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Abstract The effect that weighted summands have on each other in approximations of S =

w1S1 + w2S2 + · · · + wNSN is investigated. Here, Si’s are sums of integer-valued random
variables, and wi denote weights, i = 1, . . . , N . Two cases are considered: the general case
of independent random variables when their closeness is ensured by the matching of factorial
moments and the case when the Si has the Markov Binomial distribution. The Kolmogorov
metric is used to estimate the accuracy of approximation.

Keywords Characteristic function, concentration function, factorial moments, Kolmogorov
metric, Markov Binomial distribution, weighted random variables
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1 Introduction

Let us consider a typical cluster sampling design: the entire population consists of
different clusters, and the probability for each cluster to be selected into a sample is
known. The sum of sample elements is then equal to S = w1S1+w2S2+· · ·+wNSN .
Here, Si is the sum of independent identically distributed (iid) random variables (rvs)
from the i-th cluster. A similar situation arises in actuarial mathematics when the sum
S models the discounted amount of the total net loss of a company, see, for example,
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[24]. Note that then Si may be the sum of dependent rvs. Of course, in actuarial
models, wi are also typically random, which makes our research just a first step in this
direction. In many papers, the limiting behavior of weighted sums is investigated with
the emphasis on weights or tails of distributions, see, for example, [6, 16–18, 23, 25–
30], and references therein. We, however, concentrate on the impact of S − wiSi on
wiSi. Our research is motivated by the following simple example. Let us assume that
Si is in some sense close to Zi, i = 1, 2. Then a natural approximation to w1S1 +
w2S2 is w1Z1 +w2Z2. Suppose that we want to estimate the closeness of both sums
in some metric d(·, ·). The standard approach which works for the majority of metrics
then gives

d(w1S1 + w2S2, w1Z1 + w2Z2) 6 d(w1S1, w1Z1) + d(w2S2, w2Z2). (1)

The triangle inequality (1) is not always useful. For example, let S1 and Z1 have
the same Poisson distribution with parameter n and let S2 and Z2 be Bernoulli vari-
ables with probabilities 1/3 and 1/4, respectively. Then (1) ensures the trivial order of
approximation O(1) only. Meanwhile, both S and Z can be treated as small (albeit
different) perturbations to the same Poisson variable and, therefore, one can expect
closeness of their distributions at least for large n. The ‘smoothing’ effect that other
sums have on the approximation of wiSi is already observed in [7] (see also refer-
ences therein). For some general results involving the concentration functions, see,
for example, [10, 20].

To make our goals more explicit, we need additional notation. Let Z denote the
set of all integers. Let F (resp. FZ , resp. M) denote the set of probability distribu-
tions (resp. distributions concentrated on integers, resp. finite signed measures) on R.
Let Ia denote the distribution concentrated at real a and set I = I0 . Henceforth,
the products and powers of measures are understood in the convolution sense. Fur-
ther, for a measure M , we set M0 = I and exp{M} =

∑∞
k=0 M

k/k!. We denote

by M̂(t) the Fourier–Stieltjes transform of M . The real part of M̂(t) is denoted by

ReM̂(t). Observe also that ̂exp{M(t)} = exp{M̂(t)}. We also use L(ξ) to denote
the distribution of ξ.

The Kolmogorov (uniform) norm |M |K and the total variation norm ‖M‖ of M
are defined by

|M |K = sup
x∈R

∣∣M
(
(−∞, x]

)∣∣, ‖M‖ = M+{R}+M−{R},

respectively. Here M = M+ −M− is the Jordan–Hahn decomposition of M . Also,
for any two measures M and V , |M |K 6 ‖M‖, |MV |K 6 ‖M‖ · |V |K , |M̂(t)| 6
‖M‖, ‖ exp{M}‖ 6 exp{‖M‖}. If F ∈ F , then |F |K = ‖F‖ = ‖ exp{F − I}‖ =
1. Observe also that, if M is concentrated on integers, then

M =

∞∑

k=−∞

M{k} Ik, M̂(t) =

∞∑

k=−∞

eitkM{k}, ‖M‖ =

∞∑

k=−∞

∣∣M{k}
∣∣.

For F ∈ F , h > 0, Lévy’s concentration function is defined by

Q(F, h) = sup
x

F
{
[x, x+ h]

}
.
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All absolute positive constants are denoted by the same symbol C. Sometimes
to avoid possible ambiguities, the constants C are supplied with indices. Also, the
constants depending on parameter N are denoted by C(N). We also assume usual
conventions

∑b
j=a = 0 and

∏b
j=a = 1, if b < a. The notation Θ is used for any

signed measure satisfying ‖Θ‖ 6 1. The notation θ is used for any real or complex
number satisfying |θ| 6 1.

2 Sums of independent rvs

The results of this section are partially inspired by a comprehensive analytic research
of probability generating functions in [12] and the papers on mod-Poisson conver-
gence, see [2, 13, 14], and references therein. Assumptions in the above-mentioned
papers are made about the behavior of characteristic or probability generating func-
tions. The inversion inequalities are then used to translate their differences to the
differences of distributions. In principle, mod-Poisson convergence means that if an
initial rv is a perturbation of some Poisson rv, then their distributions must be close.
Formally, it is required for exp{−λ̃n(e

it − 1)}fn(t) to have a limit for some se-
quence of Poisson parameters λ̃n, as n → ∞. Here, fn(t) is a characteristic function
of an investigated rv. Division by a certain Poisson characteristic function is one of
the crucial steps in the proof of Theorem 2.1 below, which makes it applicable to rvs
satisfying the mod-Poisson convergence definition, provided they can be expressed
as sums of independent rvs. Though we use factorial moments, similar to Section 7.1
in [2], our work is much more closer in spirit to [21], where general lemmas about
the closeness of lattice measures are proved.

In this section, we consider a general case of independent non-identically dis-
tributed rvs, forming a triangular array (a scheme of series). Let Si = Xi1 +Xi2 +
· · · + Xini

, Zi = Zi1 + Zi2 + · · · + Zini
, i = 1, 2, . . . , N . We assume that all

the Xij , Zij are mutually independent and integer-valued. Observe that, in general,
S =

∑N
i=1 wiSi and Z =

∑N
i=1 wiZi are not integer-valued and, therefore, the

standard methods of estimation of lattice rvs do not apply. Note also that, since any
infinitely divisible distribution can be expressed as a sum of rvs, Poisson, compound
Poisson and negative binomial rvs can be used as Zi.

The distribution of Xij (resp. Zij) is denoted by Fij (resp. Gij ). The closeness of
characteristic functions will be determined by the closeness of corresponding factorial
moments. Though it is proposed in [2] to use standard factorial moments even for
rvs taking negative values, we think that right-hand side and left-hand side factorial
moments, already used in [21], are more natural characteristics. Let, for k = 1, 2, . . . ,
and any F ∈ FZ ,

ν+k (Fij) =
∞∑

m=k

m(m− 1) · · · (m− k + 1)Fij{m},

ν−k (Fij) =

∞∑

m=k

m(m− 1) · · · (m− k + 1)Fij{−m}.

For the estimation of the remainder terms we also need the following notation:
β±
k (Fij , Gij) = ν±k (Fij) + ν±k (Gij), σ2

ij = max(Var(Xij),Var(Zij)), and
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uij = min

{
1− 1

2

∥∥Fij(I1 − I)
∥∥; 1− 1

2

∥∥Gij(I1 − I)
∥∥
}

= min

{
∞∑

k=−∞

min
(
Fij{k}, Fij{k − 1}

)
;

∞∑

k=−∞

min
(
Gij{k}, Gij{k − 1}

)
}
.

For the last equality, see (1.9) and (5.15) in [5]. Next we formulate our assumptions.
For some fixed integer s > 1, i = 1, . . . , N, j = 1, . . . , ni,

uij > 0,

ni∑

j=1

uij > 1, ni > 1, wi > 0, (2)

ν+k (Fij) = ν+k (Gij), ν−k (Fij) = ν−k (Gij), k = 1, 2, . . . , s (3)

β+
s+1(Fij , Gij) + β−

s+1(Fij , Gij) < ∞. (4)

Now we are in position to formulate the main result of this section.

Theorem 2.1. Let assumptions (2)–(4) hold. Then

∣∣L(S)− L(Z)
∣∣
K

6 C(N, s)
maxj wj

minj wj

(
N∑

i=1

ni∑

l=1

uil

)−1/2 N∏

l=1

(
1 +

nl∑

k=1

σ2
lk/

nl∑

k=1

ulk

)

×
N∑

i=1

ni∑

j=1

[
β+
s+1(Fij , Gij) + β−

s+1(Fij , Gij)
]
(

ni∑

k=1

uik

)−s/2

.

(5)

If, in addition, s is even and β+
s+2(Fij , Gij) + β−

s+2(Fij , Gij) < ∞, then

∣∣L(S)− L(Z)
∣∣
K

6 C(N, s)
maxj wj

minj wj

(
N∑

i=1

ni∑

l=1

uil

)−1/2 N∏

l=1

(
1 +

nl∑

k=1

σ2
lk/

nl∑

k=1

ulk

)

×
N∑

i=1

ni∑

j=1

(
ni∑

k=1

uik

)−s/2(∣∣β+
s+1(Fij , Gij)− β−

s+1(Fij , Gij)
∣∣

+
[
β+
s+2(Fij , Gij) + β−

s+2(Fij , Gij)

+ β−
s+1(Fij , Gij)

]
(

ni∑

k=1

uik

)−1/2)
. (6)

The factor (
∑n

i=1

∑ni

j=1 uij)
−1/2 estimates the impact of S on approximation of

wiSi. The estimate (6) takes care of a possible symmetry of distributions.
If, in each sum Si and Zi, all the rvs are identically distributed, then we can get rid

of the factor containing variances. We say that condition (ID) is satisfied if, for each
i = 1, 2, . . . , N , all rvs Xij and Zij (j = 1, . . . , ni) are iid with distributions Fi and
Gi, respectively. Observe, that if condition (ID) is satisfied, then the characteristic
functions of S and Z are respectively equal to

N∏

i=1

F̂ni

i (wit),
N∏

i=1

Ĝni

i (wit).
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We also use notation ui instead of uij , since now ui1 = ui2 = · · · = uini
.

Theorem 2.2. Let the assumptions (2)–(4) and the condition (ID) hold. Then

∣∣L(S)− L(Z)
∣∣
K

6 C(N, s)
maxj wj

minj wj

(
N∑

i=1

niui

)−1/2

×
N∑

i=1

β+
s+1(Fi, Gi) + β−

s+1(Fi, Gi)

n
s/2−1
i u

s/2
i

. (7)

How does Theorem 2.1 compare to the known results? In [4], compound Poisson-
type approximations to non-negative iid rvs in each sum were considered under the
additional Franken-type condition:

ν+1 (Fj)−
(
ν+1 (Fj)

)2 − ν+2 (Fj) > 0, (8)

see [8]. Similar assumptions were used in [7, 21]. Observe that Franken’s condition
requires almost all probabilistic mass to be concentrated at 0 and 1. Indeed, then
ν+1 (Fj) < 1 and Fj{1} >

∑∞
k=3 k(k − 2)Fj{k}. Meanwhile, Theorems 2.1 and 2.2

hold under much milder assumptions and, as demonstrated in the example below, can
be useful even if (8) is not satisfied. Therefore, even for the case of one sum when
N = 1, our results are new.

Example. Let N = 2, w1 = 1, w2 =
√
2, and Fj and Gj be defined by Fj{0} =

0.375, Fj{1} = 0.5, Fj{4} = 0.125, Gj{0} = 0.45, Gj{1} = 0.25, Gj{2} = 0.25,
Gj{5} = 0.05, (j = 1, 2). We assume that n2 = n and n1 = ⌈√n ⌉ is the smallest
integer greater or equal to

√
n. Then ν+k (Fj) = ν+k (Gj), k = 1, 2, 3, β+

4 (Fj , Gj) =
9, uj = 3/8, (j = 1, 2). Therefore, by Theorem 2.2

∣∣L(S)− L(Z)
∣∣
K

6
C√

n1 + n2

(
1

n1
+

1

n2

)
= O

(
n−1

)
.

In this case, Franken’s condition (8) is not satisfied, since ν+1 (Fj) − ν+2 (Fj) −
(ν+1 (Fj))

2 < 0.
Next we apply Theorem 2.2 to the negative binomial distribution. For real r > 0

and 0 < p̃ < 1, let ξ ∼ NB(r, p̃) denote the distribution with

P(ξ = k) =

(
r + k − 1

k

)
p̃rq̃k, k = 0, 1, . . . .

Here q̃ = 1− p̃. Note that r is not necessarily an integer.
Let X1j be concentrated on non-negative integers (ν−k (Fj) = 0). We approximate

Si by Zi ∼ NB(ri, pi) with

ri =
(ESi)

2

VarSi − ESi
, p̃i =

ESi

VarSi
,

so that ESi = riq̃i/p̃i and VarSi = riq̃i/p̃
2
i . Observe that

Ĝj(t) =

(
p̃j

1− q̃jeit

)rj/nj

. (9)
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Corollary 2.1. Let assumptions of Theorem 2.2 hold with X1j concentrated on non-

negative integers and let EX3
1j < ∞, (j = 1, . . . , N). Let Gj be defined by (9).

Then

∣∣L(S)− L(Z)
∣∣
K

6 C
maxj wj

minj wj

(
N∑

i=1

niũi

)−1/2

×
N∑

k=1

[
ν+3 (Fk) + ν+1 (Fk)ν

+
2 (Fk) +

(
ν+1 (Fk)

)3

+
(ν+2 (Fk)− (ν+1 (Fk))

2)2

ν+1 (Fk)

]
ũ−1
k . (10)

Here

ũk = 1− 1

2
max

(∥∥(I1 − I)Fk

∥∥,
(
rk ln

1

p̃k

)−1/2)
.

Remark 2.1. (i) Note that

rk ln
1

p̃k
=

(ν+1 (Fk))
2

ν+2 (Fk)− (ν+1 (Fk))2
ln

ν+2 (Fk)− (ν+1 (Fk))
2 + ν+1 (Fk)

ν+1 (Fk)
.

(ii) Let ν+k (Fj) ≍ C,wj ≍ C. Then the accuracy of approximation in (10) is of

the order O((n1 + · · ·+ nN )−1/2).

3 Sums of Markov Binomial rvs

We already mentioned that it is not always natural to assume independence of rvs. In
this section, we still assume that S = w1S1 + w2S2 + · · · + wNSN with mutually
independent Si. On the other hand, we assume that each Si has a Markov Binomial
(MB) distribution, that is, Si is a sum of Markov dependent Bernoulli variables. Such
a sum S has a slightly more realistic interpretation in actuarial mathematics. Assume,
for example, that we have N insurance policy holders, i-th of whom can get ill during
an insurance period and be paid a claim wi. The health of the policy holder depends
on the state of her/his health in the previous period. Therefore, we have a natural
two state (healthy, ill) Markov chain. Then Si is an aggregate claim for ith insurance
policy holder after ni periods, meanwhileS is an aggregate claim of all holders. Limit
behavior of the MB distribution is a popular topic among mathematicians, discussed
in numerous papers, see, for example, [3, 9, 11], and references therein.

Let 0, ξi1, . . . , ξini
, . . . , (i = 1, 2, . . . , N ) be a Markov chain with the transition

probabilities

P(ξik = 1 | ξi,k−1 = 1) = pi, P(ξik = 0 | ξi,k−1 = 1) = qi,

P(ξi,k = 1 | ξi,k−1 = 0) = qi, P(ξik = 0 | ξi,k−1 = 0) = pi,

pi + qi = qi + pi = 1, pi, qi ∈ (0, 1), k ∈ N.

The distribution of Si = ξi1 + · · · + ξini
(ni ∈ N) is called the Markov binomial

distribution with parameters pi, qi, pi, qi, ni. The definition of a MB rv slightly differs
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from paper to paper. We use the one from [3]. Note that the Markov chain, considered
above, is not necessarily stationary. Furthermore, the distribution of wiSi is denoted
by Hin = L(wiSi). For approximation of Hin we use the signed compound Poisson
(CP) measure with matching mean and variance. Such signed CP approximations
usually outperform both the normal and CP approximations, see, for example, [1, 3,
20]. Let

γi =
qiqi

qi + qi
, Ŷi(t) =

qie
iwit

1− pieiwit
− 1.

Observe that Ŷi(t)+ 1 is the characteristic function of the geometric distribution. Let
Yi be a measure corresponding to Ŷi(t). For approximation of Hin we use the signed
CP measure Din

Din = exp

{(
γi(qi − pi)

qi + qi
+ niγi

)
Yi

− ni

(
qiq

2
i

(qi + qi)
2

(
pi +

qi
qi + qi

)
+

γ2
i

2

)
Y 2
i

}
. (11)

The CP limit occurs when nqi → λ̃, see, for example, [3]. Therefore, we assume qi
to be small, though not necessarily vanishing. Let, for some fixed integer k0 > 2,

qi>
1

nk0

, 0<pi6
1

2
, qi6

1

30
, wi> 0, ni > 1, i=1, . . . , N.

(12)
In principle, the first assumption in (12) can be dropped, but then exponentially van-
ishing remainder terms appear in all results, making them very complicated.

Theorem 3.1. Let Hin = L(wiSi) and let Din be defined by (11), i = 1, . . . , N . Let

the conditions stated in (12) be satisfied. Then

∣∣∣∣∣
N∏

i=1

Hin −
N∏

i=1

Din

∣∣∣∣∣
K

6 C(N, k0)
maxwi

minwi
·

∑N
i=1 qi(pi + qi)√∑N
k=1 max(nkqk, 1)

. (13)

Remark 3.1. Let all qi > C, i = 1, . . . , N . Then, obviously, the right-hand side of

(13) is majorized by

C(N, k0)
maxwi

minwi
· 1√

maxnk
.

Therefore, even in this case, the result is comparable with the Berry–Esseen theorem.

4 Auxiliary results

Lemma 4.1. Let h > 0, W ∈ M, W{R} = 0, U ∈ F and |Û(t)| 6 CV̂ (t),
for |t| 6 1/h and some symmetric distribution V having non-negative characteristic

function. Then

|WU |K 6 C

∫

|t|61/h

∣∣∣∣
Ŵ (t)Û(t)

t

∣∣∣∣ dt+ C‖W‖Q(U, h)
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6 C

(
sup

|t|61/h

|Ŵ (t)|
|t| · 1

h
+ ‖W‖

)
Q(V, h).

Lemma 4.1 is a version of Le Cam’s smoothing inequality, see Lemma 9.3 in [5]
and Lemma 3 on p. 402 in [15].

Lemma 4.2. Let F ∈ F , h > 0 and a > 0. Then

Q(F, h) 6

(
96

95

)2

h

∫

|t|61/h

∣∣F̂ (t)
∣∣ dt, (14)

Q(F, h) 6

(
1 +

(
h

a

))
Q(F, a), (15)

Q
(
exp
{
a(F − I)

}
, h
)
6

C√
aF{|x| > h}

. (16)

If, in addition, F̂ (t) > 0, then

h

∫

|t|61/h

∣∣F̂ (t)
∣∣ dt 6 CQ(F, h). (17)

Lemma 4.2 contains well-known properties of Levy’s concentration function, see,
for example, Chapter 1 in [19] or Section 1.5 in [5].

Expansion in left-hand and right-hand factorial moments for Fourier–Stieltjes
transforms is given in [21]. Here we need its analogue for distributions.

Lemma 4.3. Let F ∈ FZ and, for some s > 1, ν+s+1(F ) + ν−s+1(F ) < ∞. Then

F = I +

s∑

m=1

ν+m(F )

m!
(I1 − I)m +

s∑

m=1

ν−m(F )

m!
(I−1 − I)m

+
ν+s+1(F ) + ν−s+1(F )

(s+ 1)!
(I1 − I)s+1Θ. (18)

Proof. For measures, concentrated on non-negative integers, (18) is given in [5],
Lemma 2.1. Observe that distribution F can be expressed as a mixture F = p+F++
p−F− of distributions F+, F− concentrated on non-negative and negative integers,
respectively. Then Lemma 2.1 from [5] can be applied in turn to F+ and to F− (with
I−1). The remainder terms can be combined, since (I−1 − I) = I−1(I − I1) =
(I1 − I)Θ.

Lemma 4.4. Let F,G ∈ FZ and, for some s > 1, ν+j (F ) = ν+j (G), ν−j (F ) =

ν−j (G), (j = 1, 2, . . . , s). If β+
s+1(F,G) + βs+1(F,G) < ∞, then

F −G =
β+
s+1(F,G) + β−

s+1(F,G)

(s+ 1)!
(I1 − I)s+1Θ.

If, in addition, β+
s+2(F,G) + βs+2(F,G) < ∞ and s is even, then

F −G =
β+
s+1(F,G) − β−

s+1(F,G)

(s+ 1)!
(I1 − I)s+1

+
[
β+
s+2(F,G) + β−

s+2(F,G) + β−
s+1(F,G)

]
(I1 − I)s+2ΘC(s).
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Proof. Observe that

(I1 − I)s+1 + (I−1 − I)s+1 = (I1 − I)s+1 − (I−1)
s+1(I1 − I)s+1

= (I1 − I)s+1I−1(I1 − I)

s+1∑

j=1

(I−1)
s+1−j

= (I1 − I)s+2Θ(s+ 1).

The lemma now follows from (18).

Lemma 4.5. Let F ∈ FZ with mean µ(F ) and variance σ2(F ), both finite. Then,

for all |t| 6 π,

∣∣F̂ (t)
∣∣ 6 1− (1− ‖(I1 − I)F‖/2)t2

4π

6 exp

{
− (1− ‖(I1 − I)F‖/2)

π
sin2

t

2

}
, (19)

∣∣(F̂ (t)e−itµ(F )
)′∣∣ 6 π2σ2(F )

∣∣sin(t/2)
∣∣. (20)

The first estimate in (19) is given in [2] p. 884, the second estimate in (19) is
trivial. For the proof of (20), see p. 81 in [5].

Lemma 4.6. Let M ∈ M be concentrated on Z,
∑

k∈Z
|k||M{k}| < ∞. Then, for

any a ∈ R, b > 0 the following inequality holds

‖M‖ 6 (1 + bπ)1/2

(
1

2π

∫ π

−π

(∣∣M̂(t)
∣∣2 + 1

b2

∣∣(e−itaM̂(t)
)′∣∣2
)
dt

)1/2

.

Lemma 4.6 is a well-known inversion inequality for lattice distributions. Its proof
can be found, for example, in [5], Lemma 5.1.

Lemma 4.7. Let Hin = L(wiSi) and let Din be defined by (11), i = 1, . . . , N . Let

conditions (12) hold. Then, for i = 1, 2, . . . , N ,

Hin −Din = qi(pi + qi)Yi exp{niγiYi/60}ΘC + (pi + qi)(Iwi
− I)ΘCe−Cini ,

Hin = exp{niγiYi/30}ΘC + (pi + qi)(Iwi
− I)ΘCe−Cini ,

Din = exp{niγiYi/30}ΘC, e−Cini 6
C(k0)qi√
max(niqi, 1)

,

∣∣Ŷi(t)
∣∣ 6 4

∣∣sin(twi/2)
∣∣, ReŶi(t) > −4

3
sin2(twi/2),

qi
2

6 γi 6 qi.

Proof. The statements follow from Lemma 5.4, Lemma 5.1 and the relations given
on pp. 1131–1132 in [3]. The estimate for e−Cini follows from the first assumption
in (12) and the following simple estimate

e−Cini 6 e−Cini/2e−Ciniqi/2 6
C(k0)

nk0

i

2

1 + Ciniq1

6
C(k0)qi

min(1, Ci)(1 + niqi)
6

C(k0)qi
min(1, Ci)max(niqi, 1)

.
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5 Proofs for sums of independent rvs

Proof of Theorem 2.1. LetFij,w (resp.Gij,w) denote the distribution ofwiXij (resp.
wiZij). Note that F̂ij,w(t) = F̂ij(wit). By the triangle inequality

∣∣L(S)− L(Z)
∣∣
K

=

∣∣∣∣∣
N∏

i=1

L(wiSi)−
N∏

i=1

L(wiZi)

∣∣∣∣∣
K

6

N∑

i=1

∣∣∣∣∣
(
L(wiSi)− L(wiZi)

) i−1∏

l=1

L(wlSl)
N∏

l=i+1

L(wlZl)

∣∣∣∣∣
K

.

Similarly,

L(wiSi)− L(wiZi) =

ni∏

j=1

Fij,w −
ni∏

j=1

Gij,w

=

ni∑

j=1

(Fij,w −Gij,w)

j−1∏

k=1

Fik,w

ni∏

k=j+1

Gik,w .

For the sake of brevity, let

Eij :=

j−1∏

k=1

Fik,w

ni∏

k=j+1

Gik,w,

Ti :=
i−1∏

l=1

L(wlSl)
N∏

l=i+1

L(wlZl) =
i−1∏

l=1

nl∏

m=1

Flm,w

N∏

l=i+1

nl∏

m=1

Glm,w.

Then, combining both equations given above with Lemma 4.4 , we get

∣∣L(S)− L(Z)
∣∣
K

6 C(s)

N∑

i=1

ni∑

j=1

[
β+
s+1(Fij , Gij)

+ β−
s+1(Fij , Gij)

]∣∣(Iwi
− I)s+1EijTi

∣∣
K
. (21)

Let |t| 6 π/maxiwi. Then it follows from (19) that

∣∣Êij(t)T̂i(t)
∣∣ 6 euij sin2(twi/2)/π exp

{
− 1

π

N∑

l=1

nl∑

m=1

ulm sin2
twl

2

}
. (22)

Observe that euij sin2(twi/2)/π 6 e1/π = C. Next, let

L :=
1

8π

N∑

l=1

nl∑

m=1

ulm

[
(Iwl

− I) + (I−wl
− I)

]
. (23)

It is not difficult to check, that exp{L} is a CP distribution with non-negative char-
acteristic function. Also, by the definition of exponential measure, exp{−L}, which
can be called the inverse to exp{L}, is a signed measure with finite variation. We
have

|(Iwi
− I)s+1EijTi|K = |(Iwi

− I)s+1EijTi exp{−L} exp{L}|K. (24)



On closeness of two discrete weighted sums 217

Next step is similar to the definition of mod-Poisson convergence. We apply Lemma
4.1 with h = maxwi/π and U1 = exp{L} and W1 = (Iwi

− I)s+1EijTi exp{−L}.
By Lemma 4.2,

Q
(
exp{L}, h

)
6 C

maxwi

minwi
·Q
(
exp{L},minwi/2

)

6 C
maxwi

minwi

(
N∑

l=1

nl∑

m=1

ulm

)−1/2

. (25)

From (22) and (23), it follows that

∣∣∣∣
Ŵ1(t)

t

∣∣∣∣ ·
1

h
6 C(s)

| sin(twi/2)|s+1

h|t| exp

{
− 1

2π

N∑

l=1

nl∑

m=1

ulm sin2
twl

2

}

6 C(s)
wi

h

∣∣sin(twi/2)
∣∣s exp

{
− 1

2π

ni∑

m=1

uim sin2(twi/2)

}

6 C(s)

(
ni∑

m=1

uim

)−s/2

. (26)

It remains to estimate ‖W1‖. Let

Φlm,w := Flm,w exp

{
1

8π
ulm

[
(Iwl

− I) + (I−wl
− I)

]}
,

Ψlm,w := Glm,w exp

{
1

8π
ulm

[
(Iwl

− I) + (I−wl
− I)

]}

Then by the properties of the total variation norm,

‖W1‖ 6

∥∥∥∥exp
{
1

8
uij

[
(Iwi

− I) + (I−wi
− I)

]}∥∥∥∥

×
∥∥∥∥∥(Iwi

− I)s+1

j−1∏

k=1

Φik,w

ni∏

k=j+1

Ψik,w

∥∥∥∥∥

×
i−1∏

l=1

∥∥∥∥∥
nl∏

m=1

Φlm,w

∥∥∥∥∥
N∏

l=i+1

∥∥∥∥∥
nl∏

m=1

Ψlm,w

∥∥∥∥∥. (27)

The first norm in (27) is bounded by exp{ 1
8uij [‖Iwi

− I‖ + ‖I−wi
− I‖]} 6

exp{1/2}. The total variation norm is invariant with respect to scale. Therefore, with-
out loss of generality, we can switch to wl = 1. In this case, we use the notations
Φik, Ψik. Then, again employing the inverse CP measures, we get

∥∥∥∥∥(Iwi
− I)s+1

j−1∏

k=1

Φik,w

ni∏

k=j+1

Ψik,w

∥∥∥∥∥
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=

∥∥∥∥∥(I1 − I)s+1

j−1∏

k=1

Φik

ni∏

k=j+1

Ψik

∥∥∥∥∥

=

∥∥∥∥∥(I1 − I)s+1

j−1∏

k=1

Φik

ni∏

k=j+1

Ψik exp
{
uij(I1 − I)

}
exp
{
uij(I − I1)

}
∥∥∥∥∥

6 e2

∥∥∥∥∥(I1 − I)s+1 exp
{
uij(I1 − I)

} j−1∏

k=1

Φik

ni∏

k=j+1

Ψik

∥∥∥∥∥.

We apply Lemma 4.6 with a = uij +
∑ni

k 6=i µik, b = 1, where µik = ν+1 (Fik) +

ν−1 (Fik) is the mean of Fik and, due to assumption (3), of Gik . Let

∆̂(t) :=
(
eit − 1

)s+1
exp
{
uij

(
eit − 1− it

)} j−1∏

k=1

Φ̂ik(t)e
−itµik

ni∏

k=j+1

Ψ̂ike
−itµik .

It follows from (19) that

∣∣∆(t)
∣∣ 6 C(s)

∣∣sin(t/2)
∣∣s+1

exp

{
− 1

2π

ni∑

m=1

uim sin2(t/2)

}

6 C(s)

(
ni∑

m=1

uim

)−s/2

.

For the estimation of |∆′(t)|, observe that by (19) and (20)

∣∣(Φ̂ik(t)e
−itµik

)′∣∣ 6
∣∣∣∣F̂ik(t)e

−itµik
uik

π
sin(t/2)e(uik/2π) sin

2(t/2)

∣∣∣∣

+
∣∣(F̂ik(t)e

−itµik
)′
e(uik/2π) sin

2(t/2)
∣∣

6 C(s)
(
uik + σ2

ik

)∣∣sin(t/2)
∣∣

6 C(s)
(
uik + σ2

ik

)∣∣sin(t/2)
∣∣ exp

{
−uik

π
sin2(t/2)

}
e1/π.

The same bound holds for |(Ψ̂ik(t) exp{−itµik})′|. The direct calculation shows that

∣∣((eit−1
)s+1

exp
{
uij

(
eit−1−it

)})′∣∣ 6 C(s)
∣∣sin(t/2)

∣∣s exp
{
− 1

π
uij sin

2(t/2)

}
.

Taking into account of the previous two estimates, it is not difficult to prove that

∣∣∆′(t)
∣∣ 6 C(s)

∣∣ sin(t/2)
∣∣s exp

{
− 1

π

ni∑

k=1

uik sin
2(t/2)

}

×
(
1 + sin2(t/2)

ni∑

k=1,k 6=j

(
uik + σ2

ik

)
)
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6 C(s)

(
ni∑

k=1

uik

)−s/2(
1 +

ni∑

k=1

σ2
ik/

ni∑

k=1

uik

)
.

From Lemma 4.6, it follows that
∥∥∥∥∥(Iwi

− I)s+1

j−1∏

k=1

Φik,w

ni∏

k=j+1

Ψik,w

∥∥∥∥∥ 6 C(s)

(
ni∑

k=1

uik

)−s/2(
1 +

ni∑

k=1

σ2
ik/

ni∑

k=1

uik

)
.

(28)

The remaining two norms in (27) can be estimated similarly:
∥∥∥∥∥

nl∏

m=1

Φlm,w

∥∥∥∥∥,
∥∥∥∥∥

nl∏

m=1

Ψlm,w

∥∥∥∥∥ 6 C

(
1 +

nl∑

m=1

σ2
lm/

nl∑

m=1

ulm

)
. (29)

Substituting (28), (29) into (27), we obtain

‖W1‖ 6 C(N, s)

(
ni∑

m=1

uim

)−s/2 N∏

l=1

(
1 +

nl∑

k=1

σ2
lk/

nl∑

k=1

ulk

)
. (30)

Combining (30) with (25), (26) and (24), we get

∣∣(Iwi
− I)s+1EijTi

∣∣
K

6 C(N, s)
maxj wj

minj wj

(
N∑

i=1

ni∑

k=1

uik

)−1/2

×
(

ni∑

m=1

uim

)−s/2 N∏

l=1

(
1 +

nl∑

k=1

σ2
lk/

nl∑

k=1

ulk

)
.

Substituting the last estimate into (21) we complete the proof of (5). The proof of (6)
is very similar and, therefore, omitted.

Proof of Theorem 2.2. We outline only the differences from the proof of Theorem
2.1. No use of convolution with the inverse Poisson measure is required, since we
have powers of Fni

i , which can be used for Levy’s concentration function. Let ⌊a⌋
denote an integer part of a and let a(k) := ⌊(k− 1)/2⌋, b(k) := ⌊(ni − k)/2⌋. Then,
as in the proof of Theorem 2.1, we obtain

∣∣L(S)− L(Z)
∣∣
K

6 C(s)
N∑

i=1

ni∑

k=1

(
β+
s+1(Fi, Gi) + β−

s+1(Fi, Gi)
)

×
∣∣∣∣∣(Iwi

− I)s+1F
a(k)
iw G

b(k)
iw F

a(k)
iw G

b(k)
iw

i−1∏

j=1

F
nj

jw

N∏

j=i+1

G
nj

jw

∣∣∣∣∣
K

.

Here Fiw and Giw denote the distributions of wiXij and wiZij , respectively. We
can apply Lemma 4.1 to the Kolmogorov norm given above, taking W = (Iwi

−
I)s+1F

a(k)
iw G

b(k)
iw . The remaining distribution is used in Levy’s concentration func-

tion. The Fourier–Stieltjes transform Ŵ (t)/t is estimated exactly as in the proof of
Theorem 2.1. The total variation of any distribution is equal to 1, therefore ‖W‖ 6

‖Iwi
− I‖ 6 2 and we can avoid application of Lemma 4.6.
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Proof of Corollary 2.1. As proved in [1], p. 144,

1

2

∥∥Gk(I1 − I)
∥∥ 6

(
pkν

+
1 (Fk)

qk
ln

1

pk

)−1/2

.

Observe that ν+1 (Fj) = ν+1 (Gj) and ν+2 (Fj) = ν+2 (Gj). It remains to find ν+3 (Gj)
and apply Theorem 2.2.

6 Proof of Theorem 3.1

The proof is similar to the one given in [22]. Let Ai = exp{niγiYi/30}. From
Lemma 4.7, it follows that

Hin = AiΘiC + e−CiniΘiC, Din = AiΘiC, i = 1, 2, . . . , N.

Here we have added index to Θi emphasizing that they might be different for different
i. As usual, we assume that the convolution

∏N
k=N+1 =

∏0
k=1 = I . Let also denote

by
∑∗

i summation over all indices {j1, j2, . . . , ji−1 ∈ {0, 1}}. Taking into account
Lemma 4.7 and the properties of the Kolmogorov and total variation norms given in
the Introduction, we get

∣∣∣∣∣
N∏

i=1

Hin −
N∏

i=1

Din

∣∣∣∣∣
K

6

N∑

i=1

∣∣∣∣∣(Hin −Din)

i−1∏

k=1

Hkn

N∏

k=i+1

Dkn

∣∣∣∣∣
K

6

N∑

i=1

∣∣∣∣∣(Hin −Din)
∑∗

i

i−1∏

k=1

Ajk
k ΘkC

×
N∏

k=i+1

AkΘkC

i−1∏

k=1

e−(1−jk)nkCkΘkC

∣∣∣∣∣
K

6 C(N)

N∑

i=1

qi(pi + qi)
∑∗

i

∣∣∣∣∣Yi exp{niγiYi/60}
i−1∏

k=1

Ajk
k

N∏

k=i+1

Ak

∣∣∣∣∣
K

×
i−1∏

k=1

e−(1−jk)nkCk + C
N∑

i=1

(pi + qi)e
−Cini

×
∑∗

i

∣∣∣∣∣(Iwi
− I)

i−1∏

k=1

Ajk
k

N∏

k=i+1

Ak

∣∣∣∣∣
K

i−1∏

k=1

e−(1−jk)nkCk . (31)

Both summands on the right-hand side of (31) are estimated similarly. Observe
that

∣∣∣∣∣Yi exp{niγiYi/60}
i−1∏

k=1

Ajk
k

N∏

k=i+1

Ak

K

∣∣∣∣∣
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=

∣∣∣∣∣Yi exp

{
niγiYi

60
+

1

30

i−1∑

k=1

jknkγkYk +
1

30

N∑

k=i+1

nkγkYk

}∣∣∣∣∣
K

.

Next we apply Lemma 4.1 with W = Yi and h = maxwi/π and V with

V̂ (t) = exp

{
− 1

90

[
i−1∑

k=1

jk max(nkqk, 1) sin
2(twk/2)

+

N∑

k=i

max(nkqk, 1) sin
2(twk/2)

]}
.

By Lemma 4.7
|Ŷi(t)|

t

1

h
+ ‖Yi‖ 6 C.

Observe that
∣∣∣∣∣exp

{
niγi
60

Ŷi(t) +
1

30

i−1∑

k=1

jknkγkŶk(t) +
1

30

N∑

k=i+1

γkŶk(t)

}∣∣∣∣∣

6 exp

{
−niγi sin

2(twi/2)

45
− 2

45

i−1∑

k=1

jknkγk sin
2(twk/2)

− 2

45

N∑

k=i+1

nkγk sin
2(twk/2)

}

6 exp

{
− 1

90

[
i−1∑

k=1

jknkqk sin
2(twk/2) +

N∑

k=i

nkqk sin
2(twk/2)

]}

6 eN/90 exp

{
− 1

90

[
i−1∑

k=1

jk(nkqk + 1) sin2(twk/2)

+
N∑

k=i

(nkqk + 1) sin2(twk/2)

]}

6 eN/90 exp

{
− 1

90

[
i−1∑

k=1

jk max(nkqk, 1) sin
2(twk/2)

+
N∑

k=i

max(nkqk, 1) sin
2(twk/2)

]}

= eN/90V̂ (t).

Therefore, using Lemma 4.2, we prove

∣∣∣∣∣Yi exp{niγiYi/60}
i−1∏

k=1

Ajk
k

N∏

k=i+1

Ak

∣∣∣∣∣
K



222 V. Čekanavičius and P. Vellaisamy

6 C(N)Q
(
V,max

i
wi/h

)

6 C(N)

(
maxwi

minwi

)
Q(V,minwi/2)

6 C(N)

(
maxwi

minwi

)(i−1∑

k=1

jk max(nkqk, 1) +

N∑

k=i+1

max(nkqk, 1)

)−1/2

. (32)

Next observe that by Lemma 4.7,

∣∣∣∣∣
i−1∏

k=1

e−(1−jk)nkCk

∣∣∣∣∣ = C exp

{
−

i−1∑

k=1

(1 − jk)Cknk

}

6
C(k0, N)

max(1,
√∑i−1

k=1(1− jk)max(nkqk, 1))
.

The last estimate, (32) and the trivial inequality 1/(ab) < 2/(a + b), valid for any
a, b > 1, allow us to obtain

N∑

i=1

qi(pi + qi)
∑∗

i

∣∣∣∣∣Yi exp{niγiYi/60}
i−1∏

k=1

Ajk
k

N∏

k=i+1

Ak

∣∣∣∣∣
K

i−1∏

k=1

e−(1−jk)nkCk

6 C(k0, N)
maxwj

minwj
·

∑N
i=1 qi(pi + qi)√∑N
k=1 max(nkqk, 1)

.

The estimation of the second sum in (31) is almost identical and, therefore, omitted.

Acknowledgement

The main part of the work was accomplished during the first author’s stay at the De-
partment of Mathematics, IIT Bombay, during January, 2018. The first author would
like to thank the members of the Department for their hospitality. We are grateful to
the referees for useful remarks.

References

[1] Barbour, A.D., Xia, A.: Poisson perturbations. ESAIM: Probab. Statist. 3, 131–150,
(1999). MR1716120. 10.1051/ps:1999106

[2] Barbour, A., Kowalski, E., Nikeghbali, A.: Mod-discrete expansions. Probab.
Theory Related Fields 158, 859–893 (2014). MR3176367. 10.1007/s00440-
013-0498-8
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[5] Čekanavičius, V.: Approximation Methods in Probability Theory. Universitext, Springer
Verlag, (2016). MR3467748. 10.1007/978-3-319-34072-2
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