *v)

+(1=2r(aob®@)A(uv)+ (1—2r)(1®aob)Alu*v)
+ (P =r)aob®@1) o Alusv)+ (r> —r)(1®@aob) o Alu*v)



which can be recognized as

Awy *wy) = Ala(ukws) +b(w; %v) +(1—2r)acb(usv)+ (r2—r)acbo (uxv)).

T

Now X7 : (k(A),*) — (k(A),x*) is an algebra homomorphism by defini-
tion, and is also a coalgebra map for A [I1, Thm. 4.1]. Hence X" is a Hopf
algebra isomorphism. Also, if

w = Z w(1) @ w(z)

for a nonempty word, then

Yw = Z ETw(l) X ET’UJ(Q)

and we have

Z S X way * Xwegy =0

for S, = XTR the antipode of the Hopf algebra (k(A),*, A) [1I, Thm. 4.2].
Apply 77 to get
Z Zl‘TTRETw(l) ; weg) = 0;

but this shows that S1"TRY" = S1-2TR is the antipode of (k(A), %, A).
U

Of course if r = 0 the Hopf algebra (k(A),*, A) is just (k(A),*, A);
the antipode is XTR. If r = 1 we get (k(A),*, A), and the antipode is
Y I'TR=TYR. Forr = % the inductive rule for the product is

K rol=
Kol

3 3 1
av * bw = a(v * bw) + b(av *w)—zaobo(v w)

and the antipode is simply T'R.

4 Algebraic formulas

In [I3] and [12] there are algebraic formulas involving exp and log. These can
be proved systematically from the following result of [I1], where for w € k(A)
and f = 1t + cot? + - -+ € tk[[t]], fo(Aw) denotes

Acrw + Noyw e w + Negw e w e w + -+ - € k(A)[[N]

for @ = %, LI, %, .



Theorem 5. [[11, Thm. 5.1]] For any f € tk[[t]] and w € k(A),

1 1
s (1—)«1}) T 1— f0w)

We write exp, (Aw) for 1+ fo(Aw), f =¢e' — 1, and log,(Aw) for fo(Aw),
f =1log(1+t). By applying Theorem [§] with f = log(1 — t), we get

1
exp. (log, (14 12)) = ——, (6)

and by applying it with f = e’ — 1 we get

exp, (Az) = ex 1 = L
P - TN ) T 2 —exp,(A\z2)

Another consequence of Theorem [0 is the following.

Corollary 1. [[11, Cor. 5.5]] For any z € k(A) and r € k,

e LN, 1
1-Xz) 1—7dz 1—(1-1)z

5 Multiple zeta values

For positive integers i1, ...,17, with ¢; > 1, the corresponding multiple zeta
value is defined by

. ) 1
Clity ..., ik) = Z TR

ny1>ng>->ng>1

Let A = {21, 29, ...}, with the operation z; ¢ z; = z;;;. The following result
can be extracted from [7].

Theorem 6. The Hopf algebra (Q(A),*,A) is isomorphic to the algebra
QSym of quasi-symmetric functions over Q.

Let Q(A)° be the subspace of Q(A) generated by 1 and all words that do
not begin with z;. Then (Q(A)° %) is a subalgebra of (Q(A),*). We write
QSym® for the corresponding subalgebra of QSym. The following fact was
proved in [7].
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Theorem 7. The linear function ¢ : QSym” — R defined by ((z;, - 2;,) =
C(i1, ..., i) is a homomorphism from QSym° to the reals with their usual
multiplication.

If we take z = z;, in Eq. (@) above, we get
ERNVETY
Z A'zp = exp, (log, (1 + Azx)) = exp, (Z ()—ij> ;
n>0 j>1
or, after applying (,

SNk} = exp (Z Shi )) ,

n>0 j>1 J

where {k},, means k repeated n times. If k& = 2 the right-hand side is
By (2m)% ) sinh(7\)
exp 37 B ) _ sinh(r)
(Bl (27)(27)! A

from which follows

7r2n
C({2}n) = m, (7)
and a similar argument gives
22n+1ﬂ_4n
) = g ®

Two remarkable results about multiple zeta values are (1) the “sum the-
orem,” i.e., the sum of all multiple zeta values of a fixed depth and weight n
is just ((n), as in

C(4,1,1)+¢(3,2,1)+((3,1,2) + ¢(2,3,1) + €(2,2,2) + ¢(2,1,3) = ¢(6),

and, (2) the “duality theorem,” i.e., there is an involution 7 : QSym°’ —
QSym" so that ¢(7(u)) = ((u), as in ((3,1,2) = ¢(2,3,1). To describe 7 in
terms of our algebraic setup, introduce two noncommuting variables x and
y, and set z; = '~'y. Then QSym" is just the subspace of Q(z, ) generated
by 1 and words that begin with z and end with y: the function 7 is the anti-
isomorphism exchanging x and y (so, e.g., 7(z32122) = T(2*y?zy) = ryz’y? =
2’22321).

11



If we let (" = ( o X", then ("(w) is exactly the interpolated multiple zeta
value as defined by Yamamoto [20]. Thus (°(w) = {(w) and ¢} (w) = ¢*(w)
is the multiple zeta-star value defined by

1
.l L
iy yik) = > SR
n n ---n
i >np> 221 12 k

Yamamoto showed that the interpolated multiple zeta values satisfy the fol-
lowing version of the sum theorem, which is proved another way in [11].

Theorem 8. Ifn > 2, then

l

S i in) :C(n)gr"<n_l;1+k).

i1+-+i=n k=0
i1>1

Formulas for repeated values ("({m},) can be obtained from those for
¢(({m},): from Corollary [l it follows that if

Z(A) = (({m}a)A",

then

S ({2hAn = \/: Si“hs(iz (W%;W

For interpolated multiple zeta values (" with r = % there is a “totally odd
sum theorem.” This follows from two known results: the cyclic sum theorem
and the two-one theorem. Define the cyclic sum operation on QSym° by

Hence, e.g.,

Ol Lyz Ly g ly) = giya Ly gy

i3—1

+ a2y ly

in—1 1 ip_1—1

yr Ty 4ty Ty y.

Then the cyclic sum theorem for multiple zeta-star values [15] asserts that
¢C(rC(w)) = (n = 1)¢(n)
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for any word w € QSym” of degree n — 1. The two-one formula [20} 21] gives
C (g y(ay)y - (ey)y) = 2C (@ ya®y - a*ly)

for any sequence (ji, ..., ) of nonnegative integers with j; > 0.

Theorem 9. Letn > 2, [ < n be positive integers of the same parity. Then

1 — 1/ -2\ ((n) —1 (2 =1\ ((n)
T donn- () ()

air+--+a;=n
a; odd, a1>1

Proof. By the two-one formula

Yoo Gla,a) =2 Y Clay) ylay) Py (ay)y).

ar+--+a=n 1= "5
a; odd, ai1>1 ]1ji>0 ];.1>12

(1)

terms. To see this, note that written in the sequence notation each term
corresponds to a string

The latter sum has

2,...,2,1,2,...,2,1,....2,...,2,1 (10)
J1 J2 Ji

with j; > 0, j; > 1, and Zézlji = 2L Now the string ([0) always starts
with 2 and ends with 1, so we can think about the middle part: it has length
"T” — 2, and consists of ”T_l — 1 twos and [ — 1 ones. To specify such a string,
we need only give the [ — 1 positions where the ones go; so such strings are
counted by the binomial coefficient (3]).

Now each word u of the form

(zy) y(zy)y - - - (zy)'y (11)
with S0, ji = 2=t and ji > 0 has

T(u) = 2 yaly Ly

with 41 > 2, 49,...,0, > 1,41+ - -+ i =n, and k = "T_l These are exactly
the words that appear in C(w) for w of the form z®~lyz®=ly...zu=1y
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with a1,...a0 > 1, a1+ -+a,=n—1,and k = "T_l For any such w the
expansion of 7C(w) will have 2 terms, so each term (*(u) contributes

2 (- 1)¢(n),

n—I

and the result follows. (It may happen that % ( %;2) is not an integer, but

the preceding sentence is still true since in that case there are duplications
in one or more of the images under 7C') O

From the definition of the zeta-half values we get the following corollary
of Theorem

Corollary 2. The sum

Z Clay,...,a)

al+--+a;=n
a; odd, a1>1

1s a rational linear combination of multiple zeta values of weight n and depth
less than [.

In the depth three case we can say more.

Corollary 3. Ifn is odd, the sum

Z C(Ch,@z,as)

ai+az+az=n
a; odd, a;>1

s a polynomial in the ordinary zeta values with rational coefficients.

Proof. By Corollary 2] the sum can be written as a rational linear combina-
tion of single and double zeta values of weight n. But double zeta values of
odd weight are known to be rational polynomials in the ordinary zeta values,
and the conclusion follows. O

6 “Exotic” multiple zeta values

In this section we give some examples of “exotic” homomorphic images of
subalgebras of QSym. Our first example involves the multiple t-values as
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defined in [10]. For positive integers iy, ..., 4, with 7; > 1, let

) ) 1
t('ll,...,'lk): Z Z—Zk

1 Z2 . e .
m>ng > sn>1 01 T Ty
n; odd

Then ¢ : QSym” — R defined by #(z;, - -~ z;, ) = t(i1,...,4;) defines a homo-
morphism. The multiple ¢-values have obvious parallels with multiple zeta
values; for example, it is evident that t(n) = (1 —27")((n) for n > 2. Also,
paralleling the identities (7]) and (8) of the last section we have from [10]

7r2n 71'4”

t({2},) = a1 t({4}n) = P a1 (12)

Following Wakhare and Vignat [18], we can take any function G with real
zeros {ay, as, ...} such that lim, . |a,| = oo, and define a homomorphism
¢e : S — R by sending z;, - - - 2;, to

. . 1
CG(Zla"'aZl): Z i1 2

i
ny>ng>-->np>1 anlan2 anl

for some subalgebra S of QSym that depends on the growth rate of |a,|
with n. Wakhare and Vignat consider the case where a,, is the nth positive
zero of the Bessel function J, of the first kind of order v. They obtain the
remarkable formulas

¢, ({2}0)
G, ({4}0)

1
T2+ ) +2) (v +n)
1
T+ 1) (vt 2wt 1) (vt n)

(13)

(14)

We note that since

2 2
Ji(z) =4/—sinz and J_i(z) =4/ —cosz
2 T2 2 Tz

™

Ay, () = Cw) and (5)"¢) () = tw)

and thus Egs. (I3) and (I4) imply Egs. (@), [8), and ([I2) above.

we have
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We can also choose 0 > a; > as > - -+ to be the zeros of the Airy function
Ai(z). Now Ai(z) has the infinite product expansion [17, p. 18]

Ai(2) = Ai(0)e ﬁ (1 - i) eon, (15)

n=1 An
where o
AY(0)] _3iT(2)
= = ~ 0.729011.
' Ai(0) ‘ 27

Starting with Eq. (IH), take logarithms and differentiate to get

d , =1 1
%logAl(z) = —H+Z [— + } .

Then evidently

% logAi(z) = 3 -1 (16)

n=1

for k > 2. Since Ai"(z) = z Ai(z), we have

(17)

Combining Eq. (I6) for £ = 2 and Eq. (IT), we have

=~ -1 Al
Z (z —an)? Ai(2)?’ (18)

n=1

which at z = 0 gives

[e.e]

ai(2) =) a% = K2, (19)

n=1

Repeated differentiation of f(z) = Ai'(z)/ Ai(z) gives the following result,
originally due to Crandall [2].

Theorem 10. For all n > 2, (ai(n) is a rational polynomial in k of degree
n, with leading coefficient 1.

16



Also, from Eq. (I3) it follows that

e ()

and thus that

Lo Ai(z) Ai(—=
Zcm} = e -
1 K?

122 84 2o N s R 10,
K2+ 57— e T 336~ eago® T

By comparison with the series [16]

Z 1)n 2n
\/’ >0 122n+onlr(

Ai(z) Ai(—

?)

it can be seen that (a;({2},) is rational if n = 0 mod 3, a rational multiple
of k? if n = 1 mod 3, and a rational multiple of x if n = 2 mod 3. Further
formulas for (x;({2},) and also for (s;({4},) were given by Wakhare and
Vignat [19].

7 Alternating multiple zeta values

Let r be a positive integer, A = {z,, ;| m € Z*,i € {0,1,...,r — 1}}, with
Zmj © Znk = Zm+n,j+k, Where addition in the second subscript is understood
mod 7. Then (Q(A), *) is the “Euler algebra” €, as defined in [8]. If we let
€% be the subalgebra generated by 1 and all words that do not begin with
21,0, then there is a homomorphism 3, : €2 — C sending 2z, j, ** * Zmy j 10

Enljl . o Enk.yk

“m1 om0

/nflnl e nk k
ny>-->nip>1

where € = e*r". Of course ¢, is just QSym, with 3; = (. In the case r = 2
the image of 3, is real-valued, and 3, sends a monomial to what is usually
called an alternating or “colored” multiple zeta value. In this case we can
adapt the sequence notation of multiple zeta values and write, e.g., ((1,2,3)

17



for 39(211220231). Evidently ¢(1) = —log2 and ((k) = (2% — 1)((k) for
k > 2. Generating functions for (({k},) are discussed already in [I]. A
notable case is

NZS

(S +3)

The theory of interpolated products carries over to this case; for example

ST = - (20)

¢"(1,2,3) = ((1,3,3) +7¢(3,3) + r((1,5) + r2C(6).

We can generalize formulas like (20)) to interpolated alternating multiple zeta

values:

DE)I(1 - 2

(1—(12—7“))\)1—\(1 + (l—2r))\)-

YT = -

Some results for alternating multiple zeta values can be stated in terms of
interpolated values, such as the following one of C. Glanois [4].

Theorem 11. Ifsy,..., s, is a sequence of elements of {1,2,3,4,5,...} with
s1 # 1, then the interpolated alternating multiple zeta value C%(sl, ceeySp) 1S
a rational linear combination of multiple zeta values.

8 Symmetric sum theorems

The prototypical symmetric sum theorem was proved in [6].

Theorem 12. [[6, Thm. 2.2]] If ky, ..., k, > 2, then
l
ZC(kJ(l),...,k‘a(n)): Z C(B) HC <Z k‘j>
o€Sy BZ{B1 ..... Bl}EHn m=1

where S, is the symmetric group on n letters, Il,, is the set of partitions of
the set {1,...,n}, and

¢(B) = (=1)(card B, — 1)!(card By — 1)! - - - (card B; — 1)!

fOTB:{Bl,...,Bl}EHn.
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In fact, as noted in [9], this identity can be proved in QSym by Mdbius
inversion and then (if all the k; > 2) transferred to the reals via the homo-
morphism ¢ : QSym” — R. But in fact it can be generalized in two ways:
first, it is true for any quasi-shuffle algebra (Q(A), x), and second, we can
extend it to the interpolated product. The result is as follows.

T

Theorem 13. Ifuy,...,u, € A, then in (Q(A),*)

Z Us(1)Us(2) * " Yo (k) = Z CT‘(B)U‘Bl ; Upy, * -+ - ; up,, (21)

ocESK B={Bi,...,B }€ll}

a

where up;, = ©jeB;Uj, pa(’f’) = (1 - T)a - (_T) ’ and

—~

e (B) = (—1)F! H (card By, — 1)!peara B, (1)

m=1

fOTB:{Bl,...,Bl} EHk.

Proof. We write S(a,b) = ab+ba, S(a,b, c) = abc+acb+bac+bca+ cab+ cba,
and so on, so Eq. (21)) is

r r r
S(u, ..., up) = E ¢ (IDup, *xup, * -+ % up,.
partitions IT = (Py,..., P)
of {1,...,n}

We proceed by induction on n. Take the ;—product of both sides of Eq. (21])
with u,,1 to get

S(ul,...,un+1)—|—(1—2r)[S(u1<>un+1,u2,...,un)+5(u1,u2<>un+1,...,un)
e S(ULy e Upe 1, Up © Ung1)] 2077 — 1) [S(Ug © U © Upy, Us, - . ., Usp)
—I—S(u1<>U3<>un+1,u2,u4,...,un)+--'+S(un_1<>un<>un+1,u1,...,un_2)]
r r r r
= Z cr(IDup, % up, * -+ % Up, * Uptq
partitions II = (Py,..., P)
of {1,...,n}
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or

S(ul, Ce ,Un+1) = —(1—27‘)[S(u1<>un+1,u2, c.. ,un)+5(u1,u2<>un+1, c. ,Un)
o S (UL, U1, U © Uny1)] — 207 — 7)[S (U1 0 Uy © Uy, Us, - ., Uy)
+S(u1<>u3<>un+1,u2,u4,...,un)+-~-+S(un_1 <>un<>un+1,u1,...,un_2)]

+ > eo(IMup, *up, &+ *up. (22)

partitions IT = (P, ..., P)
of {1,...,n + 1} having
{n + 1} as a part

We must show that the right-hand side of this equation coincides with

r r r
E ¢ (IDup, *up, * -+ *up, (23)
partitions I = (Py,..., P)
of {1,...,n+1}

which we shall do by considering whether the cardinality of the part of II to
which n 4 1 belongs is 1, 2, or > 3.

Note that there are three groups on terms on the right-hand side of Eq.
(22). If {n+ 1} is a part of II, the corresponding term in (23]) is contributed
by the third group of terms on the right-hand side of (22]).

Suppose now that n + 1 belongs to a part of cardinality 2 in Il =
(Py,...,B),say P;. The term corresponding to Il in (23) only arises (via the
induction hypothesis) from the first group of terms on the right-hand side of
(22), and the coefficient of up, - - -up, is

—(1- 2r)(—1)"‘l(card Py — 1) (card P, — 1)!peara p, (t) - - * Peara p, (1)
= (—1)"+1_l(card P — 1) (card P, — 1)!peara p, (t) - - - Peard 1, (1)-

Finally, suppose n + 1 belongs to a part P, of II with cardinality k& >
3. The term up, - --up, arises from the first group of terms in £ — 1 ways,
contributing coefficient

—(k = D)1 = 2r)(=1)""pra(r)(k = 2)IC,
where

C = (card Pg — 1)' cee (cardPl — 1)!pcardP2(t> *** Pcard P, (t)
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k—1

9 ) ways, COoIn-

The same term arises from the second group of terms in (
tributing coefficient

- (’“ ) 1)z<7~2 ) (1) () - 3)!C,

and it suffices to show
(1= 2r)pp—1(r) = (r* = r)pr—a(r) = pi(r),
which is immediate. ]

Note that p,(0) = 1 and p,(1) = (—1)27', so ¢o(IT) = ¢(I1) and ¢ (IT) =
le(IT)|, making Theorem [I3] reduce to

E Ug(1)Ue(2) * * " Uo(n) = E c(IDup, *xup, * -+ - *xup,
o€Sn partitions I = (P4, ..., Pp)
of {1,..., n}

in the case r = 0; if r = 1 we get

E Us(1)Us(2) * " Ug(n) = g |C(H)|UP1*UP2*"'*UPI~
o€Sn partitions II = (P, ..., P)
of {1,..,n}
Also,

y o, if a even,
Palo) ~ 217¢ " if q odd,
so that only partitions with all parts of odd cardinality appear when r = %
In fact

C1
2

(I1) = (%)n_l Hi.:l(cardPi —1)!, if card Py - --card B is odd;
0, otherwise.

If in Theorem [[3 we take A = {21, 2, ... } with z;02; = z;4; and u; = z,,
1 <i<n (with k; # 1 for all i), we get

Y ko ko) = >, ML D k], (29

€S partitions II = (P, ..., P) j=1 heP;
o



generalizing Theorem [12} in fact r = 0 gives Theorem [I2] and r = 1 gives the
corresponding result for star-zeta values [6, Thm. 2.1]. Identity (24]) holds
with ¢ (or (j, or (a;) in place of (.

From Theorem [I3] we can obtain a result in terms of integer partitions.

Corollary 4. Ifu € A, then in (Q(A), %)

£(N)

€\ r T

u" = E - | |p,\.(r)u°’\1 s ok utN

N ’
AFn j=1

where u®™ means uo---ou and (as in [If]) ex = (=1)"*N and z, =

n

my (M) Ny (A)12m2N) - for my(N) the multiplicity of i in .

Proof. Set uy = -+ = u,, = u in Theorem [I3] to get
nlu"® = Z (=)™ = D)l (N = D)o (1) -+ oy (F)uany -+ g,
artitions
HE(Pl ..... P)
of {1,..., n}
where we write \; = card P;. Now the number of set partitions (P, ..., P)

of {1,...,n} corresponding to the integer partition A = (Ay,...,\;) of n is

1 n\/n—MN B 1 n!
Thus u" is
(=D ' =Dl (A = D) Sy
al%)ns my ()‘>'m2()‘)' e )‘1' e >\l' P (T) Px (T>u i o
)\Z(Al ..... )
of n

DR GRS NG TEEs
A

partitions

Applying (" to the corollary with u = z;, i > 2, we obtain

. 2(\)
() =2 [Ten can),

A-n
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In the cases r = 0, 1, 5, this identity is respectively

-y H< (25)

Z H C(i) (26)
)\I—n
EY
¢ ({i}n) = Z N, HC(MJ)- (27)

AFn
all parts of A\ odd

Egs. (26) and (25) are homomorphic images of the two parts of [14, Eq.
(2.14")]. Eq. (21) is obtained a different way in [11] (see Eq. (41)).

We note that Eq. (24) applies to alternating multiple zeta values as well,
provided we define addition on the set Z = {...,2,1,1,2,...} of indices to

Y ) Y

agree with usual addition on {1,2,...,} and extend it to I via

a+b=a+b=a+b
a+b=a+b

for positive integers a,b. Thus, e.g.,
¢"(1,2,3) +¢"(1,3,2) + ¢"(2,1,3) + ¢"(2,3,1) + ¢"(3,1,2) + ¢"(3,2,1) =
C(DE2)C3) = (1= 2r)(¢(3)* + C(1)¢(5)) +2(1 — 3r + 3r*)¢(6).

Eqgs. (258H27) also hold, provided we interpret ¢\, in those formulas as the
sum of \; copies of 7 € 7.

References

[1] D. J. Broadhurst, J. M. Borwein, and D. M. Bradley, Evaluation of k-fold
Euler-Zagier sums: a compendium of results for arbitrary k, Electron. J.
Combin. 4(2) (1997), art. 5 (21 pp).

2] R. E. Crandall, On the quantum zeta function, J. Phys. A: Math. Gen.
29 (1996), 6795-6816.

23



[3] P. Flajolet and G. Louchard, Analytic variations on the Airy distribution,
Algorithmica 31 (2001), 361-377

[4] C. Glanois, Periods of the motivic fundamental groupoid of P! \
{0, un, 0}, These de doctorat, Université Pierre et Marie Curie, 2016.

[5] Li Guo and W. Keigher, Free Baxter algebras and shuffle products, Adv.
in Math 150 (2000), 117-149.

(6] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992),
275-290.

[7] M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194
(1997), 477-495.

[8] M. E. Hoffman, Quasi-shuffle products, J. Algebraic Combin. 11 (2000),
49-68.

[9] M. E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic
sums, Kyushu J. Math. 69 (2015), 345-366.

[10] M. E. Hoffman, Odd variants of multiple zeta values, preprint
arXiv:1612.05232.

[11] M. E. Hoffman and K. Thara, Quasi-shuffle products revisited, J. Algebra
481 (2017), 293-326.

[12] K. Ihara, J. Kajikawa, Y. Ohno, and J. Okuda, Multiple zeta values and
multiple star-zeta values, J. Algebra 332 (2011), 187-208.

[13] K. Ihara, M. Kaneko, and D. Zagier, Derivation and double shuffle re-
lations for multiple zeta values, Compos. Math. 142 (2006), 307-338.

[14] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed.,
Oxford University Press, New York, 1995.

[15] Y. Ohno and N. Wakabayashi, Cyclic sum of multiple zeta values, Acta
Arith. 123 (2006), 289-295.

[16] W. H. Reid, Integral representations for products of Airy functions, Z.
angew. Math. Phys. 46 (1995), 159-170.

24


http://arxiv.org/abs/1612.05232

[17] O. Vallée and M. Soares, Airy Functions and Applications to Physics,
World Scientific, Singapore, 2004.

[18] T. V. Wakhare and C. Vignat, Structural identities for generalized mul-
tiple zeta values, preprint larXiv:1702.05534.

[19] T. V. Wakhare and C. Vignat, Multiple zeta values for classical special
functions, preprint.

[20] S. Yamamoto, Interpolation of multiple zeta values, J. Algebra 385
(2013), 102-114.

[21] J. Zhao, Identity families of multiple harmonic sums and multiple zeta-
star values, J. Math. Soc. Japan 68 (2016), 1669-1694.

25


http://arxiv.org/abs/1702.05534

	1 Introduction
	2 The basic construction
	3 The interpolated product
	4 Algebraic formulas
	5 Multiple zeta values
	6 ``Exotic'' multiple zeta values
	7 Alternating multiple zeta values
	8 Symmetric sum theorems

