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TOPOLOGY OF RANDOM d-CLIQUE COMPLEXES

DEMET TAYLAN

Abstract. For a simplicial complex X , the d-clique complex ∆d(X) is the simplicial
complex having all subsets of vertices whose (d + 1)-subsets are contained by X as its
faces. We prove that if p = nα, with α < max{ −1

k−d+1 ,−
d+1

(kd)
} or α > −1

(2k+2
d )

, then the k-th

reduced homology group of the random d-clique complex ∆d(Gd(n, p)) is asymptotically

almost surely vanishing, and if −1
t

< α < −1
t+1 where t = ( (d+1)(k+1)

((d+1)(k+1)
d+1 )−(k+1)

)−1, then the

(kd+ d− 1)-st reduced homology group of ∆d(Gd(n, p)) is asymptotically almost surely
nonvanishing. This provides a partial answer to a question posed by Eric Babson.

1. Introduction

One of the famous results in random graph theory establishes that p = logn

n
is a threshold

for the connectivity of Erdős and Rényi random graphs [5]. A 2-dimensional analogue
of Erdős and Rényi’s result was obtained by Linial-Meshulam in [7]. Meshulam-Wallach,
in [10], presented a d-dimensional analogue for d ≥ 3. In particular, Linial-Meshulam-
Wallach theorem yields that p = dlogn

n
is the threshold for the vanishing of the (d− 1)-st

homology of the random simplicial complex Gd(n, p) with coefficients in a finite abelian
group. Here, the random simplicial complex Gd(n, p) is a d-dimensional simplicial complex
on [n] with a full (d − 1)-dimensional skeleton and with d-dimensional faces are chosen
independently each with probability p.

The topology of clique complexes of random graphs has been studied in [3, 4, 11, 12, 14]
and see also [13] for a survey on random simplicial complexes. The analogue ∆d(X) has
been considered in [2].

In this generalization, the d-clique complex ∆d(X) of a finite simplicial complex X is
the simplicial complex on vertex set V (X) of X consisting of all the subsets F ⊆ V (X)
with

(
F

d+1

)
⊆ X . As a matter of definition, ∆d(X) contains X and the full (d−1)-skeleton

of the simplex with vertices V (X).
The following is among the problems proposed by Eric Babson in the First Research

School on Commutative Algebra and Algebraic Geometry (RSCAAG):

Problem 1.1. [2] Find thresholds for Hk(X ;Q) to vanish with X ∈ ∆d(Gd(n, n
−α)).

An idea suggested by Babson for this problem is to try the techniques used for the
clique complexes ∆1(G1(n, n

−α)) of random graphs G1(n, n
−α) and is that there may be

analogues of the theorems about ∆1(G1(n, n
−α)) (see [2]). We provide here a partial

answer to Problem 1.1. In particular, we have the following.

Theorem 1.2. If p = nα then
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(i) if α < max{ −1
k−d+1

,−d+1

(kd)
} or α > −1

(2k+2
d )

then for the k-th reduced homology group

of the d-clique complex ∆d(Gd(n, p)) of the random simplicial complex Gd(n, p) we

have asymptotically almost surely H̃k(∆d(Gd(n, p)),Z) = 0,

(ii) and if −1
t

< α < −1
t+1

with t = ( (d+1)(k+1)

((d+1)(k+1)
d+1 )−(k+1)

)−1 then asymptotically almost

surely H̃(k+1)d−1(∆d(Gd(n, p)),Z) 6= 0 holds.

We note that when d = 1, Theorem 1.2 reduces to Corollary 3.7 in [11] with one differ-
ence: Kahle, in [11], improves the sufficient condition α > −1

2k+2
for vanishing homology of

∆1(G1(n, p)) to α > −1
2k+1

.

2. Preliminaries

2.1. Simplicial Complexes. An abstract simplicial complex ∆ on a finite vertex set V
(or V (∆)) is a set of subsets of V , called faces, satisfying the following properties:

(1) {v} ∈ ∆ for all v ∈ V .
(2) If F ∈ ∆ and H ⊆ F , then H ∈ ∆.

For a given a subset U ⊂ V , the complex ∆[U ] := {σ : σ ∈ ∆ , σ ⊆ U} is called the
induced subcomplex by U . The number of i-dimensional faces of a simplicial complex ∆
will be denoted by fi(∆) and the dimension of ∆ by dim(∆). A d-dimensional simplex
and its boundary are denoted by ∆d+1 and ∂(∆d+1), respectively.

The join of two simplicial complexes ∆0 and ∆1 is denoted by ∆0 ∗∆1. An n-fold join
∆ ∗∆ ∗ · · · ∗∆
︸ ︷︷ ︸

n times ∆

and k-dimensional skeleton of a simplicial complex ∆ will be denoted by

∗n−1∆ and ∆(k), respectively.
Let ∆ be a simplicial complex. For a given face σ, the link link∆(σ) and the star

star∆(σ) are defined respectively by link∆(σ) = {τ ∈ ∆: τ ∩ σ = ∅ and τ ∪ σ ∈ ∆} and
star∆(σ) = {τ ∈ ∆: τ ∪ σ ∈ ∆}. For a vertex x in ∆, we abbreviate link∆({x}) and
star∆({x}) to link∆(x) and star∆(x) (or simply link(x) and star(x) if no confusion arises),
respectively.

A strongly connected simplicial complex is a pure simplicial complex in which for each
pair of facets (σ, τ) there is a sequence of facets σ = σ0, σ1, . . . , σn−1 = τ such that the
intersection σi ∩ σi+1 of any two consecutive elements in the sequence is a codimension
one face of both σi and σi+1.

We refer the reader to [6] for background on simplicial homology. For a d-chain C of a
simplicial complex ∆, the set of all d-simplices appearing in C with non-zero coefficients is
called the support supp(C) of C. We denote the simplicial complex obtained by taking the
downwards closure of supp(C) with respect to containment by ∆(supp(C)). The vertex
support vsupp(C) is the vertex set of ∆(supp(C)).

For any minimal representative γ of a class in the reduced homology groups H̃d(∆;Z) of
a simplicial complex ∆ with coefficients in Z, the associated simplicial complex ∆(supp(γ))
is a strongly connected d-dimensional subcomplex of ∆.

Let γ be a nontrivial k-cycle in a simplicial complex ∆, with minimal vertex support.
Then γ ∩ link∆(v) for v ∈ vsupp(γ) is defined as a Z-linear combination of (k − 1)-
dimensional faces appearing in ∆(supp(γ)) ∩ link∆(v). See [11] for further details.
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Lemma 2.1. [11] If γ is a nontrivial k-cycle in a simplicial complex ∆, with minimal
vertex support, then γ ∩ link∆(v) is a nontrivial (k− 1)-cycle in link∆(v) for any element
v in the vertex support vsupp(γ) of γ.

For k ≥ 0, a topological space X is said to be k-connected if for every i ≤ k, every
continuous function f from an i-dimensional sphere Si into X is homotopic to a constant
map. By convention, (−1)-connected means nonempty. The connectivity conn(X) of a
topological space X is the largest k for which X is k-connected.

Aharoni and Berger, in [1], introduce a domination parameter γ̃(∆) of a simplicial
complex ∆ on V , which is defined as the minimal size of a set A ⊆ V such that s̃p∆(A) = V
where s̃p∆(A) = {v ∈ V : there exists some face σ ⊆ A such that σ∪{v} /∈ ∆}. Call a set
A ⊆ V with the property that s̃p∆(A) = V a strong dominating set of ∆. The following
result which relates the connectivity conn(∆) of a simplicial complex ∆ to the parameter
γ̃(∆) is due to Aharoni and Berger [1] and see also [8, 9] for the particular case where ∆
is a flag simplicial complex.

Theorem 2.2. [1] Let ∆ be a simplicial complex on V . Then we have conn(∆) ≥ γ̃(∆)
2

−2.

An event that depends on n is said to occur asymptotically almost surely (a.a.s.) if the
probability of the event approaches to 1 as n → ∞.

Theorem 2.3. [2] Let ∆ be a simplicial complex on V . If ∆ is d-lumpless (i.e. |S|
fd(∆[S])

>
|V |

fd(∆)
for every ∅ ⊂ S ⊂ V ) then − |V |

fd(∆)
is a threshold for the event that ∆ is a subcomplex

of ∆d(Gd(n, n
α)). If ∆ is a d-lumpless d-complex then − |V |

fd(∆)
is a threshold for Gd(n, n

α)

to contain a copy of ∆.

(Recall that α = a is called a threshold for an event if it occurs a.a.s. for α > a and
fails a.a.s. for α < a).

3. vanishing and nonvanishing homology

In this section, we discuss the topology of the random d-clique complexes ∆d(Gd(n, p)).
For comparison purposes, we keep in mind that the threshold for Gd(n, n

α) to contain

a copy of the d-skeleton of a k-dimensional simplex ∆
(d)
k+1 is −d+1

(kd)
. More precisely, since

the d-skeleton of a k-dimensional simplex is d-lumpless, Theorem 2.3 gives that if p =
nα with α > −d+1

(kd)
then a.a.s. dim(∆d(Gd(n, n

α))) ≥ k, and if α < −d+1

(kd)
then a.a.s.

dim(∆d(Gd(n, n
α))) < k.

Lemma 3.1. If p = (m logn+ω(n)
n

)

1

(md) and ω(n) → ∞ then a.a.s. γ̃(∆d(Gd(n, p))) ≥ m+1.

Proof. Let X be the number of strong dominating sets of ∆d(Gd(n, p)) with cardinality m.
For any fixed m-subset D of [n], a vertex v ∈ [n] is contained by the set s̃p∆d(Gd(n,p))

(D)
if and only if there exists some (d− 1)-dimensional face σ ⊆ D of ∆d(Gd(n, p)) such that
σ ∪ {v} is a minimal non-face of ∆d(Gd(n, p)). It thus follows that the probability that v

is contained by s̃p∆d(Gd(n,p))
(D) is 1 − p(

m−1
d ) or 1− p(

m
d) according to the condition that
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v is contained by D or not. Hence, the probability that D is a strong dominating set of

∆d(Gd(n, p)) is at most (1− p(
m
d))n. Therefore, for the expectation E(X) of X , we have

E(X) ≤

(
n

m

)

(1− p(
m
d))n

≤ nme−p
(md)n

= nme−m logn−ω(n)

= e−ω(n) = o(1),

since ω(n) → ∞. Thus, X = 0 a.a.s. and so a.a.s. γ̃(∆d(Gd(n, p))) ≥ m+ 1. �

Theorem 3.2. If p = ( (2k+2) logn+ω(n)
n

)

1

(2k+2
d ) and ω(n) → ∞ then a.a.s. the simplicial

complex ∆d(Gd(n, p)) is k-connected.

Proof. Lemma 3.1 taken together with Lemma 2.2 gives conn(∆d(Gd(n, p))) ≥ k− 1
2
. �

Remark 3.3. We note that Theorem 3.2 reduces to Corollary 3.3 in [11] when d = 1.

Lemma 3.4. If γ is a nontrivial k-cycle in the d-clique complex ∆d(Γ) of a simplicial
complex Γ, then fd−1(∆d(Γ)(supp(γ))) ≥ (d+ 1)(k − d+ 1) + d+ 1 holds.

Proof. Let γ be a nontrivial k-cycle in ∆d(Γ) with minimal vertex support. The assertion
is true in the case k = d−1. Indeed, if σ is a (d−1)-dimensional face in the support of γ,
then each (d−2)-dimensional face of σ must be contained by a distinct (d−1)-dimensional
face different from σ in the support of γ, since otherwise the coefficient of σ would be 0
in γ.

We assume now that k ≥ d and apply induction. Suppose to the contrary that
fd−1(∆d(Γ)(supp(γ))) ≤ (d + 1)(k − d + 1) + d holds. If v ∈ vsupp(γ) then γ ∩ link(v)
is a nontrivial (k − 1)-cycle in link(v) by Lemma 2.1. It follows by induction hypoth-
esis that fd−1(∆d(link(v))(supp(γ ∩ link(v)))) ≥ (d + 1)(k − d) + d + 1. We note that
the number of (d − 1)-dimensional faces in ∆d(Γ)(supp(γ)) belonging to star(v) but not
to link(v) is at least

(
k

d−1

)
. Note then that we must have d = 1 or k = d so that

fd−1(∆d(link(v))(supp(γ∩ link(v)))) = (d+1)(k−d)+ d+1 and fd−1(∆d(Γ)(supp(γ))) =
(d+1)(k−d)+2d+1 hold. If d = 1, then ∆d(Γ)(supp(γ)) is a 2k-dimensional simplex, a
contradiction (see [11] for details). If d = k, then fd−1(∆d(link(v))(supp(γ ∩ link(v)))) =
d + 1 and fd−1(∆d(Γ)(supp(γ))) = 2d + 1 hold, which is impossible. This completes the
proof.

�

Remark 3.5. We note that, in the case of a flag simplicial complex ∆, Lemma 3.4 reduces
to the well-known fact that any representative of a class in H̃k(∆;Z) is supported on at
least 2k + 2 vertices. See Lemma 5.3 in [11].

Lemma 3.6. If α < −1

(kd)
and 0 < k

(kd)N
< −1

(kd)
− α, then the vertex support of any strongly

connected k-dimensional subcomplex of the d-clique complex ∆d(Gd(n, p)) of Gd(n, p)
a.a.s. has at most N + k vertices, where p = nα.
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Proof. Let ∆ be a strongly connected k-dimensional subcomplex of ∆d(Gd(n, p)). Let the
vertices of ∆ are ordered as v1, v2, . . . , vn so that the first k+1 vertices v1, v2, . . . , vk+1 forms
a k-face and for any other vertex vi there is at least k vertices vj such that {vi, vj} ∈ ∆
where j < i (See [11] for more details). With this ordering, suppose to the contrary that
∆ has N + k + 1 vertices (Here k + 1 is the number of vertices in a k-dimensional face
and N is the number of vertices get added in total). It then follows that the number of
d-dimensional faces in ∆ is at least

(
k+1
d+1

)
+
(
k

d

)
N . Since the d-skeleton of any subcomplex

of ∆d(Gd(n, p)) is also a subcomplex of Gd(n, p), we have

P(C∆) ≤ (N + k + 1)!

(
n

N + k + 1

)

p(
k+1
d+1)+N(kd)

= (N + k + 1)!

(
n

N + k + 1

)

nα((k+1
d+1)+N(kd))

for the total probability, where C∆ denotes the event that ∆d(Gd(n, p)) contains a sim-
plicial complex isomorphic to ∆. By the assumption 0 < k

(kd)N
< −1

(kd)
− α, we can choose

N and ǫ such that k

(kd)N
< ǫ < −1

(kd)
− α holds. It then follows that p = nα < n

−( 1

(kd)
+ǫ)

and

k <
(
k

d

)
Nǫ. We therefore get that

P(C∆) ≤ (N + k + 1)!

(
n

N + k + 1

)

nα((k+1
d+1)+N(kd))

< (N + k + 1)!

(
n

N + k + 1

)

n
−( 1

(kd)
+ǫ)((k+1

d+1)+N(kd))

≤ nN+k+1n
− 1

(kd)
((k+1

d+1)+N(kd))
n−ǫ((k+1

d+1)+N(kd))

= nN+k+1n
− 1

(kd)
(k+1
d+1)−N

n−ǫ(k+1
d+1)−ǫN(kd)

= nk+1n− k+1
d+1n−ǫ(k+1

d+1)−ǫN(kd)

< n1− k+1
d+1

−ǫ(k+1
d+1)

≤ n−ǫ

= O(n−ǫ) = o(1),

since k ≥ d. This, taken together with the facts that the number of non-isomorphic
strongly connected k-dimensional simplicial complexes on N + k + 1 vertices is finite
and any strongly connected k-dimensional simplicial complex on more than N + k + 1
vertices contains a strongly connected k-dimensional simplicial complex on N + k + 1,
implies that asymptotically almost surely the vertex support of every strongly connected
k-dimensional subcomplex of the d-clique complex ∆d(Gd(n, p)) of Gd(n, p) has at most
N + k vertices. This completes the proof. �

Theorem 3.7. If p = nα with α < −1
k−d+1

then a.a.s. H̃k(∆d(Gd(n, p)),Z) = 0 holds.

Proof. Let γ be a nontrivial k-cycle in ∆d(Gd(n, p)) with minimal vertex support. Then
γ ∩ link(v) is a nontrivial (k − 1)-cycle in link(v) for any v ∈ vsupp(γ) by Lemma 2.1.
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Therefore, we have that fd−1(∆d(link(v))(supp(γ ∩ link(v)))) ≥ (d+ 1)(k − d) + d+ 1 for
any v ∈ vsupp(γ).

Consider an arbitrary simplicial complex ∆ onm vertices in which the number of (d−1)-
dimensional faces in link(v) for any vertex v ∈ V (∆) is at least (d + 1)(k − d) + d + 1.
Note then that the number of d-dimensional faces fd(∆) of ∆ is at least

m((d+ 1)(k − d+ 1))
(
d+1
d

) = m(k − d+ 1).

It then follows that the probability that ∆ is a subcomplex of ∆d(Gd(n, p)) is at most

m!

(
n

m

)

pm(k−d+1) ≤ nmnαm(k−d+1)

= nm(1+α(k−d+1))

= o(1),

since α(k−d+1) < −1. Note that −1
k−d+1

≤ −1

(kd)
whenever d ≤ k. We therefore have a.a.s.

no k-dimensional cycles on more than N + k + 1 vertices by Lemma 3.6. We also note
that the number of non-isomorphic simplicial complexes ∆ on N + k vertices in which
the number of (d − 1)-dimensional faces in link(v) for any vertex v ∈ V (∆) is at least
(d+ 1)(k− d+ 1) is finite. It thus follows that there are asymptotically almost surely no
vertex minimal nontrivial k-dimensional cycles in the d-clique complex ∆d(Gd(n, p)) and

so a.a.s. H̃k(∆d(Gd(n, p)),Z) = 0 holds. �

Remark 3.8. Lemma 3.4, Lemma 3.6, Theorem 3.7 generalize Lemma 5.3, Lemma 5.1,
Theorem 3.6 in [11], respectively.

Lemma 3.9 provides us with an example of a lumpless simplicial complex.

Lemma 3.9. For d, k ≥ 1, the d-skeleton of the (k + 1)-fold join K := ∗k∂(∆d+1) of

boundaries of d-dimensional simplexes is d-lumpless, i.e. f0(K(d)[S])

fd(K(d)[S])
> f0(K(d))

fd(K(d))
for every

subset ∅ 6= S ⊂ V (K).

Proof. Suppose that S is a non-empty subset of the vertex set V (K) of K. The claim
is obviously true if |S| = 1. Assume now that 2 ≤ |S| = (d + 1)(k + 1) − n, where
k + 1 > n ≥ 1. Clearly, we have

f0(K
(d)[S])

fd(K(d)[S])
≥

(d+ 1)(k + 1)− n
(
(d+1)(k+1)−n

d+1

)
− (k + 1− n)

.

Thus we need only show that

(d+ 1)(k + 1)− n
(
(d+1)(k+1)−n

d+1

)
− (k + 1− n)

>
f0(K

(d))

fd(K(d))
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holds. Note that

(d+ 1)(k + 1)− n
(
(d+1)(k+1)−n

d+1

)
− (k + 1− n)

=
(d+ 1)!

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n + 1)
︸ ︷︷ ︸

d factors

−d! + ndd!
(d+1)(k+1)−n

≥
(d+ 1)!

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)− d! + ndd!
2

.

This last line holds, since (d+ 1)(k + 1)− n ≥ 2 by our assumption on S. We then have
that

(d+ 1)!

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n + 1)− d! + ndd!
(d+1)(k+1)−n

>
(d+ 1)!

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)− d! + n(d+1)!
2

.

For the expression

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)

in the denominator, we have

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n + 1)

= (dk + d+ k)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)

− n(dk + d+ k − n− 1) . . . (dk + k − n+ 1).

Consider now the expression −n(dk+ d+ k− n− 1) . . . (dk+ k− n+1). Note that there
are d− 1 factors in the product (dk+ d+ k−n− 1) . . . (dk+ k−n+1) and the occurence
of an i.th factor in the product (dk+d+k−n−1) . . . (dk+k−n+1) yields that d ≥ i+1.
We next rewrite the expression

− n(dk + d+ k − n− 1)(dk + d+ k − n− 2)

(dk + d+ k − n− 3) . . . (dk + d+ k − n− (d− 1))

as

−n
︸︷︷︸

((d+ 1)
︸ ︷︷ ︸

+dk + k − n− 2)

( d
︸︷︷︸

+dk + k − n− 2)((d− 1)
︸ ︷︷ ︸

+dk + k − n− 2) . . . ( 3
︸︷︷︸

+dk + k − n− 2).

Clearly, it contains the term −(n)(d+1)!
2

and the expression dk + k − n− 2 is contained by
every factor in the product. If d ≥ 2 then dk + k − n− 2 ≥ 0 holds and thus we have

(d+ 1)!

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)− d! + n(d+1)!
2

≥
(d+ 1)!

(dk + d+ k)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)− d!
.



8 TOPOLOGY OF RANDOM d-CLIQUE COMPLEXES

Since

(d+ 1)!

(dk + d+ k)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)− d!

>
(d+ 1)!

(dk + d+ k)(dk + d+ k − 1) . . . (dk + k + 1)− d!
,

it follows that

(d+ 1)!

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + k − n+ 1)− d! + n(d+1)!
2

>
(d+ 1)!

(dk + d+ k)(dk + d+ k − 1) . . . (dk + k + 1)− d!

=
f0(K

(d))

fd(K(d))
.

If d = 1, then we obviously have that

2

2k + 1− n− 1 + n
=

f0(K
(1))

f1(K(1))
.

Suppose now that 2 ≤ |S| = (d+ 1)(k + 1)− n, where n ≥ k + 1. Then

f0(K
(d)[S])

fd(K(d)[S])
≥

(d+ 1)(k + 1)− n
(
(d+1)(k+1)−n

d+1

)

holds. We have that

(d+ 1)(k + 1)− n
(
(d+1)(k+1)−n

d+1

)

=
(d+ 1)!

(dk + d+ k − n)(dk + d+ k − n− 1) . . . (dk + d+ k − d− n+ 1)
︸ ︷︷ ︸

d factors

−d! + d!
.

It then follows that

(d+ 1)(k + 1)− n
(
(d+1)(k+1)−n

d+1

) ≥
(d+ 1)!

(dk + d− 1)(dk + d− 2) . . . (dk + d− d)− d! + d!
,

since n ≥ k + 1. The expression (dk + d − 1)(dk + d − 2) . . . (dk + d − d) is equal to
(dk+ d)(dk+ d− 2) . . . (dk+ d− d)− (dk+ d− 2)(dk+ d− 3) . . . (dk+ d− d). Note that
the expression

− (dk + d
︸︷︷︸

−2)(dk + (d− 1)
︸ ︷︷ ︸

−2)(dk + (d− 2)
︸ ︷︷ ︸

−2) . . . (dk + (2)
︸︷︷︸

−2)
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contains the term −(d!) and dk − 2 ≥ 0 whenever d ≥ 2. We therefore get that

(d+ 1)(k + 1)− n
(
(d+1)(k+1)−n

d+1

)

≥
(d+ 1)!

(dk + d− 1)(dk + d− 2) . . . (dk + d− d)− d! + d!

≥
(d+ 1)!

(dk + d)(dk + d− 2)(dk + d− 3) . . . (dk + d− d)− d!

>
(d+ 1)!

(dk + d+ k)(dk + d− 2 + (k + 1))(dk + d− 3 + (k + 1)) . . . (dk + (k + 1))− d!

=
f0(K

(d))

fd(K(d))
.

This completes the proof.
�

Remark 3.10. Recall that a k-dimensional octahedral sphere is a (k + 1)-fold join of
two isolated points. It is well-known in random graph theory that the 1-skeleton of a
k-dimensional octahedral sphere is a strictly balanced graph and n

−1
k is a sharp threshold

function for the random graph G1(n, p) to contain the 1-skeleton of a k-dimensional oc-
tahedral sphere. We remark that Lemma 3.9, taken together with Theorem 2.3 reduces
to this fact when d = 1.

It was shown by Kahle that if pkn → ∞ and pk+1n → 0 as n → ∞ then ∆1(G1(n, p))
a.a.s. retracts onto a sphere Sk and so ∆1(G1(n, p)) a.a.s. has nonvanishing integer k-th
homology (see Theorem 3.5. in [11]). We generalize this argument by Theorem 1.2 (ii) so
that it applies to the random d-clique complexes:

The proof of Theorem 1.2. Claim (i) is immediate from Theorem 3.2 and Theorem 3.7
by taking into account the threshold for the dimension of the random d-clique complex
∆d(Gd(n, n

α)). To prove (ii), consider the (k+1)-fold join K := ∗k∂(∆d+1) of boundaries

of d-dimensional simplexes. Recall that n
−

f0(K
(d))

fd(K
(d)) = n

−
(d+1)(k+1)

((d+1)(k+1)
d+1 )−(k+1) is a threshold

function for Gd(n, p) containing the d-skeleton of the complex K as a subcomplex by

Lemma 2.3 together with Lemma 3.9; i.e. if α > − f0(K(d))

fd(K(d))
then Gd(n, p) a.a.s. contains

the d-skeleton ofK = ∗k∂(∆d+1) as a subcomplex, and if α < − f0(K(d))

fd(K(d))
then Gd(n, p) a.a.s.

does not contain K = ∗k∂(∆d+1). By the assumption α > −1
t
, we conclude that Gd(n, p)

a.a.s. contains the d-skeleton of K = ∗k∂(∆d+1). Let us choose a (d − 1)-dimensional
face Fm from each of the factor ∂(∆m

d+1) of the (k + 1)-fold join K = ∗k∂(∆d+1), where
1 ≤ m ≤ k + 1. Set

A = {Fm : 1 ≤ m ≤ k + 1},

SA =
⋃

m∈[1,k+1]

Fm
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and

N (A) := {x ∈ ∆d(Gd(n, p)) : F ∪ {x} ∈ ∆d(Gd(n, p)) for each d− subset F ⊆ SA}.

It then follows that the conditional probability that N (A) 6= ∅ for A is no more than

p(
(k+1)d

d )(n− (k + 1)(d+ 1)) + p(k + 1) ≤ pt+1(n− (k + 1)(d+ 1)) + p(k + 1) = o(1).

So a.a.s. Gd(n, p) contains the d-skeleton of K = ∗k∂(∆d+1) in which N (A) = ∅. Note
that in this case this subcomplex is indeed an induced subcomplex of Gd(n, p), since we
must have that {xm

d+1} ∪ Fm /∈ Gd(n, p) for any choice of m, where xm
d+1 ∈ V (∆m

d+1) \ Fm

and Fm ∈ A. Note also that ∆d(K) is a subcomplex of ∆d(Gd(n, p)) and ∆d(K) is
homeomorphic to S(k+1)d−1. �

Remark 3.11. In the proof of Theorem 1.2 (ii), we have used the inequality t + 1 ≤
(
d(k+1)

d

)
. To observe this, it is enough to see that

(
(d+1)(k+1)−1

d

)
+ d − (d+ 1)

(
(k+1)d

d

)
≤ 0.

Let K := ∗k∂(∆d+1) be the (k + 1)-fold join of boundaries of d-dimensional simplexes
and let {Fmi : 1 ≤ i ≤ d + 1} denote the set of all (d− 1)-dimensional faces in the factor

∂(∆m
d+1) of the (k + 1)-fold join K, where 1 ≤ m ≤ k + 1. Set Xi = F11 ∪

⋃k+1
l=2 Fli with

1 ≤ i ≤ d + 1. Let K ′ denote the subcomplex of K obtained by removing the vertex x
from ∂(∆1

d+1) with x /∈ F11. Note that
(
d(k+1)

d

)
counts the number of (d− 1)-dimensional

faces in each Xi and thus (d+1)
(
d(k+1)

d

)
counts the number of (d−1)-dimensional faces in

K ′ with some repetations-in particular the face F11 is repeated (d+1) times. On the other

hand,
(
(d+1)(k+1)−1

d

)
counts the number of (d − 1)-dimensional faces in K ′. We therefore

have that
(
(d+1)(k+1)−1

d

)
≤ (d+ 1)

(
(k+1)d

d

)
− d.
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