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Abstract

Quasi-shuffle algebras have been a useful tool in studying multiple

zeta values and related quantities, including multiple polylogarithms,

finite multiple harmonic sums, and q-multiple zeta values. Here we

show that two ideas previously considered only for multiple zeta val-

ues, the interpolated product of S. Yamamoto and the symmetric sum

theorem, can be generalized to any quasi-shuffle algebra.

1 Introduction

Multiple zeta values and related quantities, although studied by Euler in
the simplest cases, only began to receive systematic attention in the early
1990s. Suddenly they seemed to be everywhere: in high-energy physics, in
knot theory, and in theoretical computer science. Many early papers on
these quantities emphasized proofs of specific identities, and used methods
of analysis. But from the beginning the importance of algebraic structure
proved its importance.

In [7] the author recognized multiple zeta values as homomorphic images
of quasi-symmetric functions, allowing the use of familiar results on symmet-
ric functions in proving relations of multiple zeta values. This was generalized
in [8], which introduced the quasi-shuffle product. (In the same year Li Guo
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and W. Keigher [5] independently introduced an essentially equivalent con-
struction, but it took several years for the relation between the two to be
generally recognized.)

Meanwhile, the circle of ideas around multiple zeta values and multiple
polylogarithms continued to expand, and came to include examples that went
beyond the framework of [8], particularly q-multiple zeta values. K. Ihara, J.
Kajikawa, Y. Ohno and J. Okuda [12] generalized the definition of the quasi-
shuffle product to include such cases, but neglected much of the algebraic
machinery developed in [8], particularly the Hopf algebra structure and the
linear maps induced by formal power series. In 2012 Ihara and the author set
out to develop a generalization of the definition used in [8] while retaining
the algebraic structures developed in that paper, and indeed extending them.
This led to [11], which which presented such a generalization and applied it
to an array of examples. We review this construction §2.

The methods introduced in [11] proved especially effective in treating the
interpolated multiple zeta values (or r-MZVs) introduced by S. Yamamoto
[20], which interpolate between ordinary multiple zeta values (r = 0) and
multiple zeta-star values r = 1). Yamamoto showed that r-MZVs multiply
according to an interpolated product; in §3 we define interpolated products
on any quasi-shuffle algebra. A quasi-shuffle algebra with the interpolated
product has a Hopf algebra structure, generalizing the results of [11].

The algebraic machinery of [11], which allows transparent proofs of many
results in [13] and [12], is briefly introduced in §4 and applied to multiple zeta
values in §5. We also give a new result for multiple zeta-half values (i.e., r-
MZVs with r = 1

2
). The same quasi-shuffle algebra that has the multiple zeta

values as homomorphic images also has as images various “exotic” multiple
zeta values, such as the multiple t-values [10], the Bessel-function zeta values
introduced by T. V. Wakhare and C. Vignat [18], and the Airy multiple zeta
values, all discussed in §6.

In §7 we consider a different quasi-shuffle algebra, which has as its image
the alternating or “colored” multiple zeta values. Finally, in §8 we show
how the symmetric sum theorems given in [6] for multiple zeta values can be
generalized to any quasi-shuffle algebra.
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2 The basic construction

We begin by reviewing the construction given in [11]. Let A be a countable
set A of letters, k a field. We assume there is a commutative, associative
product ⋄ on kA.

Now let k〈A〉 be the noncommutative polynomial algebra over A. So k〈A〉
is the vector space over k generated by “words” (monomials) a1a2 · · · an, with
ai ∈ A: for a word w = a1 · · · an we write ℓ(w) = n (and we set ℓ(1) = 0).
Define a k-bilinear product ∗ on k〈A〉 by making 1 ∈ k〈A〉 the identity
element for each product, and requiring that ∗ satisfy the relation

(aw) ∗ (bv) = a(w ∗ bv) + b(aw ∗ v) + (a ⋄ b)(w ∗ v) (1)

for all a, b ∈ A and all monomials w, v in k〈A〉. Then (k〈A〉, ∗) is a commu-
tative algebra. If the product ⋄ is identically zero, then ∗ coincides with the
usual shuffle product � on k〈A〉. We will need the following lemma in the
next section.

Lemma 1. For letters a, b and words v, w such that v 6= 1 6= w,

a ⋄ (v ∗ b) + ba ⋄ v = (a ⋄ v) ∗ b+ a ⋄ bv, (2)

(a ⋄ v) ∗ (b ⋄ w) = a ⋄ (v ∗ (b ⋄ w)) + b ⋄ ((a ⋄ v) ∗ w)− a ⋄ b ⋄ (v ∗ w), (3)

and

a(v ∗ (b ⋄ w)) + a ⋄ (v ∗ bw) + b((a ⋄ v) ∗ w) + b ⋄ (av ∗ w) =
av ∗ (b ⋄ w) + (a ⋄ v) ∗ bw + 2(a ⋄ b)(v ∗ w). (4)

Proof. Writing v = cv′ for a letter c, Eq. (2) is

a ⋄ (cv′ ∗ b) + ba ⋄ cv′ = a ⋄ cv′ ∗ b+ a ⋄ bcv′,

or

a ⋄ c(v′ ∗ b) + a ⋄ bv+ a ⋄ b ⋄ v+ ba ⋄ v = a ⋄ c(v′ ∗ b) + ba ⋄ v+ a ⋄ b ⋄ v+ a ⋄ bv,

which is evidently true. Setting also w = dw′, the left- and right-hand sides
of Eq. (3) are

a ⋄ c(v′ ∗ (b ⋄ w)) + b ⋄ d((a ⋄ v) ∗ w′) + a ⋄ b ⋄ c ⋄ d(v′ ∗ w′)
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and

a ⋄ c(v′ ∗ (b ⋄ w)) + a ⋄ b ⋄ d(v ∗ w′) + a ⋄ c ⋄ b ⋄ d(v′ ∗ w′)

+ b ⋄ a ⋄ c(v′ ∗ w) + b ⋄ d((a ⋄ v) ∗ w′) + b ⋄ a ⋄ c ⋄ d(v′ ∗ w′)

− a ⋄ b ⋄ c(v′ ∗ w)− a ⋄ b ⋄ d(v ∗ w′)− a ⋄ b ⋄ c ⋄ d(v′ ∗ w′),

respectively, and these agree after cancellation. Using the same notation, we
can rewrite the left-hand side of Eq. (4) as

a(v ∗ (b ⋄ w)) + b((a ⋄ v) ∗ w) + a ⋄ (c(v′ ∗ bw) + b(v ∗ w) + c ⋄ b(v′ ∗ w))
+ b ⋄ (a(v ∗ w) + d(av ∗ w′) + a ⋄ d(v ∗ w′))

= a(v ∗ (b ⋄w))+ b((a ⋄ v) ∗w) + a ⋄ c(v′ ∗ bw) + a ⋄ b(v ∗w)+ a ⋄ c ⋄ b(v′ ∗w)
+ b ⋄ a(v ∗ w) + b ⋄ d(av ∗ w′) + b ⋄ a ⋄ d(v ∗ w′)

and the right-hand side of Eq. (4) as

a(v ∗ (b ⋄ w)) + b ⋄ d(av ∗ w′) + a ⋄ b ⋄ d(v ∗ w′)

+ a ⋄ c(v′ ∗ bw) + b((a ⋄ v) ∗ w) + a ⋄ c ⋄ b(v′ ∗ w) + 2a ⋄ b(v ∗ w),
and these evidently agree.

If ∆ denotes the usual deconcatenation on k〈A〉, i.e.,

∆(a1a2 · · · an) = 1⊗ a1a2 · · ·an + a1 ⊗ a2 · · · an + · · ·+ a1 · · · an−1 ⊗ an

+ a1a2 · · · an ⊗ 1,

then (k〈A〉, ∗,∆) is a Hopf algebra [11, Thm. 4.2]. It is easy to see that it
is a bialgebra, and (using the filtration of k〈A〉 by word length) it is filtered
connected; this makes existence of the antipode automatic.

For a composition I = (i1, . . . , im) of n and a word w = a1 · · · an of k〈A〉,
define

I[w] = (a1 ⋄ . . . ⋄ ai1)(ai1+1 ⋄ . . . ⋄ ai1+i2) · · · (ai1+···+im−1+1 ⋄ . . . ⋄ an).
Let

f = c1t+ c2t
2 + c3t

3 + · · · ∈ tk[[t]]

be a formal power series. We can define a k-linear map Ψf : k〈A〉 → k〈A〉
by

Ψf (w) =
∑

I=(i1,...,im)∈C(ℓ(w))

ci1 · · · cimI[w], (5)

where C(n) is the set of compositions of n. Then we have the following result.
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Theorem 1. [[11, Thm. 3.1]] For f, g ∈ k[[t]] as specified above, ΨfΨg =
Ψf◦g.

Here are some examples. First, it is immediate from equation (5) that
Ψt is the identity homomorphism of k〈A〉. Also, T = Ψ−t sends a word w
to (−1)ℓ(w)w; evidently T is an involution. We note that Σ = Ψ t

1−t
and

Σ−1 = Ψ t
1+t

are given by

Σ(w) =
∑

I∈C(ℓ(w))

I[w] and Σ−1(w) =
∑

I∈C(ℓ(w))

(−1)ℓ(w)−ℓ(I)I[w],

where ℓ(I) is the number of parts of the composition I. Evidently Σ(aw) =
aΣ(w) + a ⋄ Σ(w) for letters a and words w, and (as in [12]) this property
can be used to define Σ. While Σ and T are not inverses, it is easy to see
from Theorem 1 that TΣT = Σ−1, from which it follows that ΣT and TΣ
are involutions.

From [8] we have the (inverse) functions exp = Ψet−1 and log = Ψlog(1+t).
As shown in [8, Theorem 2.5], exp is an algebra isomorphism from (k〈A〉,�)
to (k〈A〉, ∗). We have the following identity.

Theorem 2. Σ = exp T log T .

Proof. This follows from Theorem 1, since expT = Ψe−t−1, log T = Ψlog(1−t),
and log(1− t) composed with e−t − 1 gives

1

1− t
− 1 =

1− (1− t)

1− t
=

t

1− t
.

3 The interpolated product

For any r ∈ k, define Σr = Ψ t
1−rt

; it then follows immediately from Theorem

1 that ΣrΣs = Σr+s, and it is easily seen that

Σr(aw) = aΣrw + ra ⋄ Σrw

for any letter a and word w. We now define the interpolated product
r∗ by

u
r∗ v = Σ−r(Σru ∗ Σrv)

5



for any words u, v. Henceforth we shall treat both concatenation and ⋄ has

having higher binding than ∗ and
r∗, so the second identity of Lemma 1 reads

a ⋄ v ∗ b ⋄ w = a ⋄ (v ∗ b ⋄ w) + b ⋄ (a ⋄ v ∗ w)− a ⋄ b ⋄ (v ∗ w).

Lemma 2. Lemma 1 remains true when ∗ is replaced by
r∗.

Proof. For each identity, first replace v and w by Σrv and Σrw respectively
and then apply Σ−r to both sides. After appropriate simplification and (in
the case of identity (4)) cancellation, the conclusion follows.

We now show that the product
r∗ can be defined inductively by a rule

similar to Eqn. (1) for the quasi-shuffle product ∗. This rule was first given
by Yamamoto [20] in the case of multiple zeta values.

Theorem 3. The product
r∗ can be specified by setting 1

r∗w = w
r∗ 1 = w for

any word w, a
r∗ b = ab+ ba + (1− 2t)a ⋄ b for any letters a, b, and

av
r∗ bw = a(v

r∗ bw) + b(av
r∗ w) + (1− 2r)a ⋄ b(v r∗ w)

+ (r2 − r)a ⋄ b ⋄ (v r∗ w)

for any letters a, b and words v, w such that vw 6= 1.

Proof. Evidently 1
r∗ w = w

r∗ 1 for any word w, and for letters a, b we have

a
r∗ b = Σ−r(a ∗ b) = Σ−r(ab+ ba+ a ⋄ b) = ab− ra ⋄ b+ ba− rb ⋄ a+ a ⋄ b

= ab+ ba + (1− 2r)a ⋄ b.

Now let a, b be letters, v 6= 1 a word. Then

av
r∗ b = Σ−r(Σr(av) ∗ b) = Σ−r(aΣrv ∗ b+ ra ⋄ Σrv ∗ b) =

Σ−r(a(Σrv ∗ b) + baΣrv + a ⋄ bΣrv + ra ⋄ Σrv ∗ b) =
a(v

r∗ b)− ra⋄ (v r∗ b)+ bΣ−raΣrv− rb⋄Σ−raΣrv+a⋄ bv− ra⋄ b⋄ v+ ra⋄ v r∗ b
= a(v

r∗b)+bav+(1−r)a⋄bv+(r2−r)a⋄b⋄v−r(a⋄(v r∗b)+ba⋄v−a⋄v r∗b)
= a(v

r∗ b) + bav + (1− 2r)a ⋄ bv + (r2 − r)a ⋄ b ⋄ v,
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where we used Lemma 2 in the last step. Finally, let a, b be letters, v, w
words with v 6= 1 6= w. Then

av
r∗ bw = Σ−r(Σrav ∗Σrbw) = Σ−r((aΣrv+ ra ⋄Σrv) ∗ (bΣrw+ rb ⋄Σrw))

= Σ−r(aΣrv ∗ bΣrw+ raΣrv ∗ b⋄Σrw+ ra⋄Σrv ∗ bΣrw+ r2a⋄Σrv ∗ b⋄Σrw)

= Σ−r(a(Σrv ∗ bΣrw) + b(aΣrv ∗Σrw) + (a ⋄ b)(Σrv ∗Σrw) + raΣrv ∗ b ⋄Σrw

+ ra ⋄ Σrv ∗ bΣrw + r2a ⋄ Σrv ∗ b ⋄ Σrw

= a(v
r∗Σ−rbΣrw)−ra⋄ (v r∗Σ−rbΣrw)+ b(Σ−raΣrv

r∗w)−rb⋄ (Σ−raΣrv
r∗w)

+(a⋄b)(v r∗w)−ra⋄b⋄(v r∗w)+rΣ−raΣrv
r∗b⋄w+ra⋄v r∗Σ−rbΣrw+r2a⋄v r∗b⋄w

= a(v
r∗bw)−ra(v

r∗b⋄w)−ra⋄(v r∗bw)+r2a⋄(v r∗b⋄w)+b(av
r∗w)−rb(a⋄v r∗w)

− rb ⋄ (av r∗w)+ r2b ⋄ (a ⋄ v r∗w)+ (a ⋄ b)(v r∗w)− ra ⋄ b ⋄ (v r∗w)+ rav
r∗ b ⋄w

− r2a ⋄ v r∗ b ⋄ w + ra ⋄ v r∗ bw − r2a ⋄ v r∗ b ⋄ w + r2a ⋄ v r∗ b ⋄ w
= a(v

r∗ bw) + b(av
r∗ w) + (a ⋄ b)(v r∗ w)− ra ⋄ b ⋄ (v r∗ w)− ra(v

r∗ b ⋄ w)
− ra ⋄ (v r∗ bw)− rb(a ⋄ v r∗ w)− rb ⋄ (av r∗ w) + rav

r∗ b ⋄ w + ra ⋄ v r∗ bw
+ r2(a ⋄ (v r∗ b ⋄ w) + b ⋄ (a ⋄ v r∗ w)− a ⋄ v r∗ b ⋄ w)

= a(v
r∗ bw) + b(av

r∗ w) + (1− 2r)(a ⋄ b)(v r∗ w) + (r2 − r)a ⋄ b ⋄ (v r∗ w),
where we used Lemma 2 in the last step.

If r = 1, we write ⋆ instead of
1∗. The product ⋆ has inductive rule

av ⋆ bw = a(v ⋆ bw) + b(av ⋆ w)− a ⋄ b(v ⋆ w),
which is of the same form as Eq. (1). As noted in [11], T : (k〈A〉, ⋆) →
(k〈A〉, ∗) and T : (k〈A〉, ∗) → (k〈A〉, ⋆) are isomorphisms. These are special
cases of the following result.

Proposition 1. T : (k〈A〉, r∗) → (k〈A〉, 1−r∗ ) is an isomorphism.

Proof. First note that Σs : (k〈A〉, r∗) → (k〈A〉, r−s∗ ) is an isomorphism, and
that ΣrT = TΣ−r for all r ∈ k. Then

T (u
r∗ v) = TΣ−r(Σru ∗ Σrv) = ΣrT (Σru ∗ Σrv) = Σr(TΣr ⋆ TΣrv) =

Σr(Σ−rTu ⋆ Σ−rTv) = Tu
1−r∗ Tv

for u, v ∈ k〈A〉, and the result follows.
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In what follows, R is the linear function on k〈A〉 that reverses words, i.e.,
R(a1a2 · · · an) = anan−1 · · · a1. We note that R commutes with Ψf for all
f ∈ tk[[t]] [11, Prop. 4.3]. The following result generalizes [11, Thm. 4.2].

Theorem 4. (k〈A〉, r∗,∆) is a filtered connected Hopf algebra with antipode

Σ1−2rTR. Also, Σr : (k〈A〉, r∗,∆) → (k〈A〉, ∗,∆) is a Hopf algebra isomor-
phism.

Proof. To see that (k〈A〉, r∗,∆) is a Hopf algebra, the main thing to check is

that ∆(w1
r∗ w2) = ∆(w1)

r∗∆(w2) for any two words w1 and w2. We do this
inductively on the word length. We can assume w1 6= 1 6= w2, so let w1 = au
and w2 = bv for letters a, b. Using Sweedler’s notation

∆(u) =
∑

u(1) ⊗ u(2), ∆(v) =
∑

v(1) ⊗ v(2),

we have
∆(au) =

∑

au(1) ⊗ u(2) + 1⊗ au

and
∆(bv) =

∑

bv(1) ⊗ v(2) + 1⊗ bv

so that

∆(w1)
r∗∆(w2) =

∑

(au(1)
r∗ bv(1))⊗ (u(2)

r∗ v(2)) +
∑

au(1) ⊗ (u(2)
r∗ bv)

+
∑

bv(1) ⊗ (au
r∗ v(2)) + 1⊗ (au

r∗ bv)

=
∑

a(u(1)
r∗ bv(1))⊗ (u(2)

r∗ v(2)) +
∑

b(au(1)
r∗ v(1))⊗ (u(2)

r∗ v(2))+

(1−2r)
∑

a⋄b(u(1)
r∗v(1))⊗(u(2)

r∗v(2))+(r2−r)
∑

a⋄b⋄(u(1)
r∗v(1))⊗(u(2)

r∗v(2))

+
∑

au(1)⊗ (u(2)
r∗w2)+

∑

bv(1) ⊗ (w1
r∗ v(2))+ 1⊗ a(u

r∗w2)+ 1⊗ b(w1
r∗ v)

+ (1− 2r)1⊗ a ⋄ b(u r∗ v) + (r2 − r)1⊗ a ⋄ b ⋄ (u r∗ v).

Using the induction hypothesis, this is

(a⊗ 1)(∆(u
r∗ w2)) + 1⊗ a(u

r∗ w2) + (b⊗ 1)(∆(w1
r∗ v)) + 1⊗ b(w1

r∗ v)
+ (1− 2r)(a ⋄ b⊗ 1)∆(u

r∗ v) + (1− 2r)(1⊗ a ⋄ b)∆(u
r∗ v)

+ (r2 − r)(a ⋄ b⊗ 1) ⋄∆(u
r∗ v) + (r2 − r)(1⊗ a ⋄ b) ⋄∆(u

r∗ v)
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which can be recognized as

∆(w1
r∗w2) = ∆(a(u

r∗w2)+b(w1
r∗v)+(1−2r)a⋄b(u r∗v)+(r2−r)a⋄b⋄(u r∗v)).

Now Σr : (k〈A〉, r∗) → (k〈A〉, ∗) is an algebra homomorphism by defini-
tion, and is also a coalgebra map for ∆ [11, Thm. 4.1]. Hence Σr is a Hopf
algebra isomorphism. Also, if

w =
∑

w

w(1) ⊗ w(2)

for a nonempty word, then

Σrw =
∑

w

Σrw(1) ⊗ Σrw(2)

and we have ∑

w

S∗Σ
rw(1) ∗ Σrw(2) = 0

for S∗ = ΣTR the antipode of the Hopf algebra (k〈A〉, ∗,∆) [11, Thm. 4.2].
Apply Σ−r to get

∑

w

Σ1−rTRΣrw(1)
r∗ w(2) = 0;

but this shows that Σ1−rTRΣr = Σ1−2rTR is the antipode of (k〈A〉, r∗,∆).

Of course if r = 0 the Hopf algebra (k〈A〉, r∗,∆) is just (k〈A〉, ∗,∆);
the antipode is ΣTR. If r = 1 we get (k〈A〉, ⋆,∆), and the antipode is
Σ−1TR = TΣR. For r = 1

2
the inductive rule for the product is

av
1

2∗ bw = a(v
1

2∗ bw) + b(av
1

2∗ w)− 1

4
a ⋄ b ⋄ (v

1

2∗ w)

and the antipode is simply TR.

4 Algebraic formulas

In [13] and [12] there are algebraic formulas involving exp and log. These can
be proved systematically from the following result of [11], where for w ∈ k〈A〉
and f = c1t+ c2t

2 + · · · ∈ tk[[t]], f•(λw) denotes

λc1w + λ2c2w • w + λ3c3w • w • w + · · · ∈ k〈A〉[[λ]]
for • = ∗,�, ⋆, ⋄.
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Theorem 5. [[11, Thm. 5.1]] For any f ∈ tk[[t]] and w ∈ k〈A〉,

Ψf

(
1

1− λw

)

=
1

1− f⋄(λw)
.

We write exp•(λw) for 1 + f•(λw), f = et − 1, and log•(λw) for f•(λw),
f = log(1 + t). By applying Theorem 5 with f = log(1− t), we get

exp∗(log⋄(1 + λz)) =
1

1− λz
, (6)

and by applying it with f = et − 1 we get

exp∗(λz) = exp

(
1

1− λz

)

=
1

2− exp⋄(λz)
.

Another consequence of Theorem 5 is the following.

Corollary 1. [[11, Cor. 5.5]] For any z ∈ k〈A〉 and r ∈ k,

Σr

(
1

1− λz

)

∗ 1

1− rλz
=

1

1− (1− r)z
.

5 Multiple zeta values

For positive integers i1, . . . , ik with i1 > 1, the corresponding multiple zeta
value is defined by

ζ(i1, . . . , ik) =
∑

n1>n2>···>nk≥1

1

ni1
1 n

i2
2 · · ·nik

k

.

Let A = {z1, z2, . . . }, with the operation zi ⋄ zj = zi+j . The following result
can be extracted from [7].

Theorem 6. The Hopf algebra (Q〈A〉, ∗,∆) is isomorphic to the algebra
QSym of quasi-symmetric functions over Q.

Let Q〈A〉0 be the subspace of Q〈A〉 generated by 1 and all words that do
not begin with z1. Then (Q〈A〉0, ∗) is a subalgebra of (Q〈A〉, ∗). We write
QSym0 for the corresponding subalgebra of QSym. The following fact was
proved in [7].
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Theorem 7. The linear function ζ : QSym0 → R defined by ζ(zi1 · · · zik) =
ζ(i1, . . . , ik) is a homomorphism from QSym0 to the reals with their usual
multiplication.

If we take z = zk in Eq. (6) above, we get

∑

n≥0

λnznk = exp∗(log⋄(1 + λzk)) = exp∗

(
∑

j≥1

(−1)j−1λjzkj
j

)

,

or, after applying ζ ,

∑

n≥0

λnζ({k}n) = exp

(
∑

j≥1

(−1)j−1λjζ(kj)

j

)

,

where {k}n means k repeated n times. If k = 2 the right-hand side is

exp

(
∑

j≥1

B2j(2π)
2j

(2j)(2j)!
λj

)

=
sinh(πλ)

πλ
,

from which follows

ζ({2}n) =
π2n

(2n+ 1)!
, (7)

and a similar argument gives

ζ({4}n) =
22n+1π4n

(4n+ 2)!
. (8)

Two remarkable results about multiple zeta values are (1) the “sum the-
orem,” i.e., the sum of all multiple zeta values of a fixed depth and weight n
is just ζ(n), as in

ζ(4, 1, 1) + ζ(3, 2, 1) + ζ(3, 1, 2) + ζ(2, 3, 1) + ζ(2, 2, 2) + ζ(2, 1, 3) = ζ(6),

and, (2) the “duality theorem,” i.e., there is an involution τ : QSym0 →
QSym0 so that ζ(τ(u)) = ζ(u), as in ζ(3, 1, 2) = ζ(2, 3, 1). To describe τ in
terms of our algebraic setup, introduce two noncommuting variables x and
y, and set zi = xi−1y. Then QSym0 is just the subspace of Q〈x, y〉 generated
by 1 and words that begin with x and end with y: the function τ is the anti-
isomorphism exchanging x and y (so, e.g., τ(z3z1z2) = τ(x2y2xy) = xyx2y2 =
z2z3z1).
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If we let ζr = ζ ◦Σr, then ζr(w) is exactly the interpolated multiple zeta
value as defined by Yamamoto [20]. Thus ζ0(w) = ζ(w) and ζ1(w) = ζ⋆(w)
is the multiple zeta-star value defined by

ζ⋆(i1, . . . , ik) =
∑

n1≥n2≥···≥nk≥1

1

ni1
1 n

i2
2 · · ·nik

k

.

Yamamoto showed that the interpolated multiple zeta values satisfy the fol-
lowing version of the sum theorem, which is proved another way in [11].

Theorem 8. If n ≥ 2, then

∑

i1+···+il=n
i1>1

ζr(i1, . . . , ik) = ζ(n)
l−1∑

k=0

rn
(
n− l − 1 + k

k

)

.

Formulas for repeated values ζr({m}n) can be obtained from those for
ζ({m}n): from Corollary 1 it follows that if

Z(λ) =
∞∑

n=0

ζ({m}n)λn,

then
∞∑

n=0

ζr({m}n)λn =
Z((1− r)λ)

Z(−rλ)
.

Hence, e.g.,

∞∑

n=0

ζr({2}n)λn =

√
r

1− r

sinh(π
√

(1− r)λ)

sin(π
√
rλ)

.

For interpolated multiple zeta values ζr with r = 1
2
there is a “totally odd

sum theorem.” This follows from two known results: the cyclic sum theorem
and the two-one theorem. Define the cyclic sum operation on QSym0 by

C(xi1−1yxi2−1y · · ·xik−1y) = xi1yxi2−1y · · ·xik−1y

+ xi2yxi3−1y · · ·xik−1yxi1−1y + · · ·+ xikyxi1−1y · · ·xik−1−1y.

Then the cyclic sum theorem for multiple zeta-star values [15] asserts that

ζ⋆(τC(w)) = (n− 1)ζ(n)

12



for any word w ∈ QSym0 of degree n− 1. The two-one formula [20, 21] gives

ζ⋆((xy)j1y(xy)j2y · · · (xy)jly) = 2lζ
1

2 (x2j1yx2j2y · · ·x2jly)

for any sequence (j1, . . . , jl) of nonnegative integers with j1 > 0.

Theorem 9. Let n > 2, l < n be positive integers of the same parity. Then

∑

a1+···+al=n
ai odd, a1>1

ζ
1

2 (a1, . . . , al) =
n− 1

n− l

(
n+l
2

− 2

l − 1

)
ζ(n)

2l−1
=

n− 1
n+l
2

− 1

(
n+l
2

− 1

l − 1

)
ζ(n)

2l
.

Proof. By the two-one formula
∑

a1+···+al=n
ai odd, a1>1

ζ
1

2 (a1, . . . , al) = 2−l
∑

j1+···+jl=
n−l
2

ji≥0, j1≥1

ζ⋆((xy)j1y(xy)j2y · · · (xy)jly).

The latter sum has (
n+l
2

− 2

l − 1

)

(9)

terms. To see this, note that written in the sequence notation each term
corresponds to a string

2, . . . , 2
︸ ︷︷ ︸

j1

, 1, 2, . . . , 2
︸ ︷︷ ︸

j2

, 1, . . . , 2, . . . , 2
︸ ︷︷ ︸

jl

, 1 (10)

with ji ≥ 0, j1 ≥ 1, and
∑l

i=1 ji =
n−l
2
. Now the string (10) always starts

with 2 and ends with 1, so we can think about the middle part: it has length
n+l
2

− 2, and consists of n−l
2

− 1 twos and l− 1 ones. To specify such a string,
we need only give the l − 1 positions where the ones go; so such strings are
counted by the binomial coefficient (9).

Now each word u of the form

(xy)j1y(xy)j2y · · · (xy)jly (11)

with
∑l

i=1 ji =
n−l
2

and j1 > 0 has

τ(u) = xi1−1yxi2−1y · · ·xik−1y

with i1 > 2, i2, . . . , ik > 1, i1 + · · ·+ ik = n, and k = n−l
2
. These are exactly

the words that appear in C(w) for w of the form xa1−1yxa2−1y · · ·xak−1y

13



with a1, . . . a2 > 1, a1 + · · ·+ ak = n− 1, and k = n−1
2
. For any such w the

expansion of τC(w) will have n−l
2

terms, so each term ζ⋆(u) contributes

2

n− l
(n− 1)ζ(n),

and the result follows. (It may happen that 2
n−l

(n+l
2

−2

l−1

)
is not an integer, but

the preceding sentence is still true since in that case there are duplications
in one or more of the images under τC.)

From the definition of the zeta-half values we get the following corollary
of Theorem 9.

Corollary 2. The sum

∑

a1+···+al=n
ai odd, a1>1

ζ(a1, . . . , al)

is a rational linear combination of multiple zeta values of weight n and depth
less than l.

In the depth three case we can say more.

Corollary 3. If n is odd, the sum

∑

a1+a2+a3=n
ai odd, a1>1

ζ(a1, a2, a3)

is a polynomial in the ordinary zeta values with rational coefficients.

Proof. By Corollary 2, the sum can be written as a rational linear combina-
tion of single and double zeta values of weight n. But double zeta values of
odd weight are known to be rational polynomials in the ordinary zeta values,
and the conclusion follows.

6 “Exotic” multiple zeta values

In this section we give some examples of “exotic” homomorphic images of
subalgebras of QSym. Our first example involves the multiple t-values as

14



defined in [10]. For positive integers i1, . . . , ik with i1 > 1, let

t(i1, . . . , ik) =
∑

n1>n2>···>nk≥1
nj odd

1

ni1
1 n

i2
2 · · ·nik

k

.

Then t : QSym0 → R defined by t(zi1 · · · zik) = t(i1, . . . , ik) defines a homo-
morphism. The multiple t-values have obvious parallels with multiple zeta
values; for example, it is evident that t(n) = (1 − 2−n)ζ(n) for n ≥ 2. Also,
paralleling the identities (7) and (8) of the last section we have from [10]

t({2}n) =
π2n

22n(2n)!
, t({4}n) =

π4n

22n(4n)!
. (12)

Following Wakhare and Vignat [18], we can take any function G with real
zeros {a1, a2, . . . } such that limn→∞ |an| = ∞, and define a homomorphism
ζG : S → R by sending zi1 · · · zil to

ζG(i1, . . . , il) =
∑

n1>n2>···>nk≥1

1

ai1n1a
i2
n2 · · · ailnl

for some subalgebra S of QSym that depends on the growth rate of |an|
with n. Wakhare and Vignat consider the case where an is the nth positive
zero of the Bessel function Jν of the first kind of order ν. They obtain the
remarkable formulas

ζJν({2}n) =
1

22nn!(ν + 1)(ν + 2) · · · (ν + n)
, (13)

ζJν({4}n) =
1

24nn!(ν + 1) · · · (ν + 2n)(ν + 1) · · · (ν + n)
. (14)

We note that since

J 1

2

(z) =

√

2

πz
sin z and J− 1

2

(z) =

√

2

πz
cos z

we have

π|w|ζJ 1
2

(w) = ζ(w) and
(π

2

)|w|

ζJ
−

1
2

(w) = t(w),

and thus Eqs. (13) and (14) imply Eqs. (7), (8), and (12) above.
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We can also choose 0 > a1 > a2 > · · · to be the zeros of the Airy function
Ai(z). Now Ai(z) has the infinite product expansion [17, p. 18]

Ai(z) = Ai(0)e−κz

∞∏

n=1

(

1− z

an

)

e
z
an , (15)

where

κ =

∣
∣
∣
∣

Ai′(0)

Ai(0)

∣
∣
∣
∣
=

3
5

6Γ(2
3
)2

2π
≈ 0.729011.

Starting with Eq. (15), take logarithms and differentiate to get

d

dz
logAi(z) = −κ+

∞∑

n=1

[
1

an
+

1

z − an

]

.

Then evidently
dk

dzk
log Ai(z) =

∞∑

n=1

(−1)k−1(k − 1)!

(z − an)k
(16)

for k ≥ 2. Since Ai′′(z) = zAi(z), we have

d2

dz2
logAi(z) = z − Ai′(z)2

Ai(z)2
. (17)

Combining Eq. (16) for k = 2 and Eq. (17), we have

∞∑

n=1

−1

(z − an)2
= z − Ai′(z)2

Ai(z)2
, (18)

which at z = 0 gives

ζAi(2) =
∞∑

n=1

1

a2n
= κ2. (19)

Repeated differentiation of f(z) = Ai′(z)/Ai(z) gives the following result,
originally due to Crandall [2].

Theorem 10. For all n ≥ 2, ζAi(n) is a rational polynomial in κ of degree
n, with leading coefficient 1.

16



Also, from Eq. (15) it follows that

Ai(z) Ai(−z) = Ai(0)2
∞∏

k=1

(

1− z2

a2k

)

and thus that

∞∑

n=0

ζAi({2}n)(−1)nz2n =
Ai(z) Ai(−z)

Ai(0)2
=

1− κ2z2 +
κ

6
z4 − 1

60
z6 +

κ2

336
z8 − κ

6480
z10 + · · · .

By comparison with the series [16]

Ai(z) Ai(−z) =
2√
π

∑

n≥0

(−1)nz2n

12
2n+5

6 n!Γ(2n+5
6

)

it can be seen that ζAi({2}n) is rational if n ≡ 0 mod 3, a rational multiple
of κ2 if n ≡ 1 mod 3, and a rational multiple of κ if n ≡ 2 mod 3. Further
formulas for ζAi({2}n) and also for ζAi({4}n) were given by Wakhare and
Vignat [19].

7 Alternating multiple zeta values

Let r be a positive integer, A = {zm,j | m ∈ Z+, i ∈ {0, 1, . . . , r − 1}}, with
zm,j ⋄ zn,k = zm+n,j+k, where addition in the second subscript is understood
mod r. Then (Q〈A〉, ∗) is the “Euler algebra” Er as defined in [8]. If we let
E0
r be the subalgebra generated by 1 and all words that do not begin with

z1,0, then there is a homomorphism Zr : E
0
r → C sending zm1,j1 · · · zmk ,jk to

∑

n1>···>nk≥1

ǫn1j1 · · · ǫnkjk

nm1

1 · · ·nmk

k

,

where ǫ = e
2πi
r . Of course E1 is just QSym, with Z1 = ζ . In the case r = 2

the image of Zr is real-valued, and Zr sends a monomial to what is usually
called an alternating or “colored” multiple zeta value. In this case we can
adapt the sequence notation of multiple zeta values and write, e.g., ζ(1̄, 2, 3̄)
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for Z2(z1,1z2,0z3,1). Evidently ζ(1̄) = − log 2 and ζ(k̄) = (2−k+1 − 1)ζ(k) for
k ≥ 2. Generating functions for ζ({k̄}n) are discussed already in [1]. A
notable case is

∞∑

n=0

ζ({1̄}n)λn =

√
π

Γ(1−λ
2
)Γ(1 + λ

2
)
. (20)

The theory of interpolated products carries over to this case; for example

ζr(1̄, 2, 3̄) = ζ(1̄, 3, 3̄) + rζ(3̄, 3̄) + rζ(1̄, 5̄) + r2ζ(6).

We can generalize formulas like (20) to interpolated alternating multiple zeta
values:

∞∑

n=0

ζr({1̄}n)λn =
Γ(1+rλ

2
)Γ(1− rλ

2
)

Γ(1−(1−r)λ
2

)Γ(1 + (1−r)λ
2

)
.

Some results for alternating multiple zeta values can be stated in terms of
interpolated values, such as the following one of C. Glanois [4].

Theorem 11. If s1, . . . , sr is a sequence of elements of {1, 2̄, 3, 4̄, 5, . . . } with

s1 6= 1, then the interpolated alternating multiple zeta value ζ
1

2 (s1, . . . , sr) is
a rational linear combination of multiple zeta values.

8 Symmetric sum theorems

The prototypical symmetric sum theorem was proved in [6].

Theorem 12. [[6, Thm. 2.2]] If k1, . . . , kn ≥ 2, then

∑

σ∈Sn

ζ(kσ(1), . . . , kσ(n)) =
∑

B={B1,...,Bl}∈Πn

c(B)

l∏

m=1

ζ

(
∑

j∈Bm

kj

)

where Sn is the symmetric group on n letters, Πn is the set of partitions of
the set {1, . . . , n}, and

c(B) = (−1)k−l(cardB1 − 1)!(cardB2 − 1)! · · · (cardBl − 1)!

for B = {B1, . . . , Bl} ∈ Πn.
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In fact, as noted in [9], this identity can be proved in QSym by Möbius
inversion and then (if all the ki ≥ 2) transferred to the reals via the homo-
morphism ζ : QSym0 → R. But in fact it can be generalized in two ways:
first, it is true for any quasi-shuffle algebra (Q〈A〉, ∗), and second, we can
extend it to the interpolated product. The result is as follows.

Theorem 13. If u1, . . . , un ∈ A, then in (Q〈A〉, r∗)
∑

σ∈Sk

uσ(1)uσ(2) · · ·uσ(k) =
∑

B={B1,...,Bl}∈Πk

cr(B)uB1

r∗ uB2

r∗ · · · r∗ uBl
, (21)

where uBi
= ⋄j∈Bi

uj, pa(r) = (1− r)a − (−r)a, and

cr(B) = (−1)k−l

l∏

m=1

(cardBm − 1)!pcardBm
(r)

for B = {B1, . . . , Bl} ∈ Πk.

Proof. We write S(a, b) = ab+ba, S(a, b, c) = abc+acb+bac+bca+cab+cba,
and so on, so Eq. (21) is

S(u1, . . . , un) =
∑

partitions Π = (P1, . . . , Pl)
of {1, . . . , n}

cr(Π)uP1

r∗ uP2

r∗ · · · r∗ uPl
.

We proceed by induction on n. Take the
r∗-product of both sides of Eq. (21)

with un+1 to get

S(u1, . . . , un+1)+ (1−2r)[S(u1 ⋄un+1, u2, . . . , un)+S(u1, u2 ⋄un+1, . . . , un)

+ · · ·+ S(u1, . . . , un−1, un ⋄ un+1)] + 2(r2 − r)[S(u1 ⋄ u2 ⋄ un+1, u3, . . . , un)

+ S(u1 ⋄ u3 ⋄ un+1, u2, u4, . . . , un) + · · ·+ S(un−1 ⋄ un ⋄ un+1, u1, . . . , un−2)]

=
∑

partitions Π = (P1, . . . , Pl)
of {1, . . . , n}

cr(Π)uP1

r∗ uP2

r∗ · · · r∗ uPl

r∗ un+1
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or

S(u1, . . . , un+1) = −(1−2r)[S(u1⋄un+1, u2, . . . , un)+S(u1, u2⋄un+1, . . . , un)

+ · · ·+ S(u1, . . . , un−1, un ⋄ un+1)]− 2(r2 − r)[S(u1 ⋄ u2 ⋄ un+1, u3, . . . , un)

+ S(u1 ⋄ u3 ⋄ un+1, u2, u4, . . . , un) + · · ·+ S(un−1 ⋄ un ⋄ un+1, u1, . . . , un−2)]

+
∑

partitions Π = (P1, . . . , Pl)
of {1, . . . , n+ 1} having

{n+ 1} as a part

cr(Π)uP1

r∗ uP2

r∗ · · · r∗ uPl
. (22)

We must show that the right-hand side of this equation coincides with

∑

partitions Π = (P1, . . . , Pl)
of {1, . . . , n+ 1}

cr(Π)uP1

r∗ uP2

r∗ · · · r∗ uPl
, (23)

which we shall do by considering whether the cardinality of the part of Π to
which n+ 1 belongs is 1, 2, or ≥ 3.

Note that there are three groups on terms on the right-hand side of Eq.
(22). If {n+1} is a part of Π, the corresponding term in (23) is contributed
by the third group of terms on the right-hand side of (22).

Suppose now that n + 1 belongs to a part of cardinality 2 in Π =
(P1, . . . , Pl), say P1. The term corresponding to Π in (23) only arises (via the
induction hypothesis) from the first group of terms on the right-hand side of
(22), and the coefficient of uP1

· · ·uPl
is

− (1− 2r)(−1)n−l(cardP2 − 1)! · · · (cardPl − 1)!pcardP2
(t) · · · pcardPl

(t)

= (−1)n+1−l(cardP1 − 1)! · · · (cardPl − 1)!pcardP1
(t) · · ·pcardPl

(t).

Finally, suppose n + 1 belongs to a part P1 of Π with cardinality k ≥
3. The term uP1

· · ·uPl
arises from the first group of terms in k − 1 ways,

contributing coefficient

−(k − 1)(1− 2r)(−1)n−lpk−1(r)(k − 2)!C,

where

C = (cardP2 − 1)! · · · (cardPl − 1)!pcardP2
(t) · · · pcardPl

(t).
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The same term arises from the second group of terms in
(
k−1
2

)
ways, con-

tributing coefficient

−
(
k − 1

2

)

2(r2 − r)(−1)n−1−lpk−2(r)(k − 3)!C,

and it suffices to show

(1− 2r)pk−1(r)− (r2 − r)pk−2(r) = pk(r),

which is immediate.

Note that pa(0) = 1 and pa(1) = (−1)a−1, so c0(Π) = c(Π) and c1(Π) =
|c(Π)|, making Theorem 13 reduce to

∑

σ∈Sn

uσ(1)uσ(2) · · ·uσ(n) =
∑

partitions Π = (P1, . . . , Pl)
of {1, . . . , n}

c(Π)uP1
∗ uP2

∗ · · · ∗ uPl

in the case r = 0; if r = 1 we get

∑

σ∈Sn

uσ(1)uσ(2) · · ·uσ(n) =
∑

partitions Π = (P1, . . . , Pl)
of {1, . . . , n}

|c(Π)|uP1
⋆ uP2

⋆ · · · ⋆ uPl
.

Also,

pa

(
1

2

)

=

{

0, if a even,

21−a, if a odd,

so that only partitions with all parts of odd cardinality appear when r = 1
2
.

In fact

c 1

2

(Π) =

{(
1
2

)n−l∏l

i=1(cardPi − 1)!, if cardP1 · · · cardPl is odd;

0, otherwise.

If in Theorem 13 we take A = {z1, z2, . . . } with zi ⋄zj = zi+j and ui = zki ,
1 ≤ i ≤ n (with ki 6= 1 for all i), we get

∑

σ∈Sn

ζr(kσ(1), . . . , kσ(n)) =
∑

partitions Π = (P1, . . . , Pl)
of {1, . . . , n}

cr(Π)

l∏

j=1

ζ




∑

h∈Pj

kh



 , (24)
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generalizing Theorem 12; in fact r = 0 gives Theorem 12 and r = 1 gives the
corresponding result for star-zeta values [6, Thm. 2.1]. Identity (24) holds
with t (or ζJν or ζAi) in place of ζ .

From Theorem 13 we can obtain a result in terms of integer partitions.

Corollary 4. If u ∈ A, then in (Q〈A〉, r∗)

un =
∑

λ⊢n

ǫλ
zλ

ℓ(λ)
∏

j=1

pλj
(r)u⋄λ1

r∗ · · · r∗ u⋄λl

where u⋄n means u ⋄ · · · ⋄ u
︸ ︷︷ ︸

n

and (as in [14]) ǫλ = (−1)n−ℓ(λ) and zλ =

m1(λ)!1
m1(λ)m2(λ)!2

m2(λ) · · · , for mi(λ) the multiplicity of i in λ.

Proof. Set u1 = · · · = un = u in Theorem 13 to get

n!un =
∑

partitions
Π=(P1,...,Pl)
of {1, . . . , n}

(−1)n−l(λ1 − 1)! · · · (λl − 1)!pλ1
(r) · · ·pλl

(r)uiλ1

r∗ · · · r∗ uiλl
,

where we write λi = cardPi. Now the number of set partitions (P1, . . . , Pl)
of {1, . . . , n} corresponding to the integer partition λ = (λ1, . . . , λl) of n is

1

m1(λ)!m2(λ)! · · ·

(
n

λ1

)(
n− λ1

λ2

)

· · · = 1

m1(λ)!m2(λ)! · · ·
n!

λ1!λ2! · · ·λl!
.

Thus un is

∑

partitions
λ=(λ1,...,λl)

of n

(−1)n−l(λ1 − 1)! · · · (λl − 1)!

m1(λ)!m2(λ)! · · ·λ1! · · ·λl!
pλ1

(r) · · ·pλl
(r)u⋄λ1

r∗ · · · r∗ u⋄λl

=
∑

partitions
λ=(λ1,...,λl)

of n

ǫλ
zλ

pλ1
(r) · · ·pλl

(r)u⋄λ1
r∗ · · · r∗ u⋄λl .

Applying ζr to the corollary with u = zi, i ≥ 2, we obtain

ζ(zni ) =
∑

λ⊢n

ǫλ
zλ

ℓ(λ)
∏

j=1

pλj
(r)ζ(iλj).
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In the cases r = 0, 1, 1
2
, this identity is respectively

ζ({i}n) =
∑

λ⊢n

ǫλ
zλ

ℓ(λ)
∏

j=1

ζ(iλj) (25)

ζ⋆({i}n) =
∑

λ⊢n

1

zλ

ℓ(λ)
∏

j=1

ζ(iλj) (26)

ζ
1

2 ({i}n) =
∑

λ⊢n
all parts of λ odd

1

2n−ℓ(λ)zλ

ℓ(λ)
∏

j=1

ζ(iλj). (27)

Eqs. (26) and (25) are homomorphic images of the two parts of [14, Eq.
(2.14′)]. Eq. (27) is obtained a different way in [11] (see Eq. (41)).

We note that Eq. (24) applies to alternating multiple zeta values as well,
provided we define addition on the set I = {. . . , 2̄, 1̄, 1, 2, . . . } of indices to
agree with usual addition on {1, 2, . . . , } and extend it to I via

a + b̄ = ā + b = a + b

ā + b̄ = a + b

for positive integers a, b. Thus, e.g.,

ζr(1̄, 2, 3̄) + ζr(1̄, 3̄, 2) + ζr(2, 1̄, 3̄) + ζr(2, 3̄, 1̄) + ζr(3̄, 1̄, 2) + ζr(3̄, 2, 1̄) =

ζ(1̄)ζ(2)ζ(3̄)− (1− 2r)(ζ(3̄)2 + ζ(1̄)ζ(5̄)) + 2(1− 3r + 3r2)ζ(6).

Eqs. (25-27) also hold, provided we interpret iλj in those formulas as the
sum of λj copies of i ∈ I.
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