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Abstract. We give a complete rigorous proof of the full asymptotic expansion of the
partition function of the dimer model on a square lattice on a torus for general weights
zh, zv of the dimer model and arbitrary dimensions of the lattice m,n. We assume that m is
even and we show that the asymptotic expansion depends on the parity of n. We review and
extend the results of Ivashkevich, Izmailian, and Hu [6] on the full asymptotic expansion of
the partition function of the dimer model, and we give a rigorous estimate of the error term
in the asymptotic expansion of the partition function.

1. Introduction

1.1. Dimer Model on a Square Lattice. We consider the dimer model on a square lattice
Γm,n = (Vm,n, Em,n) on the torus Zm×Zn = Z2/(mZ× nZ) (periodic boundary conditions),
where Vm,n and Em,n are the sets of vertices and edges of Γm,n, respectively. A dimer on Γm,n
is a set of two neighboring vertices 〈x, y〉 connected by an edge. A dimer configuration σ on
Γm,n is a set of dimers σ = {〈xi, yi〉, i = 1, . . . , mn

2
} which cover Vm,n without overlapping.

An example of a dimer configuration is shown in Fig. 1. An obvious necessary condition for
a configuration to exist is that at least one of m,n is even, and so we assume that m is even,
m = 2m0.

To define a weight of a dimer configuration, we split the full set of dimers in a configuration
σ into two classes: horizontal and vertical, with respective weights zh, zv > 0. If we denote
the total number of horizontal and vertical dimers in σ by Nh(σ) and Nv(σ), respectively,
then the dimer configuration weight is

w(σ) =

mn
2∏
i=1

w(xi, yi) = z
Nh(σ)
h zNv(σ)

v , (1.1)

where w(xi, yi) denotes the weight of the dimer 〈xi, yi〉 ∈ σ. We denote by Σm,n the set of
all dimer configurations on Γm,n. The partition function of the dimer model is given by

Z =
∑

σ∈Σm,n

w(σ). (1.2)
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2 DIMER MODEL: FULL ASYMPTOTIC EXPANSION

Figure 1. Example of a dimer configuration on a square 6× 6 lattice on the torus.

Notice that if all the weights are set equal to one, then Z simply counts the number of dimer
configurations, or perfect matchings, on Γm,n.

Our goal is to evaluate the full asymptotic series expansion of the partition function Z
as m,n → ∞. The free energy of the dimer model on the square lattice was obtained
in the papers of Kasteleyn [8] and Temperley and Fisher [16]. Our work is based on the
Kasteleyn’s expression of the partition function Z on a torus as a linear combination of 4
Pfaffians developed in the works [8], [9], [10] (see also the works of Galluccio and Loebl [5],
Tesler [17], and Cimasoni and Reshetikhin [3]). The constant term in the asymptotic of the
partition function was obtained by Ferdinand [4] (see also the work of Kenyon, Sun and
Wilson [11]).

The asymptotic expansion of the partition function on a torus was developed by Ivashke-
vich, Izmailian, and Hu [6] and our calculations use their ideas. Ivashkevich, Izmailian, and
Hu considered the case when zh = zv and n is even. In the present work we extend their
calculations to arbitrary weights zh, zv and to odd n. It is worth noticing that the asymptotic
expansions for even and odd values of n are different. We give a complete rigorous proof of
the asymptotic expansion of the partition function, with an estimate of the error term. The
asymptotic expansion of the partition function is expressed in terms of the classical Jacobi
theta functions, Dedekind eta function, and Kronecker double series. The work [6] has been
further extended by Izmailian, Oganesyan, and Hu [7] to the dimer model on a square lattice
with various boundary conditions for both even and odd n. Our result for the dimer model
on a torus coincides with the one in [7] for even n, and for odd n it coincides except for the
value of the elliptic nome in formula (2.14) below. The difference in the value of the elliptic
nome for even and odd n is explained after formula (5.6) in Section 5 below.

It follows from (1.1), (1.2) that the partition function Z is a homogeneous polynomial of
the variables zh, zv, and it can be written as

Z(zh, zv) =
∑

σ∈Σm,n

z
Nh(σ)
h zNv(σ)

v = z
mn
2
h Z(1, ζ), (1.3)
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where

ζ =
zv
zh

> 0, (1.4)

so without loss of generality we may assume that

zh = 1, zv = ζ, (1.5)

and we will evaluate the full asymptotic series expansion of the partition function Z(1, ζ) as
m,n→∞.

To formulate our main result we have to introduce and remind some special functions and
operators.

1.2. Function g(x). Introduce the function

g(x) = ln

(
ζ sin(πx) +

√
1 + ζ2 sin2(πx)

)
, (1.6)

where ζ > 0 is defined in (1.4). Observe that g(x) has the following properties:

(1) g(−x) = −g(x),
(2) g(x+ 1) = −g(x),
(3) g(x) is real analytic on [0, 1] and

g (x) =
∞∑
p=0

g2p+1x
2p+1, (1.7)

where

g1 = πζ, g3 = −π
3ζ(ζ2 + 1)

6
, g5 =

π5ζ(ζ2 + 1)(9ζ2 + 1)

120
, . . . . (1.8)

(4) g(x) ≥ C0x on the segment 0 ≤ x ≤ 1
2

, with some C0 > 0.

The constant C0 in the latter inequality can depend on ζ. In what follows we assume that ζ is
fixed and we do not indicate the dependence of various constants Ck on ζ. Unless otherwise
is stated, the constants Ck can be different in different inequalities.

Observe that since g(x) is analytic at x = 0, we have that

|g2p+1| ≤ Cξp, (1.9)

with some C, ξ > 0.

1.3. Differential Operator ∆p. Let Sp be the set of collections of positive integers
(p1, . . . , pr; q1, . . . , qr), 1 ≤ r ≤ p, such that

Sp =
{

(p1, . . . , pr; q1, . . . , qr)
∣∣ 0 < p1 < . . . < pr; p1q1 + . . .+ prqr = p

}
. (1.10)

Introduce the differential operator

∆p =
∑
Sp

(g2p1+1)q1 . . . (g2pr+1)qr

q1! . . . qr!

dq

dλq
, q = q1 + . . .+ qr − 1 . (1.11)

Observe that

∆1 = g3, ∆2 =
g2

3

2

d

dλ
+ g5, ∆3 =

g3
3

3!

d2

dλ2
+ g3g5

d

dλ
+ g7, . . . . (1.12)
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1.4. Kronecker’s Double Series. The Kronecker double series of order p with parameters
α, β is defined as

Kα,β
p (τ) = − p!

(−2πi)p

∑
(j,k)6=(0,0)

e(jα + kβ)

(k + τj)p
, (1.13)

where

e(x) = e−2πix. (1.14)

We will use the following Kronecker double series with parameters (α, β) = (1
2
, 1

2
), (0, 1

2
), (1

2
, 0),

respectively:

K
1
2
, 1
2

p (τ) =− p!

(−2πi)p

∑
(j,k)6=(0,0)

(−1)j+k

(k + τj)p
,

K
0, 1

2
p (τ) =− p!

(−2πi)p

∑
(j,k)6=(0,0)

(−1)k

(k + τj)p
,

K
1
2
,0

p (τ) =− p!

(−2πi)p

∑
(j,k)6=(0,0)

(−1)j

(k + τj)p
.

(1.15)

We will use it for τ pure imaginary and p ≥ 4. Then the double series are absolutely
convergent.

1.5. Dedekind Eta Function. The Dedekind eta function is defined as

η = η(τ) = e
πiτ
12

∞∏
k=1

(
1− e2πiτk

)
= q

1
12

∞∏
k=1

(
1− q2k

)
, (1.16)

where

q = eπiτ (1.17)

is the elliptic nome.

1.6. Jacobi Theta Functions. There are four Jacobi theta functions:

θ1(z, q) = 2
∞∑
k=0

(−1)kq(k+ 1
2)

2

sin
(
(2k + 1)z

)
,

θ2(z, q) = 2
∞∑
k=0

q(k+ 1
2)

2

cos
(
(2k + 1)z

)
,

θ3(z, q) = 1 + 2
∞∑
k=1

qk
2

cos(2kz),

θ4(z, q) = 1 + 2
∞∑
k=1

(−1)kqk
2

cos(2kz),

(1.18)

where q = eπiτ is elliptic nome.
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We have the following identities (see, e.g., [18]):

θ2 = θ2(0, q) =
2η2(2τ)

η(τ)
,

θ3 = θ3(0, q) =
η5(τ)

η2(2τ)η2( τ
2
)
,

θ4 = θ4(0, q) =
η2( τ

2
)

η(τ)
.

(1.19)

Also (see, e.g., [6]),

K
0, 1

2
4 (τ) =

1

30

(
7

8
θ8

2 − θ4
3θ

4
4

)
,

K
1
2
,0

4 (τ) =
1

30

(
7

8
θ8

4 − θ4
2θ

4
3

)
,

K
1
2
, 1
2

4 (τ) =
1

30

(
7

8
θ8

3 + θ4
2θ

4
4

)
.

(1.20)

2. Main Result: Full Asymptotic Expansion of the Dimer Model Partition
Function

2.1. Pfaffians. We would like to evaluate the asymptotic expansion of the dimer model
partition function Z on the square lattice, Γm,n, of dimensions m×n, with periodic boundary
conditions wherem,n→∞ under the assumption that there exist positive constants C2 > C1

such that

C1 ≤
m

n
≤ C2. (2.1)

As shown by Kasteleyn [8, 9, 10], the partition function Z can be written in terms of four
Pfaffians as

Z =
1

2
(−Pf A1 + Pf A2 + Pf A3 + Pf A4) , (2.2)

whereA1, A2, A3, A4 are the antisymmetric Kasteleyn matrices with periodic-periodic, periodic-
antiperiodic, antiperiodic-periodic, and antiperiodic-antiperiodic boundary conditions, re-
spectively. Their determinants are given by the double product formulae as

detAi =

m
2
−1∏

j=0

n−1∏
k=0

[
4

(
sin2 2π(j + αi)

m
+ ζ2 sin2 2π(k + βi)

n

)]
, (2.3)

with

(α1, β1) = (0, 0), (α2, β2) = (0, 1/2), (α3, β3) = (1/2, 0), (α4, β4) = (1/2, 1/2). (2.4)

These double product formulae are obtained by diagonalizing the matrices Ai (see [8, 13, 14]).
The Pfaffian of a square antisymmetric matrix A is related to its determinant through the
classical identity:

(Pf A)2 = detA. (2.5)

Observe that detA1 = 0 due to the factor j = k = 0 in (2.3), hence

Pf A1 = 0, (2.6)
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and for odd n, detA2 = 0, due to the factor j = 0, k = n−1
2

, hence

Pf A2 = 0, if n is odd. (2.7)

In addition,
Pf A3 = Pf A4, if n is odd (2.8)

(see [2]). As shown in [11],[2],

Pf A2 > 0, if n is even,

Pf A3 > 0, Pf A4 > 0 for all n,
(2.9)

hence from (2.3) we obtain that

Pf Ai =

m
2
−1∏

j=0

n−1∏
k=0

[
4

(
sin2 2π(j + αi)

m
+ ζ2 sin2 2π(k + βi)

n

)]1/2

. (2.10)

Combining (2.2) with (2.6), (2.7), (2.8), we obtain that

Z =
1

2
(Pf A2 + Pf A3 + Pf A4) , if n is even,

Z = Pf A3, if n is odd.
(2.11)

2.2. Main Result. Before stating the main theorem, let us introduce some additional no-
tations. Denote

S = mn, ν =
m

n
. (2.12)

We set

τ =


iζν, if n is even,

iζν

2
, if n is odd,

(2.13)

so that the elliptic nome is equal to

q = eπiτ =

{
e−πζν , if n is even,

e
−πζν

2 , if n is odd.
(2.14)

For brevity we also denote

η = η(τ), θk = θk(0, q), k = 2, 3, 4, (2.15)

where η(τ) is the Dedekind eta function, and θk(z, q) are the Jacobi theta functions. The
main result is the following asymptotic expansion of the partition function Z in powers of
S−1, derived by Ivashkevich et al. in [6] in the case ζ = 1 and n is even. We give a complete
rigorous proof of the asymptotic expansion for any ζ > 0 and for n both even and odd.

Theorem 2.1. If n is even, then as m,n→∞ under condition (2.1), we have that

Z = eSF
(
C(2)eR

(2)

+ C(3)eR
(3)

+ C(4)eR
(4)
)
, (2.16)

where

F =
1

π

ζ∫
0

arctanx

x
dx, (2.17)
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C(2) =
θ2

4

2η2
, C(3) =

θ2
2

2η2
, C(4) =

θ2
3

2η2
, (2.18)

and R(j), j = 2, 3, 4, admit the asymptotic expansions

R(j) ∼
∞∑
p=1

R
(j)
p

Sp
, j = 2, 3, 4, (2.19)

with

R(j)
p = −22p+1νp+1

p+ 1
∆p

[
K
βj ,αj
2p+2

(
iνλ

π

)] ∣∣∣∣
λ=πζ

, (2.20)

where αj, βj are defined in (2.4). In particular, by (1.12) and (1.20),

R
(2)
1 = −2ν2g3

15

(
7

8
θ8

4 − θ4
2θ

4
3

)
, R

(3)
1 = −2ν2g3

15

(
7

8
θ8

2 − θ4
3θ

4
4

)
,

R
(4)
1 = −2ν2g3

15

(
7

8
θ8

3 + θ4
2θ

4
4

)
.

(2.21)

Furthermore, if n is odd, then as m,n→∞ under condition (2.1), we have that

Z = CeSF+R, (2.22)

where F is given in (2.17),

C =
θ2

η
, (2.23)

and R admits the asymptotic expansions

R ∼
∞∑
p=1

Rp

Sp
, (2.24)

with

Rp = − νp+1

p+ 1
∆p

[
K

0, 1
2

2p+2

(
iνλ

2π

)] ∣∣∣∣
λ=πζ

. (2.25)

By (1.12) and (1.20),

R1 = −ν
2g3

60

(
7

8
θ8

2 − θ4
3θ

4
3

)
. (2.26)

Remark: As noticed by Kasteleyn [8], the free energy F in (2.17) can be expressed in terms
of the Euler dilogarithm function

L2(z) = −
∫ z

0

ln(1− s) ds
s

(2.27)

as

F (ζ) = (2i)−1
[
L2(iζ)− L2(−iζ)

]
. (2.28)

The proof of Theorem 2.1 will be given in Sections 3–5.
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3. Asymptotic behavior of Pf A2 for even n

Since sin2(x+ π) = sin2 x, we can rewrite Pf A2 in (2.10) for even n as

Pf A2 =

m
2
−1∏

j=0

n
2
−1∏

k=0

[
4

(
sin2 2jπ

m
+ ζ2 sin2 (2k + 1)π

n

)]
. (3.1)

Using the Chebyshev type identity (see e.g. [8]),
m
2
−1∏

j=0

[
4

(
u2 + sin2 2jπ

m

)]
=

[(
u+
√

1 + u2
)m

2 −
(
−u+

√
1 + u2

)m
2

]2

, (3.2)

equation (3.1) is reduced to

Pf A2 =

n
2
−1∏

k=0

[(
uk +

√
1 + u2

k

)m
2

−
(
−uk +

√
1 + u2

k

)m
2

]2

, (3.3)

where

uk = ζ sin(πxk) ≥ 0, xk =
2k + 1

n
. (3.4)

Observe that (
uk +

√
1 + u2

k

)(
−uk +

√
1 + u2

k

)
= 1 , (3.5)

hence

Pf A2 = B(2)
m,nC

(2)
m,n , (3.6)

where

B(2)
m,n =

n
2
−1∏

k=0

(
uk +

√
1 + u2

k

)m
,

C(2)
m,n =

n
2
−1∏

k=0

1− 1(
uk +

√
1 + u2

k

)m
2

.

(3.7)

Respectively,

ln(Pf A2) = G(2)
m,n +H(2)

m,n , (3.8)

with

G(2)
m,n = m

n
2
−1∑

k=0

ln

(
uk +

√
1 + u2

k

)
= m

n
2
−1∑

k=0

g

(
2k + 1

n

)
,

H(2)
m,n = 2

n
2
−1∑

k=0

ln

1− 1(
uk +

√
1 + u2

k

)m
 . (3.9)

The function g(x), defined in (1.6), is real analytic, and we will evaluate an asymptotic series

expansion of G
(2)
m,n for large n by using an Euler–Maclaurin type formula and the Bernoulli

polynomials Bk(x) (see [1] or Appendix C).
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3.1. Evaluation of G
(2)
m,n.

Lemma 3.1. As n,m → ∞ under condition (2.1), we have that G
(2)
m,n admits the following

asymptotic expansion:

G(2)
m,n ∼ SF +

γ

6
−m

∞∑
p=1

B2p+2

(
1
2

)
g2p+1

(p+ 1)
(
n
2

)2p+1 , γ = πνζ. (3.10)

Proof. From (3.9) we have that

G(2)
m,n = mG(2)

n , G(2)
n =

n
2
−1∑

k=0

g

(
2k + 1

n

)
. (3.11)

Using the Euler-Maclaurin formula (C.5), we obtain that G
(2)
n is expanded in the asymptotic

series in powers of 1
n

as

G(2)
n ∼

n

2

1∫
0

g(x) dx+
∞∑
p=1

Bp

(
1
2

)(
n
2

)p−1
p!

[g(p−1)(1)− g(p−1)(0)]. (3.12)

From (1.7) and the equation g(x+ 1) = −g(x) we obtain that

g(2p)(0) = g(2p)(1) = 0,

g(2p+1)(0) = (2p+ 1)!g2p+1, g(2p+1)(1) = −(2p+ 1)!g2p+1.
(3.13)

Now, (3.12) becomes

G(2)
n ∼

n

2

1∫
0

g(x) dx+
∞∑
p=1

B2p

(
1
2

)(
n
2

)2p−1
(2p)!

[g(2p−1)(1)− g(2p−1)(0)]

∼ n

2

1∫
0

g(x) dx−
∞∑
p=1

2B2p

(
1
2

)
(2p− 1)!g2p−1(

n
2

)2p−1
(2p)!

∼ n

2

1∫
0

g(x) dx−
∞∑
p=0

B2p+2

(
1
2

)
g2p+1

(p+ 1)
(
n
2

)2p+1 .

(3.14)

Substituting (3.14) into (3.11), we obtain that

G(2)
m,n ∼

mn

2

1∫
0

g(x) dx−m
∞∑
p=0

B2p+2

(
1
2

)
g2p+1

(p+ 1)
(
n
2

)2p+1 . (3.15)

Since B2(1
2
) = − 1

12
and g1 = πζ, we obtain that

G(2)
m,n ∼ SF +

γ

6
−m

∞∑
p=1

B2p+2

(
1
2

)
g2p+1

(p+ 1)
(
n
2

)2p+1 , γ = πνζ. (3.16)
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where

F =
1

2

1∫
0

ln

(
ζ sin(πx) +

√
1 + ζ2 sin2(πx)

)
dx . (3.17)

As shown by Kasteleyn [8],

1

2

1∫
0

ln

(
ζ sin(πx) +

√
1 + ζ2 sin2(πx)

)
dx =

1

π

ζ∫
0

arctanx

x
dx, (3.18)

hence Lemma 3.1 follows. �

Next, we evaluate H
(2)
m,n in (3.9).

3.2. Evaluation of H
(2)
m,n.

Lemma 3.2. As n,m→∞ under condition (2.1), we have that H
(2)
m,n admits the following

asymptotic expansion:

H(2)
m,n ∼ A(2) +B(2), (3.19)

with

A(2) = 4
∞∑
k=0

ln
(
1− e−γ(2k+1)

)
, γ = πνζ,

B(2) = m
∞∑
p=1

B2p+2

(
1
2

)
g2p+1

(p+ 1)
(
n
2

)2p+1 +
∞∑
p=1

R
(2)
p

Sp
,

(3.20)

where

R(2)
p = −22p+1νp+1

p+ 1
∆p

[
K

1
2
,0

2p+2

(
iνλ

π

)] ∣∣∣∣
λ=πζ

. (3.21)

Proof. From (3.9), (3.4), and (1.6) we have that

H(2)
m,n = 2

n
2
−1∑

k=0

ln
[
1− e−mg(xk)

]
, xk =

2k + 1

n
. (3.22)

Since g(x) ≥ C0x on the segment [0, 1
2
], for some C0 > 0, we have that

e−mg(xk) ≤ e−C0ν(2k+1) , ν =
m

n
, (3.23)

hence the sum in (3.22) is estimated from above by a geometric series, and for any L > 0
there is R > 0 such that

H(2)
m,n = 4

R lnn∑
k=0

ln
[
1− e−mg(xk)

]
+O(n−L), (3.24)

so that in our calculations we can restrict k to k ≤ R lnn.
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Following [6], let us expand the logarithm in (3.24) into the Taylor series

H(2)
m,n = −4

R lnn∑
k=0

∞∑
j=1

e−mjg(xk)

j
+O(n−L). (3.25)

Observe that

mjg(xk) ≥ C0(2k + 1)j, (3.26)

hence the series in j converges exponentially and for any L > 0 there is R > 0 such that

H(2)
m,n = −4

R lnn∑
k=0

R lnn∑
j=1

e−mjg(xk)

j
+O(n−L). (3.27)

Expanding now g(x) into power series (1.7), we obtain that

e−mjg(xk) = e−mjπζxk exp

[
−mj

(
∞∑
p=1

g2p+1x
2p+1
k

)]
. (3.28)

Since S = mn and ν = m
n

, we have that n2p = Sp

νp
. Hence,

mx2p+1
k = m

(
2k + 1

n

)2p+1

=
(2k + 1)2p+1 νp+1

Sp
(3.29)

and

e−mjg(xk) = e−(2k+1)jγ exp

[
−j

∞∑
p=1

g2p+1 (2k + 1)2p+1 νp+1

Sp

]
, γ = πνζ. (3.30)

Denote

ap = − (2k + 1) jν g2p+1, x =
(2k + 1)2 ν

S
. (3.31)

Then formula (3.30) simplifies to

e−mjg(xk) = e−(2k+1)jγ exp

(
∞∑
p=1

apx
p

)
. (3.32)

Substituting this expression into (3.27), we obtain that

H(2)
m,n = −4

R lnn∑
k=0

R lnn∑
j=1

e−(2k+1)jγ

j
exp

(
∞∑
p=1

apx
p

)
+O(n−L). (3.33)

Expanding the exponent into the Taylor series, we obtain that

exp

(
∞∑
p=1

apx
p

)
= 1 +

∞∑
p=1

bpx
p, (3.34)

with

bp =
∑
Sp

(ap1)
q1 . . . (apr)

qr

q1! . . . qr!
, (3.35)
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where Sp is defined in (1.10) (see [6] and Appendix A). Thus,

H(2)
m,n = −4

R lnn∑
k=0

R lnn∑
j=1

e−(2k+1)jγ

j

(
1 +

∞∑
p=1

bpx
p

)
+O(n−L), (3.36)

or
H(2)
m,n = A(2)

n +B(2)
n +O(n−L), (3.37)

where

A(2)
n = −4

R lnn∑
k=0

R lnn∑
j=1

e−(2k+1)jγ

j
,

B(2)
n = −4

R lnn∑
k=0

R lnn∑
j=1

∞∑
p=1

e−(2k+1)jγ

j
bpx

p, x =
(2k + 1)2 ν

S
.

(3.38)

We have that

A(2)
n = −4

∞∑
k=0

∞∑
j=1

e−(2k+1)jγ

j
+O(n−L) = 4

∞∑
k=0

ln(1− e−(2k+1)γ) +O(n−L). (3.39)

We write now B
(2)
n as

B(2)
n = B

(2)
n,K +R

(2)
n,K , B

(2)
n,K = −4

R lnn∑
k=0

R lnn∑
j=1

K−1∑
p=1

e−(2k+1)jγ

j
bpx

p,

R
(2)
n,K = −4

R lnn∑
k=0

R lnn∑
j=1

∞∑
p=K

e−(2k+1)jγ

j
bpx

p,

(3.40)

and we would like to estimate the error term R
(2)
n,K . To that end we will prove the following

lemma:

Lemma 3.3. (Error term estimate) Fix any ε > 0. Then as S →∞,

R
(2)
n,K = O(S−K(1−ε)) . (3.41)

Remark: Remind that S = mn = νn2, where C1 ≤ ν ≤ C2, hence S → ∞ implies that
n→∞.

Proof. Let us estimate bp. From (3.31) and (1.9) we have that

|ap| = (2k + 1)jν|g2p+1| ≤ C1(2k + 1)jξp, (3.42)

hence ∣∣∣∣∣
∞∑
p=1

apz
p

∣∣∣∣∣ ≤ C2(2k + 1)j|z|, |z| ≤ (2ξ)−1, z ∈ C. (3.43)

This implies that∣∣∣∣∣
∞∑
p=1

apz
p

∣∣∣∣∣ ≤ C2, if |z| ≤ min
{

(2ξ)−1, [(2k + 1)j]−1
}
, z ∈ C, (3.44)
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hence∣∣∣∣∣exp

(
∞∑
p=1

apz
p

)∣∣∣∣∣ ≤ C3 = eC2 , if |z| ≤ min
{

(2ξ)−1, [(2k + 1)j]−1
}
, z ∈ C. (3.45)

By the Cauchy integral formula,

f (p)(0)

p!
=

1

2πi

∮
|z|=ρ

f(z) dz

zp+1
, (3.46)

applied to f(z) = exp
(∑∞

p=1 apz
p
)

and ρ = min
{

(2ξ)−1, [(2k + 1)j]−1
}

, it follows that

|bp| ≤ C3

[
(2k + 1)j

]p
if (2k + 1)j ≥ ξ, (3.47)

and

|bp| ≤ C3ξ
p if (2k + 1)j ≤ ξ. (3.48)

Using these estimates of bp, we will now prove (3.41).

As n→∞, we may assume that R lnn > ξ, and we partition R
(2)
n,K as follows:

R
(2)
n,K =

∑
j,k: (2k+1)j≤ξ

(
∞∑
p=K

e−(2k+1)jγ

j
|bp|xp

)

+
∑

j,k: j,k≤R lnn; (2k+1)j>ξ

(
∞∑
p=K

e−(2k+1)jγ

j
|bp|xp

)
, x =

(2k + 1)2 ν

S
.

(3.49)

In the first term there are only finitely many possible values of j and k, and by (3.48),∑
j,k: (2k+1)j≤ξ

(
∞∑
p=K

e−(2k+1)jγ

j
|bp|xp

)
≤

∞∑
p=K

(C4S
−1)p = O(S−K(1−ε)) . (3.50)

Consider now the second term in (3.49). Using estimate (3.47), we obtain that∑
j,k: j,k≤R lnn; (2k+1)j>ξ

(
∞∑
p=K

e−(2k+1)jγ

j
|bp|xp

)
≤

∞∑
p=K

cp
Sp

, (3.51)

with

0 < cp ≤ C6

R lnn∑
k=0

R lnn∑
j=1

e−(2k+1)jγ
[
(2k + 1)3jν

]p ≤ [C7ν(R lnn)4
]p
, (3.52)

hence
∞∑
p=K

cp
Sp
≤

∞∑
p=K

[
C7(R lnn)4

n2

]p
= O(S−K(1−ε)) . (3.53)

Thus, ∑
j,k: j,k≤R lnn; (2k+1)j>ξ

(
∞∑
p=K

e−(2k+1)jγ

j
|bp|xp

)
= O(S−K(1−ε)) , (3.54)

and (3.41) is proved. �
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Next, we would like to replace R lnn in B
(2)
n,K in (3.40) by ∞. Denote

B(2)(p) = −4
∞∑
k=0

∞∑
j=1

e−(2k+1)jγ

j
bpx

p, B(2)
n (p) = −4

R lnn∑
k=0

R lnn∑
j=1

e−(2k+1)jγ

j
bpx

p. (3.55)

Then using estimate (3.47) of bp, we obtain that

|B(2)(p)−B(2)
n (p)| = 4

∣∣∣∣∣∣
∑

j,k: j>0, k≥0; max{j,k}>R lnn

e−(2k+1)jγ

j
bpx

p

∣∣∣∣∣∣
≤ C0S

−p

∣∣∣∣∣∣
∑

j,k: j>0, k≥0; max{j,k}>R lnn

e−(2k+1)jγ

j
[(2k + 1)3jν]p

∣∣∣∣∣∣ .
(3.56)

We have that
∞∑

k=R lnn

k3pe−kγ ≤ C1(p)n−Rγ/2, (3.57)

hence from (3.56) we obtain that

|B(2)(p)−B(2)
n (p)| ≤ C2(p)n−Rγ/2. (3.58)

From Lemma 3.3, (3.39), and (3.58) we obtain an asymptotic expansion of H
(2)
m,n in powers

of S−1 as
H(2)
m,n ∼ A(2) +B(2), (3.59)

with

A(2) = 4
∞∑
k=0

ln(1− e−(2k+1)γ) , B(2) =
∞∑
p=1

dpS
−p, (3.60)

where

dp = −4νp
∞∑
k=0

∞∑
j=1

e−(2k+1)jγbp(2k + 1)2p

j
. (3.61)

Here bp is given by equation (3.35), and it satisfies estimate (3.48), which shows that the
series over k, j in the latter formula is convergent. We can transform dp as follows.

Substituting expression (3.31) for ap1 , . . . , apr into (3.35), we obtain that

bp =
∑
Sp

(g2p1+1)q1 . . . (g2pr+1)qr [− (2k + 1) jν]q1+...+qr

q1! . . . qr!
. (3.62)

We can simplify the latter expression using operator ∆p in (1.11). Namely, we have that

∆p

[
e−(2k+1)jνλ

] ∣∣∣
λ=πζ

= e−(2k+1)jγ

×
∑
Sp

(g2p1+1)q1 . . . (g2pr+1)qr [−(2k + 1)jν]q1+...+qr−1

q1! . . . qr!
,

(3.63)

hence

bp = e(2k+1)jγ [−(2k + 1)jν] ∆p

[
e−(2k+1)jνλ

] ∣∣∣
λ=πζ

. (3.64)
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Returning back to formula (3.61), we obtain that

dp = 4νp+1

∞∑
k=0

∞∑
j=1

(2k + 1)2p+1 ∆p

[
e−(2k+1)jνλ

] ∣∣∣
λ=πζ

. (3.65)

To relate dp to the Kronecker double series, introduce the function

F (2)
p (λ) =

∞∑
k=0

∞∑
j=1

(
k +

1

2

)2p+1

e−2νjλ(k+ 1
2) . (3.66)

Then
dp = 22p+3νp+1∆p

[
F (2)
p (λ)

]∣∣
λ=πζ

. (3.67)

The function F
(2)
p (λ) can be expressed in terms of the Kronecker double series of a complex

argument. More precisely, from equation (D.10) in Appendix D we have that

F (2)
p (λ) =

B2p+2

(
1
2

)
−K

1
2
,0

2p+2

(
iνλ
π

)
4(p+ 1)

. (3.68)

Furthermore, since the free term in the operator ∆p in (1.11) is equal to g2p+1, we obtain
that

∆pF
(2)
p (λ) =

B2p+2

(
1
2

)
4(p+ 1)

g2p+1 −
∆pK

1
2
,0

2p+2

(
iνλ
π

)
4(p+ 1)

, (3.69)

and therefore,

B(2) =
∞∑
p=1

22p+1νp+1B2p+2

(
1
2

)
Sp(p+ 1)

g2p+1 −
∞∑
p=1

22p+1νp+1

Sp(p+ 1)
∆p

[
K

1
2
,0

2p+2

(
iνλ

π

)] ∣∣∣∣
λ=πζ

= m
∞∑
p=1

B2p+2

(
1
2

)
(p+ 1)

(
n
2

)2p+1 g2p+1 +
∞∑
p=1

R
(2)
p

Sp
,

(3.70)

(recall that S = νn2), and this completes the proof of Lemma 3.2. �

3.3. Evaluation of ln(Pf A2).

To evaluate ln(Pf A2), substitute (3.10) and (3.19) into (3.8) to obtain

ln(Pf A2) ∼
(
SF +

γ

6
−m

∞∑
p=1

B2p+2

(
1
2

)
(p+ 1)

(
n
2

)2p+1 g2p+1

)

+

(
4
∞∑
k=0

ln(1− e−(2k+1)γ) +m
∞∑
p=1

B2p+2

(
1
2

)
(p+ 1)

(
n
2

)2p+1 g2p+1 +
∞∑
p=1

R
(2)
p

Sp

)

= SF +
γ

6
+
∞∑
k=1

ln
(
1− e−(2k−1)γ

)4
+
∞∑
p=1

R
(2)
p

Sp
, γ = πνζ.

(3.71)

Note that the series containing the Bernoulli polynomials B2p+2(1
2
) cancel out. If we let the

elliptic nome be equal to
q = e−γ , (3.72)
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then by using (1.16) and (1.19), we obtain that

e
γ
6

∞∏
k=1

(1− e−(2k−1)γ)4 = q−1/6

∞∏
k=1

(1− q2k−1)4 =

[
q−1/24

∞∏
k=1

(1− qk)
(1− q2k)

]4

=

[
q1/24

∏∞
k=1(1− qk)

q1/12
∏∞

k=1(1− q2k)

]4

=

[
η
(
τ
2

)
η(τ)

]4

=
θ2

4

η2
.

(3.73)

Therefore, equation (3.71) implies that

Pf A2 = eSF
θ2

4

η2
eR

(2)

, R(2) ∼
∞∑
p=1

R
(2)
p

Sp
. (3.74)

4. Asymptotic expansions of Pf A3 and Pf A4 for even n

The asymptotic expansions of Pf A3 and Pf A4 for even n can be obtained in the same
way as the one of Pf A2. Let us briefly discuss them.

From formula (2.10) we have that

Pf A3 =

m
2
−1∏

j=0

n−1∏
k=0

[
4

(
sin2 2π(j + 1

2
)

m
+ ζ2 sin2 2πk

n

)]1/2

. (4.1)

Using that sin2(x+ π) = sin2 x, we can rewrite the latter formula for even n as

Pf A3 =

m
2
−1∏

j=0

n
2
−1∏

k=0

[
4

(
sin2 2π(j + 1

2
)

m
+ ζ2 sin2 2πk

n

)]
. (4.2)

Using the Chebyshev type identity (see [8]),

m
2
−1∏

j=0

[
4

(
u2 + sin2 (2j + 1)π

m

)]
=

[(
u+
√

1 + u2
)m

2
+
(
−u+

√
1 + u2

)m
2

]2

, (4.3)

we obtain that

Pf A3 =

n
2
−1∏

k=0

[(
uk +

√
1 + u2

k

)m
2

+

(
−uk +

√
1 + u2

k

)m
2

]2

. (4.4)

where

uk = ζ sin(πxk) ≥ 0, xk =
2k

n
, (4.5)

which implies that

ln(Pf A3) = G(3)
m,n +H(3)

m,n , (4.6)
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where

G(3)
m,n = m

n
2
−1∑

k=0

ln

(
uk +

√
1 + u2

k

)
= m

n
2
−1∑

k=0

g

(
2k

n

)
,

H(3)
m,n = 2

n
2
−1∑

k=0

ln

1 +
1(

uk +
√

1 + u2
k

)m
 . (4.7)

Using the Euler–Maclaurin formula, we obtain the following asymptotic expansion:

G(3)
m,n ∼ SF − γ

3
−m

∞∑
p=1

B2p+2 (0) g2p+1

(p+ 1)
(
n
2

)2p+1 , γ = πνζ. (4.8)

Next, we obtain an asymptotic expansion of H
(3)
m,n:

H(3)
m,n ∼ A(3) +B(3), (4.9)

with

A(3) = 4
∞∑
k=1

ln
(
1 + e−2kγ

)
+ 2 ln 2,

B(3) = m
∞∑
p=1

B2p+2 (0)

(p+ 1)
(
n
2

)2p+1 g2p+1 +
∞∑
p=1

R
(3)
p

Sp
,

(4.10)

where

R(3)
p = −22p+1νp+1

p+ 1
∆p

[
K

0, 1
2

2p+2

(
iνλ

π

)] ∣∣∣∣
λ=πζ

. (4.11)

Substituting (4.8) and (4.9) into (4.6) we obtain that

ln(Pf A3) ∼ SF − γ

3
+ 4

∞∑
k=1

ln
(
1 + e−2kγ

)
+ 2 ln 2 +

∞∑
p=1

R
(3)
p

Sp
. (4.12)

Let q = e−γ. Since

4e−
γ
3

∞∏
k=1

(
1 + e−2kγ

)4
= 4q1/3

∞∏
k=1

(1 + q2k)4 = 4

[
q1/12

∞∏
k=1

(1− q4k)

(1− q2k)

]4

= 4

[
q1/6

∏∞
k=1(1− q4k)

q1/12
∏∞

k=1(1− q2k)

]4

= 4

[
η(2τ)

η(τ)

]4

=
θ2

2

η2
,

(4.13)

we obtain that

Pf A3 = eSF
θ2

2

η2
eR

(3)

, R(3) ∼
∞∑
p=1

R
(3)
p

Sp
. (4.14)

Let us turn to Pf A4. Since sin2(x+ π) = sin2 x, we can rewrite Pf A4 in (2.10) for even n
as

Pf A4 =

m
2
−1∏

j=0

n
2
−1∏

k=0

[
4

(
sin2 (2j + 1)π

m
+ ζ2 sin2 (2k + 1)π

n

)]
. (4.15)



18 DIMER MODEL: FULL ASYMPTOTIC EXPANSION

Using identity (4.3), we obtain that

Pf A4 =

n
2
−1∏

k=0

[(
uk +

√
1 + u2

k

)m
2

+

(
−uk +

√
1 + u2

k

)m
2

]2

, (4.16)

where

uk = ζ sin(πxk) ≥ 0, xk =
2k + 1

n
, (4.17)

which implies that

ln(Pf A4) = G(4)
m,n +H(4)

m,n , (4.18)

where

G(4)
m,n = m

n
2
−1∑

k=0

ln

(
uk +

√
1 + u2

k

)
= m

n
2
−1∑

k=0

g

(
2k + 1

n

)
,

H(4)
m,n = 2

n
2
−1∑

k=0

ln

1 +
1(

uk +
√

1 + u2
k

)m
 . (4.19)

Using the Euler–Maclaurin formula, we obtain the following asymptotic expansion:

G(4)
m,n ∼ SF +

γ

6
−m

∞∑
p=1

B2p+2

(
1
2

)
g2p+1

(p+ 1)
(
n
2

)2p+1 , γ = πνζ, (4.20)

and then, similar to Lemma 3.2, we obtain that

H(4)
m,n ∼ A(4) +B(4), (4.21)

with

A(4) = 4
∞∑
k=0

ln
(
1 + e−γ(2k+1)

)
,

B(4) = m

∞∑
p=1

B2p+2

(
1
2

)
(p+ 1)

(
n
2

)2p+1 g2p+1 +
∞∑
p=1

R
(4)
p

Sp
,

(4.22)

where

R(4)
p = −22p+1νp+1

p+ 1
∆p

[
K

1
2
, 1
2

2p+2

(
iνλ

π

)] ∣∣∣∣
λ=πζ

. (4.23)

Substituting (4.20) and (4.21) into (4.18), we obtain that

Pf A4 = eSF
θ2

3

η2
eR

(4)

, R(4) ∼
∞∑
p=1

R
(4)
p

Sp
. (4.24)

Substituting equations (3.74), (4.14), and (4.24) into (2.11), we obtain the asymptotic for-
mula for Z, (2.16), for even n.
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5. Asymptotic behavior of Pf A3 for odd n

From equation (2.10) we have that

Pf A3 =

m
2
−1∏

j=0

n−1∏
k=0

[
4

(
sin2 (2j + 1)π

m
+ ζ2 sin2 2πk

n

)]1/2

. (5.1)

For odd n, using the identity sin2(x+ π) = sin2 x, we can rewrite the latter formula as

Pf A3 =

m
2
−1∏

j=0

n−1∏
k=0

[
4

(
sin2 (2j + 1)π

m
+ ζ2 sin2 πk

n

)]1/2

. (5.2)

Indeed, if we take 0 ≤ k ≤ n−1
2

in (5.1), then we obtain factors with sin2 2πk
n

, while if we

take k = n+1
2

+ k′ , 0 ≤ k′ ≤ n−3
2
, then we obtain factors with

sin2 2π

n

(
n+ 1

2
+ k′

)
= sin2 π(2k′ + 1)

n
.

Combining these two cases, we obtain (5.2).
From (5.2), using identity (4.3), we obtain that

Pf A3 =
n−1∏
k=0

[(
uk +

√
1 + u2

k

)m
2

+

(
−uk +

√
1 + u2

k

)m
2

]
, (5.3)

where

uk = ζ sin(πxk) ≥ 0, xk =
k

n
, (5.4)

which implies that

ln(Pf A3) = G(3)
m,n +H(3)

m,n , (5.5)

where

G(3)
m,n =

m

2

n−1∑
k=0

ln

(
uk +

√
1 + u2

k

)
=
m

2

n−1∑
k=0

g

(
k

n

)
,

H(3)
m,n =

n−1∑
k=0

ln

1 +
1(

uk +
√

1 + u2
k

)m
 . (5.6)

Formulae (5.3)-(5.6) are similar to (4.4)-(4.7) for even n, but xk = 2k
n

for even n, while

xk = k
n

for odd n. This leads to the difference in elliptic nome (2.14) for even and odd n.
Using the Euler–Maclaurin formula, we obtain that

G(3)
m,n ∼ SF − γ

12
− m

2

∞∑
p=1

B2p+2 (0)

(p+ 1)n2p+1
g2p+1 , γ = πνζ, (5.7)

and similar to the even case, we obtain the asymptotic expansion of H
(3)
m,n as

H(3)
m,n ∼ A(3) +B(3), (5.8)
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with

A(3) = 2
∞∑
k=1

ln(1 + e−γk),

B(3) =
m

2

∞∑
p=1

B2p+2(0)g2p+1

(p+ 1)n2p+1
+
∞∑
p=1

R
(3)
p

Sp
,

(5.9)

where

R(3)
p = − νp+1

p+ 1
∆p

[
K

0, 1
2

2p+2

(
iνλ

2π

)] ∣∣∣∣
λ=πζ

. (5.10)

Combining (5.5), (5.7), and (5.8), we obtain that

ln(Pf A3) ∼ SF − γ

12
+ 2

∞∑
k=1

ln(1 + e−γk) +
∞∑
p=1

R
(3)
p

Sp
+ ln 2. (5.11)

Let now

q = eπiτ = e−
γ
2 , (5.12)

then

2e−
γ
12

∞∏
k=1

(
1 + e−γk

)2
= 2q1/6

∞∏
k=1

(1 + q2k)2 = 2

[
∞∏
k=1

q1/6(1− q4k)

q1/12(1− q2k)

]2

= 2

[
η(2τ)

η(τ)

]2

=
θ2

η
,

(5.13)

hence

lnZ = ln(Pf A3) ∼ SF + ln
θ2

η
+
∞∑
p=1

R
(3)
p

Sp
. (5.14)

This finishes the proof of Theorem 2.1.

Appendix A. Exponent of a Taylor Series

Proposition A.1. We have that

exp

(
∞∑
p=1

apx
p

)
= 1 +

∞∑
p=1

bpx
p, (A.1)

where

bp =
∑
Sp

(ap1)
q1 . . . (apr)

qr

q1! . . . qr!
, (A.2)

and Sp is the set of collections of positive integers (p1, . . . , pr; q1, . . . , qr), 1 ≤ r ≤ p, such
that

Sp =
{

(p1, . . . , pr; q1, . . . , qr)
∣∣ 0 < p1 < . . . < pr; p1q1 + . . .+ prqr = p

}
. (A.3)

The series in (A.1) are understood as formal ones.
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Proof. Expanding the exponent into the Taylor series, we obtain that

exp

(
∞∑
p=1

apx
p

)
= 1 +

∞∑
k=1

1

k!

(
∞∑
p=1

apx
p

)k

. (A.4)

By the multinomial formula,

1

k!

(
∞∑
p=1

apx
p

)k

=
∑

0<p1<...<pr, q1>0,...,qr>0: q1+...+qr=k

(ap1x
p1)q1 . . . (aprx

pr)qr

q1! . . . qr!
, (A.5)

hence

exp

(
∞∑
p=1

apx
p

)
= 1 +

∞∑
k=1

∑
0<p1<...<pr, q1>0,...,qr>0: q1+...+qr=k

(ap1x
p1)q1 . . . (aprx

pr)qr

q1! . . . qr!

= 1 +
∞∑
r=1

∑
0<p1<...<pr, q1>0,...,qr>0

(ap1x
p1)q1 . . . (aprx

pr)qr

q1! . . . qr!
.

(A.6)

Combining terms with p1q1 + . . .+ prqr = p, we obtain formulae (A.1), (A.2). �

Appendix B. Bernoulli’s Polynomials

Bernoulli’s polynomials are defined recursively by the equations,

B′k(x) = kBk−1(x),

1∫
0

Bk(x) dx = 0, k = 1, 2, . . . ; B0(x) = 1. (B.1)

In particular,

B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3x2

2
+
x

2
. (B.2)

The Bernoulli periodic functions B̂k(x) are defined by the periodicity condition B̂k(x+ 1) =

B̂k(x) and by the condition B̂k(x) = Bk(x) for 0 ≤ x ≤ 1. Their Fourier series is equal to

B̂k(x) = − k!

(−2πi)k

∑
` 6=0

e−2πi`x

`k
. (B.3)

For k ≥ 2 the Fourier series is absolutely convergent, and for k = 1 it converges in L2[0, 1].
The generating function of the Bernoulli polynomials is

G(λ;x) :=
λ eλx

eλ − 1
=
∞∑
k=0

λkBk(x)

k!
. (B.4)



22 DIMER MODEL: FULL ASYMPTOTIC EXPANSION

Substituting (B.3) into (B.4), we obtain that for 0 ≤ x ≤ 1 and |λ| < 2π,

λ eλx

eλ − 1
− 1− λ

(
x− 1

2

)
=
∞∑
k=2

λkBk(x)

k!
= −

∞∑
k=2

∑
`6=0

λk

(−2πi)k
e−2πi`x

`k

= −
∑
6̀=0

e−2πi`x

∞∑
k=2

(
λ

−2πi`

)k
= −

∑
`6=0

e−2πi`x

(
λ

−2πi`

)2
1

1 + λ
2πi`

=
λ2

4π2

∑
6̀=0

e−2πi`x

`
(
`+ λ

2πi

) .
(B.5)

Taking λ = 2πiz, where |z| < 1, x = α, and ` = k, we obtain that

2πize2πizα

e2πiz − 1
= 1 + 2πiz

(
α− 1

2

)
− z2

∑
k 6=0

e−2πikα

k (k + z)
, (B.6)

or
e2πizα

e2πiz − 1
=

1

2πiz
+

(
α− 1

2

)
− z

2πi

∑
k 6=0

e−2πikα

k (k + z)
, (B.7)

We can rewrite the latter equation as

e2πizα

e2πiz − 1
=

1

2πiz
+

(
α− 1

2

)
− 1

2πi

∑
k 6=0

e−2πikα

(
1

k
− 1

k + z

)
, (B.8)

Appendix C. The Euler–Maclaurin Formula

Let f(x) be an analytic function on the interval [a, b]. We partition the interval [a, b] into
N equal intervals of the length

h =
b− a
N

. (C.1)

Let
xk = a+ kh+ αh, k = 0, 1, . . . , N − 1, (C.2)

where 0 ≤ α ≤ 1. Then the Euler–Maclaurin formula with a remainder is

N−1∑
k=0

f(xk) =
1

h

b∫
a

f(x) dx+
∑̀
p=1

Bp(α)hp−1

p!
[f (p−1)(b)− f (p−1)(a)] +R`(α), (C.3)

where Bp(α) is the Bernoulli polynomial and the remainder R`(α) can be written as

R`(α) =
h`

`!

1∫
0

B̂`(α− τ)

[
N−1∑
k=0

f (`)(a+ kh+ τh)

]
dτ, (C.4)

where B̂`(x) is the periodic Bernoulli function.
Thus, the Euler-Maclaurin formula gives an asymptotic series,

N−1∑
k=0

f(xk) ∼
1

h

b∫
a

f(x) dx+
∞∑
p=1

Bp(α)hp−1

p!
[f (p−1)(b)− f (p−1)(a)]. (C.5)
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In general, since both Bp(x) and f (p)(x) grow like p!, the series on the right in (C.5) diverges.

Appendix D. Kronecker’s Double Series of Pure Imaginary Argument

A classical reference to the Kronecker double series is the book of Weil [19]. In this
Appendix we review and specify some results of Ivashkevich, Izmailian, and Hu [6]. Let us
consider the Kronecker double series with parameters (α, β) = (1

2
, 0) as defined in (1.15) with

argument τ = 2irζ and (α, β) = (1
2
, 1

2
), (0, 1

2
) as defined in (1.15) with argument τ = irζ.

Observe that in all cases, if p is odd, the terms (j, k) and (−j,−k) cancel each other. Hence

K
1
2
,0

2p−1(τ) = K
1
2
, 1
2

2p−1(τ) = K
0, 1

2
2p−1(τ) = 0 for p = 1, 2, . . . . Therefore, we will take p to be even.

Let us first consider the case (α, β) = (1
2
, 0).

D.1. Case (α, β) = (1
2
, 0). From (1.15), we have that

K
1
2
,0

2p (τ) =
(−1)p+1(2p)!

(2π)2p

∑
(j,k) 6=(0,0)

(−1)k

(k + τj)2p
. (D.1)

Separating terms with j = 0, we obtain that

K
1
2
,0

2p (τ) =
(−1)p+1(2p)!

(2π)2p

∑
k 6=0

(−1)k

k2p
+

(−1)p+1(2p)!

(2π)2p

∑
j 6=0

∞∑
k=−∞

(−1)k

(k + τj)2p
. (D.2)

The first term is just the Fourier series for the Bernoulli polynomial B2p (x) evaluated at
x = 1

2
. Let us transform the second term. Since the terms (j, k) and (−j,−k) give the same

contribution, we can write that

K
1
2
,0

2p (τ) = B2p

(
1

2

)
+

2(−1)p+1(2p)!

(2π)2p

∞∑
j=1

∞∑
k=−∞

(−1)k

(k + τj)2p
. (D.3)

When z = iy, y > 0, and α = 1/2, identity (B.8) reads

e−πy

1− e−2πy
=

1

2πy
+

1

2πi

∑
k 6=0

(−1)k
(

1

k
− 1

k + iy

)
. (D.4)

Expanding the left hand side into the geometric series, we obtain that
∞∑
k=0

e−2πy(k+ 1
2

) =
1

2πy
+

1

2πi

∑
k 6=0

(−1)k
(

1

k
− 1

k + iy

)
. (D.5)

Differentiating this identity (2p− 1) times with respect to y, we obtain that

∞∑
k=0

[
−2π

(
k +

1

2

)]2p−1

e−2πy(k+ 1
2

) = − 1

2πi

∞∑
k=−∞

(−i)2p−1(2p− 1)!(−1)k

(k + iy)2p
, (D.6)

or equivalently,

(−1)p(2p)!

(2π)2p

∞∑
k=−∞

(−1)k

(k + iy)2p
= 2p

∞∑
k=0

(
k +

1

2

)2p−1

e−2πy(k+ 1
2

). (D.7)
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Using this formula in (D.3) with y = rζj, we obtain that

K
1
2
,0

2p (τ) = B2p

(
1

2

)
− 4p

∞∑
j=1

∞∑
k=0

(
k +

1

2

)2p−1

e−2rλj(k+ 1
2

) . (D.8)

Thus, we have the following proposition:

Proposition D.1. We have that

∞∑
j=1

∞∑
k=0

(
k +

1

2

)2p−1

e−2rλj(k+ 1
2

) =
B2p

(
1
2

)
−K

1
2
,0

2p (τ)

4p
. (D.9)

Applying it for K
1
2
,0

2p+2(τ), we obtain that

∞∑
j=1

∞∑
k=0

(
k +

1

2

)2p+1

e−2rλj(k+ 1
2

) =
B2p+2

(
1
2

)
−K

1
2
,0

2p+2(τ)

4(p+ 1)
. (D.10)

D.2. Case (α, β) = (1
2
, 1

2
). From (1.15), we have that

K
1
2
, 1
2

2p (τ) =
(−1)p+1(2p)!

(2π)2p

∑
(j,k) 6=(0,0)

(−1)k+j

(k + τj)2p
. (D.11)

Separating terms with j = 0, we obtain that

K
1
2
, 1
2

2p (τ) =
(−1)p+1(2p)!

(2π)2p

∑
k 6=0

(−1)k

k2p
+

(−1)p+1(2p)!

(2π)2p

∑
j 6=0

∞∑
k=−∞

(−1)k+j

(k + τj)2p
. (D.12)

The first term is just the Fourier series for the Bernoulli polynomial B2p (x) evaluated at
x = 1

2
. Let us transform the second term. Since the terms (j, k) and (−j,−k) give the same

contribution, we can write that

K
1
2
, 1
2

2p (τ) = B2p

(1

2

)
+

2(−1)p+1(2p)!

(2π)2p

∞∑
j=1

∞∑
k=−∞

(−1)k+j

(k + τj)2p
. (D.13)

Now from identity (D.7), with y = rζj, we obtain that

K
1
2
, 1
2

2p (τ) = B2p

(1

2

)
− 4p

∞∑
j=1

∞∑
k=0

(−1)j
(
k +

1

2

)2p−1

e−2rλj(k+ 1
2

) . (D.14)

Thus, we have the following proposition:

Proposition D.2. We have that

∞∑
j=1

∞∑
k=0

(−1)j
(
k +

1

2

)2p−1

e−2rλj(k+ 1
2

) =
B2p

(
1
2

)
−K

1
2
, 1
2

2p (τ)

4p
. (D.15)

Applying it for K2p+2(τ), we obtain that

∞∑
j=1

∞∑
k=0

(−1)j
(
k +

1

2

)2p+1

e−2rλj(k+ 1
2

) =
B2p+2

(
1
2

)
−K

1
2
, 1
2

2p+2(τ)

4(p+ 1)
. (D.16)
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D.3. Case (α, β) = (0, 1
2
). From (1.15), we have that

K
0, 1

2
2p (τ) =

(−1)p+1(2p)!

(2π)2p

∑
(j,k) 6=(0,0)

(−1)j

(k + τj)2p
. (D.17)

Separating terms with j = 0, we obtain that

K
0, 1

2
2p (τ) =

(−1)p+1(2p)!

(2π)2p

∑
k 6=0

1

k2p
+

(−1)p+1(2p)!

(2π)2p

∑
j 6=0

∞∑
k=−∞

(−1)j

(k + τj)2p
. (D.18)

The first term is just the Fourier series for the Bernoulli polynomial B2p (x) evaluated at
x = 0. Let us transform the second term. Since the terms (j, k) and (−j,−k) give the same
contribution, we can write that

K
0, 1

2
2p (τ) = B2p (0) +

2(−1)p+1(2p)!

(2π)2p

∞∑
j=1

∞∑
k=−∞

(−1)j

(k + τj)2p
. (D.19)

When z = iy, y > 0, and α = 0, identity (B.8) reads

1

1− e−2πy
=

1

2πy
+

1

2
+

1

2πi

∑
k 6=0

(
1

k
− 1

k + iy

)
. (D.20)

Expanding the left hand side into the geometric series, we obtain that

∞∑
k=0

e−2πyk =
1

2πy
+

1

2
+

1

2πi

∑
k 6=0

(
1

k
− 1

k + iy

)
. (D.21)

Differentiating this identity (2p− 1) times with respect to y, we obtain that

∞∑
k=0

[−2πk]2p−1 e−2πyk = − 1

2πi

∞∑
k=−∞

(−i)2p−1(2p− 1)!

(k + iy)2p
, (D.22)

or equivalently,

(−1)p(2p)!

(2π)2p

∞∑
k=−∞

1

(k + iy)2p
= 2p

∞∑
k=0

k2p−1e−2πyk. (D.23)

Using this formula in (D.19) with y = rζj, we obtain that

K
0, 1

2
2p (τ) = B2p (0)− 4p

∞∑
j=1

∞∑
k=0

(−1)jk2p−1e−2λrjk . (D.24)

Thus, we have the following proposition:

Proposition D.3. We have that

∞∑
j=1

∞∑
k=0

(−1)jk2p−1e−2λrjk =
B2p (0)−K0, 1

2
2p (τ)

4p
. (D.25)



26 DIMER MODEL: FULL ASYMPTOTIC EXPANSION

Applying it for K
0, 1

2
2p+2(τ), we obtain that

∞∑
j=1

∞∑
k=0

(−1)jk2p+1e−2λrjk =
B2p+2 (0)−K0, 1

2
2p+2(τ)

4(p+ 1)
. (D.26)
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