
ar
X

iv
:1

80
6.

03
39

3v
1

 [
m

at
h.

N
T

]
 9

 J
un

 2
01

8

EXPLICIT COLEMAN INTEGRATION IN LARGER

CHARACTERISTIC

ALEX J. BEST

Abstract. We describe a more efficient algorithm to compute p-adic Coleman
integrals on odd degree hyperelliptic curves for large primes p. The improve-
ments come from using fast linear recurrence techniques when reducing differ-
entials in Monsky-Washnitzer cohomology, a technique introduced by Harvey
[Har07] when computing zeta functions. The complexity of our algorithm is
quasilinear in

√

p and is polynomial in the genus and precision. We provide

timings comparing our implementation with existing approaches.

1. Introduction

In 2001, Kedlaya introduced an algorithm for computing the action of Frobenius
on the Monsky-Washnitzer cohomology of odd degree hyperelliptic curves over Qp

[Ked01]. This has been used to compute zeta functions of the reductions modulo
p of such curves, and, starting with the work of Balakrishnan-Bradshaw-Kedlaya
[BBK10], to evaluate Coleman integrals between points on them. Computation of
Coleman integrals requires more information to be retained throughout the execu-
tion of the algorithm than is needed to compute only the way Frobenius acts on
cohomology classes, which is all that is needed to compute zeta functions.

Harvey [Har07] introduced a variant of Kedlaya’s algorithm, its run time in terms

of p alone is Õ(
√
p) := O(

√
p logk

√
p)) for some k ∈ Z. In [BBK10] the authors

asked if it is possible to use Harvey’s techniques when computing Coleman integrals.
Here we show that one can obtain the same efficiency improvements in Kedlaya’s

algorithm as Harvey did, whilst retaining enough information to compute Coleman
integrals. Specifically, we obtain the following result:

Theorem 1.1. Let X/Zp be a genus g, odd degree hyperelliptic curve. Then for

the basis {ωi = xi dx/2y}2g−1

i=0 of H1
dR(X), let M be the matrix of Frobenius acting

on this basis, and N ∈ N be such that X and P,Q ∈ X(Qp) are known to precision
pN , assume p > (2N − 1)(2g+1). Then, if multiplying two g× g matrices requires

O(gω) ring operations, the vector of Coleman integrals (
∫ Q

P ωi)
2g−1
i=0 can be computed

in time Õ
(
gω

√
pN5/2 +N4g4 log p

)
to absolute p-adic precision N−vp(det(M−I)).

2010 Mathematics Subject Classification. Primary 11G20; Secondary 11Y16, 14F30.
Key words and phrases. Coleman integration, hyperelliptic curves, Kedlaya’s algorithm.
I would like to thank Jennifer Balakrishnan, for suggesting this as something that might be

possible, and for many subsequent helpful conversations and comments. Additional thanks are due
to Jan Tuitman for remarking that ramified extensions should be avoided, by using Lemma 3.2.

I have had many interesting conversations with Sachi Hashimoto about Coleman integration.
Finally I would like to thank the reviewers for their suggestions. I am grateful for support from
the Simons Foundation as part of the Simons Collaboration on Arithmetic Geometry, Number
Theory, and Computation #550023.

1

http://arxiv.org/abs/1806.03393v1

2 ALEX J. BEST

As surveyed in [BBK10] there are many applications of Coleman integration in
arithmetic geometry, notably they are central to the method of Chabauty-Coleman-
Kim. This method has been made explicit in some cases, such as in [BD18] Example
2. There, and in general, when working over number fields it is useful to work only
with p that split. This is an additional condition on p, which often results in having
to take larger p, which gives one motivation for the current work.

In §2 and §3 we recall the set-up for Coleman integration, and, most importantly,
exactly what data is needed to compute Coleman integrals on hyperelliptic curves.
In §4 we examine the reduction procedure used by Harvey in more detail. We then
come to our main new ideas, creating an appropriate recurrence that computes
the data necessary for Coleman integration. In §5 we introduce a modification of
the linear recurrence algorithm used by Harvey, which is specialised to the type of
recurrences we obtained. This is useful when computing Coleman integrals between
many endpoints simultaneously. In §6 we describe the main algorithm in detail. In
§7 and §8 we analyse its correctness and complexity. Finally in §9 and §10 we
give some timings and examples obtained with a SageMath/C++ implementation,
showing its practical use.

2. Set-up and notation

Throughout we work with a fixed prime p and an odd degree hyperelliptic curve
X/Zp, of genus g ≥ 1, given as y2 = Q(x) with Q(x) ∈ Zp[x]. Where Q(x) =
x2g+1 + P (x) with deg(P) ≤ 2g. We assume that the reduction of Q(x) to Fp[x]
has no multiple roots. We fix a desired p-adic precision N ≥ 1 such that

p > (2N − 1)(2g + 1). (2.1)

Let ι denote the hyperelliptic involution, given on the finite affine chart as
(x, y) 7→ (x,−y); the fixed points of this involution are called Weierstrass points.

We will make use of several notions from rigid geometry. Points of X(Qp) which
reduce to the same point in XFp

(Fp) are said to lie in the same residue disk. A
residue disk that contains a Weierstrass point is a Weierstrass residue disk.

3. Coleman integration

Coleman integration is a p-adic (line) integration theory developed by Robert
Coleman in the 1980s [Col82, CdS88, Col85]. Here we briefly summarise the set-
up for this theory (for more precise details, see, for example, [Bes12]). We also
recall the key inputs, which are obtained from Kedlaya’s algorithm, for performing
explicit Coleman integration on hyperelliptic curves, as described in [BBK10].

The setting for Coleman integration as we will be using it is via the Monsky-
Washnitzer weak completion of the coordinate ring of the curve minus its Weier-
strass points. So, letting A = Zp[x, y, y

−1]/(y2 − Q(x)), its weak completion
is the space A† of series

∑∞
i=−∞ Ri(x)y

−i with Ri ∈ Zp[x], degRi ≤ 2g sub-
ject to the condition that lim inf |i|→∞ vp(Ri)/|i| > 0. The p-power Frobenius

on A = A/p can be lifted to a function φ : A† → A† by sending x 7→ xp and

y 7→ y−p
∑∞

k=0

(
−1/2
k

)
(φ(Q(x)) − Q(x)p)k/y2pk. We will consider differentials in

Ω1
A† = A† dx⊕A† dy/(2y dy −Q′(x) dx)) with d the exterior derivative

d: A† → Ω1
A† ;

∞∑

i=−∞

Ri(x)

yi
7→

∞∑

i=−∞

R′
i(x)y

−i dx−Ri(x)iy
−i−1 dy. (3.1)

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 3

We will say that f is a primitive of the exact differential df . We then define the
Monsky-Washnitzer cohomology of A to be H1

MW(A) = Ω1
A†⊗Qp/ d(A

†⊗Qp). The

action of Frobenius and of the hyperelliptic involution can be extended to Ω1
A† and

H1
MW(A) and the actions of φ and ι commute. In particular we have an eigenspace

decomposition of all of these spaces under ι into even and odd parts; the odd part
will be denoted with a − superscript. Let Aloc(X) denote the Qp-valued functions
on X(Qp) which are given by a power series on each residue disk.

Theorem 3.1 (Coleman). There is a unique (up to a global constant of integration)
Qp-linear integration map

∫
: Ω1

A† ⊗Qp → Aloc(X) satisfying:

(1) Frobenius equivariance,
∫
φ∗ω = φ∗

∫
ω,

(2) the fundamental theorem of calculus, d ◦
∫

is the identity on Ω1
A† ⊗Qp,

(3) and
∫
◦ d is the natural map A† → Aloc/(constant functions).

Given points P,Q ∈ X(Qp) the definite integral
∫ Q

P ω is then defined as
(∫

ω
)
(Q)−(∫

ω
)
(P), which is a well-defined function of P,Q.

After fixing a basis {ωi}2g−1
i=0 of H1

MW(A)− = H1
dR(X), any 1-form of the second

kind ω ∈ Ω1
A† can be expressed as ω = df +

∑2g−1
i=0 aiωi, f ∈ A†, so by Theorem 3.1

we see that for some ai ∈ Qp

∫ Q

P

ω = f(Q)− f(P) +

2g−1∑

i=0

ai

∫ Q

P

ωi. (3.2)

We can therefore reduce to the case of integrating only the basis differentials ωi

and evaluating the primitive f . The complexity of reducing to this case depends on
how ω is presented. For example, if ω has many terms, the total run time can be
dominated by finding f and evaluating f(Q)− f(P) in the above. So we will focus

on computing
{∫ Q

P
ωi

}2g−1

i=0
. In many applications, all that we need to integrate

are Qp-linear combinations of the basis differentials.
The work of Balakrishnan-Bradshaw-Kedlaya [BBK10] describes how to explic-

itly compute Coleman integrals for differentials on odd degree hyperelliptic curves.
They describe how to reduce the problem of computing general Coleman integrals
between two points to that of finding a matrix M and fi ∈ A† such that

φ∗ωi = dfi +
∑

j

Mijωj ∈ Ω1
A† . (3.3)

Before stating a form of their algorithm, we recall a useful result which allows
us to deal with the difficulties arising when the endpoints of the integral are Weier-
strass. This can be problematic, as we need to evaluate primitives as in (3.2); if the
endpoints are in Weierstrass residue disks, these power series may not converge.

Lemma 3.2 ([BBK10] Lemma 16). Let P,Q ∈ X(Qp) with Q Weierstrass and let

ω ∈ Ω1,−
A† be an odd differential without poles at P,Q. Then

∫ Q

P ω = 1
2

∫ ι(P)

P ω.
In particular, if P is also a Weierstrass point, then the integral is zero.

Lemma 3.2 allows us to express general integrals as linear combinations of inte-
grals between two points in non-Weierstrass residue disks and integrals between two

4 ALEX J. BEST

points in the same residue disk (known as tiny integrals). Evaluating tiny integrals
uses formal integration of power series, see [BBK10] Algorithm 8.

Note that ∞ is a Weierstrass point so Lemma 3.2 applies with Q = ∞; integrals
based at ∞ can be rewritten as a linear combination of a tiny integral and an integral
between two non-Weierstrass points. Specifically, for a Teichmüller point P , if we
know the matrix M expressing the action of Frobenius on the basis differentials ωi,
we can use the Frobenius equivariance of the Coleman integral to deduce

...∫
∞

P
ωi

...

 =

1

2

...∫ ι(P)
P

ωi

...

 =

(M − I)−1

2

...
fi(P)−fi(ι(P))

...

 = (M − I)−1

...
fi(P)

...

(3.4)
The last equality holds as we are using odd differentials, so the dfi must also be
odd, so from the expansion of (3.1) we see that the fi must also be odd (up to the
constant term, which cancels).

So we will fix ∞ as our basepoint and compute only integrals of the form
∫∞

P ω;
general integrals can be obtained by subtracting two of the above type. We will
use the following algorithm, c.f. [BBK10] Remark 15:

Algorithm 3.3. Input: P ∈ X(Qp), the matrix of Frobenius M , and if P is not

in a Weierstrass residue disk, {fi(P ′)}2g−1
i=0 for the unique Teichmüller point P ′ in

the same residue disk as P , and fi as in (3.3).
Output:

{∫∞

P
ωi

}
for 0 ≤ i ≤ 2g − 1.

(1) If P is in a Weierstrass residue disk: Let P ′ be the Weierstrass point in the
same residue disk, so that

∫∞

P ′ ωi = 0 for all i.
Else: Let P ′ be the (unique) Teichmüller point in the same residue disk as
P . Then compute the vector of

∫∞

P ′ ωi using (3.4).

(2) For each i, compute the tiny integral
∫ P ′

P ωi, as in [BBK10] Algorithm 8.

(3) For each i, sum the result of Steps 1 and 2 to get
∫∞

P
ωi =

∫ P ′

P
ωi +

∫∞

P ′ ωi.

Variants of this algorithm are possible, c.f. [BBK10] Algorithm 11. From the
version stated above, it is clear that, beyond solving a linear system and comput-
ing tiny integrals, the matrix of Frobenius and evaluations of the primitives fi at
Teichmüller points in non-Weierstrass residue disks are all the input data that is
needed to compute arbitrary Coleman integrals. We shall refer to this data as the
Coleman data. To compute Coleman integrals efficiently, we require an efficient
way of computing this data, possibly for several disks of interest.

Remark 3.4. We do not need to compute the fi themselves to compute integrals,
only evaluations at Teichmüller points in prescribed non-Weierstrass residue disks.
This simplification is key to our ability to write down a suitable recurrence. More-
over, once the Coleman data is computed, it can be saved and will not need to be
recomputed if integrals between other points in the same residue disks are required.

4. Reductions in cohomology

4.1. Kedlaya’s algorithm and Harvey’s work. Kedlaya’s algorithm computes
the action of Frobenius on Monsky-Washnitzer cohomology up to a specified pre-
cision. The general strategy is to begin with a finite p-adic approximation of φ∗ω
as a (Laurent) polynomial in x and y multiplied by the differential dx/2y. This is

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 5

reduced step-by-step via cohomologous differentials of lower polynomial degree, by
subtracting appropriate exact forms dg for polynomials g. This process is contin-
ued until one is left with a Qp-linear combination of basis elements, and we have

an expression of the form (3.3). For a given basis {ωi} of H1
MW(A)−, writing each

φ∗ωi in terms of this basis results in a matrix of Frobenius acting on H1
MW(A)−.

The innovation in [Har07] is to express the reduction process as a linear recur-
rence, where the coefficients are linear polynomials in the index of the recurrence.
A term several steps later in such recurrences can then be found more efficiently
than the straightforward sequential approach, via the algorithm of Bostan-Gaudry-
Schost [BGS07] Theorem 15. Here we also ultimately appeal to these methods, and
so we must examine in more detail the polynomials g used in the reduction steps.
We will describe the sum of the evaluations of these g at points of interest as a
linear recurrence, so that they may be computed along with the reductions.

We use the basis of H1
MW(A)− consisting of ωi = xi dx/2y for 0 ≤ i ≤ 2g − 1.

This differs by a factor of 2 from the basis used by Harvey and Kedlaya; this
choice reduces the number of 2’s appearing in our formulae and so appears more
natural here. Changing the basis by a scalar multiple has no effect on the ma-
trix of Frobenius, only the exact differentials. An approximation to φ∗ωi is given
in [Har07] (4.1) by letting Cj,r be the coefficient of xr in Q(x)j and Bj,r =

pφ(Cj,r)
∑N−1

k=j (−1)k+j
(
−1/2
k

)(
k
j

)
∈ Zp so that

φ∗ωi ≡
N−1∑

j=0

(2g+1)j∑

r=0

Bj,rx
p(i+r+1)−1y−p(2j+1)+1 dx

2y
(mod pN). (4.1)

In (4.1), there are only (2g + 1)N(N−1)
2 +N terms in total and the exponents of x

and y that appear are always congruent to −1 or 1 mod p respectively.
As in [Har07] Section 5, we work with finite-dimensional vector spaces over Qp

Ws,t =

{
f(x)xsy−2t dx

2y
: deg f ≤ 2g

}
=

〈
xixsy−2t dx

2y

〉2g

i=0

, (4.2)

for s ≥ −1, t ≥ 0, where, in addition, we restrict W−1,t to be the subspace of the
above for which the coefficient of x−1 is zero (i.e. for which f(0) = 0).

Notice that W−1,0 is naturally identified with H1
MW(A)− with the basis chosen

above, so that ωi is the ith basis element of W−1,0. In order to derive an expression
for φ∗ωi as a linear combination of the other basis elements, we begin with the ap-
proximation of φ∗ωi from (4.1). Then starting with the terms of highest degree in x,
which are each inside of some Ws,t we reduce “horizontally”, finding a cohomologous
element of Ws−1,t by subtracting an appropriate exact differential. This process
is repeated until s = −1, but whenever we reach a space Ws,t containing a term
from (4.1), we add it to the current differential under consideration. We do this
for each t appearing as an exponent for a monomial in the original approximation,
and for each such t we obtain an element of W−1,t. We then reduce “vertically”,
beginning with the largest t we have, we subtract appropriate exact differentials to
reduce the element of each W−1,t to a cohomologous one in W−1,t−1 while t ≥ 1.
This is continued until we have reduced everything to the space W−1,0, and we

6 ALEX J. BEST

have obtained a linear combination of the basis differentials that is cohomologous
to φ∗ωi up to the specified precision.

Note that many horizontal rows will not be considered at all. When p is large
enough, most steps simply involve reducing terms we already have, as there are
comparatively few terms in the (4.1) compared to the total degree. Doing multiple
reduction steps quickly will therefore improve the run time of this procedure, even
though we have to add new terms occasionally. This is where Harvey applies
linear recurrence techniques to speed up this reduction process. We now state
the reductions we will use; compared to [Har07] (5.2) and (5.3) we must be more
explicit about the exact form we are subtracting, as this data is important for us.

4.2. Horizontal reduction. To reduce horizontally from Ws,t to Ws−1,t, we ex-
press the highest order basis element x2gxsy−2t dx/2y ∈ Ws,t as a cohomologous
term in Ws−1,t. The other basis elements are naturally basis elements for Ws−1,t

just with their indices shifted by 1.

Lemma 4.1 (Horizontal reduction). We have

x2gxsy−2t dx

2y
− −1

(2t− 1)(2g + 1)− 2s
d(xsy−2t+1)

=
2sP (x)− (2t− 1)xP ′(x)

(2t− 1)(2g + 1)− 2s
xs−1y−2t dx

2y
∈ Ws−1,t. (4.3)

Proof. We directly compute

d(xsy−2t+1) =sxs−1y−2t+1 dx+ (−2t+ 1)xsy−2t dy

=

(
sxs−1y−2t+1 +

1

2
(−2t+ 1)xsy−2t−1Q′(x)

)
dx

=(2sQ(x)− (2t− 1)xQ′(x)) xs−1y−2t dx

2y

=(2s− (2t− 1)(2g + 1))x2g+1xs−1y−2t dx

2y

+ (2sP (x)− (2t− 1)xP ′(x)) xs−1y−2t dx

2y
. (4.4)

Therefore, by subtracting 1
2s−(2t−1)(2g+1) d(x

sy−2t+1) from x2gxsy−2t dx/2y, the

remaining terms are all as stated, and of lower degree. �

4.3. Vertical reduction. To reduce vertically from W−1,t to W−1,t−1, we express
the 2g basis elements xiy−2t dx/2y ∈ W−1,t as cohomologous terms in W−1,t−1.

Lemma 4.2 (Vertical reduction). Let Ri(x), Si(x) ∈ Zp(x) be such that xi =
Ri(x)Q(x) + Si(x)Q

′(x) with degRi ≤ 2g − 1, deg Si ≤ 2g. Then

xiy−2t dx

2y
− −1

2t− 1
d(Si(x)y

−2t+1) =
(2t− 1)Ri(x) + 2S′

i(x)

2t− 1
y−2(t−1) dx

2y
∈ W−1,t−1.

Proof. We have that

xiy−2t dx

2y
= (Ri(x)Q(x) + Si(x)Q

′(x)) y−2t dx

2y
= Ri(x)y

−2t+2 dx

2y
+ Si(x)y

−2t dy,

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 7

and also that d(Si(x)y
−2t+1) = S′

i(x)y
−2t+1 dx+(−2t+1)Si(x)y

−2t dy. Therefore
by subtracting 1

−2t+1 d(Si(x)y
−2t+1) from xiy−2t dx/2y, we see that

xiy−2t dx

2y
∼ Ri(x)y

−2t+2 dx

2y
+

1

2t− 1
S′
i(x)y

−2t+1 dx

=
(2t− 1)Ri(x) + 2S′

i(x)

2t− 1
y−2(t−1) dx

2y
. (4.5)

�

4.4. Towards a faster algorithm. In order to make use of the same linear re-
currence techniques as Harvey, we express the reduction process as we descend
through the indices s, t as a linear recurrence with coefficients linear polynomials
in s, t. We describe such a recurrence that retains enough information to compute
Coleman integrals. By working with a number of evaluations of the primitives on
prescribed points on the curve, rather than the primitives themselves as power se-
ries, we only have to deal with a vector of fixed size at each step. This is preferable
to maintaining a power series as we reduce, adding terms at each step.

We will now give an idea of the approach, giving the details in the next section.
Let us first consider the end result of one row of the horizontal reduction process.
Fixing a row t, after the reduction we have an equality of the form

∑

s≥0

asx
sy−2tdx

2y
− d

∑

s≥0

csx
sy−2t+1

 =

2g−1∑

i=0

mix
iy−2t dx

2y
∈ W−1,t (4.6)

in which the terms of the exact differential were found in decreasing order as the
reductions are performed. Unfortunately, adding each new term as it is obtained is
not a linear recurrence in the index s, as we have s appearing in the exponent of x
in each term. Instead we observe that we can express the exact differential as

d
(
(c0 + x(c1 + x(· · ·+ x(cr))))y

−2t+1
)
. (4.7)

In essence, we are applying the Horner scheme for polynomial evaluation.
Now we specialise to the case of computing the evaluation fi(P) of the primitive

for some point P = (x(P), y(P)). We can, at each step, compute a further bracketed
term starting from the innermost; using the given x, y values, we get a recurrence
whose final term is the same as the original evaluation. So we can compute the
terms of a recurrence of the form

fi,0 = 0, fi,n = x(P)fi,n−1 −
1

(2t− 1)(2g + 1)− 2s
di,n (4.8)

where s = smax − n decreases from its maximum value, and di,n is the coefficient
of the monomial removed in the nth step of the reduction process. Multiplying
the result of this recurrence by the factor y−2t+1 (which is constant along the row)
will result in the evaluation of the primitive for the row. At each step we will no
longer have an evaluation of the primitive so far, it is only after completing all the
reduction steps that each term will have the correct power of x.

We may use the same technique for the vertical reductions; here we have

∑

t≥0

2g−1∑

i=0

mix
iy−2t dx

2y
− d

∑

t≥1

2g∑

i=0

dtiSi(x)y
−2t+1

 =

2g−1∑

i=0

Mix
i dx

2y
∈ W−1,0,

8 ALEX J. BEST

where now writing dt =
∑2g−1

i=0 dt,iSi(x), the exact differential can be expressed as

d
(
y−1(d1 + y−2(d2 + y−2(· · · (dr−1 + y−2(dr)) · · ·)))

)
. (4.9)

Remark 4.3. The factor y−2t+1 appears in every term in the primitive in row t. It
is the same factor in the primitive for the vertical reduction from row t to row 0. So
we can initialise the vertical recurrence from W−1,t with both the differential and
the evaluations obtained from horizontal reduction along row t, and let the vertical
reduction steps multiply the evaluation of the row primitives by this factor.

Now we write down the recurrences for both horizontal and vertical reductions
precisely using matrices acting on appropriate vector spaces.

4.5. The recurrence. We will now switch to working with a Qp vector ht(s) ∈
Ws,t ×QL

p (resp. v(t) ∈ W−1,t ×QL
p); these are of length 2g+1+L (resp. 2g+L)

in the horizontal case (resp. vertical case). The first entries represent the current
differential we have reduced to, with respect to the basis given in (4.2). The last L
entries will contain the evaluations of the terms of the primitive picked up so far,
one for each of the L points P1, . . . , PL ∈ X(Qp) we want evaluations at.

When we horizontally reduce, using the result of Lemma 4.1, the two terms we
are interested in, the exact differential and the reduction, have a common denom-
inator of Dt

H(s) = (2t − 1)(2g + 1) − 2s. Similarly, in the vertical case, the two
terms of interest in Lemma 4.2 have a common denominator of DV (t) = 2t− 1.

Writing out the result of a single reduction step in terms of these vectors, we
see that we need to compute the terms of the recurrence given by ht(s) = Rt

H(s+
1)ht(s+ 1) in the horizontal case, for Rt

H(s) defined by

Dt
H(s)Rt

H(s) = M t
H(s) =

0 · · · 0 pt0
Dt

H(s) · · · 0 pt1

.

.

.

.

.

.

.

.

.

.

.

.

0 · · ·Dt
H(s)pt2g

0 · · · 0 −1 x(P1)D
t
H(s) · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 −1 0 · · ·x(PL)Dt
H(s)

, (4.10)

where pti is the linear function of s obtained as the coefficient of xi in 2sP (x)−(2t−
1)xP ′(x). To divide through by Dt

H(s) we must multiply some terms by Dt
H(s).

For the vertical reductions we use RV (t) defined by

DV (t)RV (t) = MV (t) =

(2t − 1)r0,0 + 2s′0,0 · · · (2t − 1)r2g−1,0 + 2s′2g−1,0

.

.

.

.

.

.

.

.

.

(2t − 1)r0,2g−1 + 2s′0,2g−1 · · · (2t − 1)r2g−1,2g−1 + 2s′2g−1,2g−1

−S0(x(P1)) · · · −S2g−1(x(P1)) y(P1)
−2DV (t) · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−S0(x(PL)) · · · −S2g−1(x(PL)) 0 · · ·y(PL)−2DV (t)

,

(4.11)

where ri,j is the coefficient of xj in Ri(x) and s′i,j is the coefficient of xj in S′
i(x).

Once again we have multiplied the rightmost block by DV (t) to extract the common
denominator. We do this to express the reduction steps as linear recurrences with
linear polynomial coefficients, rather than rational function coefficients.

Introducing the notation M t
H(a, b) = M t

H(a + 1) · · ·M t
H(b − 1)M t

H(b) (and the
analogous MV (a, b)), we can write the upshot of the above as

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 9

Theorem 4.4. Let ht(s) = (ω, 0) ∈ Ws,t ×QL
p , and f : X(Qp) → Qp, write c(f)

for the correction factor, the linear endomorphism of Ws,t×QL
p that is the identity

on Ws,t and scales each component of QL
p by f(Pℓ) for the corresponding Pℓ. Then

the reduced vector c(y−1)RV (0, t)c(y
2)Rt

H(−1, s)ht(s) ∈ W−1,0 × QL
p is such that

the projection onto W−1,0 is some ω̃ with ω̃ = ω − d(g) for some g ∈ A†, and the
projection onto QL

p is (g(P1), . . . , g(PL)).

As the approximation in (4.1) has summands that occur in several different
Ws,t’s, we cannot simply find the product matrix and apply it to a single vector.
Instead, we must work through the various subspaces doing as many reductions
as possible before we reach a new monomial from the original approximation. As
DH and DV are scalar matrices, we can commute them past the MV ’s and MH ’s.
This separates out the components so we can work just with products of matrices
of linear polynomials. This reduces the problem to finding several of the products
MV (a, b) and M t

H(a, b). In practice, to use as little p-adic precision as we can, we
must not allow too many runs of multiplications by p and then divisions by p, so
that the relative precision stays as large as possible. This will be addressed in §7.

5. Linear recurrence algorithms

In this section, we recall and adapt some methods for finding subsequent terms
of linear recurrences with linear polynomial coefficients. The set-up is that we are
given an m×m matrix M(x) with entries that are linear polynomials over a ring R
and wish to obtain several products M(x, y) = M(y)M(y−1) · · ·M(x+1) for x < y
integers. We let MM(m,n) be the number of ring operations used when multiplying
an n × m matrix by an m × m matrix, both with entries in R. Then MM(m) =
MM(m,m) is the cost of multiplying two m ×m matrices. We will not say much
about these functions here, as modern theoretical bounds for these functions do
not affect the point of our main result; however see [LG12] for some recent work on
the topic. Using naive matrix multiplication, we have MM(m,n) = O(m2n), which
if m2 = o(n), cannot be improved upon asymptotically. Whenever n ≥ m we can
partition an n×m matrix into roughly n/m blocks each of size m×m. These blocks
can then be multiplied individually for a run time of MM(m,n) = O(MM(m) n

m).
We will also let M(n) be the number of ring operations needed to multiply two
polynomials of degree n with coefficients in R.

The method of Bostan-Gaudry-Schost requires that certain elements of R be
invertible. Moreover, they assume as input a product D(α, β, k) of several of these
inverses. We will apply these methods in Z/pNZ where the cost of computing
inverses is negligible compared to the rest of the algorithm, so we will take this step
for granted; see [BGS07] for more details.

With the above set-up, Harvey, [Har07] Theorem 6.2, adjusts the algorithm of
Bostan-Gaudry-Schost, [BGS07] Theorem 15, to prove the following theorem:

Theorem 5.1. Let M(x) be a m×m matrix with entries that are linear polynomials
in R[x], let 0 ≤ K1 < L1 ≤ K2 < L2 ≤ · · · ≤ Kr < Lr ≤ K be integers, and let
s = ⌊log4 K⌋. Suppose that 2, 3, . . . , 2s + 1 are invertible in R. Suppose also that

r < K
1
2−ǫ, with 0 < ǫ < 1/2. Then M(K1, L1), . . . ,M(Kr, Lr) can be computed

using O(MM(m)
√
K +m2M(

√
K)) ring operations in R.

In order to apply this theorem to the above recurrences for computing the Cole-
man data, we introduce a variant better suited to the recurrences we obtained in

10 ALEX J. BEST

§4.4. If we simply applied the same algorithm/result as Harvey naively, we would
not get as good a run time in general.

Theorem 5.2. With the same set-up as Theorem 5.1, except that now let M(x) be
instead an (m+ n)× (m+ n) block lower triangular matrix with 4 blocks, with top
left block an m×m matrix and bottom right block a diagonal matrix:

A 0

B
d1

.

.

.

dn

 . (5.1)

Then the interval products M(K1, L1), . . . ,M(Kr, Lr) can be computed using only

O
(
(MM(m) +MM(m,n))

√
K + (m2 +mn)M(

√
K)

)
ring operations in R.

Proof. The algorithm to do this is the same as the one given for Theorem 5.1 in
[Har07] Theorem 6.2, only adjusted to take advantage of the fact that the matrices
used are of a more restricted form as follows:

First, note that a product of matrices of the assumed form is again of the same
shape, so one can work only with matrices of this form throughout. Such matrices
should then be stored without keeping track of the entries that are always 0, as a
pair of matrices A,B of size m ×m and n ×m respectively, and a list containing
the n bottom right diagonal entries. Now the algorithm of Harvey and Bostan-
Gaudry-Schost should be applied using this fixed representation.

The complexity of this algorithm is dominated by two main subtasks: shifting
evaluations of the matrices and matrix multiplication. During the shifting step, we
need only interpolate the non-zero entries; there are (m + n)m + n of these. The

number of ring operations required for this is then O((m2 +mn)M(
√
K)).

For the matrix multiplication steps, the restricted form of the matrix once again
allows us to use a specialised matrix multiplication routine. Here we can evaluate
the block matrix product more efficiently, multiplying only the non-zero blocks, and
using the fact that multiplying an n×m matrix on the right by a square diagonal
matrix stored as a list uses only O(nm) operations. Therefore the total complexity
of multiplying two matrices of this form is O(MM(m,n) +MM(m)). As we do not
modify the algorithm in any other way, the result follows. �

The conditions on the matrix in Theorem 5.2 are precisely those satisfied by the
matrices M t

H(s) and MV (t) from §4. So we may use this algorithm for computing
block horizontal and vertical reductions for certain intervals.

Remark 5.3. As well as utilising the polynomial structure of our matrices, for
any row with sufficiently many terms compared to the desired precision, it is also
possible to interpolate p-adically. This idea is due to Kedlaya and is explained in
[Har07] Section 7.2.1. Using this allows us to compute fewer interval products using
Theorem 5.2 by interpolating the remaining ones.

If we could compute to infinite precision, it would be optimal to reduce as far as
possible at each reduction step, i.e., until we get to index of a new term that needs
adding. However, in practice, we should divide by p as soon as possible, in order to
reduce the number of extra p-adic digits needed throughout. Therefore analysing
when divisions by p occur informs which interval products are found.

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 11

6. The algorithm

In this section we describe the complete algorithm derived in the previous sec-
tions. The flow of the algorithm is the same as that of Harvey, only we use our larger
matrices throughout and have to make some small adjustments to the evaluations.
Care should be taken in all steps where division occurs, see §7.
Algorithm 6.1 (Computation of Coleman data). Input: A list of points {Pℓ}1≤ℓ≤L

in non-Weierstrass residue disks, precision N .
Output: Matrix of Frobenius M , modulo pN , such that ωi = dfi +

∑
j Mijωj,

evaluations fi(Pℓ) modulo pN for all i, ℓ also.

(1) For each row index t = (p(2j + 1)− 1)/2 for 0 ≤ j ≤ N − 1 do:
(a) Compute the horizontal reduction matrices M t

H((k − 1)p, kp− 2g − 2)
and Dt

H((k − 1)p, kp − 2g − 2) for 0 ≤ k ≤ (2g + 1)(j + 1) − 1 using
Theorem 5.2, and the p-adic interpolation outlined in [Har07] 7.2.1,
for k > N .

(b) For each basis differential ωi, 0 ≤ i ≤ 2g − 1 do:

(i) Initialise a vector hij ∈ (Z/pN+1Z)
2g+1+L

(ii) For each column index s = p(i + r + 1) − 1 for r = (2g + 1)j
down to 0 do:
(A) Add the xsy−2t term of (4.1) to hij.
(B) Set hij = Rt

H(kp − 2g − 2, kp)hij by doing 2g + 2 matrix-
vector products.

(C) Set hij = Rt
H((k − 1)p, kp− 2g − 2)hij.

(D) Set hij = Rt
H((k − 1)p)hij.

(2) Initialise a 2g × L matrix for the evaluations E and a 2g × 2g matrix for
the action of Frobenius M .

(3) Compute the vertical reduction matrices MV (0, (p− 1)/2),MV ((p− 1)/2 +
jp, (p − 1)/2 + (j + 1)p) for 1 ≤ j < N and the corresponding DV (t)’s to
precision pN+1 using Theorem 5.2, and divide through to obtain the corre-
sponding RV ’s, label them Rj.

(4) For each basis differential ωi, 0 ≤ i ≤ 2g − 1:
(a) Initialise a zero vector vi ∈ (Z/pNZ)2g+L.
(b) For each row index t = (p(2j + 1)− 1)/2 for j = N − 1 down to 0 do:

(i) Add the last 2g + L entries of hij to vi, correcting the last L
entries as in Theorem 4.4.

(ii) Set vi = Rjvi.
(c) Set the ith column of M to be the first 2g entries of vi.
(d) Set the ith row of E to be the last L entries of vi, correcting them to

be evaluations as in Theorem 4.4.
(5) Output the matrix of Frobenius M and the matrix of evaluations E.

Remark 6.2. We have not used the fact that in Algorithm 3.3 we only needed to
evaluate at Teichmüller points. Using Teichmüller points only serves to make the
description of Coleman integration a little simpler, and provides a convenient set
of points corresponding to residue disks. This allows one to store the output of
Algorithm 6.1 for further computations involving the same set of residue disks.

One simpler variant of this algorithm is to compute evaluations for one point at a
time, re-running the whole procedure including finding the matrix of Frobenius once
for each point. The advantage of this method is not needing a specialised version of

12 ALEX J. BEST

the linear recurrence algorithms as in Theorem 5.2. While this would result in the
same theoretical run time if g2 ∈ o(p), recomputing the matrix of Frobenius would
be a duplication of work and inefficient in many parameter ranges.

7. Precision

In this section we examine the level of p-adic precision that needs to be main-
tained throughout, in order to compute the matrix of Frobenius and evaluations of
primitives to precision O(pN). We follow Harvey’s approach in [Har07] Section 7
and prove that analogous results hold for our recurrence.

Lemma 7.1. During horizontal reduction, the evaluations of the primitives remain
integral. Moreover, if the calculations are performed with initial data known to
absolute precision pN and intermediate computations are performed with an absolute
precision cap of pN+1, then whenever division by p occurs, the dividend is known to
absolute precision pN+1, so that the quotient is known to absolute precision O(pN).

Proof. As we begin with evaluation 0, we must show that if the evaluations are
integral, they remain so after several reduction steps. Any point P = (x, y) that we
are evaluating at is assumed not be in a Weierstrass residue disk and in particular
not in the residue disk at infinity. Hence x is integral and multiplication by it will
never reduce p-adic valuation.

In the horizontal reduction matrix (4.10), the only nonzero terms in the bottom
left block are the −1s in the rightmost column which will not disturb integrality.

When Dt
H(s) ≡ 0 (mod p), it is shown in [Har07] Claim 7.3, using the as-

sumptions on p in (2.1), that the vector currently being reduced has its (2g + 1)-
component divisible by p and is correct to absolute precision pN+1. Thus this can
be divided by Dt

H(s) while keeping absolute precision pN . Every column of M t
H(s)

other than the (2g + 1)st has Dt
H(s) as a factor, so the division can be performed.

All other steps follow directly from the work of Harvey. �

Lemma 7.2. During vertical reduction, the evaluations of the primitives remain
integral. Moreover, if the calculations are performed with initial data known to
absolute precision pN and intermediate computations are performed with an absolute
precision cap of pN+1, then whenever division by p occurs, the dividend is known to
absolute precision pN+1, so that the quotient is known to absolute precision O(pN).

Proof. Any point P = (x, y) that we are evaluating at is assumed not to be in a
Weierstrass residue disk and in particular not in the residue disk at infinity. Hence
y is a unit and multiplying or dividing by it will not change p-adic valuation.

We check that the analysis in [Har07] Lemmas 7.7 and 7.9 may be adjusted to
apply with our extended MV (t). Assume that t ≡ 1/2 (mod p) so that DV (t) ≡
0 (mod p), in this case vp(DV (t)) = 1 as (2.1) implies DV (t) < p2. Unlike in
[Har07] Lemma 7.7, our matrix MV (t) will not have integral inverse as DV (t)
appears in the bottom right block, so MV (t) is singular mod p. Instead, the inverse
of the block lower triangular MV (t) has integral top left block, and the bottom
two blocks have valuation at least −1. Now letting t0 = (p − 1)/2 and X =
DV (t0, t0 + p+ 1)−1MV (t0, t0 + p+ 1), the argument in [Ked01] Lemma 2 implies
that pX is integral. The argument says that taking ω ∈ W−1,t0+p+1 with integral
coefficients, the primitive g of Xω − ω becomes integral after multiplication by
p, and hence the evaluation of pg at a point in a non-Weierstrass residue disk is

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 13

integral. The entries in the bottom left block of X are evaluations of this form up
to a power of y(P), which will not affect integrality. The bottom right block of X
is integral already as it is simply a power of the diagonal matrix diag((y(Pℓ)

−2)ℓ).
So each term of the block matrix product (pX)MV (t0 + p + 1) is integral, and
MV (t0, t0 + p) = DV (t0, t0 + p+ 1)XMV (t0 + p+ 1)−1 is divisible by p. �

Remark 7.3. Multiplying by (M − I)−1, as in (3.4), will lose vp(det(M − I)) digits
of absolute p-adic precision. As vp(det(M−I)) = vp(Jac(X)(Fp)[p]), this is at most
g in the anomolous case, and in general we expect that it is 0, so if g = O(N) the
whole computation can be repeated with the extra precision required at no extra
asymptotic cost.

8. Run time analysis

Having described the algorithm in detail, we now analyse its run time, in order
to prove Theorem 1.1. First of all we analyse each step of Algorithm 6.1.

The main step is the computation of the reduction matrices via Theorem 5.2. In
this case, we have m = 2g (+1 in the horizontal case) and n = L. When reducing
horizontally, for each row the largest index is bounded by K = O(Np). When
reducing vertically our index is also at most O(Np). As there are N rows in total,
we obtain a total of

O
(
N((MM(g) +MM(g, L))

√
Np+ (g2 + gL)M(

√
Np))

)
(8.1)

ring operations to compute the matrices. Using that M(d) ∈ Õ(d), that MM(m) =
mω for some 2 ≤ ω ≤ 3, and the above discussion of MM(m,n), we simplify to

O
(
(gω + Lgω−1)

√
pN3/2

)
ring operations, bit complexity Õ

(
(gω + Lgω−1)

√
pN5/2

)
.

The remaining operations are exactly as analysed by Harvey in [Har07] Section
7.4. With our larger, but still sparse, horizontal reduction matrices, each reduction
step without Theorem 5.2 uses O(g + L) rather than O(g) ring operations, for a

total of O(N3g3(g + L)) ring operations, or Õ(N4g3(g + L) log p) bit operations.
We then have a total time complexity of

Õ
(
(gω + Lgω−1)

√
NpN2 +N4g3(g + L) log p

)
. (8.2)

Now we turn to the algorithm for computing Coleman integrals, obtained by
running Algorithm 6.1 once and then Algorithm 3.3 once for each point. The anal-
ysis here is the same as that in [BBK10] Section 4.2, where, by using Algorithm 6.1

instead of Kedlaya’s algorithm, we may replace the Õ(pN2g2) in their complexity
analysis with (8.2). The remaining steps to complete the Coleman integration are
logarithmic in p and are dominated by the logarithmic in p term of (8.2).

If L is fixed (for example L = 2 when computing integrals between two points)
the complexity is as in [Har07] Theorem 1.1. This finishes the proof of Theorem 1.1.

Remark 8.1. The version of Kedlaya’s algorithm used in [BBK10] Algorithm 10,
seems to have an advantage in that it outputs the power series of the fi’s. This
could of course be re-used later to evaluate at further points without re-running
Kedlaya’s algorithm. However, for p large enough, this series has so many terms
that it is faster asymptotically to recompute everything with the algorithm given
here, than it is to evaluate the power series at one point.

14 ALEX J. BEST

p\N 1 3 5 7 9

131 1.14/0.01 3.67/0.02 9.36/0.07 16.90/0.12 20.06/0.49
257 1.96/0.01 8.90/0.03 20.83/0.07 30.91/0.18 63.14/0.68
521 4.73/0.01 19.23/0.03 39.18/0.08 86.49/0.62 162.81/0.91

Table 1. Timings for genus 3: Sage 8.0 time/New time (sec)

9. Implementation

We have implemented this algorithm in C++ as an extension of David Harvey’s
hypellfrob package. This extension has been wrapped and can be easily used from
within Sage [Sag18]. The implementation is included as part of the supplementary
materials to this paper. This implementation uses naive matrix multiplication (for
which ω = 3) and does not take into account the special form of the matrices, as in
Theorem 5.2; so the run time of this implementation will not have the asymptotic
behaviour stated in (8.2) for the parameter L.

In Table 1, we list some timings obtained using this implementation in genus
3, for various primes p and p-adic precision bounds N . For comparison, we also
list timings for the functionality for computing Coleman integrals in Sage 8.0. The
implementation in Sage is written in Python, rather than C++, so we would expect
some speed-up even if a superior algorithm was not used. Specifically we have
compared the time to compute the Coleman data only, and do not include any of
the time spent doing the linear algebra and tiny integral steps of Coleman integra-
tion, which should be comparatively fast. As such, we only time the components
that will differ between the old and new approaches. For the existing Sage code
we have timed both finding the matrix of Frobenius and the primitives (by call-
ing monsky_washnitzer.matrix_of_frobenius_hyperelliptic), and the time to
evaluate the resulting primitive at one point. This is compared with the time taken
by the new implementation, called from its Sage wrapper with one point specified,
this outputs the matrix of Frobenius and the evaluations at that point. All timings
and examples are on a single 16 AMD Opteron 8384 2.7GHz processor on a ma-
chine with 16 cores and 82 GB RAM. While this table is mostly intended to show
practicality, in the N = 9 column the square root dependence on p can be seen.
The large jump in the timings between p ≈ 256 and p ≈ 512 for N = 7 could be
explained by the fact that this is the cut off between when an element of Z/pNZ is
representable in one machine word.

10. Examples

In this section we give an explicit example of a computation we can perform with
this technique, demonstrating how large we can feasibly take the parameters. We
compare our implementation to the existing functionality for Coleman integration
in Sage 8.0 for this example.

The current implementation uses the basis xi dx/y, to remain consistent with
Harvey’s notation. As the existing functionality for Coleman integration in Sage
8.0 uses the basis xi dx/2y for cohomology, we must divide the obtained evaluations
by 2 to compare them to those returned by Sage or Algorithm 6.1.

Example 10.1. Let C : y2 = x5 + 33
16x

4 + 3
4x

3 + 3
8x

2 − 1
4x + 1

16 be Leprévost’s

curve, as in [BBK10] Example 21. Then letting P = (−1, 1), Q = (0, 1
4) and

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 15

p = 245 + 59 = 35184372088891, using our implementation we can compute the
matrix of Frobenius M to 1 p-adic digit of precision, and also that

f0(P)− f0(Q) = O(p), f1(P)− f1(Q) = O(p),

f2(P)− f2(Q) = 7147166195043+O(p), f3(P)− f3(Q) = 9172338112529+O(p).

Computing this (and finding (M − 1)−1) takes a total of 27.8 minutes (with a peak
memory usage of 2.9GB). Evaluating Coleman integrals for such a large prime is
far out of the range of what was possible to compute in reasonable amount of time
using the previous implementation. In fact, even when p = 214 + 27 the existing
Sage functionality takes 53.2 minutes, and uses a larger volume of memory (12GB).

As we have used only 1 digit of p-adic precision, the points P and Q are con-
gruent up to this precision to the corresponding Teichmüller point in their residue
disk. So, for this example, we do not need to worry about computing tiny in-

tegrals; the vector of Coleman integrals
∫ P

Q
ωi can be obtained from the above

vector of evaluations by multiplying by (M − 1)−1. Doing this gives us the vector
(O(p), O(p), 9099406574713+O(p), 7153144612900+O(p)) reflecting the holomor-
phicity of the first two basis differentials only. We have also run the same example
with precision N = 3; this took 22.5 hours and used a peak of 50GB of memory.

11. Future directions

The assumptions on the size of p allow us to use at most one extra digit of
p-adic precision; it should be possible to relax this assumption somewhat, using a
more complicated algorithm instead. Similarly it should be possible to work over
extensions of Qp, or remove the assumption that Q(x) is monic.

Kedlaya’s algorithm has been generalised to other curves and varieties, e.g.
[Har12, GG01, Gon15, Tui17] and Harvey’s techniques have also been generalised
to some of these cases [Min10, ABC+18]. Moreover, explicit Coleman integration
has also been carried out in some of these settings, for even degree hyperelliptic
curves [Bal15], and for general curves [BT17]. It would be interesting to adapt
our techniques to those contexts. Iterated Coleman integrals are also of interest
and have been made computationally effective [Bal13]. Extending the algorithm
presented here to compute iterated integrals is another natural next step. Harvey
has also described an average polynomial time algorithm for dealing with for many
primes at once [Har14]. The author plans to explore the feasibility of analogous
techniques when computing Coleman integrals.

References

[ABC+18] Arul V., Best A.J., Costa E., Magner R., Triantafillou N. “Computing Zeta Functions of
Cyclic Covers in Large Characteristic”. In “ANTS XIII—Proceedings of the Thirteenth
Algorithmic Number Theory Symposium”, This volume. Math. Sci. Publ., Berkeley,
CA, 2018.

[Bal13] Balakrishnan J.S. “Iterated Coleman integration for hyperelliptic curves”. In “ANTS
X—Proceedings of the Tenth Algorithmic Number Theory Symposium”, volume 1 of
Open Book Ser., pages 41–61. Math. Sci. Publ., Berkeley, CA, 2013. doi:10.2140/obs.
2013.1.41.

[Bal15] ———. “Coleman integration for even-degree models of hyperelliptic curves”. LMS J.

Comput. Math., 18(1):258–265, 2015.
[BBK10] Balakrishnan J.S., Bradshaw R.W., Kedlaya K.S. “Explicit Coleman integration for

hyperelliptic curves”. In “Algorithmic number theory”, volume 6197 of Lecture Notes
in Comput. Sci., pages 16–31. Springer, Berlin, 2010.

16 ALEX J. BEST

[BD18] Balakrishnan J.S., Dogra N. “Quadratic Chabauty and rational points I: p-adic
heights”. Duke Mathematical Journal, 2018. http://arxiv.org/abs/1601.00388v2 .

[Bes12] Besser A. “Heidelberg lectures on Coleman integration”. In “The arithmetic of fun-
damental groups—PIA 2010”, volume 2 of Contrib. Math. Comput. Sci., pages 3–52.
Springer, Heidelberg, 2012.

[BGS07] Bostan A., Gaudry P., Schost E. “Linear recurrences with polynomial coefficients and
application to integer factorization and Cartier-Manin operator”. SIAM J. Comput.,
36(6):1777–1806, 2007.

[BT17] Balakrishnan J.S., Tuitman J. “Explicit Coleman integration for curves”. 2017.
1710.01673v2.

[CdS88] Coleman R., de Shalit E. “p-adic regulators on curves and special values of p-adic
L-functions”. Invent. Math., 93(2):239–266, 1988.

[Col82] Coleman R.F. “Dilogarithms, regulators and p-adic L-functions”. Invent. Math.,
69(2):171–208, 1982.

[Col85] ———. “Torsion points on curves and p-adic abelian integrals”. Ann. of Math. (2),
121(1):111–168, 1985.

[GG01] Gaudry P., Gürel N. “An extension of Kedlaya’s point-counting algorithm to superel-
liptic curves”. In “Advances in cryptology—ASIACRYPT 2001 (Gold Coast)”, volume
2248 of Lecture Notes in Comput. Sci., pages 480–494. Springer, Berlin, 2001.

[Gon15] Gonçalves C. “A point counting algorithm for cyclic covers of the projective line”. In
“Algorithmic arithmetic, geometry, and coding theory”, volume 637 of Contemp. Math.,
pages 145–172. Amer. Math. Soc., Providence, RI, 2015.

[Har07] Harvey D. “Kedlaya’s algorithm in larger characteristic”. Int. Math. Res. Not. IMRN,
(22):Art. ID rnm095, 29, 2007.

[Har12] Harrison M.C. “An extension of Kedlaya’s algorithm for hyperelliptic curves”. J. Sym-
bolic Comput., 47(1):89–101, 2012.

[Har14] Harvey D. “Counting points on hyperelliptic curves in average polynomial time”. Ann.
of Math. (2), 179(2):783–803, 2014.

[Ked01] Kedlaya K.S. “Counting points on hyperelliptic curves using Monsky-Washnitzer co-
homology”. J. Ramanujan Math. Soc., 16(4):323–338, 2001.

[LG12] Le Gall F. “Faster algorithms for rectangular matrix multiplication”. In “2012 IEEE
53rd Annual Symposium on Foundations of Computer Science—FOCS 2012”, pages
514–523. IEEE Computer Soc., Los Alamitos, CA, 2012.

[Min10] Minzlaff M. “Computing zeta functions of superelliptic curves in larger characteristic”.
Math. Comput. Sci., 3(2):209–224, 2010.

[Sag18] Sage Developers, The. SageMath, the Sage Mathematics Software System (Version
8.0.0), 2018. http://www.sagemath.org.

[Tui17] Tuitman J. “Counting points on curves using a map to P
1, II”. Finite Fields Appl.,

45:301–322, 2017.

111 Cummington Mall, Boston MA 02215

E-mail address: alex.j.best@gmail.com

http://arxiv.org/abs/1601.00388v2
1710.01673v2

	1. Introduction
	2. Set-up and notation
	3. Coleman integration
	4. Reductions in cohomology
	4.1. Kedlaya's algorithm and Harvey's work
	4.2. Horizontal reduction
	4.3. Vertical reduction
	4.4. Towards a faster algorithm
	4.5. The recurrence

	5. Linear recurrence algorithms
	6. The algorithm
	7. Precision
	8. Run time analysis
	9. Implementation
	10. Examples
	11. Future directions
	References

