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TOPOLOGICAL STRUCTURE OF THE SPACE OF
(WEIGHTED) COMPOSITION OPERATORS BETWEEN
FOCK SPACES IN SEVERAL VARIABLES

PHAM TRONG TIEN! & LE HAI KHOI?

ABSTRACT. In this paper, we consider the topological structure
problem for spaces of composition operators as well as nonzero
weighted composition operators acting from a Fock space FP(C™)
to another one F9(C™). Explicit descriptions of all (path) con-
nected components and isolated points in these spaces are ob-
tained.

1. INTRODUCTION

Composition operators C, and weighted composition operators Wy, ,
have been intensively investigated on various Banach spaces of holo-
morphic functions on the unit disc or the unit ball during the past
several decades in different directions. One of the recent main prob-
lems in the study of such operators is to characterize (path) connected
components and isolated points in spaces of these operators endowed
with the operator norm topology. There is a huge literature in this
topic: [1I, 2} 6, TT], 15], [16] on Hardy spaces, [11, [13] on Bergman spaces,
[7, 12, [14] 20] on spaces H* of all bounded holomorphic functions, [§]
on Bloch spaces, etc. On many spaces, this question is difficult and
not yet solved completely.

Recently, much progress was made in the study of (weighted) compo-
sition operators on Fock spaces (see, for instance, [3] 4, 10,17, 21]). One
of the main differences between operators C, and Wy, , on Fock spaces
and those on the above-mentioned spaces of holomorphic functions on
the unit disc or the unit ball is the lack of bounded holomorphic func-
tions in the Fock space setting. In fact, entire functions ¢ that induce
bounded operators C, and Wy, , are quite restrictive, in details, they
are only affine functions. Thanks to this, some difficult problems were
completely solved on Fock spaces. In particular, concerning the topo-
logical structure, the path connected components and isolated points
in the space of composition operators on the Hilbert Fock space in
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several variables were characterized in [5]. Later, in [I8] the authors
obtained complete descriptions of all (path) connected components and
isolated points in not only the space of composition operators but also
the space of nonzero weighted composition operators between different
general Fock spaces in one variable.

The aim of this paper is to develop the study related to the topologi-
cal structure in [I8] for the case of several variables. Roughly speaking,
our main result is to give complete answers to all important questions
of the topological structure problem for both spaces of composition op-
erators and nonzero weighted composition operators in the Fock space
context. It should be noted that the techniques used in [5] for Hilbert
Fock spaces cannot be applied to this paper for general ones. Also the
techniques in several variables are much more complicated than in one
variable.

The paper is organized as follows. In Section 2 we recall some prelim-
inaries results on general Fock spaces FP(C") and (weighted) composi-
tion operators between different Fock spaces. Section 3 is devoted to the
space C(FP(C™), F1(C™)) of composition operators acting from a Fock
space FP(C") to another one F4(C™). We prove that if 0 < ¢ < p < oo,
then the space C(FP(C"), F4(C")) is path connected (Theorem [3.2). In
the case 0 < p < ¢ < 00, we completely determine all (path) connected
components and isolated points in C(FP(C"), F¢(C")) (Theorem [B.9]).
The study of the space C,(FP(C"), F4(C")) of nonzero weighted com-
position operators acting from a Fock space FP(C") to another one
F4(C™) is more complicated and carried out in Section 4. In The-
orem 3] we show that the space C,(F?(C"), F4(C")) is also path
connected when 0 < ¢ < p < oo, while all (path) connected compo-
nents of C,(FP(C"), F(C")) when 0 < p < ¢ < oo are characterized
in Theorem

It should be noted that the key technique in this paper is to study
composition operators C, and weighted composition operators Wy,
via the operators Cz and WJ’(’;, which are induced by the so-called

normalizations @ of ¢ and (¢, @) of (¥, p), respectively.

2. PRELIMINARIES

Recall that for a number p € (0, 00), the Fock space FP(C") consists
of all entire functions f on C" for which

1= ((2)" [ \f(z)\”epggdfl(z))% <.

where dA is the Lebesgue measure on C". It is well known that F?(C")
with 1 < p < oo is a Banach space, while for 0 < p < 1, F?(C") is a
complete metric space with the distance d(f,g) = ||f — gl? -
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For each w € C", we define the functions
w 2
K, (2) = e® and k,(2) = e<z’w>_%, zeC,

where (z,w) = 217 + - - - + 2,0, and |w|? = (w,w). Then ||ky|n, =1
for all w € C* and 0 < p < o0, and k, converges to 0 in the space
O(C™) as |w| — oo, where O(C") is the space of all entire functions on
C™ with the usual compact open topology.

We give some notation and auxiliary results which will be used
throughout the paper.

For each point z = (21, ..., 2,) € C" and 0 < s < n, we define

2[5 = 0, 1'f s=0 and Zfs] _ (Zsi1y -5 Zn), '1f s#n
(21,0 20), if 5 70, 0, if s =mn,

by convention that |z = 0 and |z(,[ = 0.
For each z = (z1, ..., 2,) € C" and 1 <i < n, we put
(22, ey Zn), ifi=1,
ZZ{: (2’1,...,Zi_1,2i+1,...,2n), lfQSZS’I’L—]_,
(21, ooy Zn—1), if 1 =n,

and, briefly, write z = (z;, 2}).

For an n x n diagonal matrix A and 0 < s < n, we denote by
Apq the principal submatrix of A with diagonal entries a;,7 = 1, ..., s,
and by AES] the principal submatrix of A with diagonal entries a;,t =
s+1,...,n.

The following lemmas can be found in [19, Section 2].

Lemma 2.1. Let p € (0,00), b = (by,...,b,) be a point in C", and
f € FP(C™). For each 0 < s < n the following statements are true:
(i) The function f(by),-) € FP(C"™*) and
LG
1 Cbps) Mln-sp e 27 <A fllngp-
(ii) The function f(-,b,) € FP(C*) and

gl

LFC o llsp e 2 < 1S llng-
Lemma 2.2. Let p € (0,00) and 1 < ¢ < n be given. Then for each
function f € FP(C™) and z € C", the following inequalities hold:

(i)

FEEF < fluw
(i)
of
822‘

<z>' < 1+ 5D E
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Proof. (i) was proved in [19, Lemma 2.2].
(ii) For every point 2/ € C"! fixed, by Lemma 2] the function
f(-,2) € FP(C). Then, by [18, Lemma 2.1], for every z; € C,

0 I212
'5(%, 2)| < e+ lal)e T I 2) g
This and Lemma 2.1l imply the desired inequality. O

Lemma 2.3. For every 0 < p < q¢ < oo, FP(C") C FU(C") and the
inclusion 1s continuous. Moreover,

n

[l < (]%) [Flluge VF € FP(C).

Let ¢ : C* — C be a nonzero entire function and ¢ : C* — C”
a holomorphic mapping. The weighted composition operator Wy, , in-
duced by ¢ and ¢ is defined as follows Wy, ,f =1 - (f o). When the
function ¢ is identically 1, the operator Wy, , reduces to the composi-
tion operator C,. As in [10, 18], we define the following quantities

lo(2)]2~|=|2

m.(Y,0) = (z)le =, zeC",
and
m(1), ) = sup m; (¢, @).

zeCn

In [I9] Section 3] it was shown that bounded weighted composition
operators from a Fock space FP(C") to another one F?(C") can be in-
duced only by nonzero entire functions ¢ € F?(C") and such mappings
©(2) = Az + b with some n x n matrix A, ||A|| <1 and n x 1 vector b.
In particular, boundedness and compactness of composition operators
Cy, : FP(C") — F9(C") were characterized in terms of the matrix A.
These characterizations will be used in the sequel and for the reader’s
convenience we state them in the following theorems. The proofs can
be founded in [I9, Corollaries 3.11 and 3.14].

Theorem 2.4. Let 0 < p < g < oo and ¢ : C* — C" a holomorphic
mapping. The following statements are true.

(a) The operator C, : FP(C") — FUC") is bounded if and only if
©(z) = Az + b, where A is an n X n matriz and b is an n x 1
vector such that ||A|| < 1 and (A(,b) = 0 for every ¢ in C™ with
14¢| = [¢].

(b) The operator Cy, : FP(C") — FU(C") is compact if and only if
o(2) = Az + b, where A is an n X n matriz with ||A]| < 1 and
b is an n x 1 vector.

Theorem 2.5. Let 0 < g < p < o0 and ¢ : C* — C" a holomorphic
mapping. The following conditions are equivalent:

(i) The operator Cy, : FP(C") — F4(C") is bounded.

(ii) The operator C, : FP(C") — F(C") is compact.
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(iii) p(2) = Az + b, where A is an n x n matriz with ||A|| < 1 and
b is an n x 1 vector.

The criteria for boundedness and compactness of weighted composi-
tion operators Wy, , : FP(C") — F94(C") were obtained in terms of the
so-called normalization (1, @) of (1, ) (see [19, Theorems 3.8, 3.9 and
3.12]). The normalization (¢, ) also plays an important role in the
current paper. We recall this notation based on the following singular
value decomposition of the matrix A (see also [9, Theorem 2.6.3]).

Lemma 2.6. If A is an nxn matriz of rank s, then A can be written as
A=V AU, where V,U are n X n unitary matrices, and A is a diagonal
matrix (’dlj) with ’611 Z 522 Z Z 558 Z 58+175+1 = ... = ’dnn = 0.
The a;; are the non-negative square roots of the eigenvalues of AA*; if
we require that they are listed in decreasing order, then A is uniquely
determined from A.

Let W, be the set of all pairs (¢, p) consisting of a nonzero entire
function ¢ in F9(C") and a mapping ¢(z) = Az + b with an n x n
matrix A satisfying ||A]| <1 and an n x 1 vector b.

We denote by V, s the subset of W, consisting of all pairs (¢, ¢) in W,
with ¢(z) = Az+b, where A is a diagonal matrix (a;;) of rankA = s > 0
and

1>an >ap>..2> (g5 = As41,541 = +-o = Qpp = 0.
Note that for each (¢, ) in V, ; and f € O(C"), we have

(2.1)

“ dA(z)) '

HWw,wan,ﬁ( )" [ e

—((%) Intetepiee T <z[s],->|rz_s,qu<z[s]>)

In view of this, boundedness and compactness of weighted composition
operators Wy, induced by a pair (¢, ¢) in V,,, are characterized by
the following quantities:

Q=

lo(2)[2

by (Y p) =™ Hiﬂ(% Mo-s.ar 215 € C,

and
(Y, 0) = sup L (¢, ),
2[5 €C*
where we consider ||¢(z(,.)||n-sq = |¥(2)| if s = n, and in this case

For each pair (¢, ) in W, with ¢(2) = Az + b and rankA = s > 0

and the singular value decomposition VAU of A, we define a new pair
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(1, ) as follows:
U(z) =p(U*z) and 3(z) = Az +b, b=V*b, z € C".

We call (¢, ) a normalization of (1, ¢) with respect to the singular
value decomposition A = VAU (briefly, normalization of (¢, ¢)). In
the case ¢ is identically 1, ¢ is also called a normalization of . Note
that (¢, ) belongs to V, ;.

We give the following auxiliary lemma which will be used in the
sequel.

Lemma 2.7. Let (¢, ) be a pair in W, with ¢(z) = Az+b and R
its normalization. If m(y, ) < oo and ||A|| = 1, then

G(z) = g, (o), 2 e C,
where j = max{i : a; = 1} and QZ* is a nonzero entire function of zfj]
on C" . In particular, if 1 is identically 1, then b =0 for everyi < j.

Proof. By [19, Lemma 3.5], we have m(i, ) = m(¢), ¢) < co. Then,
for each z € C",

00 > m(@z, p) > |@Z(z)|e

7o (b | o |5ng § . 4102 *5151 =EE

= [32)e

18(2)[2 2|2
2

Thus, for each ij] € C"J fixed, the entire function @Z(z[j], zfﬂ)e<z[ﬂ’gm>

J

is bounded on €7, and hence, IZ(Z[ B zfﬂ)e<zm’g“]> = (2] for every
z € C". From this the conclusions follow.

Next, for simplicity, if p(z) = b, then we write C, instead of Cl;
and in the case p(z) = Az with an n X n matrix A, we denote the
composition operator Cy, by C4. Obviously, if U is a unitary matrix,
then Cp is invertible on every Fock space FP(C") with (Cy)™t = Cp-
and ||Cu fllnp = || fllnyp for all f € FP(C™). From this and the definition
of (¢, ¢) and [19, Proposition 3.4] it follows that

(22) Ww,go = CUWIZ@CV and W{A@ = CU* W¢7¢C\/*.

3. THE SPACE OF COMPOSITION OPERATORS

In this section we study path connected components in the space
C(FP(C™), F1(C™)) of all composition operators acting from F*(C") to
F?(C™) under the operator norm topology. For two operators C,, and
Cys in C(FP(C™), F1(C™)), we write C, ~ Cy in C(FP(C™), F1(C™)) if
C, and Cy belong to the same path connected component of the space

C(FP(C), F9(C™)).
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Firstly we investigate the set of all compact composition operators
from FP(C™) to F(C"), denoted by Co(FP(C"), F4(C")). By Theorems
2.4 and 2.3, we get

Co(FP(CM), FAUC™) = {C, : p(z) = Az + b, |A| < 1,be C"}.

Proposition 3.1. Letp, q € (0,00) be given. The set Co(FP(C™), F1(C™))
of all compact composition operators acting from FP(C") to F1(C") is

path connected in the space C(FP(C™), Fi(C™)).

Proof. We divide the proof into three steps.

Step 1. We show that if the operator C, : FP(C") — FI(C")
is compact, then C, ~ Cye) in C(FP(C"), F4(C")) via a path in
Co(FP(C™), F4(C™)). Let p(z) = Az + b, where A is an n X n ma-
trix with ||A|| < 1 and b is an n x 1 vector.

If A =0, then the assertion is trivial. Suppose that 0 < ||A|| < 1 and
rankA = s. Foreach t € [0, 1], put ¢;(z) = p(tz) = tAz+b, z € C". By
Theorems Z4land 25, all operators C,,, with ¢ € [0, 1] are compact from
FP(C") to FUC"), i. e. C,, € Co(FP(C™), FIUC™)) for all t € [0, 1].
Moreover, C, = C,, and Cyq) = C,,.

We now prove that the map

[0,1] — C(FP(C"), FYC")), t — C,,,
is continuous, that is, |C,, — Cy, [ = 0 as t — t, for every t, € [0, 1].

Let p(z) = Az + b be the normalization of ¢, where the singular
value decomposition of A is VAU and b = V*b. Then @ (z) = tAz+b,
and by [2.2), C,, = CyC5Cy and Cy = Cy»C,,Cy~ for all t € [0, 1].
Thus, [|C,, — Cy, || = [|Cq — Cgi || for all ¢, € [0, 1].

Fix ¢ty € [0,1]. For every t € [0,1] and f € FP(C") with || f||,, < 1,
using (2I) and the fact that for each z; € C°, there is a number
T = 7(2[5)) in between ¢, and ¢ such that

F(@1(2) = f (@i (2)) = f (tAW 21 + B, By) = F oAz + b, Bly)
S _ 8f —_ ~ ~
= (t — tO) Z CI,ZZZZa—Z (TA[S}Z[S} + b[s], b/[s])a
i=1 ¢

we obtain

1Cs:f — Caig f g

q\° A T = ~ o~ |7 _9%s
= (g) / (A2 + b, ) = f oAzt + b by )| 677 dA(zg)
S q 2
q s ~ af ~ ~ ~ _q Z[s]
=|t — to|* (%> /(CS Zaiizig(TA[s]Z[s] + by, /[s}) ez dA(z).
=1 v

From this and Lemma 22[(ii), for some constant C' > 0 satisfying
(1 4+ ..+ 2)! <CUad + ...+ 27), Vaq,...,zs >0,
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we get that for every t € [0,1] and f € FP(C") with || f||., < 1,

1G5 = Cai F g
q q q 0 Py I _q|z[5]|2
< e —tof" (5= ) Z|aiiz,~| (T A2 + by D) | €5 dA(zy)
< G|t — | (i>
2
2
(249101 1) e

<[ Zmz, (14 7z + BT 1l e 5 dA(zy)

< CleMt —t Q( )
| o 27

2
(|A[ +[og]) v sgl”all”

/Z|a”zl (1 + |@ssz] + [bs])%e 2 ez dA(zy)

= M)t — to]?,

where
22 2
) +q|bf

S
M1 = (% <i>
21
Q( Aps2(s) |+ [Pls) [s] a|2[s)

X / Z |Euzl|q(1 + ‘EZZZZ‘ + ‘EZqu 2 e 2 dA(Z[S}) < 00,
*i=1

since ||Z[s}|| < 1.
Consequently;,

1Co. = Cop Il = 1 = Co | < Mt = o], W2, 2o € [0,1].

This implies that lim |Cy, — Co,, || = 0 for all o € [0, 1].
—t0

Step 2. We prove that for every «, 8 € C", the operators C,, ~ Cjp
in C(FP(C™), F1(C")) via a path in Co(FP(C™), F1(C")).

For each ¢t € [0,1], put 74+ = (1 —t)a +t8. Then C, = C,, and
Cs = C,,, and all operators C.,,t € [0, 1], are compact from F?(C") to
FUC™), 1. e. C,, € Co(FP(C™), FI(C™)) for all t € [0,1].

We show that the map

0,1] — C(FP(C"), FU(C")), t — C,,,

is continuous. Fix an arbitrary number ¢, € [0, 1]. For each t € [0, 1]
and f € FP(C") with || f||,, < 1, using Lemma[2.2[(ii), for some number
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T in between t; and ¢, we have

1G] = Creg fllng = 1F(v) = (o) [ ng

n a n 8 )
= [t—tol | >_ J;(Z)(ﬁi_ai) < [t —to| Y 16 — il gg)

i=1 ‘ i=1 i
< 62|t — to| Z |5l — Oéi|(1 + |(1 — T)ai + Tﬁi|)ehg‘2 ||f||n’p

i=1

(al+18D)2

<t —to] Y 18— aul(L+ || +1Bi)e 2
=1

From this it follows that

(lol+18D?2

1G5 =Clo Il < €ft—to| Y [Bi—asl (1]l +|Bi)e 2, Vi, to € [0,1].
i=1
Therefore, thI? 1Cy — Cy, | = 0.
—to

Step 3. Let C, and C be two compact composition operators from
FP(C") to F4(C"). By Steps 1 and 2, Cy, ~ Cu) ~ Cyo) ~ Cp in
C(FP(C™), F1(C™)) via the paths in the set Co(FP(C™), F1(C™)).

From this the assertion follows.

From Theorem and Proposition B.I] we immediately get the fol-
lowing result.

Theorem 3.2. If 0 < ¢ < p < oo, then the space C(FP(C™), F1(C"))
18 path connected.

Now we study the case when 0 < p < ¢ < co. Let denote by E,, the
set of all n x n matrices whose norm is not greater than 1. We say that
two matrices A and D in FE, are equivalent and, briefly, write A ~ D
if A& = D¢ for all € € C" with |A¢| = [£] or |DE| = |£]. Obviously, the
relation A ~ D is an equivalence relation on E,,. Let [E,]| be the set of
all equivalence classes induced by this relation A ~ D.

For a class [A] € [E,], we denote by C(n,p,q,[A]) the set of all
bounded composition operators C,, from F?(C") to F?(C") induced
by ¢(z) = Az + b with A € [A]. Then, by Theorem 2.4]

C(n,p, ¢, [A]) = {C, : 0(2) = Az + b, A € [A], (A¢, b) = 0 if [AL] = [€]}.

We can verify that [0] = {A € E, : ||A]| < 1}. Indeed, if ||A]| < 1,
then |A¢| < [¢| for all nonzero vectors £ € C", hence A is equivalent
to the zero matrix. Otherwise, if [|A|| = 1, then there is a nonzero
vector £ € C" such that |A¢| = |£], but obviously, A # 0&, i.e.,
A + 0. From this and Theorem 2.4l and Proposition B.1], it follows
that C(n,p,q,[0]) = Co(FP(C™), F1(C™)) is a path connected set in
C(FP(Cm™), Fi(C™)).
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In view of this, we will show that this statement is also true for
all sets C(n,p,q,[4]), i.e. all sets C(n,p,q, [A]) are path connected in
C(FP(C™), F1(C™)). To do this, we need the following results.

Lemma 3.3. For every nonzero equivalence class [A] € [E,], there
exist a number j € N and a pair of n X n unitary matrices (V,U) such
that the class [A] consists of all the following matrices

(3.1) A:vcgg)a

where I; is the j X j unit matriz and G is an (n — j) X (n — j) matriz
with |G| < 1.

Proof. Fix an arbitrary matrix A° € [A] and suppose that the singular

value decomposition of A° is VA with A0 = (% ((;,)0) , where j =

max{i : a); = 1} and G is a diagonal (n — j) X (n — j) matrix with
non-negative diagonal elements in the decreasing order and ||G°|| < 1.
By the proof of [5 Lemma 2.4], every matrix A € [A], i.e. A~ A,
can be represented as in (B.]).
Conversely, we can easily see that every matrix A in the form (B.1)
is equivalent to A i.e. A € [A]. Indeed, for every & € C", |A¢| = [¢]
or |[A%| = |¢| if and only if (U€)(;, = 0; and hence,

_ v (U&uY _
A§_V< OH)_A%

for every & € C™ satisfying |A¢| = |€| or |A%] = |¢]. O

Remark 3.4. While the number j in Lemma [3.3]is uniquely determined
for each class [A] € [E,] \ {[0]}, the pair of unitary matrices (V,U) is
not unique. However, all these pairs are closely related in the following

(¢ &)

Let G = VAGU; be the singular value decomposition of G and put

_(1; O _(1; 0
(3.2) VO_(O Vl) andU0—<0 Ul).

We have

sense. Suppose that (17, U ) is another pair. Then A° = 1%

where G is some (n — j) X (n — j) matrix and ||G|| < 1.

~ I. 0 .
A =V, ((; é) UyU.

From this it follows that G = G°, which means that (171/0, UoU ) is
the other pair of unitary factors of the singular value decomposition

AY = (VVy)AYUyU). Then, by [, Theorem 2.6.5), there are n, x n;
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unitary matrix Hy,..., ng X ng unitary matrix Hy and (n —s) X (n — s)
unitary matrices W7 and W5 such that

(33) VVo=V(H,®..0Hy®W,) and UpU = (H: @ ... H; @ W)U

where, for each 1 <17 < d, n; is the multiplicity of the distinct positive
singular value o; of A° and o1 > 09 > ... > 04 and rankA° = s. In this
case o1 = 1 and ny = j.

Proposition 3.5. Let 0 < p < ¢ < oo and C, and Cy be two
composition operators in C(FP(C™), F1(C")) with ¢(z) = Az + b and
¢(z) =Dz+e. If A D then

ICe = Tl 2

N | —

Proof. Since A + D, there exists a point & € C" such that A{ # DE
and |A¢| = |€| or |DE| = [£]. Without loss of generality, assume that
|Ag| = |¢].

For all z,w € C", by Lemma 2.2(i) and ||ky||», = 1, we have

2 2
N Elk L7
2

ICo = Coll = ICihus = Cobullg = [l — ¥ ¢

In particular, if w = ¢(z) or w = ¢(z), then

lo(2)]%~|=|2 l6(=)12=1212  _ Je(2)=d(2)|2
1Co—Cyll=e 2 —e = e T,
or, respectively,
l6(2)|2 2|2 lo(12=1212  _ é(2)—(2)|?
1Co —Cyll=e 2 —e = e 2,

for all z € C". Thus

lo(2) 22|12 l$(2) |2~ |22 lo(2)— ()2
2||C¢—C¢||Z<e¢ 2 +e 2 )(1—e_¢ 2 )

lo(2)|2~|=|2 _le(=)-o(=)|?
>e 2 (1 —e 2 , Vz e C".

On the other hand, since |A¢| = ||, by Theorem 2.4[a), (A&, b) = 0.
Hence, for all A € C,

[ (AE)I* — [AE]* = [AAE + " — |Ag]* = [b]*

and
() = 6(AEI* = (IA]JAE — DE| — [b—e])” — +o0 as |A] — +o0,
since AE # DE. Consequently, with z = A, A € C, we have

2 B 2 2
2y — Cyll > €% <1 — e TR ) e as |\ = +oo.

From this the desired inequality follows. O
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Proposition 3.6. Let 0 < p < q < oo and C, be a composition
operator in C(FP(C™), F1(C™)) induced by p(z) = Az + b with ||A|| =
1. Then the operators C, and Cy belong to the same path connected
component of C(FP(C"™), Fi(C")).

Proof. For each t € [0,1], put ¢4(z) = Az +tb, z € C*. Then, by
Theorem [2:4] all operators C,,t € [0, 1], are bounded from F?(C") to
F(C") and C,, = C, and Cy,, = C4. Thus, we need to show that the

map
0, 1] — C(FP(C™), FU(C")),t —> C,,,

is continuous, that is, |C,, — Cy, || = 0 as t — t, for all ¢, € [0, 1].

Let 3(z) = Az + b be the normalization of ¢, where the singular
value decomposition of A is VAU and b = V*b. Then @; (z) = Az +tb
and by [2.2), Cp, = CyC5Cy and Cy = Cy»C,,Cy-~ for all t € [0, 1].
Thus, [|Cy, — Cy, | = |Cg — Cgi || for all ¢, ¢ € [0, 1].

Put rankA = s and j = max{i : a; = 1}. Then, by Lemma [27]
gi:OforalliSj.

Fix ty € [0,1]. For every t € [0,1] and f € FP(C") with || f||,, < 1,
using the fact that for each z € C", there is a number 7 = 7(2) in
between t and ¢y such that

f(ﬁz + tg) — f(ﬁz + tog) = f(Z[J (AZ + tb)[ ]) f(z 3] (ZZ + tog)l[j})

= (t —to) Zb z[] Az+7‘b)[])

i=j+1
we obtain
1Cf = Carg fllng
qg\" - ~ ~ 9 _alzI?
:<%) / f(Az+tb)—f(Az+t0b)) e 3 dA(2)
4 qlz|?
< Ot — t\q z[j (Az+70), )| e "5 dA(2),

for some constant C' > 0.
Moreover, for every ¢ = j+1,....,n and z € C" fixed, applying Lemma
2.2(ii) to the function f(z(),-) in FP(C"77), hence, in F4(C"), we get

7 12

‘ (Az+7b

- - ~ ~ )
(213, (Az + Tb),[j])’ < (1 + |ayz + 7bi|)e £ (2515 ln—jsa

) ~ ~ (A m\ i)
< e*(1+ |agzi| + |bi])e 1f (515 ln—yjq-

af
82,
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From this and Lemma 2.3 it follows that for every i =5+ 1,...,n

CONN -

0z
< 21 (1+ [@gz| + [bi])"e

,‘1|Z[j]|2

. - q
(210, (A= +70) ;)| €2 dA(z)

/

q(‘ﬁfﬂzu]‘*|5b]|)2

|l
X 27‘(‘ / ||f Z[j ||n ]q 2 A(Z[J])

~ ~ “<| mzm| ‘m‘)
= (1 + @iizi| + [bi])"e 2 [FalE

~ ~ (| 417 [J]| |[J]|)
(14 gz + ) (%) 1,
n _ ~ q(|gl.zl.|+|b.|)
< e <Q> (1 + |@izi| + \b@'\)qe Rl
p
Therefore, for every ¢ € [0,1] and f € FP(C") with || f]l., < 1, we get

ICef — mofll

< Calt —t, |q

IN

8f

2
QH

]] AZ+Tb) ) dA(z)

n i

< Cq62q|t _ t0|q (g> (i)n_]
p 27

a|A72 m| +[))* “Hﬂf
A; S (1t ] + ) e e 2 dA(+y)
n—j

i=741
= MOt — )",

where

oo (1) (@)

o sl )" ol
XZW/ (1 + [auz] + [bi])%e B dA(z) < oo,

i=7+1 Cr-d

since || A7, || < 1.
Consequently, [|Cy, — Cy, || = [|C5 — Cgill < M|t — to] for all
t € [0, 1], which completes the proof. O

Proposition 3.7. Let 0 <p<g<ooand1 <j<n—1and G be an
arbitrary (n — 7) X (n — j) matriz with |G| < 1. Put

(L 0 I 0
A_<00)adD (O(J
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where I is the j x j unit matriz. Then Cy and Cp are in the same

path connected component of C(FP(C™), F1(C")).

Proof. Put ¢,(2) = (1 —t)Az+tDz for each t € [0,1]. Then Cy, = Cy
and C,, = Cp, and by Theorem 2.4, the operators C,, are bounded
from FP(C") to F(C") for all ¢t € [0, 1]. We show that the map

0, 1] — C(FP(C™), FUC")),t —> C,,,

is continuous. _
Let G = V1GU; be the singular value decomposition of G and put

_(1; O I, 0
V—(O V1) and U = (O U1)

Then V and U are n X n unitary matrices and put

A=V"AU _(O 0) and D =V*DU —(0 G’)'

Obviously, for each ¢ € [0,1], @; (2) = (1 — t)Az + tDz and by 22,
Cy, = CyC4Cy and Cp; = Cy=Cy, Cy+. It implies that ||Cg — O || =
1Cy, — C,, || for all ¢, € [0, 1].

Fix ty € [0,1]. For every t € [0,1] and f € FP(C") with || f]|., < 1,
using the fact that for each z € C”, there is a number 7 = 7(z) in
between t and ¢y such that

F@7(2) = f((2)) = f(2 j],tézfj) - f( j],toézfﬂ)

= (t —to) Z g“zZ z[] TGZ )

we get
||Cﬁ @tOfH
~()" [ 1@ - f@(z))}qe—@ JA)

al=|?

gmzz Z[] TGZ]]) e 2 dA(Z),

<C‘1\t—t|q / Z

for some constant C' > 0.
Similarly to the proof of Proposition B.6], for every i = j +1,...,n
and z € C" fixed, using Lemma 2.2(ii), we have
af
‘8 ( J]’TGz[J )

’ [J] }

<e (1 + ‘nglzl) Hf( <L )Hn Jq

(1+|gnzl) £ (e Masa
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From this and Lemma 2.3 for every ¢ = j + 1, ..., n, we obtain

G [ 15

8ZZ ( ~[4]s TGZ[J )
2q ~ q
(1 + ‘guzl‘)

4 |z

e” 2 dA(zy)

| 2

oyl
) G A

q

Qz

= P11 4 [Gaz)e ”f”qﬂ

~ |sz|
< (14 [faa]) e ( ) 171,
n q‘Gz . |2
< e (Q) (1 + [giizl) e =
p

Therefore, for every ¢t € [0,1] and f € FP(C") with || f|., < 1, we get
ICsf - SOtOqu,q

<Cq\t—t|q / Z

< qu2q‘t _ to‘q (Q) (i)n_]
P 2
/ Z |gllzz 1 + |gzzzz|)

i=j+1
= M|t —to]7,

g“zZ z[] TGZJ]) e dA(z)

alasgy " syl
2

where

M = (24 4q (i)n_j
P 27
2 ;12
alG=p]” aly]

X Z/ |Giizi|? 1+|guzl|) 2 e 2 dA(zfﬂ)<oo,

i=7+1 Cn—d

since |G| < 1.
Consequently, [|Cy, — Cy, || = [|C5 — Cgi|l < M|t — to] for all
t € [0, 1], which completes the proof. O

From these auxiliary results we can get necessary and sufficient con-
ditions under which two composition operators belong to the same path
connected component in the space C(FP(C"), F4(C")).

Theorem 3.8. Let 0 < p < g < oo be given. Suppose that C, and Cy
are two composition operators in C(FP(C"), Fi(C")) induced by p(z) =
Az +b and ¢(z) = Dz+e. Then C, and Cy are in the same path
connected component of C(FP(C"™), F4(C")) if and only if A~ D.
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Proof. Necessity. Suppose that C, ~ Cy in C(FP(C"), F?(C")). This
means that there is a continuous path in C(F?(C"), F4(C"™)) connecting
C, and Cy4. Then we can find a finite sequence of composition operators

(Cyp)1 in C(FP(C™), F4(C™)) induced by p;(z) = Az + b so that
1
2 )
for all i = 1,2,...,m — 1. From this and Proposition B.5] it follows that
A~ At foralli =1,2,....m — 1. Thus, A ~ D.

Sufficiency. Suppose now A ~ D. If one of two matrices A and D
has norm less than 1, then so does the other. Hence, C, and Cy are
compact. From this and Proposition [3.1] the assertion follows.

Now consider the case ||A|| = ||D|| = 1. Then, by Lemma [B.3] there
exist n X m unitary matrices U and V such that

(L 0 (L 0
A_V<O G)UandD—V(O G1>U,

C@l = C@ and C@m = C¢> and ”C i C%'HH <

where G and G are (n — j) X (n — j) matrices with ||G]| < 1 and
|G1|| < 1. Put

_(I; O (I O _(I; O
Al—(o G),Dl—(o Gl) andA0—<O 0)

Then, by Proposition 3.1, C4, ~ Cy, ~ Cp, in C(FP(C"), F(C")).

On the other hand, Cy = CyCy,Cy and Cp = CyCp,Cy, hence,
it is easy to see that Cy ~ Cp in C(FP(C"), F2(C")). Indeed, if P,
is a continuous path connecting C4, and Cp, in C(FP(C"), F4(C")),
then CyP,Cy is a continuous path in C(F?(C"), F4(C™)) connecting
the operators Cy and Cp.

Moreover, by Proposition 3.6 we get that C, ~ C4 and Cy ~ Cp in
C(FP(C™), Fi(Cm)).

Following these statements we can complete the proof. O

Finally, we get the following complete description of (path) con-
nected components in the space C(FF(C"), F4(C")).

Theorem 3.9. Let0 < p < g < co. Then the space C(FP(C"), F1(C"))
has the following (path) connected components:

cF(Cm), F(C) = | Cnp.a.l4).
[Al€[En]
In particular, if A is a unitary matriz, then Cy is an isolated point of
C(FP(C), F1(C")).

Proof. Obviously, all sets C(n,p,q,[A]) with [A] € [E,] are disjoint.
Moreover, by Proposition B3], these sets C(n,p, g, [A]) are all open in
the space C(FP(C™), F1(C")).
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On the other hand, by Theorem [3.§], two arbitrary composition op-
erators in C(n, p, q, [A]) belong to the same path connected component
of C(FP(C™), F1(C™)).

Consequently, every set C(n,p, ¢, [A]) with [A4] € [E,] is a path con-
nected component and, simultaneously, a connected component of the
space C(FP(C™), F1(C")).

Moreover, if A is a unitary matrix in M, then [A] = {A}, and
hence, the set C(n,p,q,[A]) contains only the operator C4. That is,
C4 is an isolated point in C(FP(C™), F1(C")). O

Remark 3.10. In the case p = ¢ = 2, our Theorem clarifies the
corresponding main results in [5] and gives an explicit description
of all path connected components and isolated points in the space

C(F2(Cm), F*(C)).

4. THE SPACE OF NONZERO WEIGHTED COMPOSITION OPERATORS

In this section we explicitly describe path connected components in
the space C,,(FP(C™), F4(C™)) of all nonzero weighted composition op-
erators acting from FP(C") to F4(C") under the operator norm topol-
ogy. For two operators Wy, , and W, 4 in C,,(F?(C"), F2(C")), we write
Wy ~ Wy e in Cyu(FP(C"), FU(C™)) if Wy, and W, 4 belong to the
same path connected component of C,(F?(C"), F1(C")).

For p,q € (0,00) and p(z) = Az + b with A € E,, we denote by
F(n,p,q,p) the set of all nonzero functions ¢ € F4(C") such that the
operator Wy, , : FP(C") — F?(C") is bounded. Then

Co(FP(C"), FUC")) = {Wyp - 0(2) = Az+b, A € En,p € F(n,p,q, )}
Similarly to [I8, Lemma 4.8], we have the following lemma.

Lemma 4.1. Let p,q € (0,00), p(2) = Az + b with ||A|| < 1 and
Y, x € F(n,p,q,¢). Then the operators Wy, , and W, , belong to the
same path connected component of C,,(FP(C"), F1(C")).

Proof. We can easily show that there exists a complex valued con-
tinuous function «(t) on [0,1] such that a(0) = 0, a(1) = 1 and
uy = (1 — a(t))yr + a(t)y are all nonzero functions in F(n, p, q, ¢).
Then, the operators Wy, , and W, , are in the same path connected
component of C,,(FP(C"), F4(C")) via the continuous path W,, ,. O

As in Section 3, we firstly study the following subset
Cuwo(FP(C"), FUC™)) = {Wy, s 0(2) = Az+b, [|A]l < 1,9 € F(n,p,q,¢)}
of the space C, (FP(C"), Fi(C")).

Proposition 4.2. Let p, q € (0,00) be given. The set Cy, o(FP(C"), F4(C™))
is path connected in the space C,,(FP(C"), F1(C™)).
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Proof. Let Wy, and W, 4 be two weighted composition operators in
Cuw,o(FP(C™), F1(C")). Then, by Theorems 2.4l and 2.5, W , = C, and
W 4 = C, are compact from F?(C") to F(C™).

By Proposition B.1], Cy, ~ Cy in C(FP(C"), F4(C")) via a path in the
set Co(FP(C™), F4(C™)), and hence, C, ~ Cy in C,(FP(C"), FI(C"))
via a path in C, o(FP(C"), F4(C™)).

On the other hand, by Lemma A.T] we can see that W, , ~ C, and
Wy ~ Cp in Cy(FP(C™), F1(C™)) via the paths of such type W, o,
and respectively, Wy, 4 in Cy, o FP(C"), F4(C™)).

From these the desired assertion follows. O

Now for the case 0 < ¢ < p < oo, from Proposition we get the
following result.

Theorem 4.3. Let 0 < ¢ < p < co. The space Cy,(FP(C™), FI(C™)) is
path connected.

Proof. In view of Proposition [4.2], it is enough to prove that
Co (FP(C"), FI(C")) = Cuo(F7(CT), F1(C")).

Let Wy, € Cyu(FP(C™), FU(C")) with ¢(z) = Az +b. If A =0, then
Wy € Cuo(FP(C™), F4(C™)). Now suppose that rankA = s > 0. It
suffices to show that [[A[| < 1. By contradiction assume that [|A[| = 1.

Then by Lemma 2.7], for the normalization (1, @) of (¥, ¢), we have
B(z) = ety (o)), zeCn,

where j = max{i : a; = 1} and {/;* is a nonzero entire function of zfj]
on C" 7. Obviously, 1 < j < s. Then, for every z € C",
EClErN

Copy (0, B) =1 (215, ) lnmsg €

~ Fl® st =l s

=[|Yu(2j415 s 255 )ln-sg €2 e 2 )

by convention that (zji1,...,25s) = 0 when j = s. This shows that

EZ[S] ({/;, ¢) does not depend on z(;), and hence, it cannot belong to the
space L%(CS, dA).

On the other hand, by [19, Theorem 3.12], EZ[S](@Z, @) € Lr-a(C*,dA).

This contradiction completes the proof. O

Next we focus on the case when 0 < p < ¢ < oo which is more compli-
cated. We have the following result for the set C, o(FF(C™), F1(C™)).

Proposition 4.4. Let 0 < p < g < co. The set Cy, o(FP(C™), F1(C™))
is closed in the space C,(FP(C™), F1(C")).

Proof. Take an arbitrary sequence of weighted composition operators
(Weoi)i € Cuo(FP(C™), F2(C")) converging to Wy, in the space
Cy(FP(C™), F1(C™)). Suppose that p(z) = Az+b and p;(z) = A’z +b'
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with ||AY|| < 1 for all i € N. It is enough to prove that ||A|| < 1. By
contradiction assume that ||A|| = 1.

Let (1, §) be the normalization of (1, ) with respect to the singular
value decomposition A = VAU. Then by (2.2),

Www = CUW$,¢CV and WJ@ = CU* W¢7WCV*.
We also put
Vi1(2) = 0i(U*2) and ¢;(2) = VAU 2 + V*b', 2 € C", i € N.
Then, for each ¢ € N, similarly to (2.2)) we have
Wwiv% = CUW¢i,17wi,1CV and Wlﬂi,h%,l = CU*Wwiv%CV*'

From this, all operators Wy, , .., belong to C,,(F*(C"), F4(C")), hence,
by [19, Proposition 3.1], m(t;1, ;1) < 00; moreover

||W¢,<P - me% H = ||W1Z,¢ - Wwi,l,%,l ||7

for every ¢ € N.
On the other hand, since ||A]| = 1, by Lemma 2.7,

w(z) = e_<zlj]7b[j]>w*<zfj})’
where j = max{i : a5 = 1} and v, is a nonzero entire function of 2

We divide into two cases of {/;*
Case 1. Suppose that 9, ( {ﬂ) # 0. Then, for each i € Nand z € C",
by Lemma [2.2(i), we have

HWW‘P - Wwi,% = HWJ@ - Wwi,hlpi,l
>[|W5 5ka:) — Weia i ka2)lIng

2 2
- SNT S ei1(2)| —1212 F(2)—p;.1(2)
> w<z>€w<zn2 2| bia(2)e 2| ,| g |
~ Fal® [l ==l |#-ein )]
> 1Y(2) e 2 e B (i, in)e” 2

In particular, for z = A§ with § = (1};,0(;) and A € C, the last
inequality means that
B2 |poo-eii00]®

{/;*( b})) e —m(Yi1, pin)e 2

On the other hand, it is casy to see that |A¢| = |¢] and [V* ALU*¢| <
€], then
[BONE) = @ia (M| = IM(J&] = V" AUE]) = b= V8| = +00 as A — oo.
> {/;*( ’m)’e for all ¢ € N. This

means that the sequence Wy, ,, cannot converge to Wy, , in the space
Cy(FP(C™), F1(C™)), which is a contradiction.

Wy = W,

>

B
2

Consequently, [|[Wy,, — W, o,



20 PHAM TRONG TIEN! & LE HAI KHOT?

Case 2. Suppose that {/;*((zo)’[ﬂ) # 0 for some point z° € C" with
(ZO),[].] # 0 in C"77. We put
oz ) = @ (a1 24 + (")),
and

7 e —(2!.1,(20). n
where (0).(2;) = ¥ (2, + (2°)];))e ) 5 e cm,
Similarly, for each ¢ € N we define
©i,1,0(215); ij]) = 902‘,1(2[]'], ij} + (ZO),[]']),
and
— {2l (29). n
@Divl,o(z[ﬂ’z[]) ¢11(2[J J] + (2 )[ﬂ)e ( i )m>> zeCn
Then, all operators Wy, , ..., ¢ € N, and W5 " belong to the space
Cy(FP(C"), F4(C™)). Indeed, we give the proof for Wy - (similarly
for Wy, 1 o.0i10)- For each f € FP(C") we have

W0 g

-(2)' ).

q

/

(210, 25 + (%)) e ~(y 0)“]>f(85(2m’ 2+ ("))

2
||
xe T dA (25, 2;1)

= ) [+ ) ey + ()

o (<130 21+ 0 1)
z[-],z. z .
e i1 dA(z[j],zfj])

q

¢ )m| 0 eyl
=e ( )/)w 2 ) (@ 2)) | e 7 dA(z, 2pp)
| )m|
W55 15
|
That is, W5, 2, fllng = b W5 g for every £ € FP(C),
Repeating this argument for Wy~ — Wy, 0, ,, We can get

|(20)f].]|2
W Jo, Lpof szlo ‘le()f”nq =e 2 HWJ,[ﬁf - Wwi,hlpi,lf”mm

for each f € FP(C"). It implies that

o’

W5 5= Wit i ||, Vi €N

H 0,50 Wwi,l,()y‘ﬂi,l,OH =e€
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Moreover, applying Case 1 to the norm ||W>

” o P0,P0 Wwi,1,0790i,1,0|| with
(wo)*(o/[j]) = w*((zo)l[]}) # 0, we have

2 2

o]

ez ,VieN,

~ |to| ~
T~ Wanroeinoll 2 |(#0)(0f = ()
W z—W 1> {(®0)«(0f)) | e 2 = [ ((z")py)
where by = ©0(0) = #(0p), (20);)- Consequently, for each i € N,
||W¢7SO - W¢i,¢i|| = ||W1Z7@ - Wlﬂi,h%,l ||

‘ 2

_ |9

=€ 2 ||W1Z07@0 - W¢i,1,0730i,1,0||

VNI eyl
> (")) e 2 e 2
It means that the sequence Wy, ., cannot converge to Wy, ., in the space
Cy(FP(C™), F1(C™)), which is a contradiction. O

Now we fix a nonzero equivalence class [A] € [F,]. Let j € N and
a pair of n x n unitary matrices (V,U) be defined as in Lemma
We say that two vectors b! and b? in C" are equivalent by the class [A],
briefly, write b' ~ b by [A], if (V*b');;; = (V*b?);;. Note that this is
an equivalence relation on C" and its definition does not depend on
the choice of the pair of unitary matrics (V,U) in Lemma B.3] Indeed,
suppose that (17, U ) is another pair of unitary matrices in Lemma 3.3

Then, (V,U) and (V,U) are related by (33) in Remark 341

From this, it is easy to see that for every vector b € C"

Vb= Vo(Hy @ ... ® Hy ® W1)'V*b = Vo(H} @ ... © Hy & W)V,
where, recall that (Vp, Up) are defined in ([B.2]) and for each 1 <i < d,
H; is an n; X n; unitary matrix, and Wi, Wy are (n—s) x (n—s) unitary
matrices in (B.3]) with ny = j. Hence, by (83),

(Vb)) = (H @ ... ® Hy @ W)V7b)p = Hi (Vb))
This relation and the unitary property of H; imply that

(V*bY)y) = (V*b?)p; if and only if (V1) = (V*62)y).
We denote by [C"]j4) the set of all equivalence classes on C" by the
above-defined equivalence relation. Since for the zero class [0] € [E,],
the number j = 0, we can suppose that [C"]g has only one equivalence

class [0] which is the whole space C".
By each [A] € [E,] and each [b] € [C"]j4 we define the following set

WAL [B]) = {Wy s 0(2) = Az+b, A € [A],b € [b], 4 € F(n,p,q,)}-

Then, by Propositions and 4.4l the set

WO [0]) = {Wyp s 0(z) = Az +b, A€ [0],b € C", ¢ € F(n,p,q. )}
= Cuo(F7(C"), F4(C"))
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is path connected and closed in C,(F?P(C™), F4(C")).

In view of this, we will prove that this statement is also valid for all
sets W([A], [b]). Then we can get a complete description of all (path)
connected components of the space C,(FP(C"), F4(C")).

Proposition 4.5. Let 0 < p < ¢ < oo. For each [A] € [E,] and
each [b] € [C"](a), the set W([A], [b]) is closed and path connected in
Cu(FP(C™), F1(C™)).

Proof. By Propositions and 4] it suffices to prove for nonzero
equivalence classes [A] € [E,]. For the reader’s convenience we will
divide the proof into the following several steps.

Fix a matrix A° € [A] and a vector 0° € [b]. As in the proof of

Lemma 3.3] let A% = VAU be the singular value decomposition of A°
with A0 = 8’ (20
diagonal (n — j) X (n — j) matrix with ||G°|| < 1.

Step 1. We give an explicit representation for all operators in
W([A], [B])-

Fix an arbitrary operator Wy, , € W([A], [b]), i.e. p(z) = Az+b with
A € [A],b € [b]. By Lemma 3.3, we have

, where I; is the j X j unit matrix and G° is a

o 1 . 1 [j 0
A=VAU with A _<O G)’

where G is an (n — j) X (n — j) matrix and ||G|| < 1.
We put

Pi(2) = 6(U2), @n(e) = Alz 4+, B = Vb,
Similarly to (2.2]), we have
Ww7go = CUW¢1,¢ICV and le,cpl = CU*Ww,cpCV*-

This shows that the operator Wy, ., belongs to C,(F?(C"), Fi(C")),
hence, by [19, Proposition 3.1], m(t1, 1) < oo. Then applying the
argument of Lemma 27 to the pair (¢, 1), we get that ¢(z) =

e_<z[f]’blljl>@/)1,*(zfﬂ) with some nonzero entire function 9, , of ij] on C",

Moreover, since b € [b], (V*b);;; = (V*b°)(;], hence, b[lj = (V).
Therefore, for each z € C™

o (V501 .

P(z) =e {1 (V=0 )[”>1P1,*(ij]) and ¢, (2) = A'z + ((V bo)m, (bl)fj )

Then, for each f € FP(C") and z € C", we have
o (V*5O)1 .
Wi [ (2) = ra(afy)e™ G000 £ (o 4+ (V) 5, Gy + (6)fy)
= (T(V*bo)[j] W¢1,*,<p1,*)f(z)7

where

(4.1)  @ra(z) = A"z + (0, (01)f) = (20, Gy + (01)y)
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and

(4.2)

{2, *7.0) . % n
Tivewy, f (s ) = € 00 £ (15 4+ (V). 2), £ € FP(C.

We can check that T, (V<b0),,; 18, In fact, an invertible bounded weighted
composition operator on each space FP(C") with
*10 2
-1 _ V*b() X 2 |(V b )[]]|
T(V*bo)m =e |( )[J]‘ T,(V*bO)m and HT(V*bO)[j]” =€ 2

Consequently, each operator Wy, in W([A], [b]) can be represented

as follows

Wy = CoTivew) ;Wes 01 Cvs
where 1); . is a nonzero entire function of zfj] and ¢y . is of (£I)) and
Ty, is defined in (E2).

Step 2. We show that the set W([A],[b]) is closed in the space
Cy(FP(C™), F1(C™)). To do this, we take an arbitrary sequence (W, ., ):
from W([A], [b]) converging to an operator W, , in C,,(F*(C™), F4(C")).
Suppose that p;(z) = A’z + b, A" € [A],b" € [b] for each i € N, and
¢(z) = Dz + e. We have to prove that W, 4 is also in W([A], [b]), that
is, D € [A] and e € [b].

By Step 1, for each i € N,

W’lﬂi,cpi == CUT(V*bO)[J] W¢i,l,*y¢i,1,*c‘/7
where ); ; . is a nonzero entire function of zf i and
i1 i1 _ i i1
ina(z) = A"z + (0y), (071)(;) = (241, G2y + (07)]),

I 0

Sh Bl R A .
with "' = V*b' and A»" = 0 G

) , where G' is an (n—j) x (n —j)

matrix with |G| < 1.
Consider the sequence (Wy,, , o,.)i- For every i € N, obviously,
Wiirpin. € Cu(FP(C™), FI(C™)), and we have

”WW,L*,%,L* - T ] CU*WX#)CV*

(V*50)
-1 _1
< Ty, Wi = Woeol = 0, as i — oo,

That is, the sequence (Wy, , . o, .)i converges to the weighted composi-
tion operator Wy, , ¢, ., = T(;/l*bo)[j] Cy«Wy ¢Cy= in C(FP(C™), FI(CM)).

Suppose that ¢y .(z) = D'z + e with
Dy D
Dl — 1 Dio
(D21 Doy
where D117 D127 D21 and D22 arej X j, j X (n —j), (n —]) Xj and

(n — j) x (n — j) matrices, respectively. We will show that Dy; = I,
D1y =0, Dy =0, || Dys| < 1 and (e")p; = 0.
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For every f € FP(C"), the sequence (Wy,, ., f)i converges to
Wi, f in FI(C"). That is,

(4.3) Vi (2 f (200, G2y + (0)) = x1.:(2) f(D'z + €')
in F?(C"), and hence, pointwise on C".

Firstly, with f(2) = 1 in F?(C"), (£3) means that v, pointwise
converges to x1,. on C". Since ;. does not depend on zj;, so does
X1, that is, x1 . is also a nonzero entire function of ij]'

Secondly, for every f € F?(C") independent on z(;, ({.3) means that
for every z € C",

Vi (2) f (217) = X1 (2 F (D2 + €')pyy)-

On the other hand, since ;1,.(2(;) = x1,«(%(;)), hence

wi,l,*(z[j])f(Z[j]) — Xl,*<zm)f<2m) for all z € C".
Consequently, f((D'z+e');)) = f(zy) for all z € C™ and f € FP(C")

independent on zf - From this we can conclude that for every z € C",
(D'z+el)y) = 215, 1 e Duzy+ Dz + () = 25 Thus, Duy = I
and Dj; = 0 and (e');; = 0.

Thirdly, for every f € FP(C") independent on zj;j, (43) means that
for every z € C",

Vi () F (G2 + (07)5) = xaw(2) f (D2 + €')p)

Since wll*( )]‘(GZ ’]+ (b-1) ’m) are independent on z;) for all i € C",
s0 I8 x1.4(2 m)f((D z+e )m). Therefore, (D'z + el)’m = Doz +
D22zm (el)’m is independent on zj;}, and hence, Dy = 0.

It remains to prove that || Das|| < 1. For the mappings
Piza(3ly) = G2y + (0" and a.(ef)) = Doy + (€))f,

the operators Wy, , , ., and Wy, 4, can be considered as two oper-
ators in the space C,,(F?(C"7), F4(C"7)), by convention that C"7 =
{z; = (zj+1, ., 2) 1 2 € C"} . We show it for Wy, |, 4.0, (similarly
for Wy, . 4..). For every f € FP(C"77), i. e. for every f € FP(C")

independent on zj;, we have || f|l,—;, = || f|lnp and

Wwi,1,*790i,2,*f(zfj}) = 'QZ)LL*( )f(GZZ[] (bi’l)/[j}) = Wwi,1,*7%,1,*f(z)a

hence |W¢'i,1,*,<ﬂi,2,*f||n_qu = ||Wwi,1,*,<ﬂi,1,*f||n_j7q = ||W¢i,1,*7soi,1,*f||n,Q'
Then,
HWW,L*,%Q,* = Sup{”WW,L*,%,&*an*j,q : f € 'Fp(cnij% Hf”nfjlp < 1}

= Sup{||Wwi,1,*,<ﬂi,1,*f||n,q : f € ‘Fp(cn_j)a Hf”mp < 1}
< sup{|Wi 1 vpinn fllng o f € FP(C) [ fllnp < 1}
= HWwi,l,*y‘Pi,l,*H'
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Repeating this argument for [[Wy, ..., — Wy, ¢,.[l, we get that
||W'¢'i,1,*780i,2,* - le,*,¢2,*” < ||W'¢'i,1,*,<ﬂi,1,* - WX1,*,¢1,*H for all « € N.
It implies that the sequence (Wy,, . 4,.): converges to Wy, 4, in
Cy(FP(Cr7), Fa(C7)).

On the other hand, since |G| < 1, all operators Wy, , .., be-
long to the set C, o(F?(C"7), F4(C"7)), which, by Proposition £.4]
is closed in C\,(FP(C"7), F4(C"7)). Therefore, Wy, . 4,. also belongs
to the set Cy,o(FP(C"7), F4(C" 7)), and hence, || Dyl < 1.

Thus, we have

WX,(b = CUT(V*I)O)[J-] WXI,*7¢1,* CV7

where ¢1,(z) = D'z + €' with (e');; = 0 and D' = ({)J DO ) with
22

| Das|| < 1. From this it follows that

x(2) = e*((Uz)[j]v(v*bO)[jﬁXL*((UZ)’U]) and ¢(z) = Dz + e,

I 0
0 Dy

This and Lemma B3 imply that D € [A] and (V*e);; = (V*0Y);, and
hence, D € [A] and e € [b]. That is, W, 4 belongs to W([A], [b]).

Step 3. We prove that the set W([A], [b]) is path connected. Let
Wy, and W, 4 be two operators in W([A], [b]) with ¢(2) = Az+b and
¢(z) = Dz + e. Then by Step 1,

Ww,w = CUT(V*bO)[j] le,*,vl,*CV and WX,¢> = CUT(V*bO)[j] WX1,*,¢1,*CV7

D=VD'U=V ( ) Uand e = V((V0")y, (e')py)-

where 9 ,, X1« are nonzero entire functions of zfj], the function ¢ , is

of (A1) and
$1,(2) = D2+ (01, (€)y) = (2130 Hey + (€')z),

with e! = V*e and D! = (% [g) , where H is an (n — j) x (n — j)

matrix with | H|| < 1.

From this and Theorem 2.4], the operators C,, , and Cy, , are bounded
from FP(C") to F4(C"). Then, by Lemma BT, Wy, , ,, . ~ C,,, and
WX1,*,¢1,* ~ C¢1,* in G, (FP(C"), F4(C")).

On the other hand, obviously A' ~ D!. Then by Theorem 3.8
Cy,. ~ Cy,  inC(FP(C"), Fi(C™)), and hence, in C,,(FP(C"), FI(C™)).
So we have le,*#’l,* ~ 0901,* ~ C¢1,* ~ WXI,*7¢1,* in CW(FP(Cn)"Fq(Cn))
It means that there is a continuous path P (t),t € [0,1], connecting
Wiy o1, and Wy, g in the space C,(FP(C"), F4(C")). Thus, the

map

P(t) = CuTyepy, Pr(t)Cy,t € [0,1],
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is a continuous path connecting Wy, , and W, 4 in C,,(F?(C™), F4(C")).
Indeed, the operators Cy, T; (V*50) ) C'y are nonzero bounded weighted
composition operators on every Fock space FP(C") and all operators
Pi(t),t € [0,1], are in the space C,,(FP(C"), F4(C"™)). Hence, the oper-
ators P(t) = CyT(y-w),, P1(t)Cy belong to C, (FP(C"), FI(C")) for all
t € [0,1]. Moreover, for every t,tq € [0, 1] we have

[P () = P(to)ll = HCUT(V*bO)mPl (t)Cy — CUT(V*bO)U]Pl (to)Cv ||
< [Ty, INIPL(2) = Pulto)|| = 0, as t — to.

Thus, Wy, and W, 4 are in the same path connected component of
Cw(FP(C™), F1(C™)).

On the other hand, by Step 2, all sets W([A'], [V']) with [A] € [E,]
and [0'] € [C"];aq are closed in the space C,(FP(C"), F4(C")); more-
over, they are disjoint. Thus, the path P(t) connecting Wy, , and W, ,
in C,(FP(C™), F4(C™) must be in the set W([A], [b]).

From this Step 3 follows. U

From Propositions [4.2] [4.4] we get immediately the following
result.

Theorem 4.6. Let 0 < p < g < oo, the space Cy,(FP(C"), F4(C™)) has
the following (path) connected components:

Co(FP(C), FiCcm) = U W(A

[A]€[En] [b]€[Cm]14

Proof. By Propositions .2, 1.4 and 4.5 all sets W([A], [b]) are path
connected and closed in C, (FP(C"), F4(C")). Moreover, they are dis-
joint. Then, each set W([A], [b]) is a path connected component, and,
simultaneously, a connected component in C,(FP(C"), F1(C")). O
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