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ABSTRACT. We give a complete rigorous proof of the full asymptotic expansion of the
partition function of the dimer model on a square lattice on a torus for general weights
Zh, Zy of the dimer model and arbitrary dimensions of the lattice m,n. We assume that m is
even and we show that the asymptotic expansion depends on the parity of n. We review and
extend the results of Ivashkevich, Izmailian, and Hu [6] on the full asymptotic expansion of
the partition function of the dimer model, and we give a rigorous estimate of the error term
in the asymptotic expansion of the partition function.

1. INTRODUCTION

1.1. Dimer Model on a Square Lattice. We consider the dimer model on a square lattice
Cinn = Vinny Emn) on the torus Z,, X Z, = Z*/(mZ x nZ) (periodic boundary conditions),
where V,, , and E,, ,, are the sets of vertices and edges of Iy, ,,, respectively. A dimer onT', ,
is a set of two neighboring vertices (z,y) connected by an edge. A dimer configuration o on
[ is a set of dimers o = {(24,1:), i = 1,..., %"} which cover V,,,, without overlapping.
An example of a dimer configuration is shown in Fig. [ An obvious necessary condition for
a configuration to exist is that at least one of m, n is even, and so we assume that m is even,
m = 2my.

To define a weight of a dimer configuration, we split the full set of dimers in a configuration
o into two classes: horizontal and vertical, with respective weights zj, z, > 0. If we denote
the total number of horizontal and vertical dimers in o by N,(0) and N, (o), respectively,
then the dimer configuration weight is

Hw zi, i) = 22N, (L.1)

where w(x;,y;) denotes the weight of the dimer (z;,y;) € 0. We denote by %,,,, the set of
all dimer configurations on I'y, ,,. The partition function of the dimer model is given by

Z= > w(o). (1.2)

0€Ym,n
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FIGURE 1. Example of a dimer configuration on a square 6 x 6 lattice on the torus.

Notice that if all the weights are set equal to one, then Z simply counts the number of dimer
configurations, or perfect matchings, on I, ,.

Our goal is to evaluate the full asymptotic series expansion of the partition function Z
as m,n — oo. The free energy of the dimer model on the square lattice was obtained
in the papers of Kasteleyn [§] and Temperley and Fisher [16]. Our work is based on the
Kasteleyn’s expression of the partition function Z on a torus as a linear combination of 4
Pfaffians developed in the works [§], [9], [10] (see also the works of Galluccio and Loebl [5],
Tesler [17], and Cimasoni and Reshetikhin [3]). The constant term in the asymptotic of the
partition function was obtained by Ferdinand [4] (see also the work of Kenyon, Sun and
Wilson [11]).

The asymptotic expansion of the partition function on a torus was developed by Ivashke-
vich, Izmailian, and Hu [6] and our calculations use their ideas. Ivashkevich, Izmailian, and
Hu considered the case when z;, = 2, and n is even. In the present work we extend their
calculations to arbitrary weights 2, 2, and to odd n. It is worth noticing that the asymptotic
expansions for even and odd values of n are different. We give a complete rigorous proof of
the asymptotic expansion of the partition function, with an estimate of the error term. The
asymptotic expansion of the partition function is expressed in terms of the classical Jacobi
theta functions, Dedekind eta function, and Kronecker double series. The work [6] has been
further extended by Izmailian, Oganesyan, and Hu [7] to the dimer model on a square lattice
with various boundary conditions for both even and odd n. Our result for the dimer model
on a torus coincides with the one in [7] for even n, and for odd n it coincides except for the
value of the elliptic nome in formula below. The difference in the value of the elliptic
nome for even and odd n is explained after formula in Section [5] below.

It follows from , that the partition function Z is a homogeneous polynomial of
the variables zj, z,, and it can be written as

Z(zn, 20) = Z 2 o) Nu() — z:TnZ(l,Q), (1.3)

Uezm,n
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where ;
=—=>0 1.4
>0 (14)
so without loss of generality we may assume that
zn=1, z,=C(, (1.5)

and we will evaluate the full asymptotic series expansion of the partition function Z(1,() as
m,n — Q.

To formulate our main result we have to introduce and remind some special functions and
operators.

1.2. Function g(z). Introduce the function

g(x) =1In (( sin(mx) + \/1 + ¢ sin2(7ra:)) , (1.6)

where ¢ > 0 is defined in ([1.4). Observe that g(z) has the following properties:

(1) g(==) = —g(=),
(2) g(z +1) = —g(z),
(3) g(z) is real analytic on [0, 1] and

g(z) = 292p+1$2p+1, (1.7)
p=0
where
3( 2 5 (2 2
g1 = 7¢, gsz—w, 95:7TC(C +112)0(9C +1), (1.8)

(4) g(z) > Cox on the segment 0 < z < % , with some Cy > 0.

The constant Cy in the latter inequality can depend on (. In what follows we assume that  is
fixed and we do not indicate the dependence of various constants Cj on . Unless otherwise
is stated, the constants C} can be different in different inequalities.

Observe that since g(x) is analytic at x = 0, we have that

|g2p1| < CEF, (1.9)
with some C, & > 0.

1.3. Differential Operator A,. Let S, be the set of collections of positive integers
(P1y- D q1y - -, qr), 1 <1 < p, such that

Sy ={P1,-- P, @) | 0<p1<...<py 1L+ ...+ PG =D} (1.10)

Introduce the differential operator

Ap _ Z <92p1+1)q1 .. (92pr+1)q7‘ 4

@l g ou dTatte—L (1.11)
SP
Observe that
2d 342 d
Ar=gs, N=2" 4o A=BL Lo g, .. (1.12)

2 d\ 3l d\2 d\
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1.4. Kronecker’s Double Series. The Kronecker double series of order p with parameters
Q, ﬂ is defined as
! ja+ kB)
a,f p 6(]
Kp (7—> - § - 7

(~2mip | S (kT (1.13)

where
e(z) = e ™, (1.14)

We will use the following Kronecker double series with parameters (o, 5) = (%, 3), (0 1), (%,0),
respectively:

11 ! —1)itk
T L i

k P
Gz BT 7I)

4 | )
KP (7—) - <—§7Tl)p Z (<—).7 (115)

k P
Ghzo0n FETI)

K = 2 3 (<‘—1)

(—2mi)p G Z00) k+Tj)p

We will use it for 7 pure imaginary and p > 4. Then the double series are absolutely
convergent.

1.5. Dedekind Eta Function. The Dedekind eta function is defined as

o0

n=mn(r)= 15 (1 2”””“ = % H 1 — g% (1.16)
k=1 k=1

where
q=e"" (1.17)

is the elliptic nome.

1.6. Jacobi Theta Functions. There are four Jacobi theta functions:

01(z,q) =2 Z(—l)kq(mé)2 sin ((2k +1)z),

(z,q) —2qu+ cos 2k:—|—1)z),
(1.18)
05(z,q) =1+2 Z ¢ cos(2kz),
k=1

04( zq—1+22 eg® cos2kz)

where ¢ = ™ is elliptic nome.
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We have the following identities (see, e.g., [18]):

2% (27)
0y = 05(0, ,
2= 6:(0,9) n(7)
5
n°(7)
03 = 05(0,q) = -, 1.19
s =800 = anp) 9
2(T
n°(3)
0, = 04(0,q) = —2-.
2 =009 =75
Also (see, e.g., [6]),
0,1 1 /7
Ky (1) = 30 <§9§ - 9§9§‘I> ,
10 1 /7
K0 = g5 (50 - oot (120
i1 1 [7
ki) = 55 (565 + 010
2. MAIN RESULT: FULL ASYMPTOTIC EXPANSION OF THE DIMER MODEL PARTITION
FUNCTION

2.1. Pfaffians. We would like to evaluate the asymptotic expansion of the dimer model
partition function Z on the square lattice, I';,, ,,, of dimensions m X n, with periodic boundary
conditions where m,n — oo under the assumption that there exist positive constants Cy > C
such that -
C1 < — <G, (2.1)
n
As shown by Kasteleyn [8] [, 10], the partition function Z can be written in terms of four
Pfaffians as .
Z = B (—PfA; + Pf Ay + Pf A3 + Pf Ay), (2.2)
where Ay, As, Az, A4 are the antisymmetric Kasteleyn matrices with periodic-periodic, periodic-

antiperiodic, antiperiodic-periodic, and antiperiodic-antiperiodic boundary conditions, re-
spectively. Their determinants are given by the double product formulae as

LT (e 276+ 00 i 20 50)]
det A; jll) kl_[o [4 <sm - + (“sin - , (2.3)
with
(041,51) = (O’())? (042,52) = (0> 1/2)> (043,53) = (1/2,0), (044,54) = (1/27 1/2)' (2-4)
These double product formulae are obtained by diagonalizing the matrices A; (see [, [13],14]).

The Pfaffian of a square antisymmetric matrix A is related to its determinant through the
classical identity:

(Pf A)? = det A. (2.5)
Observe that det A; = 0 due to the factor j = k = 0 in ({2.3)), hence

PfA; =0, (2.6)
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and for odd n, det Ay = 0, due to the factor j =0, k = %=, hence
PfA; =0, ifnis odd. (2.7)

In addition,
Pf A3 =Pf Ay, ifnisodd (2.8)
(see [2]). As shown in [I1],[2],
Pf Ay >0, if niseven,

pf A3 > 0, Pt A4 > (0 for all n, (29)
hence from ({2.3)) we obtain that
5—1n 1/2
T +a) | . o2m(k+5)
PfA; = _— _— . :
HH[ < - + (“sin - (2.10)
j=0 k=0
Combining (2.2)) with . - - we obtain that
1 . .
Z:§(PfA2—|—PfA3+PfA4), if n is even, (2.11)

Z =Pt Az, ifnisodd.

2.2. Main Result. Before stating the main theorem, let us introduce some additional no-
tations. Denote

S =mn, v=—. (2.12)

We set
v, if n is even,
" 2.13
ZCTV, if n is odd, ( )

so that the elliptic nome is equal to

A e ™. if n is even, ( )
q = eﬂ"L’T _= v 214
e 2 , ifnisodd.

For brevity we also denote
n=mn(r), O, = 0r(0,q), k=234, (2.15)

where 7(7) is the Dedekind eta function, and 6(z,q) are the Jacobi theta functions. The
main result is the following asymptotic expansion of the partition function Z in powers of
S~1, derived by Ivashkevich et al. in [6] in the case ( = 1 and n is even. We give a complete
rigorous proof of the asymptotic expansion for any ¢ > 0 and for n both even and odd.

Theorem 2.1. If n is even, then as m,n — oo under condition (2.1), we have that
Z =eF (C(z)eR(z) + C®RY 4 0(4)6R(4)> : (2.16)

where
¢

F = ! / arctan r dx, (2.17)
™

T
0
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co_ i e _% cw_ b
2n?’ 2n2’ 2n?’
and RY), j =2,3,4, admit the asymptotic expansions
PRk
7))~ _— ) —
RO~ = G=234,
p=1
with
) 922p+1,,p+1 s 1D\
Ry - i ()]
p+1 @ A=r¢

where a;, B are defined in (2.4). In particular, by (1.12)) and (1.20)),
202 7 202 7
R =20 (T ont) w0 = -2 (6o,
202 7
R — 20 (§9§+9§9;‘5> |

Furthermore, if n is odd, then as m,n — oo under condition (2.1)), we have that

_ 1 SF+R
Z ="Ce ,

where F' is given in (2.17)),

Cv::__a
n

and R admits the asymptotic expansions

“ R
R~) o
p=1

pptl 0,2 WA
e [ (5)

V2 7
Ry = L8 (geg _ egeg) |

with

A=n(

By (T12) and (20,

60

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Remark: As noticed by Kasteleyn [§], the free energy F'in (2.17)) can be expressed in terms

of the Euler dilogarithm function

Lﬂz):—/jM

S
as

F(¢) = (20)'[La(i¢) — La(—i()] -

The proof of Theorem [2.1] will be given in Sections [BHa}

(2.27)

(2.28)
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3. ASYMPTOTIC BEHAVIOR OF Pf A; FOR EVEN n

Since sin?(z + ) = sin? x, we can rewrite Pf A, in (2.10) for even n as

m_12-1

Pf A, = H H { ( +<’2sm2 @)] . (3.1)

7=0 k=0

Using the Chebyshev type identity (see e.g. [§]),

m_y

IT o+ 2)] = [ vrv)

equation (3.1)) is reduced to

n_y

Pf Ay = H

m
2

( u—l—\/l—i-u?)gi . (32)

(e 178) (e \/T)] , 53)

k=0
where
2k +1
up = sin(mayg) >0, z = il . (3.4)
n
Observe that
(uk%—\/l—l—ui) (—uk%—\/l—i—ui):l, (3.5)
hence
where
%_1 m
BY, = <uk +4/1 +uz> :
k=0
- 2 (3.7)
o = 1— ! -
7 k=0 <Uk + 1+ ui)
Respectively,
In(Pf Ay) = G®, + H?, (3.8)
with
i o ok41
G,g?n:len(uk—l—\/l—i-ui):mZg( >,
k=0 k=0 "
n_q (3.9)

k=0 (uk ++/1+ ui)

The function g(x), defined in (1.6), is real analytic, and we will evaluate an asymptotic series

expansion of Gg)n for large n by using an Euler-Maclaurin type formula and the Bernoulli
polynomials By (z) (see [I] or Appendix [C]).
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3.1. Evaluation of sz)n

Lemma 3.1. As n,m — oo under condition (2.1)), we have that Gg)n admits the following
asymptotic expansion:

>\ Bopia (3) g2ps
G NSF—i—z—mZ 2 o v = 7v(. (3.10)
m,n n +1 )
0 p=1 (p + 1) (5) '
Proof. From (3.9) we have that
n_y
S 2k + 1
G, =mGP, GP = g( - ) . (3.11)
’ n

Using the Euler-Maclaurin formula (C.5)), we obtain that G is expanded in the asymptotic
series in powers of % as

EUEY BV < 1 € ) I P
P~ / ola)do-+ 3 ) = 670 (312

From (1.7)) and the equation g(z + 1) = —g(z) we obtain that

97(0) = ¢ (1) = 0

g#0) = 2p + Dlgapr. g (1) = —(2p+ 1)!gapia.
Now, (3.12)) becomes

(3.13)

G2 n

/
/19(1;) dx — i 2D (i)) i 1)?92”‘1 (3.14)
/

1
= B, +2 (l) 92p+1
c® /g(:v) dx — mz e (3.15)
m,n n —+1
2 0 p=0 (p+1)(§)p
Since Bg(%) = —11—2 and g; = w(, we obtain that
< Bapra (3) gop+1
GD, ~ SF+ Ly 22 2] % v = mC. (3.16)
m,n n 110 .
6 p=1 (p—l— 1) (5) :
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where
1

Fe % / In (g sin(mz) + /14 ¢ sin2(7rx)> i (3.17)

0

As shown by Kasteleyn [§],
1 ¢

% /ln (( sin(mzx) + \/1 + ¢? sin2(7ra:)) dr = ! / arctan ¥ dr, (3.18)

™ T
0

hence Lemma [3.1] follows. O

Next, we evaluate Hip), in (13.9)-

3.2. Evaluation of Hg)n

Lemma 3.2. As n,m — oo under condition (2.1)), we have that H}nn admits the following
asymptotic expansion:

H? ~ A® 4 B (3.19)
with
— 4 Z In (1— e D) = m,
Bayes (1) (3.20)
2p+2 5 92p+1
- m Z (2) 2pt1 Z Sp
p=1 2
where
22p+1yp+1 1 0 “/)\
RY = _— — A J|K2.,[— . 3.21
P p+1 2\ - (3.21)

Proof. From (3.9), (3.4), and we have that

HP =2 Z In[1—e™ED] gy = kvl (3.22)

n

Since g(z) > Cyx on the segment [0, 5], for some Cy > 0, we have that

e—mg(mk) S 6—00V(2k+1) , v = m , <323)

n

hence the sum in (3.22)) is estimated from above by a geometric series, and for any L > 0
there is R > 0 such that

Rlnn

Hr(;i)n —4 Z In [1 _ efmg(mk)] 4 (’)(n*L)7 (3.24)

so that in our calculations we can restrict k£ to k < Rlnn.
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Following [6], let us expand the logarithm in (3.24]) into the Taylor series

Rlnn o0 - —mjg(ay)
=13 3 ot
k=0 j=1
Observe that
mjg(xr) > Co(2k + 1),

11

(3.25)

(3.26)

hence the series in j converges exponentially and for any L > 0 there is R > 0 such that

Rlnn Rlnn fm]g zr)

HY, =-4)" Z O(nh).

k=0 j=1

Expanding now g(z) into power series (1.7)), we obtain that

e~ mig(Tr) — o—miT(TE exp [ mj (Z g2p+1xk )] :

Since S = mn and v = %, we have that n = % . Hence,
mgczpﬂ N <2k7j 1)2p+1 _ (2% + 1);:+1 s
and
o0 2p+1
e—mig(wr) _ o~ (2k+1)jy exp [—j ; Gop+1 (2K _g;) P yp+1] .
Denote ,
b=~ 2kt D) gy, = oY

Then formula ({3.30]) simplifies to

p=1

Substituting this expression into (3.27)), we obtain that

Rlnn Rlnn (2k+1 oo
B =43 > o (Z ) +0(nh),

k=0 j=1 p=1

Expanding the exponent into the Taylor series, we obtain that

exp (i ap:z:p> =1+ i byx?,
p=1

p=1

with

b, = Z (ap,)® ... (ap, )" ’

a!...q!

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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where S, is defined in ((1.10)) (see [6] and Appendix . Thus,

Rlnn RIlnn —(2k+1
HY =-4)" j{: (1—%j£:b xp> nt), (3.36)

k=0 j=1
or

HY =AY + BY +0(n "), (3.37)

where

k=0 1
Rlnn Rlnn oo 6_(2k+1)ry (2/€+1) (338)
BY = —4 Z : byaf, = 5
k=0 j=1 p=1 J
We have that
20 0 —(2k+1)jy 0
AP =—4) Y 40 =4Y (1 - B L O (3.39)
We write now Bg) as
Rlnn Rlnn K—1 —(2k+1)
B = B+ A%, Bk = e,
’ ’ J
k=0 j=1 p=1
RInn Rlnn oo (340)
. o~ (2k+1)
RTLK — _4 Z bp(L’p,
k=0 j=1 p=K J

and we would like to estimate the error term R,(f}( To that end we will prove the following
lemma:

Lemma 3.3. (Error term estimate) Fiz any € > 0. Then as S — oo,

R = 0(87K0=2)y, (3.41)

Remark: Remind that S = mn = vn?, where C; < v < Oy, hence S — oo implies that
n — oo.

Proof. Let us estimate b,. From (3.31) and (1.9) we have that

la,| = (2k + 1)jv|gop+1| < C1(2k + 1)5€P, (3.42)
hence
D apP| < Cy2k+1)jl2l, 2] < (2971, zeC. (3.43)
p=1
This implies that
Zapzp <Oy, if |zl <min{(26)7" [2k+1)5]7'}, z€C, (3.44)
p=1




DIMER MODEL: FULL ASYMPTOTIC EXPANSION 13

hence

p=1

<Cy=¢€%, if [z <min{(20)7"[(2k+1)5]7'}, 2€C. (3.45)

By the Cauchy integral formula,

fP0) 1 f(z)d=

pl 2w Zptl

, (3.46)

|z1=p

applied to f(z) = exp <Z;i1 apzp> and p = min {(2) 7', [(2k + 1)j]7'}, it follows that

bl < C3[(2k +1)5]7 if (2k+1)j =€, (3.47)
and
lby| < C5&P if (2k+1)j <. (3.48)
Using these estimates of b,, we will now prove .
As n — oo, we may assume that Rlnn > £, and we partition Rff)K as follows:

X o~ (2k+1)5y
2 €
Rik= > (2 j—j rbp|:cp>

Jok: (2k+1)j<§ \p=K

e~ (2k+1)5y (2k +1)*v

gk j,k<Rlnn; (2k+1)j>¢ \p=K

(3.49)

In the first term there are only finitely many possible values of j and k, and by (3.48)),

Z (i —(2k+1)jy b, |xp> < Z (CLS)P = (S_K(l_s)). (3.50)

Jk: (2k+1)j<E \p=K
Consider now the second term in . Using estimate , we obtain that

e 6_(2]9""1).7")/ > Cp

gk: j,k<RInn; (2k+1)j>¢ \p=K p=K
with
Rlnn Rlnn
0<c,<Cs Z Z e”GFII[(2k + 1)%jv]” < [Cov(RInn)*)”, (3.52)
k=0 j=1
hence
- = [C7(RInn)*]” K
14 o K(l—¢
> g ey [HEE] oo 35
p=K p=K
Thus,

Z (i —(2k+1)jv 0, WD) _ O(SfK(lfs)>’ (3.54)

.k 7,k<Rlnmn; (2k+1)j>

and ((3.41)) is proved. O
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Next, we would like to replace Rlnn in Bf%{ in (3.40) by co. Denote

e —(2k+1)j~ Rlnn Rlnn —(2k+1)jv

B (p 422 bpa?, B (p)=-4> Z ba?.  (3.55)

k=0 j=1 k=0 j=1

Then using estimate of b,, we obtain that

6_(2k+1)j7
B (p) — BP(p)| =4 ) ———— by’
. ) J
ki 7>0, k>0; max{j,k}>RInn
gk §> {3.k}> (3.56)
—(2k+1)j
< CpS7P > ﬂ [(2k + 1)ju]?
J,k: 37>0, k>0; max{j,k}>RInn J
We have that
Z kPR < ¢y (p)n~H7/2, (3.57)
k=Rlnn
hence from (3.56) we obtain that
[B®(p) = BY(p)| < Co(p)n™ "2, (3.58)

From Lemma , (13.39), and (3.58]) we obtain an asymptotic expansion of Hﬁ)n in powers
of S71 as
HY, ~ A® + B®), (3.59)
with

A® — 42 In(1 2k+1)’7 B® _ Z d,S, (3.60)
p=1

where
0 0 —(2k+1) j'yb 2%
by = 35
k=0 j=1 J
Here b, is given by equation (3.35]), and it satisfies estimate (3.48)), which shows that the

series over k, j in the latter formula is convergent. We can transform d, as follows.
Substituting expression (3.31)) for a,,,...,a,, into (3.35)), we obtain that

(3.61)

T

b, = Z (921914-1)111 ce (g2pr+1)qr [— (Qk + 1)jy]q1+...+qr |

a!...q! (3.62)

Sp

We can simplify the latter expression using operator A, in ((1.11). Namely, we have that

A [e—(2k+1)jw} ‘ — o~ (2kt1)y
P A=n(
> (G2 +1)™ - (Gap, 1) [— (2K + 1) w0 (3.63)
ql! ce QT' ’
hence
b, = eI [ (2k + 1)j1] A, [67(2k+1)ju)\} ) _ (3.64)

A=mn(
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Returning back to formula (3.61]), we obtain that
d, = dyrt! ZZ(Zk +1)THA, [e—(2k+1)ju)\] ‘/\_ K (3.65)
k=0 j=1 -

To relate d, to the Kronecker double series, introduce the function

EON =Y (k) emnted), (3.66)

Then
dp = 27PN [FP (V] | e - (3.67)

The function F,gQ) (A) can be expressed in terms of the Kronecker double series of a complex
argument. More precisely, from equation (D.10)) in Appendix [D| we have that

By (d) - KA (2)
4(p+1)

Furthermore, since the free term in the operator A, in (1.11)) is equal to gop+1, we obtain
that

(3.68)

_ Bap (%) A K22p+2 (“;A)
= 7 92p+1 — )
4(p+1) 4(p+1)

(3.69)

and therefore,

oo o -
22p+1yp+132p+2 (%) 22p+1,,p+1 { 10 (Zl//\)]

B® — _ £ 7
Sp(p+ 1) 92p+1 < Sp(p+ 1) P 2p+2

o0

B l R(2)
Z 2p+22()22p+1 Gop+1 + Z Gp

— (p+1
(recall that S = vn?), and this completes the proof of Lemma . O
3.3. Evaluation of In(Pf Aj).
To evaluate In(Pf A,), substitute (3.10) and into (3.8)) to obtain

[e.e]

B
In(Pf Ay) ~ (SF—i— Z 2p+2 2p+1 92p+1>
1 (p+1)

—(2k+1)y BZp+ (% Ry
Z In(1 )+ m Z ) o + = (3.71)
5 —
RY
g _
:SF+5+ZIH e~y +Z fy

k=1

Note that the series containing the Bernoulli polynomlals Bipi2(3) cancel out. If we let the
elliptic nome be equal to
g=e", (3.72)
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then by using ((1.16)) and (1.19]), we obtain that

- —(2k—1)y —1/6 2k 1 —1/24 - (1—qk) '
I o= = =5

R

es
= = (3.73)
1/24 T 4 -\ 1* 2
_ {q T, (1—d* )} _nE)| _4
¢/ T (1 = %) n(7) UR
Therefore, equation (3.71)) implies that
2 o n(2)
pf Ay = 5703 r? gy T (3.74)
U <SP
p:

4. ASYMPTOTIC EXPANSIONS OF Pf A3 AND Pf A, FOR EVEN n

The asymptotic expansions of Pf A3 and Pf A4 for even n can be obtained in the same
way as the one of Pf Ay. Let us briefly discuss them.
From formula (2.10) we have that

2 tnl 2m(j + 1) 27k \ 1"
PfA;= ][] [4 (sin2 T2 + (% sin? —)} . (4.1)

n

Using that sin®(z + ) = sin® z, we can rewrite the latter formula for even n as

1"1

Pf Ay = H H[ ( %%)—FQQSHP?)]. (4.2)

7=0 k=0

Using the Chebyshev type identity (see [§]),

w[3

-1

0 {4 (u2+sm2 M)] _ {(wm)

m
2

w[3

( u—i-m)

m

] L)

<.

we obtain that

31 2 3]
PfAs = [ (uk—l—\/l—i-ui) —|—(—uk—|—\/1—|—ui) ] . (4.4)
k=0
where
. 2k
up = (sin(mxy) >0, xp=—, (4.5)
n

which implies that
In(PfA3) = G®) + HP), (4.6)
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21 24
2k
a® :mZIn (uk—i- \/1+ui) :mZg <—> :
’ n
k k=0

where

1
k=0 (uk + /14 ui)

Using the Euler-Maclaurin formula, we obtain the following asymptotic expansion:

— B (0) gapt1
GO ~SsF-T E 2pt2 L v = mv(.
m,n 110
3 p=1 (p_l—l)( )p

Next, we obtain an asymptotic expansion of Hm,n:

H®) ~ A® 4 B®),

with
AB) = 4Zln (1 + 6_2’”) +2In2,
k=1
- BQ 2(0) R
mZ N E 2p+192p+1+z ot
where

22p+1yp+1 0.1 v\
3) __ K2
R](’)__ p+1 A”{Q””(Wﬂ

Substituting (4.8)) and (4.9) into . we obtain that

A=n(

o0 (3)
In(Pf Ag) ~ SF——+4Zln 1+e_2’”)+21n2+z o
Let g = e™". Since
de™3 ﬁ (1 + —2k7)4 4q1/3 ﬁ(l + 2k)4 4 | g1/12 ﬁ (1 - q4k) )
e (& = = _—
R S S ey

[ e

we obtain that

03 R
PngzeSFn—geRd, R(3)~Z—.

17

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Let us turn to Pf A;. Since sin?(z + ) = sin® z, we can rewrite Pf A, in (2.10)) for even n

as
T—-15-1

pia = ][I { ( _23:;1) +C23in2—(2kzl)ﬂ>] .

7=0 k=0

(4.15)



18 DIMER MODEL: FULL ASYMPTOTIC EXPANSION

Using identity (4.3)), we obtain that

31 3 3]
PfA4:H (uk—i—\/l—i-u%) -I—(—uk—i—\/l—i-u%) ,
k=0
where
2k+1
up = (sin(mag) >0, xp = i ,
n

which implies that
In(Pf Ay) = G + HY

where
£y 2 ok+1
Gﬁén—mkgoln(uk%—\/l—kuk):mEog( - ),

n_q
2

HY, =2) In|1+
k=0 (Uk + 1+ “k)

|—|?
Il

Using the Euler-Maclaurin formula, we obtain the following asymptotic expansion:

Bapio (1) 92p+1

GO ~SF+ 2 —m i

21 = 7TV<7
6 p=1 (p+ ]') ( ) g
and then, similar to Lemma |[3.2 we obtain that
H®, ~ A 4 B,
with
AW = 4Zln 1 +e 7(2’““))
k=0
=\ By (3 = RY
B@W — P 22 192p+1+ZL7
TP
where
2%+l ptl 11 i\
RW=_2_ " A |K22 (==
D p+ 1 '4 2p+2 T -

_ s#¥ pw o = RY
PfAy =52 M0 R LY

7]2

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Substituting equations (3.74), (4.14)), and (4.24) into (2.11)), we obtain the asymptotic for-

mula for Z, (2.16)), for even n.
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5. ASYMPTOTIC BEHAVIOR OF Pf A; FOR ODD n
From equation ([2.10) we have that

_ 1/2
PfA3: H[( ¥+g2sm2¢)} . (5.1)

1\3‘3

2

For odd n, using the identity sin2(x + 7) = sin” z, we can rewrite the latter formula as

-1

Pf Ay = HH[ ( M+g2sin %k)} . (5.2)

=0 k=0

Indeed, if we take 0 < k < ”T_l in (5.1), then we obtain factors with sin? %, while if we
take k = ”T“ + k', 0 <K < 752, then we obtain factors with

2 1 2k +1
81112—7T (n—i— +k") :SmQM.
n

2 n

Combining these two cases, we obtain (5.2)).
From ([5.2)), using identity (4.3)), we obtain that

n_l El El
PfA3:H (uk—|—1/1+u%) +(—uk+1/1—|—ui) ] (5.3)
k=0
where
k
up = Csin(mxy) >0, xp = e (5.4)
which implies that
In(PfA;) = GY) +HP, (5.5)
where
n—1 n—1
k
(3) 2 ) — ° =
G, = 5 Zln (uk—l— \/1"‘“1:) =3 Zg (n) :
n—1 (56)

1
k=0 (Uk + /14 ui)

Formulae (5.3)-(5.6) are similar to (4.4)-(4.7) for even n, but z; = % for even n, while
T = % for odd n. This leads to the difference in elliptic nome ([2.14)) for even and odd n.
Using the Euler-Maclaurin formula, we obtain that

Y m— Bapio (0)

G® ~SF— L — —

122 & (p+ Du@t 7= (5:7)
p=

and similar to the even case, we obtain the asymptotic expansion of H,gi’,)n as

q®, ~A® 4+ B®), (5.8)
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with
=2 Z In(1 4 e %),
- - (5.9)
_m Z 2p+2 92p+1 @
2 )
2 o (p+ 1)n2r+1 o Sp
where
p+1 IR A
R® =Y A K22, (22 . 5.10
P p+ 1 p 2p+2 27T )\:ﬂ_C ( )
Combining ([5.5)), (5.7)), and (5.8)), we obtain that
0 (3)
ln(Png)NSF——+QZln1+e ") +ZS—+ln2 (5.11)
Let now
g=e"" =¢e 7, (5.12)
then
2
) oo 0 1/6(1 _ 4k
- k 1/6 2k\2 q/°(1—q")
2e” 2H(1+67) QQ/H(1+Q ) :2[ —ql/u(l—q%)]
k=1 k=1 k=1 (5_13)
iy {W”r _b
n(7) n’
hence
InZ = In(Pf A3) ~ SF + ln T Z o (5.14)

This finishes the proof of Theorem [2.1]

APPENDIX A. EXPONENT OF A TAYLOR SERIES

Proposition A.1. We have that

exp (i apq;p> =1+ ibpxp, (A1)

p=1 p=1
where
o (am)ql e (apr)qr
bp_; aloooq! (A-2)

and S, is the set of collections of positive integers (p1,....priq1,.--,¢), 1 <1 < p, such
that

Sp={p1,- P, @) | O<pL<...<ps pr1+...+Dg =D} (A.3)
The series in (A.1)) are understood as formal ones.



DIMER MODEL: FULL ASYMPTOTIC EXPANSION 21

Proof. Expanding the exponent into the Taylor series, we obtain that

o oo o0 k
1
exp ( g apxp> =1+ E o ( g apa:p> : (A.4)

By the multinomial formula,

0o k
1 alxpl ql"‘ a/rxp’l‘ qr
E <§ CLpIp> — § ( P ) ( P ) ’ (A5)
. =1

| |
0<p1<...<Pry q1>0,...,qr>0: q1+...+qr=Fk q- -G
hence
o0 oo
(amxm)m o (aprxpr)qr
exp a,x? | =1+
(Z 8 ) Z 2 _ _ @l q!
p=1 k=1 0<p1<...<pr, q1>0,...,¢r->0: q1 +...+qr=k (A 6)
- .
(ap, xP) .. (ay, 2P)®
=1+ Z Z a!...q) '
r=1 0<p1<...<pr, q1>0,...,q»->0 T
Combining terms with p1q1 + ... + p,q- = p, we obtain formulae (A.1)), (A.2). |

APPENDIX B. BERNOULLI’'S POLYNOMIALS

Bernoulli’s polynomials are defined recursively by the equations,

1
Bl(x) = kB 1 (), /Bk(x) dr=0, k=12 : Bolz)=1 (B.1)
0
In particular,
1 1 2
B1($):$—§, Bg(x):l’Q—l‘—i—g, Bg(a:):a::)’—%—i—g. (B.2)

The Bernoulli periodic functions Bj(z) are defined by the periodicity condition By(z +1) =
By (z) and by the condition By(x) = By(x) for 0 < z < 1. Their Fourier series is equal to

R k! 6727”[%

For k > 2 the Fourier series is absolutely convergent, and for k£ = 1 it converges in L?[0, 1].
The generating function of the Bernoulli polynomials is

A e M\ By(z)
G\ z) == i Z — (B.4)
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Substituting (B.3)) into (B.4)), we obtain that for 0 <z < 1 and |)\\ < 2m,

el 1 2\F Bk e—2milx
—1=-Alzx—=) =
351 (omg) - MR s s
k=2 k=2 Z;AO
|
_ Z —2milz Z < ) Z —2milx ( ) (B 5)
e e )
P 27l o 2mil ) 1+ 2me
)\2 e—27rz€$
47T2 £#£0 4 (E + 27rz)
Taking A\ = 2miz, where |z| < 1, z = a, and ¢ = k, we obtain that
27”'2,627”?0[ ‘ 2 —27rzka
omiz _ 1 1+ 2miz (a ) Z k(k+ z) (B.6)
k0
or 2 —2mik
e TIZQ 1 TIRO
e2 iz — 1 2miz + <a B _> 2mi Z k(k+ z) (B.7)
We can rewrite the latter equation as
e2riza 1 1 1 ik 1 1
62”2—1_27riz+(a_§)_%%6 (E_k’+z>’ (B-8)

APPENDIX C. THE EULER—MACLAURIN FORMULA

Let f(x) be an analytic function on the interval [a, b]. We partition the interval [a, b] into

N equal intervals of the length
b—a

h = C.1
N (eRY
Let
xx=a+kh+ah, k=01,...,N—1, (C.2)
where 0 < a < 1. Then the Euler-Maclaurin formula with a remainder is
N-1 hp 1
e / Fla) e + Z FOG) ~ 0D @)+ Re(e),  (C3)
k=0
where B,(«a) is the Bernoulli polynomial and the remainder R,(«) can be written as
hg N—-1
Re(a) = /Bg(a —7 [Z fO%a+kh+Th)| dr, (C.4)

0

where Eg(l‘) is the periodic Bernoulli function.
Thus, the Euler-Maclaurin formula gives an asymptotic series,

b

flzg) ~ h/ da:+z FPU(B) — =D (a)]. (C.5)

a

N-1

k=0
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In general, since both B,(z) and f®)(z) grow like p!, the series on the right in (C.5]) diverges.

APPENDIX D. KRONECKER'S DOUBLE SERIES OF PURE IMAGINARY ARGUMENT

A classical reference to the Kronecker double series is the book of Weil [19]. In this
Appendix we review and specify some results of Ivashkevich, Izmailian, and Hu [6]. Let us
consider the Kronecker double series with parameters (o, 8) = (3,0) as defined in with
argument 7 = 2ir¢ and (o, 8) = (3,1),(0,3) as defined in with argument 7 = ir(.

202/ U3

Observe that in all cases, if p is odd, the terms (j, k) and (—j, —k) cancel each other. Hence
1 11 1

Kflﬁl(T) = K32 (1) = Kgl’)il(T) =0forp=1,2,.... Therefore, we will take p to be even.

Let us first consider the case (a, 8) = (3,0).

D.1. Case (a,f) = (3,0). From (1.15)), we have that

10 (=) (2p)! (—1)*
K (r)=—— Y ——. (D.1)
27)2p k 2p .
@m* iSson K HTI)
Separating terms with 7 = 0, we obtain that
30, (CDPE2p)! o (D 1P+ (2p)!
Kap (1) = gy % e 4 27T > ;kz ]HT] T (D.2)

The first term is just the Fourier series for the Bernoulli polynomial By, () evaluated at
x = 1. Let us transform the second term. Since the terms (j, k) and (—j, —k) give the same
contribution, we can write that

19 1 2(—1)P(2p)! =
27 f— —_
K2p (1) = By, (2) + = 27r 2 ;kzoo k+77) 2p (D.3)
When z =iy, y > 0, and a = 1/2, identity (B.§]) reads
e ™ 1 1 1 1
= — L :
e oy T ami 2=tV (k: k+ zy) (D-4)
k#0
Expanding the left hand side into the geometric series, we obtain that
| 1 k (1 1 )
> e D= — 4 ) () ——— ). (D.5)
pr 2y 2w o k k+ay

Differentiating this identity (2p — 1) times with respect to y, we obtain that

[ (eeg)] e SRR 0o

k=0

or equivalently,

(1@ & .
) Z(k+zy2p_ Z( ) e ), (D.7)

k=—00
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Using this formula in (D.3)) with y = r(j, we obtain that

1 1 oo 00 1 2p—1 ' )
KzQP’O(T) = By, (5) - 4pz Z <k + _> o2 (k+d)

5 (D.8)
7j=1 k=0
Thus, we have the following proposition:
Proposition D.1. We have that
2p—1 B, (L) — K%O
Z ( ) o2ty _ B (5) T @) (D.9)
7j=1 k=0 P
Applying it for K3, 20 +o(7), we obtain that
00 00 2p+1 1 2
(l{? + _) e 6—2T)\j(k+%) — B2p+2 (i) K2P+2 ' (D].O)
Pt 2 Alp+1)
D.2. Case (a,f) = (3,1). From (L.15), we have that
14 (1) (2p)! (—1)*+
K3 (1) =% > - (D.11)
A7) 2p 2p :
@)™ ey K+ TI)
Separating terms with 7 = 0, we obtain that
1 (=DP(2p)! —~ (=1)* LPHY( 2p 1)k
KQ’Q —

The first term is just the Fourier series for the Bernoulh polynomlal BQP( ) evaluated at
1

Let us transform the second term. Since the terms (j, k) and (—7j, —k) give the same
contribution, we can write that

11 1N 2(=1)P(2p) = = (—1)FH
K22p72(T):sz<§>+ ( (2)71-)21() p) Z Z (( )

o D.13
— = k._|_7-j)2p ( )
Now from identity (D.7)), with y = r(j, we obtain that

11 2p—1 . 1
K5 =By (L) -y Yo ( ) -2l

(D.14)
7j=1 k=0
Thus, we have the following proposition:
Proposition D.2. We have that
11
o0 00 2p—1 1 22
SNy (ke b) T ey P () —K3*(r) (D.15)
T3 4p
7j=1 k=0
Applying it for Ky, o(7), we obtain that

oo oo

2p+1 1
(-1) (k + 1) e—2ritirh) _ Dore? <2)

> er 1) . (D.16)

N’w\»—t
+w\>—t

j=1 k=0




DIMER MODEL: FULL ASYMPTOTIC EXPANSION 25

D.3. Case (a,f) = (0,3). From (1.17)), we have that

0.3 (—1)+(2p)! (-1
Ky (1) = o Y (D.17)
P 2p :
@r) i K+ TI)
Separating terms with 7 = 0, we obtain that
0.1 p+1 2p p+1 2p
K2 (1) = 27T DA Z o+ 271' e Z T + e (D.18)

J#0 k=—o0

The first term is just the Fourier series for the Bernoulli polynomial By, () evaluated at
x = 0. Let us transform the second term. Since the terms (j, k) and (—j, —k) give the same
contribution, we can write that

O% p+1 2p o0 o0 j
K32 (r) = By, (0) + 27r o ;kzoo T (D.19)
When z =iy, y > 0, and a = 0, identity (B.8) reads
1 1 n 1 n 1 1 1
I—c2w 2ny 2 2mi2e\k ktiy) (D.20)
k0
Expanding the left hand side into the geometric series, we obtain that
= 11 1 (1 1 )
2nyk __
Dot = — s — - (D.21)
prd 2y 2 2mi o k k+ay

Differentiating this identity (2p — 1) times with respect to y, we obtain that

- _ 1 & (=) (2p—1)!
—2ork]P T etk = , : D.22
kZ:O 2mi k:zoo (k +iy)?» ( )
or equivalently,
(—=1)7(2p)! = 2p—1,-2myk
— =2 kP~ e TR,
(2m)%p kZ_ (k + iy)? P Z (D-23)
Using this formula in (D.19)) with y = r{j, we obtain that
1 o0 o ) )
a2 (7) = By (0) —dp > 3 (— 1)k e 2k, (D.24)
j=1 k=0

Thus, we have the following proposition:

Proposition D.3. We have that

SN (1Rt — By, (0) ;pK%;Z (r) (D.25)

7=1 k=0
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Applying it for Ky o2 (T), we obtain that

[1]

o 0.3
Z Z 1)i 2 Hle=2Mrik — Bapya (0) = Ky)%5(7) _ (D.26)
4(p+1)

=1 k=0
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