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Abstract

In this paper we have investigated some properties of the power graph and
commuting graph associated with a finite group, using their tree-numbers.
Among other things, it has been shown that the simple group L2(7) can
be characterized through the tree-number of its power graph. Moreover,
the classification of groups with power-free decomposition is presented.
Finally, we have obtained an explicit formula concerning the tree-number
of commuting graphs associated with the Suzuki simple groups.

Keywords: Power graph, commuting graph, tree-number, simple group.

1 Notation and Definitions

We will consider finite undirected simple graphs Γ = (VΓ, EΓ), where VΓ 6= ∅
and EΓ are the vertex set and edge set of Γ, respectively. A clique (or a complete
set) in Γ is a subset of VΓ consisting of pairwise adjacent vertices (we do not
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require that it be a maximal complete set). Especially, a complete graph is a
graph in which the vertex set is a complete set. A coclique (edgeless graph or
independent set) in Γ is a set of pairwise nonadjacent vertices. The independence
number, denoted by α(Γ), is the size of the largest coclique in Γ.

A spanning tree for a graph Γ is a subgraph of Γ which is a tree and contains
all the vertices of Γ. The tree-number (or complexity) of a graph Γ, denoted by
κ(Γ), is the number of spanning trees of Γ (0 if Γ is disconnected), see [18]. The
famous Cayley formula shows that the complexity of the complete graph with
n vertices is given by nn−2 (Cayley’s formula).

In this paper, we shall be concerned with some graphs arising from finite
groups. Two well known graphs associated with groups are commuting graphs
and power graphs, as defined more precisely below. Let G be a finite group and
X a nonempty subset of G:

• The power graph P(G,X), has X as its vertex set with two distinct ele-
ments of X joined by an edge when one is a power of the other.

• The commuting graph C(G,X), has X as its vertex set with two distinct
elements of X joined by an edge when they commute in G.

Clearly, power graph P(G,X) is a subgraph of C(G,X). In the case X = G,
we will simply write C(G) and P(G) instead of C(G,G) and P(G,G), respec-
tively. Power and commuting graphs have been considered in the literature,
see for instance [1, 4, 5, 8, 13, 17]. In particular, in [13, Lemma 4.1], it is
shown that P(G) = C(G) if and only if G is a cyclic group of prime power
order, or a generalized quaternion 2-group, or a Frobenius group with kernel
a cyclic p-group and complement a cyclic q-group, where p and q are distinct
primes. Obviously, when 1 ∈ X , the power graph P(G,X) and the commuting
graph C(G,X) are connected, and we can talk about the complexity of these
graphs. For convenience, we put κP(G,X) = κ(P(G,X)), κP(G) = κ(P(G)),
κC(G,X) = κ(C(G,X)) and κC(G) = κ(C(G)). Also, instead of κP(G,X) and
κC(G,X), we simply write κP(X) and κC(X), if it does not lead to confusion.
All groups under discussion in this paper are finite and our group theoretic
notation is mostly standard and follows that in [7].

2 General Lemmas

We first establish some notation which will be used repeatedly in the sequel.
Given a graph Γ, we denote by AΓ and DΓ the adjacency matrix and the
diagonal matrix of vertex degrees of Γ, respectively. The Laplacian matrix of
G is defined as LΓ = DΓ −AΓ. Clearly, LΓ is a real symmetric matrix and its
eigenvalues are nonnegative real numbers. The Laplacian spectrum of Γ is

Spec(LΓ) = (µ1(Γ), µ2(Γ), . . . , µn(Γ)) ,

where µ1(Γ) > µ2(Γ) > · · · > µn(Γ), are the eigenvalues of LΓ arranged in
weakly decreasing order, and n = |V (Γ)|. Note that, µn(Γ) is 0, because each
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row sum of LΓ is 0. Instead of AΓ, LΓ, and µi(Γ) we simply write A, L, and
µi if it does not lead to confusion.

For a graph with n vertices and Laplacian spectrum µ1 > µ2 > · · · > µn = 0
it has been proved [2, Corollary 6.5] that:

κ(Γ) =
µ1µ2 · · ·µn−1

n
. (1)

The vertex–disjoint union of the graphs Γ1 and Γ2 is denoted by Γ1 ⊕ Γ2.
Define the join of Γ1 and Γ2 to be Γ1 ∨ Γ2 = (Γc

1 ⊕ Γc
2)

c. Evidently this is
the graph formed from the vertex–disjoint union of the two graphs Γ1,Γ2, by
adding edges joining every vertex of Γ1 to every vertex of Γ2. Now, one may
easily prove the following (see also [15]).

Lemma 2.1 Let Γ1 and Γ2 be two graphs on disjoint sets with m and n vertices,
respectively. If

Spec(LΓ1
) = (µ1(Γ1), µ2(Γ1), . . . , µm(Γ1)) ,

and
Spec(LΓ2

) = (µ1(Γ2), µ2(Γ2), . . . , µn(Γ2)) ,

then the following hold:

(1) The eigenvalues of Laplacian matrix LΓ1⊕Γ2
are:

µ1(Γ1), . . . , µm(Γ1), µ1(Γ2), . . . , µn(Γ2).

(2) The eigenvalues of Laplacian matrix LΓ1∨Γ2
are:

m+n, µ1(Γ1)+n, . . . , µm−1(Γ1)+n, µ1(Γ2)+m, . . . , µn−1(Γ2)+m, 0.

Two Examples. (1) Consider the complete bipartite graph Ka,b = Kc
a ∨ Kc

b .
Then, by Lemma 2.1 (2), the eigenvalues of Laplacian matrix LKc

a∨Kc
b
are:

a+ b, b, b, . . . , b
︸ ︷︷ ︸

(a−1)−times

, a, a, . . . , a
︸ ︷︷ ︸

(b−1)−times

, 0.

Using Eq. (1) we get κ(Ka,b) = ba−1ab−1.
(2) A graph Γ is a split graph if its vertex set can be partitioned into a clique

C and an independent set I, where VΓ = C ⊎ I is called a split partition of Γ
(see [9]). Now, consider the split graph Γ = Ka ∨ Kc

b . Again, by Lemma 2.1
(2), the eigenvalues of Laplacian matrix LKa∨Kc

b
are:

a+ b, a+ b, a+ b, . . . , a+ b
︸ ︷︷ ︸

(a−1)−times

, a, a, . . . , a
︸ ︷︷ ︸

(b−1)−times

, 0,

and it follows from Eq. (1) that κ(Γ) = (a+ b)a−1ab−1.
Next lemma determines the complete commuting graphs and power graphs.

3



Lemma 2.2 Let G be a finite group. Then, we have

(1) The commuting graph C(G) is complete iff G is an abelian group.

(2) The power graph P(G) is complete iff G is a cyclic p-group for some prime
p (see Theorem 2.12 in [6]).

An immediate consequence of Lemma 2.2 is that κP(Zpn) = pn(p
n−2) and if

X ⊂ G is a commuting set, then κC(G,X) = |X ||X|−2. We will use these facts
without further references.

Lemma 2.3 Let M and N be subgroups of a group G such that M ∩ N = 1.
Let x ∈ M and y ∈ N be two arbitrary nontrivial elements. Then, x and y are
nonadjacent in P(G) as two vertices. In particular, if m > 1 and X = ∪m

j=1Gj ,
where 1 < Gj < G and Gi ∩Gj = 1 for i 6= j, then we have

P(X#) =

m⊕

j=1

P
(
G#

j

)
,

where X# = X \ {1} and G#
j = Gj \ {1}.

Proof. It is easy to see that 〈x〉 ∩ 〈y〉 ⊆ M ∩N = 1, which forces 〈x〉 6⊆ 〈y〉 and
〈y〉 6⊆ 〈x〉. �

As an immediate consequence of Lemma 2.3, we obtain

Corollary 2.4 Let G be a finite group. Then the following hold:

(1) If G has even order, then Inv(G), the set of involutions of G, forms an
independent set of P(G).

(2) Any pair of elements in G with relatively prime orders forms an inde-
pendent set of P(G), especially we have α(P(G)) > |π(G)|, where π(G)
denotes the set of all prime divisors of |G|.

A universal vertex is a vertex of a graph that is adjacent to all other vertices
of the graph. The following lemma [5, Proposition 4] determines the set of
universal vertices of the power graph of G, in general case.

Lemma 2.5 Let G be a finite group and S the set of universal vertices of the
power graph P(G). Suppose that |S| > 1. Then one of the following occurs:

(a) G is cyclic of prime power order, and S = G;

(b) G is cyclic of non-prime-power order n, and S consists of the identity and
the generators of G, so that |S| = 1 + φ(n);

(c) G is generalized quaternion, and S contains the identity and the unique
involution in G, so that |S| = 2.
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Lemma 2.6 [16, Theorem 3.4] If H1, H2, . . . , Ht are nontrivial subgroups of
a group G such that Hi ∩ Hj = {1}, for each 1 6 i < j 6 t, then we have
κP(G) > κP(H1)κP(H2) · · ·κP(Ht).

Lemma 2.7 [16, Lemma 6.1] Let G be a finite nonabelian simple group and let
p be a prime dividing the order of G. Then G has at least p2 − 1 elements of
order p, or equivalently, there is at least p+ 1 cyclic subgroups of order p in G.

3 Main Results

3.1 Power Graphs

We begin with some elementary but useful results of power graphs. Before
stating the results, we need to introduce some additional notation. Let X be a
nonempty subset of G#, the set of nonidentity elements of G. We denote by 1X
the bipartite graph with partite sets {1} and X . Let φ denote Euler’s totient
function, so that φ(n) = |Z×

n |. We will preserve these notation throughout this
section.

Lemma 3.1 Let G be a group and H be a proper subgroup of G. If m is the
order of an element of G \H, then we have

κP(G) > (φ(m) + 1)φ(m)−1 κP(H).

In particular, κP(G) > κP(H), with equality if and only if G is a Frobenius
group with kernel H and complement C of order 2.

Proof. Let x be an element in G\H of order m. Set Ωx = {y | 〈y〉 = 〈x〉}∪{1}.
Clearly, Ωx ∩ H = 1 and |Ωx| = φ(m) + 1. Note that the induced subgraph
P(G,Ωx) is a complete graph, that is P(G,Ωx) = Kφ(m)+1. Now, if TΩx

and TH

are two arbitrary spanning trees of P(G,Ωx) and P(G,H), respectively, then
TG = TΩx

∪ TH ∪ 1G\(Ωx∪H) is a spanning tree of P(G). Thus, by product rule
the number of such spanning trees of P(G) is equal to

κP(Ωx) · κP(H) · 1 = (φ(m) + 1)φ(m)−1κP(H). (by Cayley’s formula)

This shows that the following inequality holds:

κP(G) > (φ(m) + 1)φ(m)−1κP(H),

as required. Finally, since for each positive integer m, (φ(m) + 1)φ(m)−1 > 1, it
follows that κP(G) > κP(H).

The preceding argument suggests how to construct a spanning tree of P(G)
through a spanning tree of P(G,H). In fact, if TH is a spanning tree of P(G,H),
then TG = TH ∪ 1G\H is a spanning tree of P(G), which leads again to the
inequality κP(G) > κP(H). Moreover, the equality holds if and only if P(G,G\
H) is a null graph and there are no edges between vertices in G \H and H#.
We argue under these conditions that G is a Frobenius group with kernel H and
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complement C of order 2. We first observe that every element in G \H is an
involution. Also, for all x ∈ G \H and h ∈ H , xh ∈ G \H and so (xh)2 = 1, or
equivalently x−1hx = h−1. This shows that H is a normal subgroup of G and
the cyclic subgroup C = 〈x〉 of order 2 acts on H by conjugation which induces
a fixed-point-free automorphism of H . Hence, G = HC is a Frobenius group
with kernel H and complement C, as required. �

A group G from a class F is said to be recognizable in F by κP(G) (shortly,
κP -recognizable in F) if every group H ∈ F with κP(H) = κP(G) is isomorphic
to G. In other words, G is κP -recognizable in F if hF (G) = 1, where hF(G) is
the (possibly infinite) number of pairwise non-isomorphic groups H ∈ F with
κP(H) = κP(G). We denote by S the classes of all finite simple groups. In the
sequel, we show that the simple group L2(7) ∼= L3(2) is κP -recognizable group
in class S, in other words hS(L2(7)) = 1.

Theorem 3.2 The simple group L2(7) is κP -recognizable in the class S of all
finite simple groups, that is, hS(L2(7)) = 1.

Proof. Let G ∈ S with κP(G) = κP(L2(7)) = 284 · 328 · 740 (see [12, Theorem
4.1]). We have to prove that G is isomorphic to L2(7). Clearly, G is nonabelian,
since otherwise G ∼= Zp for some prime p, and so κP(G) = κP(Zp) = pp−2,
which is a contradiction. Now, we claim that π(G) ⊆ {2, 3, 5, 7}. Suppose
p ∈ π(G) and p > 11. Let cp be the number of cyclic subgroups of order p in G.
By Lemma 2.7, cp > p+ 1, because G is a nonabelian simple group. Therefore,
from Lemma 2.6, we deduce that

κP(G) > κP(Zp)
cp > κP(Zp)

p+1 = p(p−2)(p+1) > 11108 > κP(G),

which is a contradiction. This shows that π(G) ⊆ {2, 3, 5, 7}, as claimed.
By results collected in [21, Table 1], G is isomorphic to one of the groups

A5
∼= L2(4) ∼= L2(5), A6

∼= L2(9), S4(3) ∼= U4(2), L2(7) ∼= L3(2), L2(8), U3(3),
A7, L2(49), U3(5), L3(4), A8

∼= L4(2), A9, J2, A10, U4(3), S4(7), S6(2) or O
+
8 (2).

In all cases, except A5 and L2(7), G contains a subgroup H which is isomorphic
to A6 (see [7]). But then, κP(G) > κP(H) = 2180 · 340 · 5108, a contradiction.
If G is isomorphic to A5, then κP(G) = 220 · 310 · 518, which contradicts the
assumption. Thus G is isomorphic to L2(7), as required. �

3.2 Power-Free Decompositions

A generalization of split graphs was introduced and investigated under the name
(m,n)-graphs in [3]. A graph Γ is an (m,n)-graph if its vertex set can be
partitioned into m cliques C1, . . . , Cm and n independent sets I1, . . . , In. In this
situation,

VΓ = C1 ⊎ C2 ⊎ · · · ⊎ Cm ⊎ I1 ⊎ I2 ⊎ · · · ⊎ In,

is called an (m,n)-split partition of Γ. Thus, (m,n)-graphs are a natural gen-
eralization of split graphs, which are precisely (1, 1)-graphs.

Accordingly, we are motivated to make the following definition.
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Definition 3.3 Let G be a group and n > 1 an integer. We say that G has
an n-power-free decomposition if it can be partitioned as a disjoint union of a
cyclic p-subgroup C of maximal order and n nonempty subsets B1, B2, . . . , Bn:

G = C ⊎B1 ⊎B2 ⊎ · · · ⊎Bn, (2)

such that the Bi’s are independent sets in P(G) and |Bi| > 1, for each i. If
n = 1, we simply say G = C ⊎B1 is a power-free decomposition of G.

Since C is a cyclic p-subgroup of maximal order in Definition 3.3, C is a
clique, and so Eq (2) is a (1, n)-split partition of P(G). Note that, there are
some finite groups which do not have an n-power-free decomposition, for any
n, for example one can consider cyclic groups (see Proposition 3.5). On the
other hand, the structure of groups G which have a power-free decomposition
is obtained (see Theorem 3.8).

Lemma 3.4 Suppose G has an n-power-free decomposition:

G = C ⊎B1 ⊎B2 ⊎ · · · ⊎Bn,

where C is a cyclic p-subgroup of G. Then the following statements hold:

(a) If b ∈ G \ C, then φ(o(b)) 6 n. In particular, we have

π(G) ⊆ π((n + 1)!) ∪ {p}.

(b) If p /∈ π((n + 1)!), then C is normal and CC(b) = 1 for each b ∈ G \ C.
In particular, Z(G) = 1.

(c) The set of universal vertices of P(G) is contained in C.

Proof. (a) The first statement follows immediately from the fact that the set of
generators of cyclic group 〈b〉, which has φ(o(b)) elements, forms a complete set
in the P(G,G \ C), and hence each Bi contains at most one of the generators.
The second statement is also clear, because for each q ∈ π(G) \ {p}, there exists
an element b ∈ G \ C of order q, and so by first part φ(q) = q − 1 6 n, or
q 6 n+ 1.

(b) Assume the contrary. Let C = 〈x〉 with o(x) = pm > 1. Then, there
exists b ∈ G\C such that xb /∈ C. By part (a) it follows that φ(o(xb)) 6 n. Since
o(xb) = o(x), φ(o(xb)) = φ(o(x)) = φ(pm) = pm−1(p− 1), and so we obtain

p− 1 6 pm−1(p− 1) 6 n.

This forces p 6 n+ 1, which contradicts the hypothesis.
Let b ∈ G \ C. Suppose c in C is not the identity and commutes with

b. Replacing b by an appropriate power, we may assume without loss that p
divides o(bc). Thus, we conclude that p− 1 divides φ(o(bc)). Since bc ∈ G \ C,
by part (a) we have φ(o(bc)) 6 n. Thus, it follows that p − 1 6 n, which is a
contradiction. This shows that CC(b) = 1, as required.
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(c) It is clear from Definition 3.3. �

As the following result shows that there are some examples of groups for
which there does not exist any n-power-free decomposition.

Proposition 3.5 Any cyclic group has no n-power-free decomposition.

Proof. Assume the contrary and let G = 〈x〉 be a cyclic group with an n-power-
free decomposition:

G = C ⊎B1 ⊎B2 ⊎ · · · ⊎Bn,

for some n > 1, where C ⊂ G is a cyclic p-subgroup. Clearly, x is a universal
vertex in P(G), and so by Lemma 3.4 (c), x ∈ C. But then C = G, which is a
contradiction. The proof is complete. �

Proposition 3.6 The generalized quaternion group Q2n , n > 3, has a 2-power-
free decomposition.

Proof. With the following presentation:

Q2n = 〈x, y | x2n−1

= 1, y2 = x2n−2

, xy = x−1〉,

we may choose C = 〈x〉, and

B1 = {y, xy, . . . , x2n−2−1y}, B2 = {x2n−2

y, x2n−2+1y, . . . , x2n−1−1y}.

Then Q2n = C ⊎ B1 ⊎ B2 is a 2-power-free decomposition, and this completes
the proof. �

Given a group G, 1 ∈ G is a universal vertex of the power graph P(G). Now,
as an immediate corollary of Lemma 2.5 and Propositions 3.5 and 3.6, we have
the following.

Corollary 3.7 Let G be a group, S the set of universal vertices of the power
graph P(G), and |S| > 1. Then G has an n-power-free decomposition iff G is
isomorphic to a generalized quaternion group.

Theorem 3.8 The following conditions on a group G are equivalent:

(a) G has a power-free decomposition, G = C ⊎ B, where C is a cyclic p-
subgroup of G.

(b) One of the following statements holds:

(1) p = 2 and G is an elementary abelian 2-group of order > 4.

(2) p = 2 and G is the dihedral group D2m of order 2m, for some integer
m > 3.

(3) p > 2 and G is the dihedral group D2pn (a Frobenius group) of order
2pn with a cyclic kernel of order pn.
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Proof. (a) ⇒ (b). Suppose G = C⊎B is a power-free decomposition of G, where
C ⊂ G is a cyclic p-subgroup of maximal order. It follows by Lemma 3.4 (a)
that every element b ∈ B is an involution, and also |G| = 2mpn, for some odd
prime p and m > 1, n > 0. We shall treat the cases n = 0 and n > 1, separately.

Case 1. n = 0. In this case, G is a 2-group. If |C| 6 2, then G is an
elementary abelian 2-group and (1) holds. We may now assume that |C| > 2.
Put C = 〈x〉. Then, for every b in B, xb is not an involution and so xb ∈ C,
which shows that C is a normal subgroup of G. Thus G/C is an elementary
abelian 2-group by the previous paragraph.

We now claim that [G : C] = 2. To prove this, we assume that [G : C] = 2t,
where t > 2. Let I = Inv(G) be the set of involutions of G. Then, we have
I = B ∪ {z}, where z is the unique involution in C, and so

|I| = |B|+ 1 = |G| − |C|+ 1 = |G| −
|G|

2t
+ 1 =

(
2t − 1

2t

)

|G|+ 1 >
3

4
|G|+ 1,

which forces G to be an abelian group. We recall that, a finite group is abelian
if at least 3/4 of its elements have order two. But then, if b ∈ B, then bx is not
an involution and also bx /∈ C, which is a contradiction.

Let b be an involution in B. Then G = 〈x, b〉. Since bx ∈ B, bx is an
involution, and thus bxb = x−1, which implies that G is a dihedral group and
(2) follows.

Case 2. n > 1. In this case, |G| = 2mpn where m,n > 1, and C is a cyclic
p-group of maximal order. As in previous case C = 〈x〉 is a normal subgroup
of G and G/C is an elementary abelian 2-group. Note that, G does not contain
an element of order 2p, and so C = CG(C). Moreover, since

G/C = NG(C)/CG(C) →֒ Aut(C),

and Aut(C) is a cyclic group of order φ(pn) = pn−1(p − 1), we conclude that
|G/C| = 2. Therefore, if b is an involution in G, then G = 〈x, b〉 = 〈x〉 ⋊ 〈b〉,
and since b acts on 〈x〉 fixed-point-freely, G is a Frobenius group of order 2pn

with cyclic kernel C of order pn, and (3) follows.
(b) ⇒ (a). Obviously. �

3.3 Commuting Graphs

In this section, we consider the problem of finding the tree-number of the com-
muting graphs associated with a family of finite simple groups. The Suzuki
groups Sz(q), an infinite series of simple groups of Lie type, were defined in
[19, 20] as subgroups of the groups L4(q), with q = 22n+1 > 8. In what follows,
we shall give an explicit formula for κC(Sz(q)). Let G = Sz(q), where q = 22n+1.
We begin with some well-known facts about the simple group G. These results
have been obtained by Suzuki [19, 20]:

(1) Let r = 2n+1. Then |G| = q2(q−1)(q2+1) = q2(q−1)(q−r+1)(q+r+1),
and µ(G) = {4, q − 1, q − r + 1, q + r + 1}. For convenience, we write
αq = q − r + 1 and βq = q + r + 1.

9



(2) Let P be a Sylow 2-subgroup of G. Then P is a 2-group of order q2 with
exp(P ) = 4, which is a TI-subgroup, and |NG(P )| = q2(q − 1).

(3) Let A ⊂ G be a cyclic subgroup of order q − 1. Then A is a TI-subgroup
and the normalizer NG(A) is a dihedral group of order 2(q − 1).

(4) Let B ⊂ G be a cyclic subgroup of order αq. Then B is a TI-subgroup
and the normalizer NG(B) has order 4αq.

(5) Let C ⊂ G be a cyclic subgroup of order βq. Then C is a TI-subgroup
and the normalizer NG(C) has order 4βq.

We recall that, in general, a subgroup H 6 G is a TI-subgroup (trivial
intersection subgroup) if for every g ∈ G, either Hg = H or H ∩Hg = {1}.

Lemma 3.9 κC(P ) = 2(q−1)2q(q
2+q−3).

Proof. By Theorem VIII.7.9 of [10] and Lemma XI.11.2 of [11], Z(P ) is an
elementary abelian 2-group of order q and every element outside Z(P ) has order
4. Observe that P is the centralizer in G of all of the nontrivial elements of Z(P ).
If x ∈ P \ Z(P ), then 〈Z(P ), x〉 6 CG(x). In the proof of Lemma XI.11.7 of
[11], we see that the elements of order 4 in G lie in two conjugacy classes. This
implies that |CG(x)| = 2|Z(P )|, from which we deduce that CG(x) = 〈Z(P ), x〉.
Then for all x, y ∈ P \ Z(P ) either CG(x) = CG(y) or CG(x) ∩ CG(y) = Z(P ).
Hence, {CG(x)|x ∈ P \ Z(P )} forms a partition of P for which the intersection
of pairwise centralizers is Z(P ). This shows that

C(P ) = Kq ∨ (Kq ⊕Kq ⊕ · · · ⊕Kq
︸ ︷︷ ︸

q−1

).

Moreover, by Lemma 2.1, the eigenvalues of Laplacian matrix LC(P ) are:

q2, q2, q2, . . . , q2
︸ ︷︷ ︸

q−1

, 2q, 2q, . . . , 2q
︸ ︷︷ ︸

(q−1)2

, q, q, . . . , q
︸ ︷︷ ︸

q−2

, 0.

It follows immediately using Eq. (1) that

κC(P ) = 2(q−1)2q(q
2+q−3),

as required. �

Theorem 3.10 Let q = 22n+1, where n > 1 is an integer. Then, we have

κC(Sz(q)) =
(

2(q−1)2q(q
2+q−3)

)q2+1

(q − 1)(q−3)a(αq)
(αq−2)b(βq)

(βq−2)c,

where a = q2(q2 + 1)/2, b = q2(q − 1)βq/4 and c = q2(q − 1)αq/4.
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Proof. Let G = Sz(q), where q = 22n+1 > 8. As already mentioned, G contains
a Sylow 2-subgroup P of order q2 and cyclic subgroups A, B, and C, of orders
q− 1, αq and βq, respectively. Moreover, every two distinct conjugates of them
intersect trivially and every element of G is a conjugate of an element in P ∪A∪
B ∪ C. Looking at the proof of Lemma 11.6, we see that the cyclic subgroups
A, B, and C, are the centralizers of their nonidentity elements, while P is the
centralizer in G of all of the nontrivial elements of Z(P ). Let

G = NPx1 ∪ · · · ∪NPxp = NAy1 ∪ · · · ∪NAya

= NBz1 ∪ · · · ∪NBzb = NCt1 ∪ · · · ∪NCtc,

be coset decompositions of G by NP = NG(P ), NA = NG(A), NB = NG(B)
and NC = NG(C), where p = [G : NP ] = q2 + 1, a = [G : NA] = q2(q2 + 1)/2,
b = [G : NB] = q2(q− 1)βq/4 and c = [G : NC ] = q2(q− 1)αq/4. Then, we have

G = P x1 ∪ · · · ∪ P xp ∪ Ay1 ∪ · · · ∪ Aya ∪Bz1 ∪ · · · ∪Bzb ∪ Ct1 ∪ · · · ∪ Ctc .

This shows that

C(G) = K1 ∨
(
p C(P#)⊕ a C(A#)⊕ b C(B#)⊕ c C(C#)

)

= K1 ∨
(
p C(P#)⊕ aK(q−1)−1 ⊕ bKαq−1 ⊕ cKβq−1

)
,

and so
κC(G) = κC(P )p · κC(Kq−1)

a · κC(Kαq
)b · κC(Kβq

)c.

Now, Lemma 3.9 and Cayley’s formula yield the result. �
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