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EXPONENTIAL ERGODICITY AND CONVERGENCE FOR

GENERALIZED REFLECTED BROWNIAN MOTION

WENPIN TANG

Abstract. In this paper we provide convergence analysis for a class of Brownian queues
in tandem by establishing an exponential drift condition. A consequence is the uniform
exponential ergodicity for these multidimensional diffusions, including the O’Connell-Yor
process. A list of open problems are also presented.

Key words : Brownian queue, exponential ergodicity, Foster-Lyapunov stability, O’Connell-
Yor process, reflected Brownian motion.

AMS 2010 Mathematics Subject Classification: 60H10, 60J60, 60K35.

1. Introduction and main results

This paper is concerned with the convergence to global equilibrium for a large class of
multidimensional Brownian diffusions. We consider the following d-dimensional stochastic
differential equation (SDE):

dXt = dBt +

(

µ+
d
∑

i=1

U ′(ni ·Xt)ri

)

dt and X0 ∈ R
d, (1.1)

where

• (Bt; t ≥ 0) is a d-dimensional Brownian motion with covariance matrix Γ;

• µ := (µ1, . . . , µd)
T ∈ R

d is a vector of drifts;

• n1, . . . , nd ∈ S
d−1 are unit vectors;

• r1, . . . , rd ∈ R
d are vectors of reflection and R := (ri)1≤i≤d is the reflection matrix;

• U : R → R is a smooth potential function such that U ′ ≥ 0.

The SDE (1.1) was previously considered by O’Connell and Ortmann [34], the strong solution
to which is called a generalized reflected Brownian motion parametrized by (Γ, µ,R,U), or
simply GRBM(Γ, µ,R,U). In the sequel, let ||Γ|| := sup{||Γx||; ||x|| = 1} be the spectral
norm of Γ.

1.1. Motivations. The study of GRBMs is motivated from both queueing theory and in-
teracting particle systems. The simplest model in queueing networks is the M/M/1 queue,
where customers arrive according to a Poisson process with rate λ, and are served according
to exponential times with rate θ. It is well known that if λ < θ, then the number of cus-
tomers converges to a geometric random variable with parameter λ/θ. Queues in tandem are
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consecutive M/M/1 queues. Harrison [20, 21] proposed an approximate model of queues in
the heavy traffic limit, as the traffic intensity λ/θ tends to 1. That is,

Xt = Bt + µt+RLt ∈ [0,∞)d, (1.2)

where (Bt; t ≥ 0), µ and R are defined as above, and L = (Li
t; t ≥ 0)1≤i≤d is the local time

process satisfying that for all 1 ≤ i ≤ d,

• Li is continuous and non-decreasing with Li
0 = 0,

• Li increases only at times t such that Xi
t = 0.

Call the strong solution to (1.2) a semimartingale reflected Brownian motion parametrized
by (Γ, µ,R), or simply SRBM(Γ, µ,R). The limit theorems were proved in [37]. The SDE
(1.2) was also called the semimartingale reflected Brownian motion in the orthant by Harrison
and Reiman [22, 23]. Let Q be obtained by replacing each entry of I − R by its absolute
value. Dupuis and Ishii [15] proved that if ||Q|| < 1, then (1.2) has a unique strong solution.
Taylor and Williams [47] showed that (1.2) has a weak solution which is unique in law if
and only if R is completely-S. The positive recurrence of SRBMs was explored by Dupuis
and Williams [16], Chen [12], and Bramson, Dai and Harrison [8, 9, 13]. The exponential
ergodicity of SRBMs was studied by Budhiraja and Lee [10], Sarantsev [43], and Blanchet
and Chen [3]. See also Williams [49] for a survey. Recently, SRBMs appear to be a useful
tool in the study of rank-dependent Brownian systems, see [2, 24, 42, 44, 46].

The local time process L is often not easy to study. A common technique, called the
penalty method, is to substitute the local time process with some drift term which pushes the
process inside the domain. The choice U(y) = −e−y in (1.1) corresponds to the generalized
Brownian queue in tandem, introduced by O’Connell and Yor [35]. This extends earlier work
on heavy traffic queues in tandem by Glynn and Whitt [18], and Harrison and Williams [19].
By introducing a parametric family of potentials Uβ(y) = − 1

βe
−βy and letting β → ∞, we

get the SRBM as weak limit of GRBMs, following the work of Lions and Sznitman [27].
In the particle system literature, the O’Connell-Yor process is also called the semi-discrete
Brownian polymer, which generalizes the low-density limit of a totally asymmetric simple
exclusion process (Brownian TASEP). This polymer model was proved to be exactly solvable
[33], and belongs to the KPZ universality class [6, 7].

O’Connell and Ortmann [34, Corollary 4.11] proved that under the generalized skew-
symmetry condition

rij + rji = 2Γij for 1 ≤ i 6= j ≤ d, (1.3)

and under sufficient regularity for U , GRBM(Γ, µ,R,U) has a product-form stationary dis-
tribution

p(x) = exp

{

2

[

d
∑

i=1

U(xi) + (2Γ−R)−1µ · x
]}

, (1.4)

provided that
∫

Rd p(x)dx <∞. This result is an analog of Williams [48, 49] regarding SRBMs.
Kang and Ramanan [25] characterized stationary distributions of reflected diffusions with
state-dependent drifts. Lépingle [26] considered a two-dimensional GRBM with logarithmic
potential.

The formula (1.4) suggests that the GRBM converge exponentially to its stationary distri-
bution. The intuition comes from the Poincaré inequality, see [1, 11] for connections between
functional inequalities and rate of convergence for Markov processes. However,
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• the GRBM defined by (1.1) is not necessarily time-reversible, or symmetric;

• the stationary distribution of the GRBM has an explicit form only under the gener-
alized skew-symmetric condition (1.3).

So we cannot apply the Poincaré inequality directly. A natural question is whether the rate
of convergence is exponential under general conditions. The main tool is stochastic stability
theory of Markov processes which we recall in Section 2.

1.2. Main results. For any signed Borel measure µ on R
d, we define the total variation

norm by

||µ||TV := sup
|g|≤1

∫

Rd

gdµ.

Definition 1.1. Assume that a R
d-valued Markov process (Zt; t ≥ 0) with transition kernel

P t has a unique stationary distribution π. If there exist C, δ > 0 and W : Rd → [1,∞) such
that for all x ∈ R

d and t ≥ 0,

||P t(x, ·) − π(·)||TV ≤ CW (x) exp(−δt), (1.5)

then (Zt; t ≥ 0) is said to be W -uniformly ergodic with exponent δ.

Note that the SDE (1.1) does not always have a unique strong solution unless we impose
additional conditions on the input data (Γ, µ,R,U). See [40, Section V] for background on
solutions to SDEs. It is well known that the SDE (1.1) has a strong solution which is pathwise
unique under the following conditions.

(1) Γ is strictly positive definite. That is, there exists λ > 0 such that

ξTΓξ ≥ λ||ξ||2 for all ξ ∈ R
d. (1.6)

(2) U ′ is locally Lipschitz. That is, there exists KR > 0 such that

|U ′(y)− U ′(z)| ≤ KR|y − z| for all |y| ≤ R and |z| ≤ R. (1.7)

(3) There exists K > 0 such that

x ·
(

µ+

d
∑

i=1

U ′(xi)ri

)

≤ K(1 + ||x||2) for all x = (x1, · · · , xd) ∈ R
d. (1.8)

Moreover, the unique strong solution is Feller continuous and strong Markov. The infinites-
imal generator of GRBM(Γ, µ,R,U) is given by

L :=
1

2

d
∑

i,j=1

Γij
∂2

∂xi∂xj
+

d
∑

i=1



µi +
d
∑

j=1

U ′(xj)rij





∂

∂xi
. (1.9)

By proper scaling, we assume that the diagonal entries of the reflection matrix R are all
equal to 1, i.e. rii = 1 for 1 ≤ i ≤ d. To prove the rate of convergence for a GRBM, we make
the following assumptions on the input data.

Assumption 1.2. (1) The covariance matrix Γ is strictly positive definite.
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(2) The reflection matrix R is such that rii = 1 for 1 ≤ i ≤ d, ri,i−1 = −1 for 2 ≤ i ≤ d
and rij = 0 for |i− j| ≥ 2. That is,

R =















1 0 0 · · · 0
−1 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 1 0
0 · · · 0 −1 1















, (1.10)

(3) The potential U satisfies that
(a) U ′ ≥ 0 is continuous on R, and is decreasing on R−,

(b) U ′(y) → 0 as y → ∞, and U ′(y) → ∞ as y → −∞,

(c) For a > b > 0, U ′(ay)/U ′(by) → ∞ as y → −∞.

The form (1.10) of the reflection matrix comes from the application to queues in tandem,
and the gap process of the Brownian TASEP. In particular, Assumption 1.2 is satisfied with
Γ = I and U(x) = −e−x, corresponding to the O’Connell-Yor process. See Section 4 for
further discussion.

Under Assumption 1.2, the infinitesimal generator of GRBM(Γ, µ,R,U) simplifies to

L :=
1

2

d
∑

i,j=1

Γij
∂2

∂xi∂xj
+

d
∑

i=1

(

µi + U ′(xi)− U ′(xi−1)
) ∂

∂xi
, (1.11)

with the convention x0 = ∞. For a measurable set C ⊂ R
d, write 1C for the indicator

function of C. For r > 0, let Br := {x ∈ R
d; ||x|| ≤ r} be the closed ball of radius r centered

at the origin. A function V : Rd → [1,∞) is said to be norm-like if it is at least twice
continuously differentiable, and V (x) → ∞ as ||x|| → ∞.

The main result below establishes an exponential drift condition for GRBM(Γ, µ,R,U).

Theorem 1.3. Let L be defined by (1.11). Assume that the input data (Γ, µ,R,U) satisfy
Assumption 1.2, and µ = (µ1, . . . , µd) < 0. Then there exist b <∞, and a norm-like function
V : Rd → [1,∞) such that for arbitrary small ǫ > 0,

LV ≤ − 1

2d||Γ||

(

min
1≤i≤d

|µi|2 − ǫ

)

V + b1Br
for r large enough. (1.12)

The proof of Theorem 1.3, which involves an induction over d, will be given in Section 3.
The function V is called the Lyapunov function. The main difficulty is to prove the estimate
(1.12) for x := (x1, . . . , xd) < 0, in which case µi + U ′(xi) − U ′(xi−1) can either be large
positive or large negative since U ′(y) → ∞ as y → −∞. Note that this is the case for
the O’Connell-Yor process. The key to analysis is to estimate βd(x) defined by (3.4), and
the special form (1.10) of R and the monotonicity of U ′ lead to manageable estimates via
telescopic sums (3.6)–(3.7).

A consequence of Theorem 1.3 is the uniform exponential ergodicity for GRBM(Γ, µ,R,U),
which we prove in Section 2. As a byproduct, we obtain a tail estimate of the stationary
distribution of GRBM(Γ, µ,R,U).
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Corollary 1.4. Under the assumptions of Theorem 1.3, GRBM(R,µ,Γ, U) defined as the
strong solution to (1.1), has a unique stationary distribution π, and is uniformly exponentially
ergodic. That is, let P t be the transition kernel of GRBM(R,µ,Γ, U), then there exist

W : Rd → [1,∞) and C(d) > 0,

such that

||P t(x, ·) − π(·)||TV ≤W (x) exp(−C(d) t). (1.13)

Moreover, the stationary distribution π satisfies the tail estimate
∫

Rd

V (x)dπ(x) <∞. (1.14)

The exponential ergodicity of GRBM(Γ, µ,R,U) holds for µ < 0, which is different from
the exponential ergodic condition R−1µ < 0 for SRBM(Γ, µ,R) due to the presence of the
potential U . As explained in Section 2, the dependence of C(d) is notoriously difficult. There
is no simple way to get the exact rate C(d) from the Lyapunov estimate (1.12). Blanchet and
Chen [3] gave an estimate of C(d) for SRBMs. Their result relies on a coupling at the minimal
element {0} in the positive orthant, which is not available for GRBMs. Eberle, Guillin and
Zimmer [17] provided an estimate of C(d) for general diffusions. There a one-sided Lipschitz
condition for the drift term is required, but this is not necessarily satisfied in our scenario.
In view of (1.12), we make the following conjecture.

Conjecture 1.5. Under the assumptions of Theorem 1.3, GRBM(R,µ,Γ, U) is uniformly
exponentially ergodic with exponent of order 1/d. That is, there exist

W : Rd → [1,∞) and C > 0

such that

||P t(x, ·) − π(·)||TV ≤W (x) exp

(

−Ct
d

)

. (1.15)

Conjecture 1.5 would imply that the relaxation time to global equilibrium is of order d for a
class of GRBMs.

Outline of the paper: The rest of the paper is organized as follows. In Section 2, we
provide background on stochastic stability theory, and prove Corollary 1.4. In Section 3,
we give a proof of Theorem 1.3. In Section 4, we apply these results to the O’Connell-Yor
process. There several open questions are raised.

2. Stochastic stability & exponential ergodicity for GRBM

2.1. Stochastic stability theory. In this subsection we present the main tool to prove
Corollary 1.4: stochastic stability theory for continuous-time Markov processes developed by
Meyn and Tweedie [31, 32]. See [30, 31] for background.

Meyn and Tweedie [32, Theorem 4.2] provided criteria for a Markov process to be positive
Harris recurrent in terms of its infinitesimal generator.

Theorem 2.1. Let (Zt; t ≥ 0) be a R
d-valued Markov process with generator L.
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(1) If there exist k > 0, b < ∞, a petite set C ⊂ R
d, and a norm-like function V : Rd →

[1,∞) such that
LV ≤ −k + b1C ,

then (Zt; t ≥ 0) is positive Harris recurrent.
(2) If (Zt; t ≥ 0) is positive Harris recurrent, then it has a unique stationary distribution.

Meyn and Tweedie [32, Theorem 6.1] also gave a criterion for a Markov process to be
uniformly exponentially ergodic.

Theorem 2.2. Let (Zt; t ≥ 0) be a R
d-valued Markov process with generator L. If all

compact sets are petite, and there exist k > 0, b < ∞, a petite set C ⊂ R
d, and a norm-like

function V : Rd → [1,∞) such that

LV ≤ −kV + b1C ,

then (Zt; t ≥ 0) is uniform exponential ergodic.

It is well known that under the geometric drift condition, a Markov chain converges to its
equilibrium with rate ρn for some ρ < 1, see [30, Chapter 15]. Down, Meyn and Tweedie
[14] extended this result to the continuous setting. Under the exponential drift condition,
a Markov process converges exponentially to its stationary distribution with some exponent
δ > 0. But the explicit value or bounds of ρ < 1 and δ > 0 were unknown. Efforts have been
made to derive bounds of ρ and δ under extra assumptions that

• the Markov chain/process is stochastically ordered, and the state space has a minimal
element, see [3, 28, 29].

• the Markov chain/process satisfies a minorisation condition: there exists a Borel set
C ⊂ R

d, t∗ > 0, ε > 0, and a probability distribution ν on R
d such that for each

Borel set A ∈ R
d,

P t∗(x,A) ≥ εν(A) for all x ∈ C.

But it is difficult to provide good estimates of (t∗, ε). See [38, 39, 41].

2.2. Proof of Corollary 1.4. In this subsection we explain how to use the exponential
drift condition (1.12) to derive the uniform exponential ergodicity for GRBM(Γ, µ,R,U).
We begin with two simple lemmas.

Lemma 2.3. Under Assumption 1.2, the SDE (1.1) has a strong solution which is pathwise
unique.

Proof. As we will see in Section 3, a key step to prove Theorem 1.3 is the following estimate

d
∑

i=1

xi(µi + U ′(xi)− U ′(xi−1)) ≤
(

− min
1≤i≤d

|µi|+ ǫ

)

||x||, (2.1)

for arbitrary small ǫ > 0 and ||x|| large enough. Plainly, the Khasminskii non-explosion
condition (1.8) is satisfied. Combined with the local Lipschitz property of U ′, we conclude
that the SDE (1.1) has a strong solution which is pathwise unique. �

Lemma 2.4. Under Assumption 1.2, GRBM(Γ, µ,R,U) defined as the strong solution to the
SDE (1.1) is positive Harris recurrent and has a unique stationary distribution.
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Proof. According to the exponential drift condition (1.12), there exist k > 0, b <∞, R > 0,
and a norm-like function V : Rd → [1,∞) such that

LV ≤ −k + b1BR
,

where L is defined as in (1.11). According to [45, Theorem 2.3], a GRBM is Lebesgue-
irreducible T−process. It follows from [31, Theorem 4.1(i)] that for a Lebesgue-irreducible
T -process, every compact set is petite. In particular, BR as a compact set is petite. By
Theorem 2.1, GRBM(R,µ,Γ, U) is positive Harris recurrent and has a unique stationary
distribution. �

The existence and uniqueness of the stationary distribution of GRBM can also be derived
from the exponential drift condition (1.12) in a purely analytical way. By [4, Corollary
1.3], there exists a stationary distribution which is absolute continuous relative to Lebesgue

measure with density p ∈ Ld/(d−1)(Rd). The uniqueness follows from [5, Example 5.1].

Proof of Corollary 1.4. Lemma 2.3 and 2.4 guarantees that GRBM(R,µ,Γ, U) is well-defined,
and has a unique stationary distribution. It suffices to apply Theorem 2.2 with Theorem 1.3
to conclude. �

3. Exponential drift condition for GRBM

In this section we prove Theorem 1.3 by induction on d – the dimension of GRBM. To
proceed further, we need the following notations. Let ǫ > 0 chosen to be small enough and
L > 0 chosen to be large enough. Define

• µ
(d)
min(ǫ) := − min

1≤i≤d
|µi|+ ǫ < 0,

• r+(d, ǫ) > 0 such that for all 1 ≤ i ≤ n, µi + U ′(x) ≤ µ
(d)
min(ǫ) for x ≥ r+(d, ǫ),

• r−(d, ǫ, L) > 0 such that for all 1 ≤ i ≤ n, µi + U ′(x) ≥ |µ(d)min(ǫ)| + L for x ≤
−r−(d, ǫ, L).

To avoid heavy notations, we abandon the dependance on (d, ǫ, L), and write µ
(d)
min, r+, r−

instead of µ
(d)
min(ǫ), r+(d, ǫ), r−(d, ǫ, L).

Proof of Theorem 1.3. Define V : Rd → [1,∞) by

V (x) := exp (λφ(||x||)) for λ > 0, (3.1)

where φ : R+ → R+ is an increasing C2 function such that φ(s) = 0 for s ≤ 1
2 , and φ(s) = s

for s ≥ 1. Let ψ(x) := φ(||x||). We get

DV (x) = λDψ(x)V (x),

D2V (x) =
(

λD2ψ(x) + λ2Dψ(x)Dψ(x)T
)

V (x).

Note that for ||x|| ≥ 1, ||Dψ(x)|| = 1 and

||D2ψ(x)|| =
∣

∣

∣

∣

∣

∣

∣

∣

Id
||x|| −

xxT

||x||3
∣

∣

∣

∣

∣

∣

∣

∣

≤ 2

||x|| → 0 as ||x|| → ∞.
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So there exists rǫ ≥ 1 such that for x /∈ Brǫ , we have ||D2ψ(x)|| ≤ ǫ. In this case, we have
∣

∣

∣

∣

∣

∣

d
∑

i,j=1

Γij
∂2V

∂xi∂xj
(x)

∣

∣

∣

∣

∣

∣

≤ d||Γ||||D2V (x)|| ≤ d||Γ||(λǫ + λ2)V (x), (3.2)

and
d
∑

i=1

(

µi + U ′(xi)− U ′(xi−1)
) ∂ψ

∂xi
(x) =

d
∑

i=1

(

µi + U ′(xi)− U ′(xi−1)
) xi
||x|| .

Consequently, for ||x|| large enough,

LV (x) ≤
(

1

2
d||Γ||λ2 + (βd(x) +O(ǫ))λ

)

V (x), (3.3)

where

βd(x) := (µ1 + U ′(x1))
x1
||x|| +

d
∑

k=2

(µk + U ′(xk)− U ′(xk−1))
xk
||x|| . (3.4)

The case d = 1 is straightforward. We consider d = 2 as the base case.

Step 1 (d = 2): By (3.3),

LV (x) ≤
[

||Γ||λ2 + (β2(x) +O(ǫ))λ
]

V (x), (3.5)

where

β2(x) := (µ1 + U ′(x1))
x1
||x|| + (µ2 + U ′(x2)− U ′(x1))

x2
||x|| .

Lemma 3.1. β2(x) ≤ µ
(2)
min + O(ǫ) for ||x|| ≥ max (r+/ǫ, r−/ǫ, r

′
ǫ), where r

′
ǫ is given in the

proof.

Proof. There are four cases according to the signs of (x1, x2).

Case 1: x1 ≥ 0 and x2 ≥ 0.

(1) If x1
||x|| ≥ ǫ and x2

||x|| ≥ ǫ, then x1 ≥ r+ and x2 ≥ r+. We have

µ1 + U ′(x1) ≤ µ
(2)
min and µ2 + U ′(x2)− U ′(x1) ≤ µ2 + U ′(x2) ≤ µ

(2)
min.

Therefore,

β2(x) ≤ µ
(2)
min

(

x1
||x|| +

x2
||x||

)

≤ µ
(2)
min.

(2) If x1
||x|| ≤ ǫ, then x2

||x|| ≥
√
1− ǫ2. We get x2 ≥

√
1− ǫ2r+/ǫ ≥ r+, so

µ2 + U ′(x2)− U ′(x1) ≤ µ
(2)
min.

Moreover, µ1 + U ′(x1) = O(1) since x1 ≥ 0. Thus,

β2(x) ≤ O(ǫ) + µ
(2)
min

x2
||x|| ≤ µ

(2)
min +O(ǫ).

(3) If x2
||x|| ≤ ǫ, then x1

||x|| ≥
√
1− ǫ2. By symmetry, we get

β2(x) ≤ µ
(2)
min

x1
||x|| +O(ǫ) ≤ µ

(2)
min +O(ǫ).



EXPONENTIAL ERGODICITY OF GRBM 9

Case 2: x1 ≤ 0 and x2 ≥ 0.

(1) If x1
||x|| ≤ −ǫ and x2

||x|| ≥ ǫ, then x1 ≤ −r− and x2 ≥ r+. We have

µ1 + U ′(x1) ≥ |µ(2)min| and µ2 + U ′(x2)− U ′(x1) ≤ µ2 + U ′(x2) ≤ µ
(2)
min.

Thus,

β2(x) ≤ µ
(2)
min

(−x1
||x|| +

x2
||x||

)

≤ µ
(2)
min.

(2) If −ǫ ≤ x1
||x|| ≤ 0, then x2

||x|| ≥
√
1− ǫ2. We get x2 ≥

√
1− ǫ2r+/ǫ ≥ r+, so

µ2 + U ′(x2)− U ′(x1) ≤ µ
(2)
min.

Since µ1 + U ′(x1) ≥ µ1, we have

β2(x) ≤ −µ1ǫ+ µ
(2)
min

√

1− ǫ2 = µ
(2)
min +O(ǫ).

(3) If 0 ≤ x2
||x|| ≤ ǫ, thus x1

||x|| ≤ −
√
1− ǫ2. We have x1 ≤ −

√
1− ǫ2r−/ǫ ≤ −r−, so

µ1 + U ′(x1) ≥ |µ(2)min|.
For L large enough, µ2 + U ′(x2)− U ′(x1) ≤ µ2 + supx>0 U

′(x)− L ≤ 0. Therefore,

β2(x) ≤ |µ(2)min|
x1
||x|| ≤ µ

(2)
min

√

1− ǫ2 = µ
(2)
min +O(ǫ).

Case 3: x1 ≥ 0 and x2 ≤ 0.

(1) If x1
||x|| ≥ ǫ and x2

||x|| ≤ −ǫ, then x1 ≥ r+ and x2 ≤ −r−. We have

µ1 + U ′(x1) ≥ |µ(2)min|,
and

µ2 + U ′(x2)− U ′(x1) ≥ |µ(2)min| for L large enough.

Thus,

β2(x) ≤ µ
(2)
min

(

x1
||x|| +

−x2
||x||

)

≤ µ
(2)
min.

(2) If x1
||x|| ≤ ǫ, then x2

||x|| ≤ −
√
1− ǫ2. We get x2 ≤ −

√
1− ǫ2r−/ǫ ≤ −r−, so

µ2 + U ′(x2)− U ′(x1) ≥ |µ(2)min| for L large enough.

Moreover, µ1 + U ′(x1) = O(1) since x1 ≥ 0. Thus,

β2(x) ≤ O(ǫ) + µ
(2)
min

√

1− ǫ2 = µ
(2)
min +O(ǫ).

(3) If −ǫ ≤ x2
||x|| ≤ 0, thus x1

||x|| ≥
√
1− ǫ2. We have x1 ≥

√
1− ǫ2r+/ǫ ≥ r+, so

µ1 + U ′(x1) ≤ µ
(2)
min.

Since µ2 + U ′(x2)− U ′(x1) ≥ µ2 − supx>0 U
′(x), we get

β2(x) ≤ µ
(2)
min

√

1− ǫ2 −
(

µ2 − sup
x>0

U ′(x)

)

ǫ = µ
(2)
min +O(ǫ).

Case 4: x1 ≤ 0 and x2 ≤ 0.
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(1) If x1
||x|| ≤ −ǫ and x2

||x|| ≤ −ǫ, we have

β2(x) = µ1
x1
||x|| +

(x1 − x2)U
′(x1)

||x|| +
x2U

′(x2)

||x|| + µ2
x2
||x||

≤ O(1) +
(x1 − x2)U

′(x2) + x2U
′(x2)

||x|| (3.6)

= O(1) +
x1U

′(x2)

||x||
≤ O(1)− ǫU ′(−ǫ||x||) → −∞ as ||x|| → ∞,

where the inequality (3.6) follows from the fact that µ1
x1
||x|| , µ2

x2
||x|| = O(1) and (x1 −

x2)(U
′(x1)− U ′(x2)) ≤ 0.

(2) If x1
||x|| ≥ −ǫ, then x2

||x|| ≤ −
√
1− ǫ2. We have

β2(x) = (µ1 + U ′(x1))
x1
||x|| + (µ2 + U ′(x2)− U ′(x1))

x2
||x||

≤ −µ1ǫ− (µ2 + U ′(−
√

1− ǫ2||x||)− U ′(−ǫ||x||))
√

1− ǫ2

→ −∞ as ||x|| → ∞.

(3) If x2
||x|| ≥ −ǫ, then x1

||x|| ≤ −
√
1− ǫ2. We have

β2(x) = µ1
x1
||x|| +

(x1 − x2)U
′(x1)

||x|| + (µ2 + U ′(x2))
x2
||x||

≤ O(1) + (ǫ−
√

1− ǫ2)U ′(−
√

1− ǫ2||x||)− µ2ǫ

→ −∞ as ||x|| → ∞.

It suffices to take r′ǫ > 0 such that β2(x) ≤ µ
(2)
min for x ≤ 0 and ||x|| ≥ r′ǫ. �

By Lemma 3.1 and (3.5), we get for ||x|| large enough,

LV (x) ≤
(

||Γ||λ2 + µ
(2)
minλ

)

V (x).

By taking λ = − µ
(2)
min

2||Γ|| , we have

LV (x) ≤
(

− 1

4||Γ|| (µ
(2)
min)

2

)

V (x).

Step 2 (d− 1 → d): We prove the following lemma by induction on d. The case d = 2 was
proved in Lemma 3.1.

Lemma 3.2. βd(x) ≤ µ
(d)
min for ||x|| large enough, and βd(x) → −∞ as x < 0 and ||x|| → ∞.

Proof. Let i+ := sup{i ≥ 0; xi ≥ 0}, with the convention i+ = 0 if x < 0. There are three
cases.
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Case 1: If i+ ≥ 2, then we have

βd(x) =



(µ1 + U ′(x1))
x1
||x|| +

i+−1
∑

k=2

(µk + U ′(xk)− U ′(xk−1))
xk
||x||



− U ′(xi+−1)
xi+

||x||

+



(µi+ + U ′(xi+))
xi+

||x|| +
d
∑

k=i++1

(µk + U ′(xk)− U ′(xk−1))
xk
||x||





≤ βi+−1(x1, . . . , xi+−1)

√

∑i+−1
k=1 x2k

||x|| + βd−i++1(xi+ , . . . , xd)

√

∑d
k=i+ x

2
k

||x|| .

By induction hypothesis, βi+−1(x1, . . . , xi+−1) ≤ µ
(i+−1)
min for ||(x1, . . . , xi+−1)|| > rd−1 and

βd−i++1(xi+ , . . . , xd) ≤ µ
(d−i++1)
min for ||(xi+ , . . . , xd)|| > rd−1. There are three subcases. If

||(x1, . . . , xi+−1)|| ≤ rd−1, then
√

∑i+−1
k=1 x2k

||x|| → 0 and

√

∑d
k=i+ x

2
k

||x|| → 1 as ||x|| → ∞.

So we get

βd(x) ≤ o(1) + µ
(d−i++1)
min ≤ µ

(d)
min.

The same result holds if ||(xi+ , . . . , xd)|| ≤ rd−1. Assume that ||(x1, . . . , xi+−1)|| > rd−1 and
||(xi+ , . . . , xd)|| > rd−1. We have

βd(x) ≤ µ
(i+−1)
min

√

∑i+−1
k=1 x2k

||x|| + µ
(d−i++1)
min

√

∑d
k=i+ x

2
k

||x|| ≤ µ
(d)
min.

Case 2: If i+ = 1, then we have

βd(x) = µ1
x1
||x|| +

(x1 − x2)U
′(x1)

||x|| + βd−1(x2, . . . , xd)

√

||x||2 − x21
||x|| .

(1) If x1
||x|| ≤ ǫ, then

√
||x||2−x2

1

||x|| ≥
√
1− ǫ2. By induction hypothesis, βd−1(x2, . . . , xd) →

−∞ as ||x|| → ∞. Therefore,

βd(x) ≤ O(1) +
√

1− ǫ2βd−1(x2, . . . , xd) → −∞ as ||x|| → ∞.

(2) If x1
||x|| ≥ ǫ, then U ′(x1) ≤ ǫ for ||x|| large enough. As a consequence,

βd(x) ≤ µ1
x1
||x|| + ǫ+ βd−1(x2, . . . , xd)

√

||x||2 − x21
||x|| .

Similar as Case 1, we get βd(x) ≤ µ
(d)
min.

Case 3: If i+ = 0, i.e. x < 0, then we write βd(x) =
∑d

k=1 µk
xk

||x|| + γd(x), where

γd(x) :=

d−1
∑

k=1

(xk − xk+1)U
′(xk)

||x|| +
xdU

′(xd)

||x|| .

It suffices to prove that γd(x) → −∞ as ||x|| → ∞. Let i1 := argmin
1≤k≤d

xk.
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If i1 ≥ 2, then we have

γd(x) =

i1−1
∑

k=1

(xk − xk+1)U
′(xk)

||x|| +
(xi1 − xi1+1)U

′(xi1)

||x||

+
d−1
∑

k=i1+1

(xk − xk+1)U
′(xk)

||x|| +
xdU

′(xd)

||x||

≤
i1−1
∑

k=1

(xk − xk+1)U
′(xk)

||x|| +
(xi1 − xi1+1)U

′(xi1−1)

||x||

+
d−1
∑

k=i1+1

(xk − xk+1)U
′(xk)

||x|| +
xdU

′(xd)

||x|| (3.7)

=

i1−2
∑

k=1

(xk − xk+1)U
′(xk)

||x|| +
(xi1−1 − xi1+1)U

′(xi1−1)

||x||

+

d−1
∑

k=i1+1

(xk − xk+1)U
′(xk)

||x|| +
xdU

′(xd)

||x||

= γd−1(x1, . . . , xi1−1, xi1+1, . . . , xd)

√

||x||2 − x2i1

||x|| ,

where the inequality follows from the fact that xi1 − xi1+1 ≤ 0 and U ′(xi1) ≥ U ′(xi1−1) by
minimality of xi1 . If

xi1
||x|| ≥ −(1− ǫ), then

γd(x) ≤ γd−1(x1, . . . , xi1−1, xi1+1, . . . , xd)
√

2ǫ− ǫ2 → −∞ as ||x|| → ∞.

If
xi1
||x|| ≤ −(1− ǫ), then xk

||x|| ≥ −ǫ for all k 6= i1. Consequently,

γd(x) ≤ O(U ′(−ǫ||x||)) + (−1 + 2ǫ)U ′(−(1− ǫ)||x||) → −∞ as ||x|| → ∞.

If i1 = 1, let i2 := argmin2≤k≤d xk. The same argument shows that γd(x) → −∞ as ||x|| → ∞
for i2 ≥ 3. We continue this algorithm and the only remaining case is x1 ≤ x2 ≤ · · · ≤ xd ≤ 0.
In this case, we get

γd(x) ≤
∑d−1

k=1(xk − xk+1) + xd
||x|| U ′(xd)

=
x1
||x||U

′(xd) ≤ − 1√
d
U ′(xd) → −∞ as xd → −∞.

Now assume that xd ≥ −r∗ for some r∗ > 0. We have

γd(x) ≤
x1 − xd
||x|| U ′(xd−1) +

xd
||x||U

′(xd)

=

(

− 1√
d
+ o(1)

)

U ′(xd−1) +O(1) → −∞ as xd−1 → −∞.
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So it suffices to consider the case xd ≥ xd−1 ≥ −r∗ for some r∗ > 0. We repeat the procedure
until xd ≥ xd−1 ≥ · · · ≥ x2 ≥ −r∗ for some r∗ > 0. Then we have

x1
||x|| ≤ −

√

||x||2 − dr∗2

||x|| → −1 as ||x|| → ∞.

The above condition implies that

γd(x) ≤ (−1 + o(1))U ′(−(1 + o(1))||x||) +O(1) → −∞ as ||x|| → ∞.

�

By Lemma 3.2 and (3.3), we get for ||x|| large enough,

LV (x) ≤
(

1

2
d||Γ||λ2 + µ

(d)
minλ

)

V (x).

By taking λ = − µ
(d)
min

d||Γ|| , we have

LV (x) ≤
(

− 1

2d||Γ|| (µ
(d)
min)

2

)

V (x).

�

4. Brownian diffusions with hard and soft reflection

In this section we apply Theorem 1.3 and Corollary 1.4 to a class of Brownian diffusions
with soft reflection, including the O’Connell-Yor process. We compare the Brownian TASEP
to these diffusions with soft reflection, and present several conjectures regarding the rate of
convergence as the dimension d is large.

Brownian TASEP

Consider the Brownian TASEP on the real line. There are d particles with positions
Zh
1 , · · · , Zh

d such that Zh
1 (t) ≤ · · · ≤ Zh

d (t) for all t ≥ 0. The leftmost particle Zh
1 evolves as

Brownian motion with drift µ1. The second leftmost particle Zh
2 evolves as Brownian motion

with drift µ2 reflected off Zh
1 , and so on.

It is well known that this process is governed by the following SDE:

dZh
1 (t) = µ1dt+ dB1(t),

dZh
i (t) = µidt+

1√
2
(dLi−1,i(t)− dLi,i+1(t)) + dBi(t) for 2 ≤ i ≤ d, (4.1)

where B := (Bi(t); t ≥ 0)1≤i≤d is a d-dimensional Brownian motion with the identity covari-

ance matrix, and Lj,j+1 is the local time process of the semimartingale (Zh
j+1−Zh

j )/
√
2, with

the convention Ld,d+1 := 0. See Pal and Pitman [36, Section 2].

We consider the gap processGh := (Zh
i+1(t)−Zh

i (t); t ≥ 0)1≤i≤d−1 of the Brownian TASEP.

It was proved in [2, Section 4] that the gap process (Gh(t); t ≥ 0) is a (d − 1)-dimensional
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SRBM(Γ, µ̃, R), with the reflection matrix

R :=















1 −1/2 0 · · · 0
−1/2 1 −1/2 · · · 0

...
. . .

. . .
. . .

...
0 · · · −1/2 1 −1/2
0 · · · 0 −1/2 1















,

the drift µ̃ := (µi+1 − µi)1≤i≤d−1, and the covariance matrix Γ := 2R. Let νi :=
∑i

k=1 µk −
k
d

∑d
k=1 µk for 1 ≤ i ≤ d− 1. Sarantsev [43] proved that the gap process Gh of the Brownian

TASEP has a unique stationary distribution if and only if νi < 0 for all 1 ≤ i ≤ d−1. Further
by letting Lh be the infinitesimal generator of Gh, there exist a norm-like function V and
b <∞ such that

LhV ≤ −KhV + b1Br
for r large enough,

where

Kh :=
4

d

(

1− cos
π

d

)3 (

1 + cos
π

d

)−1
min

1≤i≤d−1
ν2i . (4.2)

Consequently, the gap process Gh is uniformly exponentially ergodic.

Brownian diffusions with soft reflection

We replace the local time process in (4.1) with soft reflection U ′. Precisely, the particle
system Zs

1 , · · · , Zs
d is governed by the following SDE:

dZs
1(t) = µ1dt+ dB1(t),

dZs
i (t) =

(

µi + U ′(Zs
i+1(t)− Zs

i (t))
)

dt+ dBi(t) for 2 ≤ i ≤ d, (4.3)

where U is a potential function satisfying Assumption 1.2. This multidimensional diffusion
is the O’Connell-Yor process with the choice U(x) = −e−x.

Consider the gap process Gs := (Zs
i+1(t) − Zs

i (t); t ≥ 0)1≤i≤d−1 of the Brownian diffusion
with soft reflection. We write

dGs(t) =

(

µ̃+
d
∑

i=1

U ′(Gs
i (t))ri

)

dt+ dB̃(t).

So the gap process (Gs(t); t ≥ 0) is a (d − 1)-dimensional GRBM(Γ, µ̃, R, U), where the
reflection matrix R is given by (1.10), the drift µ̃ and the covariance matrix Γ are the same
as those defined for the Brownian TASEP. The following proposition is a consequence of
Theorem 1.3.

Proposition 4.1. Assume that the input data (R, µ̃,Γ, U) satisfy the assumptions in The-
orem 1.3. Then the gap process Gs of the Brownian diffusion with soft reflection has a
unique stationary distribution. Let Ls be the infinitesimal generator of Gs. Then there exist
a norm-like function V and b <∞ such that

LsV ≤ −KsV + b1Br
for r large enough,

where

Ks :=
1

4d(1 + cos π
d )

min
1≤i≤d

|µ̃i|2. (4.4)

Consequently, the gap process Gs is uniformly exponentially ergodic.
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From the exponential drift conditions (4.2)–(4.4), we see that

Kh ∼ d−7 and Ks ∼ d−1 as d→ ∞. (4.5)

This suggests that Brownian diffusions with soft reflection converges faster than those with
hard reflection. Blanchet and Chen [3] proved a bound d−4(log d)−2 for the exponent of the
gap process Gh. The exact rate of convergence of the gap process Gs (resp. Gh) remains
open. We leave these problems for future research.

Acknowledgment: We thank Misha Shkolnikov and Andrey Sarantsev for helpful discus-
sions. We are also grateful to an Associate Editor and two anonymous referees for their
valuable suggestions and various pointers to the literature, which improved the presentation
of the paper.
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