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INVESTIGATION OF GENERALIZED HYBRID FIBONACCI

NUMBERS AND THEIR PROPERTIES

GAMALIEL CERDA-MORALES

Abstract. In [19], M. Özdemir defined a new non-commutative number sys-
tem called hybrid numbers. In this paper, we define the hybrid Fibonacci and
Lucas numbers. This number system can be accepted as a generalization of the
complex (i2 = −1), hyperbolic (h2 = 1) and dual Fibonacci number (ε2 = 0)
systems. Furthermore, a hybrid Fibonacci number is a number created with
any combination of the complex, hyperbolic and dual numbers satisfying the
relation ih = −hi = ε + i. Then we used the Binet’s formula to show some
properties of the hybrid Fibonacci numbers. We get some generalized identities
of the hybrid Fibonacci and hybrid Lucas numbers.
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1. Introduction

The most famous generalization of complex numbers is quaternions. In 1843,
William Rowan Hamilton described the set of quaternions

H = {a+ bi+ cj+ dk : i2 = j2 = k2 = ijk = −1}

and James Cockle defined coquaternions (split quaternions)

H = {a+ bi+ cj+ dk : i2 = −1, j2 = k2 = ijk = 1}

in 1849 (see [3]). Quaternions and coquaternions are used to define 3D Euclidean
and Lorentzian rotations, respectively. A set of split quaternions is non-commutative
and contains zero divisors, nilpotent elements, and nontrivial idempotents (see
[17, 20]). Previous studies have examined the geometric and physical applications
of split quaternions, which are required in solving split quaternionic equations [5].

In particular, Fibonacci and Lucas quaternions cover a wide range of interest
in modern mathematics as they appear in the comprehensive works of [11, 12].
For example, the Fibonacci quaternion denoted by QF,n, is the n-th term of the
sequence where each term is the sum of the two previous terms beginning with the
initial values QF,0 = i+j+2k and QF,1 = 1+ i+2j+3k. The well-known Fibonacci
quaternion QF,n is defined as

(1.1) QF,n = Fn + iFn+1 + jFn+2 + kFn+3

and the Lucas quaternion is defined as QL,n = Ln + iLn+1 + jLn+2 + kLn+3 for
n ≥ 0, where Fn and Ln are n-th Fibonacci and Lucas number, respectively.

Ipek [14] studied the (p, q)-Fibonacci quaternions QF ,n which is defined as

(1.2) QF ,n = pQF ,n−1 + qQF ,n−2, n ≥ 2

with initial conditions QF ,0 = i+pj+(p2+q)k, QF ,1 = 1+pi+(p2+q)j+(p3+2pq)k
and p2 + 4q > 0. If p = q = 1, we get the classical Fibonacci quaternion QF,n [7].
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If p = 2q = 2, we get the Pell quaternion QP,n = Pn + iPn+1 + jPn+2 + kPn+3 (see
[4]), where Pn is the n-th Pell number.

The well-known Binet’s formulas for (p, q)-Fibonacci quaternion and (p, q)-Lucas
quaternion, see [14], are given by

(1.3) QF ,n =
ααn − ββn

α− β
and QL,n = ααn + ββn,

where α, β are roots of the characteristic equation t2 − pt − q = 0, and α = 1 +
αi+ α2j+α3k and β = 1+ βi+ β2j+ β3k. We note that α+ β = p, αβ = −q and

α− β =
√

p2 + 4q.
The generalized of Fibonacci quaternion Qw,n is defined recently by Halici and

Karataş in [9] as Qw,0 = a+ bi+ (pb+ qa)j+ ((p2 + q)b+ pqa)k, Qw,1 = b+ (pb+
qa)i+((p2+q)b+pqa)j+((p3+2pq)b+q(p2+q)a)k and Qw,n = pQw,n−1+qQw,n−2,
for n ≥ 2 which we call the generalized Fibonacci or Horadam quaternions. So,
each term of the generalized Fibonacci sequence {Qw,n}n≥0 is called generalized
Fibonacci quaternion.

The Binet formula for generalized Fibonacci quaternion Qw,n, see [9], is given
by

(1.4) Qw,n =
Aααn −Bββn

α− β
,

where A = b − aβ, B = b − aα, and α, β are roots of the characteristic equation
t2 − pt− q = 0, α = 1 + αi+ α2j+ α3k and β = 1 + βi+ β2j+ β3k. If a = 0 and

b = 1, we get the classical (p, q)-Fibonacci quaternion QF ,n. If a = 2 and b = p, we
get the (p, q)-Lucas quaternion QL,n.

On the other hand, Olariu [18] defined a different generalization of n-dimensional
complex numbers naming them twocomplex numbers, threecomplex numbers. Olariu
used the name twocomplex numbers for hyperbolic numbers. He studied the ge-
ometrical and the algebraic properties of these numbers. For example, the set of
threecomplex numbers was defined as

C3 = {a+ bh+ ck : a, b, c ∈ R, h2 = k, k2 = h, hk = 1}.

In 2004, Anthony Harkin and Joseph Harkin [10] generalized two dimensional com-

plex numbers as Cp = {z = a+bi : a, b ∈ R, i2 = p}. They gave some trigonometric
relations for this generalization. After, Catoni et al. [1] defined two dimensional
hypercomplex numbers as

Cα,β = {z = x+ yi : x, y ∈ R, i2 = α+ iβ}

and extended the relationship between these numbers and Euclidean and semi-
Euclidean geometry. Furthermore, this generalization is also expressible as a quo-
tient ring R[x]/(x2 − βx − α).

In 2017, Zaripov [22] presented a theory of commutative two-dimensional con-
formal hyperbolic numbers as a generalization of the theory of hyperbolic numbers.
Recently, Özdemir [19] defined a new generalization of complex, hyperbolic and
dual numbers different from above generalizations. In this generalization, the au-
thor gave a system of such numbers that consists of all three number systems
together. This set was called hybrid numbers, denoted by K, is defined as

(1.5) K =

{

z = a+ bi+ cε+ dh : a, b, c, d ∈ R,
i2 = −1, ε2 = 0, h2 = 1,

ih = −hi = ε+ i

}

.

Two hybrid numbers are equal if all their components are equal, one by one. The
sum of two hybrid numbers is defined by summing their components. Addition
operation in the hybrid numbers is both commutative and associative. Zero is the
null element. With respect to the addition operation, the inverse element of z is
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−z, which is defined as having all the components of z changed in their signs. This
implies that, (K,+) is an Abelian group.

The hybridian product is obtained by distributing the terms on the right as in
ordinary algebra, preserving that the multiplication order of the units and then
writing the values of followings replacing each product of units by the equalities
i2 = −1, ε2 = 0, h2 = 1 and ih = −hi = ε + i. Using these equalities we can
find the product of any two hybrid units. For example, let’s find iε. For this, let’s
multiply ih = ε+ i by i from the left. Thus, we get iε = 1−h. If we continue in a
similar way, we get the following multiplication table.

Table 1. The multiplication table for the basis of K.

× 1 i ε h

1 1 i ε h

i i −1 1− h ε+ i

ε ε 1 + h 0 −ε

h h −(ε+ i) ε 1

The table 1 shows us that the multiplication operation in the hybrid numbers
is not commutative. But it has the property of associativity. The conjugate of a
hybrid number z = a+ bi+ cε+dh, denoted by z, is defined as z = a− bi− cε−dh
as in the quaternions. The conjugate of the sum of hybrid numbers is equal to
the sum of their conjugates. Also, according to the hybridian product, we have
zz = zz. The real number

C(z) = zz = zz = a2 + (b− c)2 − c2 − d2

is called the character of the hybrid number z = a+ bi+ cε+ dh. The real number
√

C(z) will be called the norm of the hybrid number z and will be denoted by ‖z‖K.
In this study, we define the hybrid Fibonacci and hybrid Lucas numbers. We

give the generating functions and Binet formulas for these numbers. Moreover, the
well-known properties e.g. Cassini and Catalan identities have been obtained for
these numbers.

2. Generalized Hybrid Fibonacci and Lucas Numbers

We define the n-th hybrid (p, q)-Fibonacci and hybrid (p, q)-Lucas numbers,
respectively, by the following recurrence relations

(2.1) HFn = Fn + Fn+1i+ Fn+2ε+ Fn+3h

and

(2.2) HLn = Ln + Ln+1i+ Ln+2ε+ Ln+3h,

where Fn and Ln are the n-th (p, q)-Fibonacci number and (p, q)-Lucas number,
respectively. Here {i, ε,h} satisfies the multiplication rule given in the Table 1.

By some elementary calculations we find the following recurrence relations for
the generalized hybrid Fibonacci and Lucas numbers from (2.1) and (2.2):

(2.3)

pHFn + qHFn−1 = p(Fn + Fn+1i+ Fn+2ε+ Fn+3h)

+ q(Fn−1 + Fni+ Fn+1ε+ Fn+2h)

= (pFn + qFn−1) + (pFn+1 + qFn)i+ (pFn+2 + qFn+1)ε

+ (pFn+3 + qFn+2)h

= Fn+1 + Fn+2i+ Fn+3ε+ Fn+4h

= HFn+1
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and similarly HLn+1 = pHLn + qHLn−1, for n ≥ 1.
In this paper, following Halici and Karataş [9], we define the generalized hybrid

Fibonacci numbers as

(2.4) HJn = pHJn−1 + qHJn−2, n ≥ 2,

where HJ0 = a+ bi+ (pb+ qa)ε+ ((p2 + q)b+ pqa)h and HJ1 = b+ (pb+ qa)i+
((p2 + q)b+ pqa)ε+ ((p3 + 2pq)b+ q(p2 + q)a)h.

So, each term of the generalized hybrid Fibonacci sequence {HJn}n≥0 is called
generalized hybrid Fibonacci number. Furthermore, if a = 0 and b = 1, we get
the hybrid (p, q)-Fibonacci number HFn. If a = 2 and b = p, we get the hybrid
(p, q)-Lucas number HLn.

Generating functions for the generalized hybrid Fibonacci numbers are given in
the next theorem.

Theorem 2.1. The generating function for the generalized hybrid Fibonacci num-

ber is

(2.5)

∞
∑

r=0

HJrt
r =

{

a+ bi+ (pb+ qa)ε+ ((p2 + q)b+ pqa)h
+t((b − pa) + qai+ qbε+ (pqb+ q2a)h)

}

1− pt− qt2
.

Proof. Assuming that the generating function of the hybrid number {HJn} has the
form G(t) =

∑∞

r=0 HJrt
r, we obtain that

(1 − pt− qt2)G(t) = (HJ0 +HJ1t+ · · · )− p(HJ0t+HJ1t
2 + · · · )

− q(HJ0t
2 +HJ1t

3 + · · · )

= HJ0 + t(HJ1 − pHJ0),

since HJn = pHJn−1+qHJn−2, n ≥ 2 and the coefficients of tn for n ≥ 2 are equal
to zero. In equivalent form is

∞
∑

r=0

HJrt
r =

HJ0 + t(HJ1 − pHJ0)

1− pt− qt2

=

{

a+ bi+ (pb+ qa)ε+ ((p2 + q)b + pqa)h
+t((b− pa) + qai+ qbε+ (pqb + q2a)h)

}

1− pt− qt2
.

So, the theorem is proved. �

The next theorem gives the Binet formulas for the generalized hybrid Fibonacci
numbers.

Theorem 2.2. For any integer n ≥ 0, the n-th generalized Fibonacci number is

(2.6) HJn =
Aααn −Bββn

α− β
,

where A = b − aβ, B = b − aα, and α, β are roots of the characteristic equation

t2 − pt− q = 0, α = 1+ αi+α2ε+ α3
h and β = 1+ βi+ β2ε+ β3

h. If a = 0 and

b = 1, we get the hybrid (p, q)-Fibonacci number HFn. If a = 2 and b = p, we get

the hybrid (p, q)-Lucas number HLn.

Proof. For the Eq. (2.6), we have

αHJn+1 + qHJn = α(Jn+1 + Jn+2i+ Jn+3ε+ Jn+4h)

+ q(Jn + Jn+1i+ Jn+2ε+ Jn+3h)

= (αJn+1 + qJn) + (αJn+2 + qJn+1)i+ (αJn+3 + qJn+2)ε

+ (αJn+4 + qJn+3)h.
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From the identity αJn+1 + qJn = αn(αb + qa), we obtain

(2.7) αHJn+1 + qHJn = ααn(αb + qa).

Similarly, we have

(2.8) βHJn+1 + qHJn = ββn(βb + qa).

Subtracting Eq. (2.8) from Eq. (2.7) gives

(α− β)HJn+1 = Aααn+1 −Bββn+1,

where A = b − aβ, B = b − aα and α, β are roots of the characteristic equation
t2 − pt− q = 0. Furthermore, α = 1+αi+α2ε+α3h and β = 1+ βi+ β2ε+ β3h.
So, the theorem is proved. �

There are three well-known identities for generalized Fibonacci numbers, namely,
Catalan’s, Cassini’s, and d’Ocagne’s identities. The proofs of these identities are
based on Binet formulas. We can obtain these types of identities for generalized
hybrid Fibonacci numbers using the Binet formula for HJn. Then, we require αβ

and βα. These products are given in the next lemma.

Lemma 2.3. We have

(2.9) αβ = HL0 − (q3 + pq − q + 1) + q(α− β)(HF0 − ω),

and

(2.10) βα = HL0 − (q3 + pq − q + 1)− q(α− β)(HF0 − ω),

where ω = (1− p)i− qε+ (p2 + q + 1)h and α− β =
√

p2 + 4q.

Proof. From the definitions of α and β, and using i2 = −1, ε2 = 0, h2 = 1 and
ih = −hi = ε+ i in Table 1, we have

αβ = (1 + αi+ α2ε+ α3h)(1 + βi + β2ε+ β3h)

= 2 + (α + β)i+ (α2 + β2)ε+ (α3 + β3)h− 1 + αβ(−1 + α+ β + α2β2)

− αβ(α2 − β2)i − αβ(α2 − β2 − α2β + αβ2)ε+ αβ(α − β)h

= 2+ pi+ (p2 + 2q)ε+ (p3 + 3pq)h− (q3 + pq − q + 1)

+ q(α− β)(pi + (p+ q)ε− h)

= HL0 − (q3 + pq − q + 1) + q(α− β)(pi + (p+ q)ε− h)

= HL0 − (q3 + pq − q + 1) + q(α− β)(HF0 − ω),

where ω = (1− p)i− qε+(p2 + q+1)h and the final equation gives Eq. (2.9). The
other identity can be computed similarly. �

This lemma gives us the following useful identity:

(2.11) αβ + βα = 2(HL0 − (q3 + pq − q + 1)).

Catalan’s identities for generalized Fibonacci quaternions are given in the next
theorem.

Theorem 2.4. For any integers m ≥ r ≥ 0, we have

(2.12)

HJ 2
m −HJm+rHJm−r = −AB(−q)mF−r

{

(HL0 − (q3 + pq − q + 1))Fr

+q(HF0 − ω)Lr

}

,

where A = b− aβ, B = b − aα, ω = (1 − p)i − qε+ (p2 + q + 1)h and Fr, Lr are

the r-th (p, q)-Fibonacci and (p, q)-Lucas numbers, respectively.
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Proof. From the Binet formula for generalized Fibonacci quaternions HJm in (2.6)
and (α − β)2 = p2 + 4q, we have

(p2 + 4q)
(

HJ 2
m −HJm+rHJm−r

)

=
(

Aααm −Bββm
)2

−
(

Aααm+r −Bββm+r
) (

Aααm−r −Bββm−r
)

= AB(−q)m−r
(

αβα2r + βαβ2r − (−q)r
(

αβ + βα
) )

.

We require Eqs. (2.9) and (2.10). Using this equations, we obtain

HJ 2
m −HJm+rHJm−r

=
AB(−q)m−r

p2 + 4q

{

(HL0 − (q3 + pq − q + 1))(α2r + β2r − 2(−q)r)
+q(α− β)(HF0 − ω)(α2r − β2r)

}

=
AB(−q)m−r

p2 + 4q

{

(HL0 − (q3 + pq − q + 1))(L2r − 2(−q)r)
+q(p2 + 4q)(HF0 − ω)F2r

}

.

Using the identity (p2 + 4q)F2
r = L2r − 2(−q)r gives

HJ 2
m −HJm+rHJm−r = AB(−q)m−r

{

(HL0 − (q3 + pq − q + 1))F2
r

+q(HF0 − ω)F2r

}

,

where Lr, Fr are the r-th (p, q)-Lucas and (p, q)-Fibonacci numbers, respectively.
With the help of the identities F2r = FrLr and F−r = −(−q)−rFr, we have Eq.
(2.12). The proof is completed. �

Taking r = 1 in the Theorem 2.4 and using the identity F−1 = 1
q
, we obtain

Cassini’s identities for generalized Fibonacci quaternions.

Corollary 2.5. For any integer m, we have

(2.13) HJ 2
m −HJm+1HJm−1 = AB(−q)m−1

{

(HL0 − (q3 + pq − q + 1))
+pq(HF0 − ω)

}

,

where A = b− aβ, B = b− aα and ω = (1 − p)i− qε+ (p2 + q + 1)h.

The following theorem gives d’Ocagne’s identities for generalized hybrid Fi-
bonacci numbers.

Theorem 2.6. For any integers r and m, we have

(2.14)

HJrHJm+1 −HJr+1HJm = (−q)mAB

{

(HL0 − (q3 + pq − q + 1))Fr−m

+q(HF0 − ω)Lr−m

}

Fr, Lr are the r-th (p, q)-Fibonacci and (p, q)-Lucas numbers, respectively.

Proof. Using the Binet formula for the generalized hybrid Fibonacci numbers gives

(p2 + 4q)(HJrHJm+1 −HJr+1HJm)

=
(

Aααr −Bββr
) (

Aααm+1 −Bββm+1
)

−
(

Aααr+1 −Bββr+1
) (

Aααm −Bββm
)

= (−q)mAB(α − β)
(

αβαr−m − βαβr−m
)

.

We require the Eqs. (2.9) and (2.10). Substituting these into the previous equation,
we have

HJrHJm+1 −HJr+1HJm

=
(−q)m

α− β
AB

{

(HL0 − (q3 + pq − q + 1))(αr−m − βr−m)
+q(α− β)(HF0 − ω)(αr−m + βr−m)

}

= (−q)mAB
(

(HL0 − (q3 + pq − q + 1))Fr−m + q(HF0 − ω)Lr−m

)

.
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The second identity in the above equality, can be proved using Lr−m = αr−m+βr−m

and Fr−m = αr−m−βr−m

α−β
. This proof is completed. �

In particular, if m = r − 1 in this theorem and using the identity L1 = p, we
obtain Cassini’s identities for generalized hybrid Fibonacci numbers. Now, taking
m = r in the Theorem 2.6 and using the identities F0 = 0 and L0 = 2, we obtain
the next identity.

Corollary 2.7. For any integer r ≥ 0, we have

(2.15) HJr+1HJr −HJrHJr+1 = 2(−q)r+1AB(HF0 − ω),

where A = b− aβ, B = b− aα and ω = (1 − p)i− qε+ (p2 + q + 1)h.

After deriving these three famous identities, we present some other identities for
the hybrid (p, q)-Fibonacci and hybrid (p, q)-Lucas numbers.

Theorem 2.8. For any integers n, r and s, we have

(2.16) HLn+rHFn+s −HLn+sHFn+r = 2(−q)n+rFs−r(HL0 − (q3 + pq − q + 1)).

Proof. The Binet formulas for the hybrid (p, q)-Lucas and hybrid (p, q)-Fibonacci
numbers give

(α− β)(HLn+rHFn+s −HLn+sHFn+r)

=
(

ααn+r + ββn+r
) (

ααn+s − ββn+s
)

−
(

ααn+s + ββn+s
) (

ααn+r − ββn+r
)

= (αβ)n(αsβr − αrβs)(αβ + βα).

Using Eqs. (2.9) and (2.10), we have

HLn+rHFn+s −HLn+sHFn+r = 2(−q)n+rFs−r(HL0 − (q3 + pq − q + 1)).

The proof is completed. �

After deriving these famous identities, we present some other identities for the
generalized hybrid Fibonacci numbers. In particular, when using the Binet formulas
to obtain identities for the hybrid (p, q)-Fibonacci and hybrid (p, q)-Lucas numbers,

we require α2 and β2. These products are given in the next lemma.

Lemma 2.9. We have

(2.17) α2 = (HL0 + rp,q) + (α− β)(HF0 + sp,q)

and

(2.18) β2 = (HL0 + rp,q)− (α− β)(HF0 + sp,q),

where rp,q = −1 + p

2 (F6 + 2F3 −F2) + q(F5 + 2F2 −F1), sp,q = 1
2 (F6 + 2F3 −F2)

and Fn is the n-th (p, q)-Fibonacci number.

Proof. From the definition of α and using i2 = −1, ε2 = 0,h2 = 1, ih = −hi = ε+ i

in Table 1 and αn = Fnα+ qFn−1 for n ≥ 1, we have

α2 = (1 + αi + α2ε+ α3h)(1 + αi + α2ε+ α3h)

= 2(1 + αi+ α2ε+ α3h) + (α6 + 2α3 − α2 − 1)

= 2 + 2αi+ (2pα+ 2q)ε+ ((2p2 + 2q)α+ 2pq)h) + (α6 + 2α3 − α2 − 1)

= 2 + pi+ (p2 + 2q)ε+ (p3 + 3pq)h+ (α− β)(i + pε+ (p2 + q)h)

+ ((F6α+ qF5) + 2(F3α+ qF2)− (F2α+ qF1)− 1)

= (HL0 + rp,q) + (α− β)(HF0 + sp,q),
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where rp,q = −1+ p
2 (F6+2F3−F2)+q(F5+2F2−F1) and sp,q =

1
2 (F6+2F3−F2)

and the final equation gives Eq. (2.17). The other can be computed similarly. �

We present some interesting identities for hybrid (p, q)-Fibonacci, hybrid (p, q)-
Lucas numbers and generalized hybrid Fibonacci numbers.

Theorem 2.10. For any integer n ≥ 0, we have

(2.19) HL2
n −HF2

n =

{

p2+4q−1
p2+4q (HL0 + rp,q)L2n + (HF0 + sp,q)F2n

+2 (p2+4q+1)(−q)n

p2+4q (HL0 − (q3 + pq − q + 1)).

}

Proof. Using the Binet formulas for the hybrid (p, q)-Fibonacci and hybrid (p, q)-
Lucas numbers, we obtain

(p2 + 4q)(HL2
n −HF2

n) = (p2 + 4q)
(

ααn + ββn
)2

−
(

ααn − ββn
)2

= (p2 + 4q − 1)(α2α2n + β
2β2n)

+ (p2 + 4q + 1)(αβ)n(αβ + βα).

Substituting Eqs. (2.9) and (2.10) into the last equation, we have

(2.20)
(p2 + 4q)(HL2

n −HF2
n) = (p2 + 4q − 1)(α2α2n + β2β2n)

+ 2(p2 + 4q + 1)(αβ)n(HL0 − (q3 + pq − q + 1)).

Then, using Eqs. (2.17) and (2.18), we obtain

(2.21)
α2α2n + β2β2n = (α2n + β2n)(HL0 + rp,q)

+ (α− β)(HF0 + sp,q)(α
2n − β2n).

Substituting Eq. (2.21) into Eq. (2.20) gives Eq. (2.19). �

Theorem 2.11. For any integers m ≥ n ≥ 0, we have

(2.22) HFnHJm −HJmHFn = 2(−q)n+1Jm−n(HF0 − ω),

where ω = (1− p)i− qε+ (p2 + q+1)h and Jn = Aαn−Bβn

α−β
is the n-th generalized

Fibonacci number.

Proof. The Binet formulas for the hybrid (p, q)-Fibonacci and generalized hybrid
Fibonacci numbers give

(p2 + 4q)(HFnHJm −HJmHFn) =
(

ααn − ββn
) (

Aααm −Bββm
)

−
(

Aααm −Bββm
) (

ααn − ββn
)

= (Aαmβn −Bαnβm)(αβ − βα).

Using Eqs. (2.9) and (2.10), we have

HFnHJm −HJmHFn =
2q(αβ)n

p2 + 4q
(Aαm−n −Bβm−n)(α− β)(HF0 − ω)

= −2(−q)n+1Jm−n(HF0 − ω),

where ω = (1 − p)i − qε + (p2 + q + 1)h and Jn is the n-th generalized Fibonacci

number defined by Jn = Aαn−Bβn

α−β
. So, the theorem is proved. �

Takingm = n in the Theorem 2.11 and using J0 = a, we obtain the next identity.

Corollary 2.12. For any integer n ≥ 0, we have

(2.23) HFnHJn −HJnHFn = 2a(−q)n+1(HF0 − ω),

where A = b− aβ, B = b− aα and ω = (1 − p)i− qε+ (p2 + q + 1)h.



GENERALIZED HYBRID FIBONACCI NUMBERS AND THEIR PROPERTIES 9

3. Conclusions

There are differences between the hybrid generalized Fibonacci numbers and the
coefficient generalized Fibonacci quaternions. For example, the usual coefficient
generalized Fibonacci quaternionic units are i2 = j2 = k2 = ijk2 = −1 whereas the
hybrid generalized Fibonacci quaternionic units are i2 = −1, ε2 = 0,h2 = 1 and
ih = −hi = ε+ i.

In this work, we have examined a new type of numbers, which are non-commutative.
We named this number set as generalized hybrid Fibonacci numbers because it is
a linear combination of well-known complex, hyperbolic and dual Fibonacci num-
bers. We have given the relation ih = −hi = ε + i between the units {i, ε,h} of
these three number systems, and we have seen the algebraic consistency of this re-
lation. Thus, we have obtained some properties of the generalized hybrid Fibonacci
numbers.
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