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Solutions of Cauchy problem for multiple
inhomogeneous wave equation

Guang-Qing Bi

Abstract

We define a class of pseudo-differential operators in a completely new way, which is called

the abstract operators and expounded systematically the theory of abstract operators. By

combining abstract operators with the Laplace transform, we can apply the Laplace transform

to any n+1 dimensional linear higher-order partial differential equations P (∂x, ∂t)u = f(x, t)

directly, without using the Fourier transform. By making introduction of abstract operators

G(∂x, t) := L
−1[1/P (∂x, s)], the analytic solutions of initial value problems are expressed

in these abstract operators, including the multiple inhomogeneous wave equation associated

with the shifted Laplace-Beltrami operator on real hyperbolic spaces. By writing abstract

operators in this class into integral forms, the solutions in operator form are represented

into integral forms. Thus the analytic solutions of Cauchy problem for the multiple wave

equation on R
n can be represented in the integrations of some given functions, without using

the traditional Fourier transform technique. As a further application, we study the solvability

of initial-boundary value problem for the linear higher-order partial differential equations and

deduce new distinguishable method associated with the second-order linear self-adjoint elliptic

operators.

1 Introduction

In 1960s, the general theory of linear partial differential equations made important progress by

using the generalized function and its Fourier transform, further, the theory of pseudo-differential

operators. Building on the theory of Fourier transform, the concept of pseudo-differential operators

is defined as follows (See, e.g., Chen [1, pp. 36-38]):

Let a(x, ξ) ∈ C∞(Rn
x × Rn

ξ ). If for any α, β ∈ Nn and an real number m,

|∂α
ξ ∂

β
xa(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α|

is tenable (denoted by a ∈ Sm), where Cα,β is a constant, then the linear continuous mapping A :

S (Rn) → S (Rn) can be defined as

Au(x) := (2π)−n

∫

Rn

eiξxa(x, ξ)û(ξ)dξ, (1.1)

which is called the pseudo-differential operators, denoted by a(x,D), where a(x, ξ) is the symbols

of pseudo-differential operators a(x,D).
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Gala consider the regularity of the following type (See [2, p. 1262]):

|∂α
ξ a(x, ξ)| ≤ Aα(1 + |ξ|)−|α| (α ∈ N

n),

where the variable x is related to a suitable positive function ω such that

|∂α
ξ a(x+ y, ξ)− ∂α

ξ a(x, ξ)| ≤ Aαω(|y|)(1 + |ξ|)−|α|.

Lannes [3, p. 495] consider pseudo-differential operators whose symbol a(x, ξ) is not even infinitely

smooth with respect to x. Therefore, we can introduce more general classes of pseudo-differential

operators by relaxing the restrictions on symbols according to the problem being discussed.

In fact, the biggest constraint on the symbols should be derived from the application of Fourier

transform in the definition of pseudo-differential operators. However, the definition of pseudo-

differential operators means that the following relationship is tenable:

a(x, ξ) := e−iξxa(x,D)eiξx or a(x,D)eiξx = a(x, ξ)eiξx, (1.2)

where ξx := 〈ξ, x〉 = ξ1x1 + ξ2x2 + · · · + ξnxn. Obviously, the properties of a(x,D) depend

on a(x, ξ). equality (1.2) indicates the mapping relation between a(x,D) and a(x, ξ). For a

given function a(x, ξ), if the corresponding algorithms of a(x,D) can be derived from this type

of mapping relations, to determine the domain and range of a(x,D), then this type of mapping

relations can be the best definition of pseudo-differential operators. Luckily, this idea totally works

by making use of the Taylor theorem of analytic function and analytic continuation technique.

Based on this idea, the author introduce the mathematical concept of abstract operators, including

exp(h∂x), sin(h∂x), cos(h∂x), sinh(h∂x) and cosh(h∂x), where h∂x := 〈h, ∂x〉 = h1∂x1
+ h2∂x2

+

· · ·+ hn∂xn , as well as

exp(tP (∂x)), cos(tP (∂x)
1/2),

sin(tP (∂x)
1/2)

P (∂x)1/2
, cosh(tP (∂x)

1/2) and
sinh(tP (∂x)

1/2)

P (∂x)1/2

derived by the abstract operators G(P (∂x), t) := L−1[1/P (∂x, s)] for any n+ 1 dimensional linear

partial differential equations P (∂x, ∂t)u = f(x, t). This means that one can solve linear partial

differential equations explicitly by using the theory of abstract operators. Thus the general solving

procedure of initial value problem for any linear higher-order partial differential equations is derived

clearly in a different way than the Fourier transform by Guang-Qing Bi [4] to [7]. In this paper,

we will obtain some new important solving formulas, and further discuss the solvability of initial-

boundary value problem for linear higher-order partial differential equations. However, the concept

of abstract operators is not fully expressed since it in a minimalist form first introduced in 1997.

Therefore, our primary task in this paper is to expound systematically the fundamental theory of

abstract operators as well as their applications in linear higher-order partial differential equations

including the multiple inhomogeneous wave equation on R
n or Hn. The theory and methodology of

abstract operators are not only used to establish the theory of linear partial differential equations,

but also are gradually integrating with other mathematical branches to obtain more extensive

applications of pseudo-differential operators.
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2 Preliminaries (Theory of abstract operators)

In this section we will see how the Analytic Continuity Fundamental Theorem can be applied

in defining pseudo-differential operators without using Fourier transform.

2.1 Basic notions

For α := (α1, · · · , αn) ∈ Rn, if αi ≥ 0, then α is called a multiple indicator, denoted by α ∈ Nn.

For α := (α1, · · · , αn) ∈ Nn, we have universal mark as follows

∂α
x u(x) :=

∂|α|u(x)

∂xα1

1 ∂xα2

2 · · · ∂xαn
n

:= ∂α1

x1
∂α2

x2
· · · ∂αn

xn
u, |α| :=

n∑

i=1

αi, ∂xi := ∂i.

Definition 2.1. Within each convergence circle of analytic functions, if the effects on the series

term by term from the linear operator converge uniformly to the effects on the sum function, then

the operator is called having the analytic continuity.

Definition 2.2. Let α ∈ Nn, x ∈ Rn. xα can be called the base functions of analytic function,

which with exponential form eξx can be defined by the following eigenfunctions of ∂x:

{

∂xu(x) = ξu(x) ξ ∈ Rn,

u(0) = 1.

Here α and ξ are called the characters of xα and eξx respectively.

In view of the Taylor theorem of analytic function (include binomial formula of integer power)

f(z) =

∞∑

|α|=0

∂α
z f(z)|z=s

(z − s)α

α!
, α ∈ N

n, z ∈ C
n

and using analytic continuation technique, we can use the Definition 2.1 and Definition 2.2 to

deduce the following fundamental principle:

Analytic Continuity Fundamental Theorem. Let A and B be the linear operators with

the analytic continuity, their domains be denoted by D(A) and D(B) respectively. If the variable

x ∈ Rn is related to y ∈ Rn such that one of the following two operator identities

Axα = Byα or Aeξx = Beξy

tenable, where the expressions of A and B do not explicitly contain the characters α ∈ Nn or

ξ ∈ Rn, then

Af(x) = Bf(y), ∀f(x), f(y) ∈ D(A) ∩ D(B),

which is a slightly modified version of the result given by Guang-Qing Bi [4, pp. 7-8].

Building on the Analytic Continuity Fundamental Theorem, we now develop the following

mathematical concept of abstract operators to define a class of pseudo-differential operators in a

new way:
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Definition 2.3. Let T > 0, Ω ⊆ Rn be an open set, a class of linear operators with the analytic

continuity is called the abstract operators taking x∂x := (x1∂x1
, · · · , xn∂xn) = (x1∂1, · · · , xn∂n) as

the operator element, denoted by f(t, x∂x), x ∈ Ω, t ∈ (0, T ], which is also the linear continuous

mapping f(t, x∂x): C
∞(Ω) → C∞(Ω), and if it acts on the base functions xα, we have

f(t, x∂x)x
α := f(t, α)xα, ∀f(t, α) ∈ C∞((0, T ]× R

n), (2.1)

where f(t, α), α ∈ Nn is called the symbols of abstract operators f(t, x∂x).

Definition 2.4. A class of linear operators with the analytic continuity is called the abstract

operators taking ∂x := (∂x1
, · · · , ∂xn) as the operator element, denoted by f(t, ∂x), x ∈ Ω, t ∈

(0, T ], which is also the linear continuous mapping f(t, ∂x): C∞(Ω) → C∞(Ω), and if it acts on

the exponential base functions eξx, we have

f(t, ∂x)e
ξx := f(t, ξ)eξx, ∀f(t, ξ) ∈ C∞((0, T ]× R

n), (2.2)

where f(t, ξ), ξ ∈ Rn is called the symbols of abstract operators f(t, ∂x).

Remark 2.1. By making use of (1.1) and (2.2), we have

f(t, ∂x)u(x) = (2π)−n

∫

Rn

eiξxf(t, iξ)û(ξ)dξ, ∀u(x) ∈ S (Rn), (2.3)

when f(t, iξ) ∈ Sm. Therefore, the pseudo-differential operators in view of the Fourier transform

can also be called the abstract operators defined on S (Rn). Conversely, the abstract operators in

view of the Analytic Continuity Fundamental Theorem can also be called the pseudo-differential

operators defined on C∞(Ω).

Definition 2.5. The operator identities that determine the domain and range of abstract

operators are called the algorithms of the abstract operators.

Definition 2.6. The relational expression between each component of the characters α =

(α1, α2, . . . , αn) or ξ = (ξ1, ξ2, . . . , ξn) is called the characteristic equation.

Definition 2.7. Let A be a linear operator having the analytic continuity, if there exists

another linear operator, denoted by A−1 such that AA−1 = A−1A = I, then A−1 is called the

inverse operator of A.

By Definition 2.4 and the Analytic Continuity Fundamental Theorem we obtain:

Corollary 2.1. The operator algebras formed by all abstract operators f(t, ∂x), are isomorphic

to the algebras formed by their symbols f(t, ξ). This isomorphism is determined by f(t, ∂x) ↔
f(t, ξ), and

f(t, ∂x)± g(t, ∂x) ↔ f(t, ξ)± g(t, ξ),

f(t, ∂x) ◦ g(t, ∂x) ↔ f(t, ξ)g(t, ξ).
(2.4)

Remark 2.2. It is easily seen from the Corollary 2.1 that

cos(ix∂y) = cosh(x∂y) and sin(ix∂y) = i sinh(x∂y),

where x∂y := 〈x, ∂y〉 = x1∂y1
+· · ·+xn∂yn . Especially, the abstract operators f(∂x) and g(∂x), x ∈

Rn are each other’s inverse operators, if and only if their symbols f(ξ) and g(ξ) satisfy the algebraic

relationship f(ξ)g(ξ) = 1, ξ ∈ Rn.
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By Definition 2.4 we have

Corollary 2.2. Let g(x) ∈ C∞(Rn). If g(∂ξ)(e
ξxf(ξ)), ξ ∈ Rn is continuous at ξ = ξ0, then

f(∂x)(e
ξ0xg(x)) = g(∂ξ)(e

ξxf(ξ))|ξ=ξ0 . (2.5)

By the Analytic Continuity Fundamental Theorem we obtain easily the following results:

Example 2.1. Let ξ + ∂x := (ξ1 + ∂x1
, · · · , ξn + ∂xn), ∂x + ∂y := (∂x1

+ ∂y1
, · · · , ∂xn + ∂yn),

y + x := (y1 + x1, · · · , yn + xn). Then we have

f(∂x)(e
ξxg(x)) = eξxf(ξ + ∂x)g(x), ∀g(x) ∈ C∞(Ω), Ω ∈ R

n (2.6)

and

f(∂x + ∂y)g(x, y) = e−x∂y (f(∂x)e
x∂yg(x, y)), ∀g(x, y) ∈ C∞(Ω), Ω ∈ R

n × R
n, (2.7)

respectively, where ex∂yg(x, y) = g(x, y + x).

Taking (2.6) as the characteristic equation, we can use it and the base functions eξy to make

the following operator equality:

f(∂x)((e
ξyg(x))|y=x) = f(∂y + ∂x)(e

ξyg(x))|y=x (y ∈ R
n, ξ ∈ R

n).

According to the Analytic Continuity Fundamental Theorem, we can obtain that

Example 2.2. Let g(x, y) ∈ C∞(Ω), Ω ∈ Rn × Rn. If g(x, y) is continuous at y = x, then

f(∂x + ∂y)g(x, y) is continuous at y = x such that

f(∂x + ∂y)g(x, y)|y=x = f(∂x)(g(x, y)|y=x). (2.8)

Similarly,

f(∂x + ∂y + ∂z)g(x, y, z)|z=y=x = f(∂x)(g(x, y, z)|z=y=x), (2.9)

where ∂x + ∂y + ∂z := (∂x1
+ ∂y1

+ ∂z1 , · · · , ∂xn + ∂yn + ∂zn).

Example 2.3. Let f(x) ∈ L1(Rn), λ > 0. Then we have

eλ|∂x|2f(x) =
1

2n(λπ)n/2

∫

Rn

f(η) exp

(

−|η − x|2
4λ

)

dη. (2.10)

Proof. If taking the following integral formula

eλξ
2
i =

1

2
√
π

∫ ∞

−∞
e−ζ2/4+

√
λ ξiζdζ, ∀λ > 0

as its characteristic equation, according to the Analytic Continuity Fundamental Theorem we have

exp

(

λ
∂2

∂x2
i

)

f(x) =
1

2
√
π

∫ ∞

−∞
e−ζ2/4f(x1, · · · , xi +

√
λζ, · · · , xn)dζ

=
1

2
√
πλ

∫ ∞

−∞
f(x1, · · · , ηi, · · · , xn) exp

(

− (ηi − xi)
2

4λ

)

dηi.

Similarly, we have (2.10). Example 2.3 is proved.
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2.2 Algorithms of partial differential operators

In this section we will prove that the concept of abstract operators is the generalization of

partial differential operators. In other words, by applying Definition 2.3 in the case f(t, α) = α

and Definition 2.4 in the case f(t, ξ) = ξ, we can define the partial differential operators x∂x and

∂x respectively.

Corollary 2.3. Let α ∈ Nn, x ∈ Rn, ξ ∈ Rn. The partial differential operators x∂x and ∂x

are the abstract operators defined by

x∂xx
α := αxα and ∂xe

ξx := ξeξx,

respectively. Therefore, all rules of differentiation can be determined by the Analytic Continuity

Fundamental Theorem.

Proof. The major parts of rules of differentiation are the derivative principle of function

product, the derivative principle of compound function and the chain rule of multivariate function.

Let x ∈ Ω ⊆ R1. If taking a, b ∈ R as the characters of the base functions eax and ebx

respectively, then we can combine eax and ebx with the following characteristic equation

bn =

n∑

j=0

(−1)j
(
n

j

)

aj(a+ b)n−j (n ∈ N)

to make the following operator equality for the base functions eax and ebx:

eax
dn

dxn
ebx =

n∑

j=0

(−1)j
(
n

j

)
dn−j

dxn−j

(

ebx
dj

dxj
eax
)

.

According to the Analytic Continuity Fundamental Theorem, we have

v
dnu

dxn
=

n∑

j=0

(−1)j
(
n

j

)
dn−j

dxn−j

(

u
djv

dxj

)

, ∀v, u ∈ Cn(Ω). (2.11)

Similarly, we can easily derive the following Leibniz rule:

dn

dxn
(vu) =

n∑

j=0

(
n

j

)
djv

dxj

dn−ju

dxn−j
, ∀v, u ∈ Cn(Ω). (2.12)

Letting n = 1 in (2.12), then for v = f(x) and u = g(x), we have

d

dx
(f(x)g(x)) = f(x)

d

dx
g(x) + g(x)

d

dx
f(x), ∀f, g ∈ C1(Ω). (2.13)

Let ϕ(x) := f1(x)f2(x) · · · fn(x). Generally, we have

d

dx
ϕ(x) =

n∑

j=1

n∏

i=1

i6=j

fi(x)
d

dx
fj(x), ∀fj(x) ∈ C1(Ω), j = 1, 2, · · · , n.

If f1(x) = f2(x) = · · · = fn(x) = y = g(x) ∈ C1(Ω), then for differentiable function y = g(x),

we have
d

dx
yn = nyn−1 dy

dx
or

d

dx
yn =

dy

dx

d

dy
yn (n ∈ N

1).
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According to the Analytic Continuity Fundamental Theorem, we have the derivative principle of

compound function f(y) ∈ C1(V ), y ∈ V ⊆ R1:

d

dx
f(g(x)) =

dy

dx

d

dy
f(y), y = g(x) ∈ C1(Ω), x ∈ Ω ⊆ R

1. (2.14)

By using (2.13) and (2.14), for differentiable functions x1(t) and x2(t), t ∈ I ⊆ R
1, we have

d

dt
(xα1

1 xα2

2 ) =
dxα1

1

dx1

dx1

dt
xα2

2 + xα1

1

dxα2

2

dx2

dx2

dt
, (α1, α2) ∈ N

2.

Taking this one as the characteristic equation, we can use it and the base functions xα to make

the following operator equality:

d

dt
xα =

dx1

dt

∂

∂x1
xα +

dx2

dt

∂

∂x2
xα (x(t) ∈ R

2, t ∈ I ⊆ R
1, α ∈ N

2).

According to the Analytic Continuity Fundamental Theorem, we have ∀f(x) ∈ C1(Ω), Ω ∈ R2,

d

dt
f(x) =

dx1

dt

∂

∂x1
f(x) +

dx2

dt

∂

∂x2
f(x), xi(t) ∈ C1(I), i = 1, 2.

Similarly, ∀f(x) ∈ C1(Ω), Ω ∈ R
n, t ∈ I ⊆ R

1, we can generally derive

d

dt
f(x) =

dx1

dt

∂

∂x1
f(x) +

dx2

dt

∂

∂x2
f(x) + · · ·+ dxn

dt

∂

∂xn
f(x), xi(t) ∈ C1(I), i = 1, · · · , n. (2.15)

If taking n ∈ N
1 as the characters of base functions zn, then the binomial formula can be

expressed as the following characteristic equation:

(z + h)n =
∞∑

j=0

hj

j!

dj

dzj
zn (z ∈ C

1).

According to the Analytic Continuity Fundamental Theorem, the Taylor formula is tenable for any

analytic function, namely

f(z + h) =

∞∑

j=0

hj

j!

dj

dzj
f(z), ∀f(z) ∈ C∞(Ω), Ω ⊆ C

1, |h| < R. (2.16)

Let a and b be real numbers such that a ≤ b. Without losing the universality, assuming

a ≥ 0, b ≥ 0 we have

nan−1 ≤ (an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1) ≤ nbn−1, n = 1, 2, · · · .

namely

nan−1 ≤ bn − an

b− a
≤ nbn−1 or a ≤ n−1

√

1

n

bn − an

b− a
≤ b.

Therefore, if a ≤ b, then we have a ≤ c ≤ b, making

ncn−1 =
bn − an

b− a
or

d

dx
xn

∣
∣
∣
∣
x=c

=
bn − an

b− a
(n ∈ N

1).
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Taking this one as the characteristic equation, according to the Analytic Continuity Fundamental

Theorem, we obtain the following Lagrange mean value theorem:

If a ≤ b, then there exists c ∈ [a, b] such that

d

dx
f(x)

∣
∣
∣
∣
x=c

=
f(b)− f(a)

b− a
, ∀f(x) ∈ C1[a, b]. (2.17)

Thus Corollary 2.3 is proved.

Remark 2.3. Constructing the operator equality tenable for the base functions by the char-

acteristic equation through the definition of abstract operators, and then deducing that it is also

tenable for any analytic functions according to the Analytic Continuity Fundamental Theorem,

thus we derive new operator identities. Finding or establishing a new operator identities requires

the knowledge of the corresponding characteristic equation in advance, without knowing the specific

form of the new operator identities. Therefore, it all boils down to seek or construct appropriate

characteristic equations. The key to transform the characteristic equation to the corresponding

operator identities, is constructing the operator equality true for the base functions by using the

specific form of the characteristic equation and the definition of abstract operators, and also, only

when the operators constructed are all linear and the expressions of the linear operators do not

explicitly contain the characters of the base functions can we derive that the operator equality is

not only true for the base functions, but also for any analytic functions, according to the Analytic

Continuity Fundamental Theorem.

Example 2.4. Let y = x2, x ∈ R1. ∀f(y) ∈ Ck(Ω), y ∈ Ω ⊆ R1, we have

dk

dxk
f(x2) =

[k/2]
∑

j=0

k!

j! (k − 2j)!
(2x)k−2j dk−j

dyk−j
f(y). (2.18)

If y = x3, x ∈ R1, then ∀f(y) ∈ Cn(Ω),

dn

dxn
f(x3) =

[n/2]
∑

k=0

k∑

j=0

3n−k−2jn!

j! (k − j)! (n− 2k − j)!
x2n−3k−3j dn−k−j

dyn−k−j
f(y). (2.19)

Proof. Let x ∈ R1, ξ ∈ R1, ζ = 3x2λ, λ be a real parameter. By applying Corollary 2.2 and

(2.6) of Example 2.1, we have

f(∂x)e
λx3

= exp

(

λ
∂3

∂ξ3

)

(eξxf(ξ))

∣
∣
∣
∣
ξ=0

= exp

(

λ

(

x+
∂

∂ξ

)3
)

f(ξ)

∣
∣
∣
∣
∣
ξ=0

= exp

(

λx3 + 3x2λ
∂

∂ξ
+ 3xλ

∂2

∂ξ2
+ λ

∂3

∂ξ3

)

f(ξ)

∣
∣
∣
∣
ξ=0

= eλx
3

exp

(

3xλ
∂2

∂ξ2
+ λ

∂3

∂ξ3

)

f(ξ + 3x2λ)

∣
∣
∣
∣
ξ=0

= eλx
3

exp

(

3xλ
∂2

∂ζ2
+ λ

∂3

∂ζ3

)

f(ζ).

Thus we obtain ∀f(ζ) ∈ C∞(R1),

e−λx3

f(∂x)e
λx3

= exp

(

3xλ
∂2

∂ζ2
+ λ

∂3

∂ζ3

)

f(ζ) (ζ = 3x2λ). (2.20)
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Similarly,

e−λx2

f(∂x)e
λx2

= exp

(

λ
∂2

∂ζ2

)

f(ζ) (ζ = 2xλ). (2.21)

In the special case when f(ζ) = ζn for n ∈ N, (2.20) can be written in the form:

e−λx3 dn

dxn
eλx

3

=

[n/2]
∑

k=0

λk

k!

(

3x+
∂

∂ζ

)k
d2k

dζ2k
ζn (ζ = 3x2λ). (2.22)

Letting y = x3, then (2.22) gives the following operator equality:

dn

dxn
eλx

3

=

[n/2]
∑

k=0

k∑

j=0

3n−k−2jn!

j! (k − j)! (n− 2k − j)!
x2n−3k−3j dn−k−j

dyn−k−j
eλy.

Thus we obtain (2.19) according to the Analytic Continuity Fundamental Theorem. Similarly, we

can obtain (2.18) from (2.21).

2.3 Algorithms of abstract operators

According to the Analytic Continuity Fundamental Theorem and Definition 2.4, by using the

algebraic properties of two symbols cos(hξ) and sin(hξ), Guang-Qing Bi has obtained the following

three groups of algorithms of abstract operators just as the differential rules (2.13) to (2.15):

Theorem BI1. (See [4, p. 9, Theorem 3, 4, and 6]) Let x ∈ Rn, h ∈ Rn, h∂x = 〈h, ∂x〉. Then
for the abstract operators cos(h∂x) and sin(h∂x) we have

cos(h∂x)f(x) = ℜ[f(x+ ih)], sin(h∂x)f(x) = ℑ[f(x+ ih)], (2.23)

∀f(z) ∈ C∞(Ω), z = x+ iy ∈ Ω ⊆ C
n;

sin(h∂x)(uv) = cos(h∂x)v · sin(h∂x)u + sin(h∂x)v · cos(h∂x)u,
cos(h∂x)(uv) = cos(h∂x)v · cos(h∂x)u− sin(h∂x)v · sin(h∂x)u;

(2.24)

sin(h∂x)
u

v
=

cos(h∂x)v · sin(h∂x)u− sin(h∂x)v · cos(h∂x)u
(cos(h∂x)v)2 + (sin(h∂x)v)2

,

cos(h∂x)
u

v
=

cos(h∂x)v · cos(h∂x)u+ sin(h∂x)v · sin(h∂x)u
(cos(h∂x)v)2 + (sin(h∂x)v)2

.
(2.25)

Theorem BI2. (See [4, p. 9, Theorem 5]) Let h0 ∈ R, x(t) ∈ Rn, t ∈ R1, X ∈ Rn, Y ∈ Rn,

Y ∂X = 〈Y, ∂X〉 = Y1∂X1
+ · · ·+ Yn∂Xn . Then we have

sin(h0∂t)f(x(t)) = sin(Y ∂X)f(X),

cos(h0∂t)f(x(t)) = cos(Y ∂X)f(X),
(2.26)

where Xj := cos(h0∂t)xj(t), Yj := sin(h0∂t)xj(t), j = 1, · · · , n.
In the special cases when n = 1 and n = 2, we have
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sin

(

h0
d

dt

)

f(x(t)) = sin

(

Y
∂

∂X

)

f(X),

cos

(

h0
d

dt

)

f(x(t)) = cos

(

Y
∂

∂X

)

f(X),
(2.27)

where Y := sin(h0∂t)x(t), X := cos(h0∂t)x(t), t ∈ R1, h0 ∈ R;

sin

(

h0
d

dt

)

f(x(t), y(t)) = sin

(

Yx
∂

∂Xx
+ Yy

∂

∂Xy

)

f(Xx, Xy),

cos

(

h0
d

dt

)

f(x(t), y(t)) = cos

(

Yx
∂

∂Xx
+ Yy

∂

∂Xy

)

f(Xx, Xy),
(2.28)

where Yx := sin(h0∂t)x(t), Xx := cos(h0∂t)x(t), Yy := sin(h0∂t)y(t), Xy := cos(h0∂t)y(t).

Theorem BI3. (See [4, p. 9, Theorem 7]) Let u = g(y) be a monotonic function on its

domain. If y = f(bx) is the inverse function of bx = g(y) such that g(f(bx)) = bx, where

bx = b1x1 + b2x2 + · · ·+ bnxn and bh = b1h1 + b2h2 + · · ·+ bnhn, then sin(h∂x)f(bx) (denoted by

Y ) and cos(h∂x)f(bx) (denoted by X) can be determined by the following set of equations:






cos

(

Y
∂

∂X

)

g(X) = bx, x ∈ Rn, b ∈ Rn,

sin

(

Y
∂

∂X

)

g(X) = bh, h ∈ Rn.
(2.29)

Proof. According to the Analytic Continuity Fundamental Theorem and Definition 2.4, we

have

eih∂xg(y) = g(f(bx+ ibh)) = g(eih∂xf(bx)) = g(X + iY ) = exp

(

iY
∂

∂X

)

g(X),

where y = f(bx), x ∈ Rn, b ∈ Rn; X := cos(h∂x)f(bx), Y := sin(h∂x)f(bx), h ∈ Rn.

According to Corollary 2.1, we have

eih∂xg(y) = cos(h∂x)g(y) + i sin(h∂x)g(y),

exp

(

iY
∂

∂X

)

g(X) = cos

(

Y
∂

∂X

)

g(X) + i sin

(

Y
∂

∂X

)

g(X).

Thus we obtain

sin(h∂x)g(y) = sin

(

Y
∂

∂X

)

g(X),

cos(h∂x)g(y) = cos

(

Y
∂

∂X

)

g(X).
(2.30)

In the left side of (2.30), if u = g(y) is a monotonic function on its domain, then there exists

function y = f(bx) such that g(f(bx)) = bx. Thus we have sin(h∂x)g(y) = sin(h∂x)bx = bh and

cos(h∂x)g(y) = cos(h∂x)bx = bx respectively. Theorem BI3 is proved.

Similarly, we can prove Theorem BI1 and Theorem BI2.

Theorem 2.1. Let a = (a1, · · · , an) ∈ Cn, ax∂x := ax1∂1

1 ax2∂2

2 · · · axn∂n
n . Then we have

ax∂xf(x) = f(a1x1, · · · , aixi, · · · , anxn), ∀f(x) ∈ C∞(Ω), Ω ∈ R
n. (2.31)
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Proof. By Definition 2.3, for the base function xα, x ∈ Rn, α ∈ Nn we have

ax∂xxα = (a1x1)
α1(a2x2)

α2 · · · (anxn)
αn .

Thus Theorem 2.1 is proved by using the Analytic Continuity Fundamental Theorem.

Theorem 2.2. Let X := (ρ1 cos θ1, · · · , ρn cos θn), Y := (ρ1 sin θ1, · · · , ρn sin θn). Introducing

the notation

θ ρ
∂

∂ρ
:= 〈θ, ρ∂ρ〉 = θ1 ρ1

∂

∂ρ1
+ · · ·+ θn ρn

∂

∂ρn
,

Y ∂X := 〈Y, ∂X〉 = Y1
∂

∂X1
+ · · ·+ Yn

∂

∂Xn
.

Then ∀f(ρ) ∈ C∞(Ω), ρ ∈ Rn, θ ∈ Rn, we have

cos

(

θ ρ
∂

∂ρ

)

f(ρ) = cos(Y ∂X)f(X),

sin

(

θ ρ
∂

∂ρ

)

f(ρ) = sin(Y ∂X)f(X),
(2.32)

which transforms the abstract operators taking ρ∂ρ as the operator element into those taking ∂X

as the operator element.

Proof. Let a1 = eiθ1 , . . . , an = eiθn . According to Theorem 2.1, we have

exp

(

iθ ρ
∂

∂ρ

)

f(ρ) = f(ρeiθ) = f(X + iY ) = exp(iY ∂X)f(X) (X ∈ R
n, Y ∈ R

n).

Considering

cos

(

θ ρ
∂

∂ρ

)

f(ρ) + i sin

(

θ ρ
∂

∂ρ

)

f(ρ) = cos(Y ∂X)f(X) + i sin(Y ∂X)f(X),

thus we obtain (2.32). Theorem 2.2 is proved.

Corollary 2.4. Let f(z) ∈ C∞(Ω), z = x + iy ∈ Ω ⊆ C1 be any analytic function. Then the

harmonic functions u(x, y) and υ(x, y) on complex plane can be expressed as

u(x, y) = cos

(

y
∂

∂x

)

f(x) = cos

(

θρ
∂

∂ρ

)

f(ρ),

υ(x, y) = sin

(

y
∂

∂x

)

f(x) = sin

(

θρ
∂

∂ρ

)

f(ρ),
(2.33)

where ρ =
√

x2 + y2, θ = arctan y
x . Especially, if y = kx, then (2.33) gives that

cos

(

y
∂

∂x

)

f(x)

∣
∣
∣
∣
y=kx

= βx ∂
∂x cos

(

αx
∂

∂x

)

f(x),

sin

(

y
∂

∂x

)

f(x)

∣
∣
∣
∣
y=kx

= βx ∂
∂x sin

(

αx
∂

∂x

)

f(x),
(2.34)

where β =
√
1 + k2, α = arctank, which can be used to solve the boundary value problems of

2-dimensional Laplace equation on polygonal domains.
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2.4 The summation method of Fourier series

Theorem 2.3. Let f(x) ∈ L2[−c, c] defined by the Fourier cosine series, and g(x) ∈ L2[−c, c]

be that of the corresponding Fourier sine series, namely

f(x) :=
∞∑

n=0

an cos
nπx

c
and g(x) :=

∞∑

n=0

an sin
nπx

c
,

where c > 0, x ∈ Ω ⊆ R1. If S(t) is the sum function of the corresponding power series
∑∞

n=0 ant
n,

namely

S(t) =

∞∑

n=0

ant
n (t ∈ R

1, |t| < r, 0 < r < +∞),

then we have the following trigonometric summation relationships:

cos

(
πx

c

∂

∂z

)

S(ez)

∣
∣
∣
∣
z=0

=

∞∑

n=0

an cos
nπx

c
; (2.35)

sin

(
πx

c

∂

∂z

)

S(ez)

∣
∣
∣
∣
z=0

=
∞∑

n=0

an sin
nπx

c
. (2.36)

Here Ω can be uniquely determined by the detailed computation of the left-hand side of (2.35) and

(2.36) respectively.

Proof. Theorem 2.3 can be proved easily by substituting S(ez) =
∑∞

n=0 ane
nz into (2.35) and

(2.36) respectively.

Example 2.5. Let f(x) ∈ L2([−c, c]) be the square wave function defined by

f(x) :=

{

+1, 2mc− c/2 < x < 2mc+ c/2,

−1, 2mc+ c/2 < x < 2mc+ 3c/2,

where m = 0,±1,±2, · · ·. Then f(x) can be expressed in the form:

f(x) =
4

π
cos

(
πx

c

∂

∂z

)

arctan ez
∣
∣
∣
∣
z=0

∈ C∞(Ω), x ∈ Ω := {x ∈ R
1| cos(πx/c) 6= 0}.

Proof. By making use of (2.23), we have

cos(h∂x) sin bx = cosh(bh) sin bx,

sin(h∂x) sin bx = sinh(bh) cos bx.
(2.37)

cos(h∂x) cos bx = cosh(bh) cos bx,

sin(h∂x) cos bx = − sinh(bh) sin bx.
(2.38)

Based on (2.37) and (2.38), by using (2.25) we obtain

cos(h∂x) tan bx =
sin(2bx)

cosh(2bh) + cos(2bx)
,

sin(h∂x) tan bx =
sinh(2bh)

cosh(2bh) + cos(2bx)
.

(2.39)
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By making use of (2.39) and (2.29), we have the following set of equations:







sin 2X

cosh 2Y + cos 2X
= bx, X = cos(h∂x) arctan bx,

sinh 2Y

cosh 2Y + cos 2X
= bh, Y = sin(h∂x) arctan bx.

(2.40)

Solving X and Y from (2.40), then

1 + (bx)2 + (bh)2 = 1 +
sin2 2X + sinh2 2Y

(cosh 2Y + cos 2X)2
=

2 cosh2Y

cosh 2Y + cos 2X
=

2bh cosh2Y

sinh 2Y

and

1− (bx)2 − (bh)2 = 1− sin2 2X + sinh2 2Y

(cosh 2Y + cos 2X)2
=

2 cos 2X

cosh 2Y + cos 2X
=

2bx cos 2X

sin 2X
.

So we have

tanh 2Y =
2bh

1 + (bx)2 + (bh)2
and tan 2X =

2bx

1− (bx)2 − (bh)2
.

Thus we obtain

sin(h∂x) arctan bx =
1

2
tanh−1 2bh

1 + (bx)2 + (bh)2
,

cos(h∂x) arctan bx =
1

2
arctan

2bx

1− (bx)2 − (bh)2
,

(2.41)

where bx = b1x1 + b2x2 + · · ·+ bnxn, bh = b1h1 + b2h2 + · · ·+ bnhn.

By making use of (2.27) and (2.41), we have

4

π
cos

(
πx

c

∂

∂z

)

arctan ez
∣
∣
∣
∣
z=0

=
4

π
cos

(

Y
∂

∂X

)

arctanX

∣
∣
∣
∣
z=0

=
2

π
arctan

2X

1− (X2 + Y 2)

∣
∣
∣
∣
z=0

=
2

π
arctan

2 cos(πx/c)

1−
(
cos2(πx/c) + sin2(πx/c)

)

=

{

(2/π) arctan(+∞) = +1, 2mc− c/2 < x < 2mc+ c/2 (cos(πx/c) > 0),

(2/π) arctan(−∞) = −1, 2mc+ c/2 < x < 2mc+ 3c/2 (cos(πx/c) < 0),

where m = 0,±1,±2, · · ·. Thus Example 2.5 is proved.

More generally, we have

Theorem 2.4. Let x ∈ Ω ⊆ R1 be an open set. If ∀f(x) ∈ L2([−l, l]) and f(x+ 2l) = f(x) on

Ω, the analytic functions S+(t) and S−(t) are given by

S+(t) :=
1

2l

∫ l

−l

f(ξ)
1− t2

1− 2t cos(πξ/l) + t2
dξ (2.42)

and

S−(t) :=
1

l

∫ l

−l

f(ξ)
t sin(πξ/l)

1− 2t cos(πξ/l) + t2
dξ, (2.43)

respectively, then there exists fz(x) ∈ C∞(R1) with the following form

fz(x) = cos

(
πx

l

∂

∂z

)

S+(e
z) + sin

(
πx

l

∂

∂z

)

S−(e
z), −∞ < z < 0 (2.44)
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such that

fz(x)|z=0 = lim
z→0−

fz(x) ⇀ f(x), ∀f(x) ∈ L2([−l, l]),

or, equivalently,

f(x) = cos

(
πx

l

∂

∂z

)

S+(e
z)

∣
∣
∣
∣
z=0

+ sin

(
πx

l

∂

∂z

)

S−(e
z)

∣
∣
∣
∣
z=0

∈ C∞(Ω). (2.45)

Proof. By the algorithms (2.25), we have

cos

(
πξ

l

∂

∂z

)
1 + ez

1− ez
=

1− e2z

1− 2ez cos(πξ/l) + e2z
;

sin

(
πξ

l

∂

∂z

)
ez

1− ez
=

ez sin(πξ/l)

1− 2ez cos(πξ/l) + e2z
.

So fz(x) can be expressed as

fz(x) = cos

(
πx

l

∂

∂z

)[

1

2l

∫ l

−l

f(ξ) cos

(
πξ

l

∂

∂z

)
1 + ez

1− ez
dξ

]

+ sin

(
πx

l

∂

∂z

)[

1

l

∫ l

−l

f(ξ) sin

(
πξ

l

∂

∂z

)
ez

1− ez
dξ

]

=
1

2l

∫ l

−l

f(ξ) cos

(
πx

l

∂

∂z

)

cos

(
πξ

l

∂

∂z

)[

1 +
2ez

1− ez

]

dξ

+
1

l

∫ l

−l

f(ξ) sin

(
πx

l

∂

∂z

)

sin

(
πξ

l

∂

∂z

)
ez

1− ez
dξ =

1

2l

∫ l

−l

f(ξ)dξ

+
1

l

∫ l

−l

f(ξ)

[

cos

(
πx

l

∂

∂z

)

cos

(
πξ

l

∂

∂z

)

+ sin

(
πx

l

∂

∂z

)

sin

(
πξ

l

∂

∂z

)]
ez

1− ez
dξ

=
1

2l

∫ l

−l

f(ξ)dξ +
1

l

∫ l

−l

f(ξ) cos

(
π(x− ξ)

l

∂

∂z

)
ez

1− ez
dξ

=
1

2l

∫ l

−l

f(ξ) cos

(
π(x − ξ)

l

∂

∂z

)
1 + ez

1− ez
dξ

=
1

2l

∫ l

−l

f(ξ)
1− e2z

1− 2ez cos(π(x− ξ)/l) + e2z
dξ, −∞ < z < 0.

lim
z→0−

fz(x) = lim
z→0−

1

2l

∫ l

−l

f(ξ)
1− e2z

1− 2ez cos(π(x − ξ)/l) + e2z
dξ

=

∫ l

−l

f(ξ) lim
z→0−

1

2l

1− e2z

1− 2ez cos(π(x − ξ)/l) + e2z
dξ ⇀

∫ l

−l

f(ξ)δ(x− ξ)dξ

= f(x).

Thus Theorem 2.4 is proved.

Remark 2.4. In Theorem 2.4, f(x) = limz→0− fz(x) ∈ L2([−l, l]), which may be discontinuous

on real axis such as f(x) is the square wave function in Example 2.5, but fz(x) corresponding to
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f(x) is a C∞ function. In other words, if the mollifier ρz(x) ∈ C∞
0 (R1) is defined by

ρz(x) :=







1

2l

1− e2z

1− 2ez cos(πx/l) + e2z
, |x| < l,

0, |x| ≥ l,

then fz(x) is given by the convolution relationship fz(x) = ρz(x) ∗ f(x). This means that we can

regularize f(x) by the standard mollifier to get fz(x). Therefore, for the abstract operators g(∂x),

if limz→0− g(∂x)fz(x) ∈ L2([−l, l]), then g(∂x)f(x) makes sense in a broad sense, which can be

defined as

g(∂x)f(x) := lim
z→0−

g(∂x)fz(x). (2.46)

Theorem 2.5. Let t > 0, ℜ(s) > 0. If ∀f(x) ∈ S (R1), F+(s) and F−(s) are given by

F+(s) :=
1

π
L
∫ ∞

−∞
f(ξ) cos(tξ)dξ or F+(s) :=

1

π

∫ ∞

−∞
f(ξ)

s

ξ2 + s2
dξ (2.47)

and

F−(s) :=
1

π
L
∫ ∞

−∞
f(ξ) sin(tξ)dξ or F−(s) :=

1

π

∫ ∞

−∞
f(ξ)

ξ

ξ2 + s2
dξ, (2.48)

respectively, where L is the Laplace transform, then we have

f(x) = cos

(

x
∂

∂s

)

F+(s)

∣
∣
∣
∣
s=0

+ sin

(

−x
∂

∂s

)

F−(s)

∣
∣
∣
∣
s=0

. (2.49)

Proof. By (3.3) we have

L cos(tξ) = cos

(

ξ
∂

∂s

)
1

s
, L sin(tξ) = sin

(

−ξ
∂

∂s

)
1

s
(ℜ(s) > 0).

So by using (2.47) and (2.48), then ∀f(x) ∈ S (R1), there exists function fs(x) ∈ C∞(R1), which

can be expressed as

fs(x) = cos

(

x
∂

∂s

)

F+(s) + sin

(

−x
∂

∂s

)

F−(s)

= cos

(

x
∂

∂s

)[
1

π

∫ ∞

−∞
f(ξ)L cos(tξ)dξ

]

+ sin

(

−x
∂

∂s

)[
1

π

∫ ∞

−∞
f(ξ)L sin(tξ)dξ

]

=
1

π

∫ ∞

−∞
f(ξ)

[

cos

(

x
∂

∂s

)

cos

(

ξ
∂

∂s

)

+ sin

(

−x
∂

∂s

)

sin

(

−ξ
∂

∂s

)]
1

s
dξ

=
1

π

∫ ∞

−∞
f(ξ) cos

(

(x− ξ)
∂

∂s

)
1

s
dξ =

1

π

∫ ∞

−∞
f(ξ)

s

(x− ξ)2 + s2
dξ, ℜ(s) > 0.

Therefore, we have

lim
s→0+

fs(x) = lim
s→0+

1

π

∫ ∞

−∞
f(ξ)

s

(x − ξ)2 + s2
dξ

=

∫ ∞

−∞
f(ξ) lim

s→0+

1

π

s

(x− ξ)2 + s2
dξ ⇀

∫ ∞

−∞
f(ξ)δ(x− ξ)dξ = f(x).

Thus Theorem 2.5 is proved.
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Substituting (2.49) into (2.47) and (2.48) respectively, then Theorem 2.5 gives that

Corollary 2.5. Let t > 0, F (s) := Lf(t). Then ∀f(t) ∈ S (R1), the inverse of Laplace

transform can be determined by

L−1F (s) =
2

π

∫ ∞

0

cos

(

ξ
∂

∂s

)

F (s)

∣
∣
∣
∣
s=0

cos(tξ)dξ (2.50)

and

L−1F (s) =
2

π

∫ ∞

0

sin

(

−ξ
∂

∂s

)

F (s)

∣
∣
∣
∣
s=0

sin(tξ)dξ, (2.51)

respectively.

In fact, if f(x) is the rational proper functions, then the integral representations (2.47) and

(2.48) are absolutely convergent. Therefore, by Theorem 2.5 we have

Corollary 2.6. Let f(x), x ∈ R1 be the rational proper functions. If analytic functions F+(s)

satisfies the following operator equation

cos

(

x
∂

∂s

)

F+(s)

∣
∣
∣
∣
s=0

=
1

2
(f(x) + f(−x)), (2.52)

then we have ∫ ∞

−∞
f(x) cos(tx)dx = πL−1F+(s), t > 0. (2.53)

If analytic functions F−(s) satisfies the following operator equation

sin

(

−x
∂

∂s

)

F−(s)

∣
∣
∣
∣
s=0

=
1

2
(f(x)− f(−x)), (2.54)

then we have ∫ ∞

−∞
f(x) sin(tx)dx = πL−1F−(s), t > 0. (2.55)

2.5 Integral representations for abstract operators

Theorem BI4. Let P (∂x) be a m-order constant coefficient linear partial differential oper-

ators, t ∈ R1 with t > 0. If there exist a1, a2, · · · , ak of real and partial differential operators

A1, A2, · · · , Ak of the order less than [(m + 1)/2] such that P (∂x) ≡ a1A
2
1 + a2A

2
2 + · · · + akA

2
k

for k = 2ν + 3, ν = 0, 1, 2, · · ·, then ∀f(x) ∈ C∞(Ω), Ω ∈ Rn, we have the following operator

relationships, which was given by Guang-Qing Bi [4, p. 12, Theorem 14]:

sinh
(
tP (∂x)

1/2
)

P (∂x)1/2
f(x) =

t

∫ t

0

tdt · · ·
︸ ︷︷ ︸

ν

∫ t

0

tdt
(P (∂x))

ν

2ν+2πν+1

∫ π

−π

∫ π

0

· · ·
︸ ︷︷ ︸

k−2

∫ π

0

eη1a
1/2
1

A1+···+ηka
1/2
k Akf(x) dσk

+

ν−1∑

i=0

t2i+1

(2i+ 1)!
(P (∂x))

if(x). (2.56)
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Similarly,

sin
(
tP (∂x)

1/2
)

P (∂x)1/2
f(x) =

t

∫ t

0

tdt · · ·
︸ ︷︷ ︸

ν

∫ t

0

tdt
2ν+1(−P (∂x))

ν

πν+1

∫ π/2

0

· · ·
︸ ︷︷ ︸

k−1

∫ π/2

0

cos(η1a
1/2
1 A1) · · · cos(ηka1/2k Ak)f(x) dσk

+

ν−1∑

i=0

t2i+1

(2i+ 1)!
(−P (∂x))

if(x). (2.57)

Here η ∈ Rk is the integral variable and

η1 = t cos θ1,

η2 = t sin θ1 cos θ2,

η3 = t sin θ1 sin θ2 cos θ3,

· · ·
ηp = t sin θ1 sin θ2 · · · sin θp−1 cos θp,

ηp+1 = t sin θ1 sin θ2 · · · sin θp cosφ,
ηp+2 = ηk = t sin θ1 sin θ2 · · · sin θp sinφ;

dσk = sink−2 θ1 sin
k−3 θ2 · · · sin θk−2dθ1dθ2 · · · dθk−2dφ.

Proof. In (2.56), let f(x) = eξx, x ∈ Rn, ξ ∈ Rn, and the symbols of the partial differential

operators Aj , j = 1, 2, · · · , k be denoted by χj(ξ), βj := a
1/2
j χj(ξ). Then (2.56) degenerates to its

characteristic equation by Definition 2.4, namely

sinh
(
tP (ξ)1/2

)

P (ξ)1/2
= t

∫ t

0

tdt · · ·
︸ ︷︷ ︸

ν

∫ t

0

tdt
(P (ξ))ν

2ν+2πν+1

∫ π

−π

∫ π

0

· · ·
︸ ︷︷ ︸

k−2

∫ π

0

eη1β1+···+ηkβkdσk

+

ν−1∑

i=0

t2i+1

(2i+ 1)!
(P (ξ))i (P (ξ) = β2

1 + β2
2 + · · ·+ β2

k). (2.58)

According to the Analytic Continuity Fundamental Theorem, we only need to prove (2.58). Solving

the integral on a hypersphere on the right side of (2.58), we have

sinh
(
tP (ξ)1/2

)

P (ξ)1/2
= t

∫ t

0

tdt · · ·
︸ ︷︷ ︸

ν

∫ t

0

tdt

∞∑

j=0

(P (ξ))ν+jt2j

(2j)!!(2j + 2ν + 1)!!
+

ν−1∑

i=0

t2i+1(P (ξ))i

(2i+ 1)!
.

Then it is proved by the termwise integration of the infinite series on the right side of the equality.

Similarly, we have (2.57). Thus Theorem BI4 is proved.

When A1, · · · , Ak in the right-hand of (2.56) and (2.57) are one order partial differential op-

erators, then the abstract operators eη1a
1/2
1

A1+···+ηka
1/2
k Ak and cos(η1a

1/2
1 A1) · · · cos(ηka1/2k Ak) are

one of the following five simplest operators:

exp(h∂x), sin(h∂x), cos(h∂x), sinh(h∂x) and cosh(h∂x).
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It is easily seen from (2.56) of Theorem BI4 that

Corollary 2.7. Let ∆ :=
∑n

k=1 ∂
2
xk

be the n-dimensional Laplacian, a > 0 be the real

parameter. If n− 2 = 2ν + 1, ν ∈ N0 := {0, 1, 2, . . .}, then we have

sinh
(
at∆1/2

)

a∆1/2
f(x) = t

∫ t

0

tdt · · ·
︸ ︷︷ ︸

ν

∫ t

0

(a2∆)ν

Sn

∫

Sn

f(ξ) dSn tdt

+

ν−1∑

i=0

t2i+1

(2i+ 1)!
(a2∆)if(x), ∀f(x) ∈ C2ν(Ω). (2.59)

Here t ∈ R1 with t > 0, Sn = 2(2π)ν+1(at)n−1. ξ ∈ Rn is the integral variable on the hypersphere

(ξ1 − x1)
2 + (ξ2 − x2)

2 + · · ·+ (ξn − xn)
2 = (at)2, and dSn is its surface element.

If A1, · · · , Ak in (2.56) and (2.57) are partial differential operators of the order great than 1,

then the order can be lowered by taking following result:

Theorem BI5. (See [4, p. 11, Theorem 13]) Let x ∈ Ω ⊆ Rn, P (∂x) be the constant coefficient

partial differential operators of any order. If f(x) ∈ C∞(Ω) is a function for which the integral in

the follow formula is finite, then

eλP (∂x)f(x) =
1

2
√
π

∫ ∞

−∞
e−ζ2/4eλ

1/2ζP (∂x)
1/2

f(x)dζ, λ ∈ C. (2.60)

By using Corollary 2.1, we deduce from (2.60) easily that

Example 2.6. Let hλ,a(ζ) = aλ +
√

λ/2ζ, ∀λ, a ∈ C, x ∈ Rn, t ∈ R1. Then we have the

following operator relationships:

exp

(

−a2t
∂2

∂x2
j

)

g(x) =
1

2
√
π

∫ ∞

−∞
e−

ζ2

4 cos

(

a
√
t ζ

∂

∂xj

)

g(x)dζ;

cos

(

λ
∂2

∂x2
j

)

g(x) =
1

2
√
π

∫ ∞

−∞
e−

ζ2

4 e

√
λ/2 ζ ∂

∂xj cos

(√

λ

2
ζ

∂

∂xj

)

g(x)dζ;

sin

(

λ
∂2

∂x2
j

)

g(x) =
1

2
√
π

∫ ∞

−∞
e−

ζ2

4 e

√
λ/2 ζ ∂

∂xj sin

(√

λ

2
ζ

∂

∂xj

)

g(x)dζ;

sin

(

aλ
∂

∂xj
+ λ

∂2

∂x2
j

)

g(x) =
1

2
√
π

∫ ∞

−∞
e−

ζ2

4 e

√
λ/2 ζ ∂

∂xj sin

(

hλ,a(ζ)
∂

∂xj

)

g(x)dζ.

3 Main results

Solving the ordinary or partial differential equations, is constructing the algorithms of the

inverse operators of ordinary or partial differential operators. In this section we will see how

abstract operators can be applied in solving partial differential equations without the experience

of Fourier transform and its inversion process.
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3.1 The Laplace transform method for solving initial value problem of

n + 1-dimensional partial differential equations

In terms of abstract operators, solving the initial value problem of n + 1 dimensional partial

differential equations is similar to solving the ordinary differential equations with respect to the

variable t, thus we can introduce the Laplace transform to further simplify the solving process.

For this reason, we first need to use abstract operators to extend the mathematical concepts of

Laplace transform.

Let s ∈ C1, λ be the complex parameter. If taking a, b ∈ R as the characters of the base

functions eas and ebs respectively, then we can combine eas and ebs with the following characteristic

equation from Taylor formula (2.16)

f(λa+ λb) =

∞∑

k=0

(λa)k

k!
f (k)(λb), |λ| < R

to make the following operator equality for the base functions eas and ebs:

f

(

λ
∂

∂s

)

(easebs) =

∞∑

k=0

λk

k!

∂keas

∂sk
f (k)

(

λ
∂

∂s

)

ebs, |λ| < R.

According to the Analytic Continuity Fundamental Theorem, we can obtain that

Theorem 3.1. Let s ∈ Ω ⊂ C
1. Suppose that λ is the complex parameter. For the abstract

operators f (k)(λ∂s), k = 0, 1, 2, · · ·, if there are two analytic functions v(s), u(s) ∈ C∞(Ω) such

that the infinite series on the right side of (3.1) uniform convergent for |λ| < R, then it will uniform

converges to the left side of this equality, namely

f

(

λ
∂

∂s

)

(vu) =

∞∑

k=0

λk

k!

∂kv

∂sk
f (k)

(

λ
∂

∂s

)

u, |λ| < R. (3.1)

When λ = −1, v = s, u = 1/s for ℜ(s) > 0, (3.1) gives that

f ′
(

− ∂

∂s

)
1

s
= sf

(

− ∂

∂s

)
1

s
− f(0), (3.2)

which is equivalent to Lf ′(t) = sLf(t)− f(0). The symbol L is the Laplace transform, which acts

on functions f(t) and generates a new function F (s) = Lf(t). Thus we have

Corollary 3.1. Suppose that f(t) is a real or complex valued function of the (time) variable

t > 0 and s is a real or complex parameter. We can also define the Laplace transform of f(t) as

F (s) = Lf(t) := f

(

− ∂

∂s

)
1

s
, ℜ(s) > 0. (3.3)

It is easily seen from (3.3) that

L[g(t)f(t)] = g

(

− ∂

∂s

)

F (s) (F (s) = Lf(t)); (3.4)

f(t) = L−1F (s) = L−1f

(

− ∂

∂s

)
1

s
, ℜ(s) > 0, t ∈ R

1
+ := {t ∈ R

1|t > 0}. (3.5)
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Thus the symbols of the abstract operators on the right side of (3.3) and (3.4) can be further

described by using conditions of the Laplace transform.

Theorem 3.2. Let m ≥ 1, P (∂x) be an any order partial differential equations. Then we have






(
∂2

∂t2
− P (∂x)

)m

u = f(x, t), x ∈ Rn, t ∈ R1
+,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . , 2m− 1.
(3.6)

u(x, t) =

∫ t

0

∫ t−τ

0

(
(t− τ)2 − τ ′2

)m−2

(2m− 2)!! (2m− 4)!!

sinh
(
τ ′P (∂x)

1/2
)

P (∂x)1/2
f(x, τ) τ ′dτ ′ dτ

+

m−1∑

k=0

(−1)k
(
m

k

)

P (∂x)
k
2m−1−2k∑

r=0

∂2m−1−2k−r

∂t2m−1−2k−r

∫ t

0

(t2 − τ2)m−2τ

(2m− 2)!! (2m− 4)!!

× sinh
(
τP (∂x)

1/2
)

P (∂x)1/2
ϕr(x) dτ, (3.7)

which was given by Guang-Qing Bi and Yue-Kai Bi [7, p. 513, Theorem 1].

Proof. Taking the Laplace transform of both sides of the partial differential equations and

considering the initial condition gives

m∑

k=0

(−1)k
(
m

k

)

P (∂x)
k

(

s2m−2kU(x, s)−
2m−1−2k∑

r=0

s2m−1−2k−rϕr(x)

)

= F (x, s), (3.8)

where U(x, s) := Lu(x, t), F (x, s) := Lf(x, t).
We need to introduce the abstract operators Gm(P (∂x), t) defined by

Gm(P (∂x), t) := L−1 1

(s2 − P (∂x))m
.

Suppose that f(t) is a real or complex valued function of the (time) variable t > 0 and s is a

real or complex parameter. Then we have

L
(∫ t

0

· tdt
)m−1

f(t) =

(

−1

s

∂

∂s

)m−1

Lf(t), m ≥ 1.

Letting f(t) = sin bt, b ∈ C, t ∈ R+, we have

(∫ t

0

· tdt
)m−1

sin bt = L−1

(

−1

s

∂

∂s

)m−1
b

s2 + b2
= L−1 2

m−1(m− 1)!

(s2 + b2)m
b.

Letting b = iP (ξ)1/2, ξ ∈ Rn, we have

L−1 1

(s2 − P (ξ))m
=

1

(2m− 2)!!

(∫ t

0

· tdt
)m−1

sinh
(
tP (ξ)1/2

)

P (ξ)1/2
.

Taking this one as the characteristic equation, according to the Analytic Continuity Fundamental

Theorem, we have

Gm(P (∂x), t) = L−1 1

(s2 − P (∂x))m
=

1

(2m− 2)!!

(∫ t

0

· tdt
)m−1

sinh
(
tP (∂x)

1/2
)

P (∂x)1/2
. (3.9)
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It is easily seen from (3.9) that

∂k

∂tk
Gm(P (∂x), t)

∣
∣
∣
∣
t=0

= 0 (k = 0, 1, 2, . . . , 2m− 2).

We can easily derive the following integral relationship

(∫ t

a

· tdt
)m

f(t) =

∫ t

a

tdt · · ·
︸ ︷︷ ︸

m

∫ t

a

f(t) tdt =

∫ t

a

(t2 − τ2)m−1

(2m− 2)!!
f(τ) τdτ. (3.10)

Applying (3.10) to (3.9), we have the expression of abstract operators Gm(P (∂x), t):

Gm(P (∂x), t)g(x) =

∫ t

0

(t2 − τ ′2)m−2

(2m− 2)!! (2m− 4)!!

sinh
(
τ ′P (∂x)

1/2
)

P (∂x)1/2
g(x) τ ′dτ ′. (3.11)

Solving U(x, s) from (3.8), its inverse transform is

u(x, t) = L−1U(x, s) = L−1 1

(s2 − P (∂x))m
F (x, s)

+L−1
m−1∑

k=0

(−1)k
(
m

k

)

P (∂x)
k
2m−1−2k∑

r=0

s2m−1−2k−r

(s2 − P (∂x))m
ϕr(x)

= Gm(P (∂x), t) ∗ f(x, t)

+
m−1∑

k=0

(−1)k
(
m

k

)

P (∂x)
k
2m−1−2k∑

r=0

∂2m−1−2k−r

∂t2m−1−2k−r
Gm(P (∂x), t)ϕr(x). (3.12)

Applying (3.11) to (3.12), thus Theorem 3.2 is proved.

It is extremely complex to prove Theorem 3.2 even if ϕj(x) = 0, j = 0, 1, . . . , 2m− 1 without

using the Laplace transform (See Guang-Qing Bi [6, p. 89, Theorem 1]).

In 1999, Guang-Qing Bi [5, p. 86, Theorem 2 and 3] has obtained the following results:

Theorem BI5. Let a1, a2, . . . , am be any real or complex numbers different from each other,

P (∂x) be a partial differential operators of any order. Then we have







m∏

i=1

(
∂

∂t
− aiP (∂x))u = f(x, t), x ∈ Rn, t ∈ R1

+, m ≥ 1,

∂ju

∂tj

∣
∣
∣
∣
t=0

= 0, j = 0, 1, 2, . . . ,m− 1.

(3.13)

u(x, t) =

∫ t

0

∫ t−τ

0

(t− τ − τ ′)m−2

(m− 2)!

m∑

j=1

am−1
j

∏m
i=1

i6=j
(aj − ai)

eτ
′ajP (∂x)f(x, τ) dτ ′dτ ; (3.14)

Theorem BI6. Let a1, a2, . . . , am be any positive real numbers different from each other,

P (∂x) be a partial differential operators of any order. Then we have







m∏

i=1

(
∂2

∂t2
− a2iP (∂x))u = f(x, t), x ∈ R

n, t ∈ R
1
+, m ≥ 1,

∂ju

∂tj

∣
∣
∣
∣
t=0

= 0, j = 0, 1, 2, . . . , 2m− 1.

(3.15)
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u(x, t) =

∫ t

0

∫ t−τ

0

(t− τ − τ ′)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

sinh(τ ′ajP (∂x)
1/2)

ajP (∂x)1/2
f(x, τ) dτ ′dτ. (3.16)

On this basis, by using the abstract operators and Laplace transform we have obtained the

following theorems:

Theorem 3.3. Let a1, a2, . . . , am be the real or complex roots different from each other for

any algebraic equation b0 + b1χ+ b2χ
2 + · · ·+ bmχm = 0, and P (∂x, ∂t) be the partial differential

operators defined by

P (∂x, ∂t) :=

m∑

k=0

bkP (∂x)
m−k ∂k

∂tk
=

m∏

i=1

(
∂

∂t
− aiP (∂x)

)

, x ∈ R
n, t ∈ R

1
+, m ≥ 1.

Here P (∂x) is a partial differential operators of any order. Then we have







P (∂x, ∂t)u = f(x, t), x ∈ Rn, t ∈ R1
+,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . ,m− 1.
(3.17)

u(x, t) =

∫ t

0

∫ t−τ

0

(t− τ − τ ′)m−2

(m− 2)!

m∑

j=1

am−1
j

∏m
i=1

i6=j
(aj − ai)

eτ
′ajP (∂x)f(x, τ) dτ ′dτ

+
m∑

k=0

bkP (∂x)
m−k

k−1∑

r=0

∂k−1−r

∂tk−1−r

∫ t

0

(t− τ)m−2

(m− 2)!

×
m∑

j=1

am−1
j

∏m
i=1

i6=j
(aj − ai)

eτajP (∂x) ϕr(x) dτ. (3.18)

Theorem 3.4. Let a1, a2, . . . , am be any positive real numbers different from each other such

that
∑m

k=0 b2kχ
2k =

∏m
i=1(χ

2 − a2i ), and P (∂x, ∂t) be the partial differential operators defined by

P (∂x, ∂t) :=

m∑

k=0

b2kP (∂x)
m−k ∂2k

∂t2k
=

m∏

i=1

(
∂2

∂t2
− a2iP (∂x)

)

, x ∈ R
n, t ∈ R

1
+, m ≥ 1.

Here P (∂x) be a partial differential operators of any order. Then we have







P (∂x, ∂t)u = f(x, t), x ∈ Rn, t ∈ R1
+,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . , 2m− 1.
(3.19)

u(x, t) =

∫ t

0

∫ t−τ

0

(t− τ − τ ′)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

sinh(τ ′ajP (∂x)
1/2)

ajP (∂x)1/2
f(x, τ) dτ ′dτ

+

m∑

k=0

b2kP (∂x)
m−k

2k−1∑

r=0

∂2k−1−r

∂t2k−1−r

∫ t

0

(t− τ)2m−3

(2m− 3)!

×
m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

sinh(τajP (∂x)
1/2)

ajP (∂x)1/2
ϕr(x) dτ. (3.20)
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Now let us prove the Theorems 3.3 and Theorems 3.4. Since the Theorem BI5 and Theorem

BI6, we just need to prove the following Corollary 3.2 and Corollary 3.3:

Corollary 3.2. Let a1, a2, . . . , am be the real or complex roots different from each other for

any algebraic equation b0 + b1χ+ b2χ
2 + · · ·+ bmχm = 0, and P (∂x, ∂t) be the partial differential

operators defined by

P (∂x, ∂t) :=

m∑

k=0

bkP (∂x)
m−k ∂k

∂tk
, x ∈ R

n, t ∈ R
1
+, m ≥ 1.

Here P (∂x) be a partial differential operators of any order. Then we have







P (∂x, ∂t)u = 0, x ∈ Rn, t ∈ R1
+,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . ,m− 1.
(3.21)

u(x, t) =

m∑

k=0

bkP (∂x)
m−k

k−1∑

r=0

∂k−1−r

∂tk−1−r

∫ t

0

(t− τ)m−2

(m− 2)!

m∑

j=1

am−1
j eτajP (∂x)

∏m
i=1

i6=j
(aj − ai)

ϕr(x) dτ. (3.22)

Proof. Taking the Laplace transform of both sides of Eq (3.21) and considering the initial

condition gives
m∑

k=0

bkP (∂x)
m−k

(

skU(x, s)−
k−1∑

r=0

sk−1−rϕr(x)

)

= 0,

where U(x, s) = Lu(x, t). Considering ∏m
i=1(s− aiP (∂x)) =

∑m
k=0 bks

kP (∂x)
m−k we have

m∏

i=1

(s− aiP (∂x))U(x, s)−
m∑

k=0

bkP (∂x)
m−k

k−1∑

r=0

sk−1−rϕr(x) = 0. (3.23)

We need to introduce the abstract operators Gm(P (∂x), t) defined by

Gm(P (∂x), t) := L−1 1
∏m

i=1(s− aiP (∂x))
.

On the other hand, taking the Laplace transform of both sides of Eq (3.13) and considering its

initial condition gives

m∏

i=1

(s− aiP (∂x))U(x, s) = F (x, s) (F (x, s) = Lf(x, t)). (3.24)

By solving U(x, s) from (3.24) and using the convolution theorem, we have its inverse transform:

u(x, t) = L−1U(x, s) = L−1 1
∏m

i=1(s− aiP (∂x))
F (x, s) = Gm(P (∂x), t) ∗ f(x, t).

By comparing (3.14) with u(x, t) = Gm(P (∂x), t)∗ f(x, t), we obtain the expression of the abstract

operators Gm(P (∂x), t):

Gm(P (∂x), t) =

∫ t

0

(t− τ)m−2

(m− 2)!

m∑

j=1

am−1
j

∏m
i=1

i6=j
(aj − ai)

eτajP (∂x)dτ. (3.25)
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It is easily seen from (3.25) that

∂k

∂tk
Gm(P (∂x), t)

∣
∣
∣
∣
t=0

= 0 (k = 0, 1, 2, . . . ,m− 2).

By solving U(x, s) from (3.23), we have its inverse transform:

u(x, t) = L−1U(x, s) =

m∑

k=0

bkP (∂x)
m−k

k−1∑

r=0

L−1 sk−1−r

∏m
i=1(s− aiP (∂x))

ϕr(x)

=

m∑

k=0

bkP (∂x)
m−k

k−1∑

r=0

∂k−1−r

∂tk−1−r
Gm(P (∂x), t)ϕr(x). (3.26)

Applying (3.25) to (3.26), Corollary 3.2 is proved.

Corollary 3.3. Let a1, a2, . . . , am be any positive real numbers different from each other such

that
∑m

k=0 b2kχ
2k =

∏m
i=1(χ

2 − a2i ), and P (∂x, ∂t) be the partial differential operators defined by

P (∂x, ∂t) :=

m∑

k=0

b2kP (∂x)
m−k ∂2k

∂t2k
, x ∈ R

n, t ∈ R
1
+, m ≥ 1.

Here P (∂x) is a partial differential operators of any order. Then we have







P (∂x, ∂t)u = 0, x ∈ Rn, t ∈ R1
+,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . , 2m− 1.
(3.27)

u(x, t) =

m∑

k=0

b2kP (∂x)
m−k

2k−1∑

r=0

∂2k−1−r

∂t2k−1−r

∫ t

0

(t− τ)2m−3

(2m− 3)!

×
m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

sinh(τajP (∂x)
1/2)

ajP (∂x)1/2
ϕr(x) dτ. (3.28)

Proof. Taking the Laplace transform of both sides of Eq (3.27) and considering the initial

condition gives
m∑

k=0

b2kP (∂x)
m−k

(

s2kU(x, s)−
2k−1∑

r=0

s2k−1−rϕr(x)

)

= 0,

where U(x, s) = Lu(x, t). Considering
m∏

i=1

(s2 − a2iP (∂x)) =

m∑

k=0

b2ks
2kP (∂x)

m−k,

we have
m∏

i=1

(s2 − a2iP (∂x))U(x, s)−
m∑

k=0

b2kP (∂x)
m−k

2k−1∑

r=0

s2k−1−rϕr(x) = 0. (3.29)

We need to introduce the abstract operators Gm(P (∂x), t) defined by

Gm(P (∂x), t) := L−1 1
∏m

i=1(s
2 − a2iP (∂x))

.
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On the other hand, taking the Laplace transform of both sides of Eq (3.15) and considering its

initial condition gives

m∏

i=1

(s2 − a2iP (∂x))U(x, s) = F (x, s) (F (x, s) = Lf(x, t)). (3.30)

By solving U(x, s) from (3.30) and using the convolution theorem, we have its inverse transform:

u(x, t) = L−1U(x, s) = L−1 1
∏m

i=1(s
2 − a2iP (∂x))

F (x, s) = Gm(P (∂x), t) ∗ f(x, t).

By comparing (3.16) with u(x, t) = Gm(P (∂x), t)∗ f(x, t), we obtain the expression of the abstract

operators Gm(P (∂x), t):

Gm(P (∂x), t) =

∫ t

0

(t− τ)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

sinh(τajP (∂x)
1/2)

ajP (∂x)1/2
dτ. (3.31)

It is easily seen from (3.31) that

∂k

∂tk
Gm(P (∂x), t)

∣
∣
∣
∣
t=0

= 0 (k = 0, 1, 2, . . . , 2m− 2).

By solving U(x, s) from (3.29), we have its inverse transform:

u(x, t) = L−1U(x, s) =

m∑

k=0

b2kP (∂x)
m−k

2k−1∑

r=0

L−1 s2k−1−r

∏m
i=1(s

2 − a2iP (∂x))
ϕr(x)

=
m∑

k=0

b2kP (∂x)
m−k

2k−1∑

r=0

∂2k−1−r

∂t2k−1−r
Gm(P (∂x), t)ϕr(x). (3.32)

Applying (3.31) to (3.32), thus Corollary 3.3 is proved.

Another result was given earlier by Guang-Qing Bi [5, p. 80, Theorem 1]:

Theorem BI7. For an arbitrary order partial differential operators P (∂x), we have







(
∂

∂t
− P (∂x)

)m

u = f(x, t), x ∈ Rn, t ∈ R1
+, m ≥ 1,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . ,m− 1.
(3.33)

u(x, t) =

∫ t

0

(t− τ)m−1

(m− 1)!
e(t−τ)P (∂x)f(x, τ)dτ

+ etP (∂x)
m−1∑

k=0

k∑

r=0

(−1)k−r

(
k

r

)
tk

k!
P (∂x)

k−rϕr(x). (3.34)

It is easily seen that our new method of solving initial value problems for any linear higher-order

partial differential equations is universal, which is more convenient than the traditional Fourier

transform method.
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3.2 Analytic solutions of Cauchy problem for n+1-dimensional multiple

inhomogeneous wave equation

Theorem 3.5. (See G.-Q. Bi and Y.-K. Bi [7, pp. 514-515, Theorem 2]) Let ∆ :=
∑n

k=1 ∂
2
xk

be the n-dimensional Laplacian. If n− 2 = 2ν + 1, ν ∈ N0, a > 0, then we have







(
∂2

∂t2
− a2∆

)m

u = f(x, t), x ∈ Rn, t ∈ R1
+, m ≥ 1,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . , 2m− 1.
(3.35)

u(x, t) =
∫ t

0

dτ

∫ t−τ

0

dτ ′
(
(t− τ)2 − τ ′2

)m−2
τ ′2

(2m− 2)!! (2m− 4)!!

∫ τ ′

0

τ ′dτ ′ · · ·
︸ ︷︷ ︸

ν

∫ τ ′

0

(a2∆)ν

S′
n

∫

S′
n

f(ξ′, τ) dS′
n τ

′dτ ′

+
1

(2m− 2)!!

ν−1∑

r=0

∫ t

0

(t− τ)2m+2r−1

(2m+ 2r − 1)!! (2r)!!
(a2∆)rf(x, τ) dτ

+

m−1∑

k=0

(−1)k
(
m

k

)

(a2∆)k+ν
2m−1−2k∑

r=0

∂2m−1−2k−r

∂t2m−1−2k−r

∫ t

0

dτ
(t2 − τ2)m−2τ2

(2m− 2)!! (2m− 4)!!

×
∫ τ

0

τdτ · · ·
︸ ︷︷ ︸

ν

∫ τ

0

1

Sn

∫

Sn

ϕr(ξ) dSn τdτ +

m−1∑

k=0

(−1)k
(
m

k

) 2m−1−2k∑

r=0

×
ν−1∑

i=0

(
m− 1 + i

i

)
t2k+2i+r

(2k + 2i+ r)!
(a2∆)k+iϕr(x). (3.36)

Here n− 2 = 2ν + 1, S′
n := 2(2π)ν+1(aτ ′)n−1, Sn := 2(2π)ν+1(aτ)n−1, and ξ′ ∈ Rn is the integral

variable. The integral is on the hypersphere (ξ′1 −x1)
2+(ξ′2−x2)

2+ · · ·+(ξ′n−xn)
2 = (aτ ′)2, and

dS′
n is its surface element. ξ ∈ R

n is the integral variable on the hypersphere (ξ1 − x1)
2 + (ξ2 −

x2)
2 + · · ·+ (ξn − xn)

2 = (aτ)2, and dSn is its surface element.

Proof. In Theorem 3.2, let P (∂x) := a2∆. By applying (2.59) to (3.7) we have

u(x, t) =

∫ t

0

∫ t−τ

0

(
(t− τ)2 − τ ′2

)m−2

(2m− 2)!! (2m− 4)!!

×






τ ′
∫ τ ′

0

τ ′dτ ′ · · ·
︸ ︷︷ ︸

ν

∫ τ ′

0

(a2∆)ν

S′
n

∫

S′
n

f(ξ′, τ) dS′
n τ ′dτ ′







τ ′dτ ′dτ

+

∫ t

0

∫ t−τ

0

(
(t− τ)2 − τ ′2

)m−2

(2m− 2)!! (2m− 4)!!

ν−1∑

r=0

τ ′2r+1

(2r + 1)!
(a2∆)rf(x, τ) τ ′dτ ′dτ

+

m−1∑

k=0

(−1)k
(
m

k

)

(a2∆)k
2m−1−2k∑

r=0

∂2m−1−2k−r

∂t2m−1−2k−r

∫ t

0

(t2 − τ2)m−2τ

(2m− 2)!! (2m− 4)!!
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×






τ

∫ τ

0

τdτ · · ·
︸ ︷︷ ︸

ν

∫ τ

0

(a2∆)ν

Sn

∫

Sn

ϕr(ξ) dSn τdτ







dτ

+

m−1∑

k=0

(−1)k
(
m

k

)

(a2∆)k
2m−1−2k∑

r=0

∂2m−1−2k−r

∂t2m−1−2k−r

∫ t

0

(t2 − τ2)m−2τ

(2m− 2)!! (2m− 4)!!

×
ν−1∑

i=0

τ2i+1

(2i+ 1)!
(a2∆)iϕr(x)dτ.

Here n − 2 = 2ν + 1, S′
n = 2(2π)ν+1(aτ ′)n−1, Sn = 2(2π)ν+1(aτ)n−1, and ξ′ ∈ R

n is the integral

variable. The integral is on the hypersphere (ξ′1 −x1)
2+(ξ′2−x2)

2+ · · ·+(ξ′n−xn)
2 = (aτ ′)2, and

dS′
n is its surface element. ξ ∈ Rn is the integral variable on the hypersphere (ξ1 − x1)

2 + (ξ2 −
x2)

2 + · · ·+ (ξn − xn)
2 = (aτ)2, and dSn is its surface element.

By using (3.10), where

∂2m−1−2k−r

∂t2m−1−2k−r

∫ t

0

(t2 − τ2)m−2τ

(2m− 2)!! (2m− 4)!!

τ2i+1

(2i+ 1)!
dτ =

(
m− 1 + i

i

)
t2k+2i+r

(2k + 2i+ r)!
.

Similarly,

∫ t−τ

0

[
(t− τ)2 − τ ′2

]m−2

(2m− 2)!! (2m− 4)!!

τ ′2r+1

(2r + 1)!
τ ′dτ ′ =

1

(2m− 2)!!

(t− τ)2m+2r−1

(2m+ 2r − 1)!! (2r)!!
.

Thus Theorem 3.5 is proved.

Theorem 3.6. Let a1, a2, . . . , am be any positive real numbers different from each other such

that
∑m

k=0 b2kχ
2k =

∏m
i=1(χ

2 − a2i ), and P (∂x, ∂t) be the partial differential operators defined by

P (∂x, ∂t) :=
m∑

k=0

b2k∆
m−k ∂2k

∂t2k
, x ∈ R

n, t ∈ R
1
+, m ≥ 1.

Here ∆ :=
∑n

k=1 ∂
2
xk

is the n-dimensional Laplacian. If n − 2 = 2ν + 1, ν = 0, 1, 2, · · ·, then we

have 





P (∂x, ∂t)u = f(x, t), x ∈ Rn, t ∈ R1
+,

∂ru

∂tr

∣
∣
∣
∣
t=0

= ϕr(x), r = 0, 1, 2, . . . , 2m− 1.
(3.37)

u(x, t) =

∫ t

0

dτ

∫ t−τ

0

dτ ′
(t− τ − τ ′)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

×






τ ′
∫ τ ′

0

τ ′dτ ′ · · ·
︸ ︷︷ ︸

ν

∫ τ ′

0

(a2j∆)ν

S′
n,j

∫

S′
n,j

f(ξ′, τ) dS′
n,j τ

′dτ ′







+

∫ t

0

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

ν−1∑

l=0

a2lj (t− τ)2l+2m−1

(2l + 2m− 1)!
∆lf(x, τ)dτ
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+

m∑

k=0

b2k∆
m−k

2k−1∑

r=0

∂2k−1−r

∂t2k−1−r

∫ t

0

dτ
(t− τ)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

×






τ

∫ τ

0

τdτ · · ·
︸ ︷︷ ︸

ν

∫ τ

0

(a2j∆)ν

Sn,j

∫

Sn,j

ϕr(ξ) dSn,j τdτ







+

m∑

k=0

b2k∆
m−k

2k−1∑

r=0

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

ν−1∑

l=0

a2lj t2l+2m+r−2k

(2l+ 2m+ r − 2k)!
∆lϕr(x). (3.38)

Here S′
n,j := 2(2π)ν+1(ajτ

′)n−1, Sn,j := 2(2π)ν+1(ajτ)
n−1, and ξ′ ∈ Rn is the integral variable.

The integral is on the hypersphere (ξ′1 − x1)
2 + (ξ′2 − x2)

2 + · · ·+ (ξ′n − xn)
2 = (ajτ

′)2, and dS′
n,j

is its surface element. ξ ∈ Rn is the integral variable on the hypersphere (ξ1 − x1)
2 + (ξ2 − x2)

2 +

· · ·+ (ξn − xn)
2 = (ajτ)

2, and dSn,j is its surface element.

Proof. In Theorem 3.4, let P (∂x) := ∆. By applying (2.59) to (3.20) we have

u(x, t) =

∫ t

0

dτ

∫ t−τ

0

dτ ′
(t− τ − τ ′)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

×






τ ′
∫ τ ′

0

τ ′dτ ′ · · ·
︸ ︷︷ ︸

ν

∫ τ ′

0

(a2j∆)ν

S′
n,j

∫

S′
n,j

f(ξ′, τ) dS′
n,j τ

′dτ ′ +
ν−1∑

l=0

a2lj τ
′2l+1

(2l+ 1)!
∆lf(x, τ)







+

m∑

k=0

b2k∆
m−k

2k−1∑

r=0

∂2k−1−r

∂t2k−1−r

∫ t

0

dτ
(t− τ)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

×






τ

∫ τ

0

τdτ · · ·
︸ ︷︷ ︸

ν

∫ τ

0

(a2j∆)ν

Sn,j

∫

Sn,j

ϕr(ξ) dSn,j τdτ +

ν−1∑

l=0

a2lj τ
2l+1

(2l + 1)!
∆lϕr(x)







.

Here S′
n,j = 2(2π)ν+1(ajτ

′)n−1, Sn,j = 2(2π)ν+1(ajτ)
n−1, and ξ′ ∈ Rn is the integral variable. The

integral is on the hypersphere (ξ′1−x1)
2+(ξ′2−x2)

2+· · ·+(ξ′n−xn)
2 = (ajτ

′)2, and dS′
n,j is its surface

element. ξ ∈ R
n is the integral variable on the hypersphere (ξ1−x1)

2+(ξ2−x2)
2+· · ·+(ξn−xn)

2 =

(ajτ)
2, and dSn,j is its surface element. Then Theorem 3.6 is proved.

Anker, Pierfelice and Vallarino [8] studied the dispersive properties of the wave equation asso-

ciated with the shifted Laplace-Beltrami operator on real hyperbolic spaces Hn lately. Hn can be

realized as the symmetric space G/K, where G = SO(1, n)0 and K = SO(n). In geodesic polar

coordinates on Hn, the Riemannian volume writes (See [8, pp. 5615-5618])

dx = const.(sinh r)n−1drdσ

and the Laplace-Beltrami operator

∆Hn = ∂2
r + (n− 1) coth r∂r + sinh−2 r∆Sn−1 .
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The spherical functions ϕλ on Hn are normalized radial eigenfunctions of ∆Hn :

{

∆Hnϕλ = −(λ2 + ρ2)ϕλ,

ϕλ(0) = 1,

where λ ∈ C and ρ = (n− 1)/2. They can be expressed in terms of special functions:

ϕλ(r) = φ
(n
2
−1,− 1

2
)

λ (r) = 2F1

(
ρ

2
+ i

λ

2
,
ρ

2
− i

λ

2
;
n

2
;− sinh2 r

)

,

where φ
(α,β)
λ denotes the Jacobi functions and 2F1 the Gauss hypergeometric function.

It is easily seen that the partial differential operators P (∂x) can also be generalized from

constant coefficient to variable coefficient for Theorem BI7 and Theorem 3.2 to 3.4 such as P (∂x) :=

∆Hn or ∆Hn + ρ2. For example, by applying Theorem 3.2 with m = 1 and P (∂x) = ∆Hn + ρ2, we

obtain the Duhamel’s formula, expressed usually by

u(t, x) = (cos tDx)f(x) +
sin tDx

Dx
g(x) +

∫ t

0

sin(t− s)Dx

Dx
F (s, x)ds,

whereDx :=
√

−∆Hn − ρ2 = i
√

∆Hn + ρ2, which gives the solution of the following inhomogeneous

linear wave equation on Hn:







∂2
t u(t, x)− (∆Hn + ρ2)u(t, x) = F (t, x),

u(0, x) = f(x),

∂t|t=0u(t, x) = g(x).

More generally, by applying Theorem 3.2 with m ≥ 1 and P (∂x) = ∆Hn + ρ2, we obtain the

following theorem:

Theorem 3.7. Let m ≥ 1, ρ = (n− 1)/2, Dx :=
√

−∆Hn − ρ2, ∆Hn be the Laplace-Beltrami

operator on L2(Hn). Then the solution of the multiple inhomogeneous linear wave equation on Hn

is given as follows:

{ (
∂2
t − (∆Hn + ρ2)

)m
u(t, x) = f(t, x), x ∈ Hn, t ∈ R1

+,

∂r
t |t=0u(t, x) = gr(x), r = 0, 1, 2, . . . , 2m− 1.

(3.39)

u(t, x) =

∫ t

0

∫ t−τ

0

(
(t− τ)2 − τ ′2

)m−2

(2m− 2)!! (2m− 4)!!

sin τ ′Dx

Dx
f(τ, x) τ ′dτ ′ dτ

+
m−1∑

k=0

(−1)k
(
m

k

)

(∆Hn + ρ2)k
2m−1−2k∑

r=0

∂2m−1−2k−r

∂t2m−1−2k−r

∫ t

0

(t2 − τ2)m−2τ

(2m− 2)!! (2m− 4)!!

× sin τDx

Dx
gr(x) dτ. (3.40)

In fact, the base functions eξx on Rn can be defined by the following eigenfunctions of ∂x:

{

∂xu(x) = ξu(x) ξ ∈ Rn,

u(0) = 1.
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This means that the concept of base functions can be generalized from eξx on Rn to ϕλ on Hn.

Therefore, by making use of the normalized radial eigenfunctions ϕλ(r) on Hn, we can extend

the definition of abstract operators to obtain the abstract operators taking ∆Hn as the operator

element, denoted by f(t,∆Hn), which is defined as

f(t,∆Hn)ϕλ := f(t,−(λ2 + ρ2))ϕλ,

where f(t,−(λ2 + ρ2)) is the symbols of abstract operators f(t,∆Hn). Thus we have

sinh(taj∆
1/2
Hn )

aj∆
1/2
Hn

ϕλ =
sin(aj

√

λ2 + ρ2 t)

aj
√

λ2 + ρ2
ϕλ.

Similarly, f(t,∆Hn + ρ2)ϕλ := f(t,−λ2)ϕλ, where f(t,−λ2) is the symbols of f(t,∆Hn + ρ2).

Under suitable assumptions, the spherical Fourier transform of a bi-K-invariant function f on

G is defined by

Hf(λ) :=

∫

G

f(g)ϕλ(g)dg

and the following inversion formula and Plancherel formula hold:

f(x) = const.

∫ ∞

0

ϕλ(x)|c(λ)|−2(Hf(λ))dλ,

‖f‖2L2 = const.

∫ ∞

0

|c(λ)|−2|Hf(λ)|2dλ.

Here the Harish-Chandra c-function is given by

c(λ) =
Γ(2ρ)

Γ(ρ)

Γ(iλ)

Γ(iλ+ ρ)
.

Therefore, if P (∂x) := −D2
x = ∆Hn + ρ2 for the abstract operators Gm(P (∂x), t) introduced in

Theorem 3.2 and Theorem 3.4, then for the bi-K-invariant function f we have

Gm(−D2
x, t)f(x) = Gm(∆Hn + ρ2, t)f(x) = const.

∫ ∞

0

Gm(−λ2, t)ϕλ(x)|c(λ)|−2(Hf(λ))dλ.

Similarly, by applying Theorem 3.4 with m ≥ 1 and P (∂x) = ∆Hn + ρ2, we have

Theorem 3.8. Let m ≥ 1, ρ = (n − 1)/2, Dx :=
√

−∆Hn − ρ2. If a1, a2, . . . , am are any

positive real numbers different from each other such that
∑m

k=0 b2kχ
2k =

∏m
i=1(χ

2 − a2i ), and

P (∂x, ∂t) is the partial differential operators defined by

P (∂x, ∂t) :=

m∑

k=0

b2k(∆Hn + ρ2)m−k∂2k
t =

m∏

i=1

(
∂2
t − a2i (∆Hn + ρ2)

)
, x ∈ H

n, t ∈ R
1
+.

Here ∆Hn is the Laplace-Beltrami operator on L2(Hn). Then the solution of the multiple wave

equation on Hn is given as follows:

{

P (∂x, ∂t)u(t, x) = f(t, x), x ∈ Hn, t ∈ R1
+,

∂r
t |t=0u(t, x) = gr(x), r = 0, 1, 2, . . . , 2m− 1.

(3.41)
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u(t, x) =

∫ t

0

∫ t−τ

0

(t− τ − τ ′)2m−3

(2m− 3)!

m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

sin(τ ′ajDx)

ajDx
f(τ, x) dτ ′dτ

+
m∑

k=0

b2k(∆Hn + ρ2)m−k
2k−1∑

r=0

∂2k−1−r

∂t2k−1−r

∫ t

0

(t− τ)2m−3

(2m− 3)!

×
m∑

j=1

a2m−2
j

∏m
i=1

i6=j
(a2j − a2i )

sin(τajDx)

ajDx
gr(x) dτ. (3.42)

3.3 Further applications

In this section we discuss the solvability of initial-boundary value problem for the linear higher-

order partial differential equations.

Clearly, we can attach proper boundary conditions to the initial value problems (3.6), (3.17),

(3.19) and (3.33) introduced by Theorem 3.2, Theorem 3.3, Theorem 3.4 and Theorem BI7. In

order to obtain the well-posedness of these initial-boundary value problems, the partial differential

operators P (∂x) must have the eigenfunctions related to boundary conditions such that the known

functions f(x, τ), ϕr(x) in (3.7), (3.18), (3.20) and (3.34) can be expanded as the infinite series

expressed by the eigenfunctions of P (∂x). In order to solve the corresponding initial-boundary value

problems, we need to solve the eigenvalue problem of P (∂x) under given boundary conditions to

determine a set of orthogonal functions. For instance, in the solving formulas (3.7), (3.18), (3.20)

and (3.34), if f(x, τ), ϕr(x) ∈ L2(Ω), and P (∂x) is the second-order linear self-adjoint elliptic

operators, namely

P (∂x)u :=
n∑

i,j=1

∂

∂xj

(

aij(x)
∂u

∂xi

)

+ c(x)u, x ∈ Ω ⊂ R
n, (3.43)

then the boundary conditions can be added for the definite solution problems (3.6), (3.17), (3.19)

and (3.33): Bu|∂Ω = 0, representing u|∂Ω = 0 or




n∑

i,j=1

aij(x)
∂u

∂xj
cos〈a, xi〉+ b(x)u





∂Ω

= 0.

Here a is the unit outward normal of ∂Ω. Thus this kind of initial-boundary value problems boils

down to solving the eigenvalue problem of the first boundary value problem of second-order linear

self-adjoint elliptic operators:






n∑

i,j=1

∂

∂xj

(

aij(x)
∂u

∂xi

)

+ c(x)u = −λu, x ∈ Ω ⊂ R
n,

Bu|∂Ω = 0.

(3.44)

For the eigenvalue problem (3.44), we first recall here the following known results (See, e.g.,

Wang [10, pp. 156-157, Theorem 3.18, Theorem 3.19]):

• Let Ω ⊂ Rn be a bounded open domain, and ∂Ω be smooth. Let aij = aji, and there exists

θ > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2, x ∈ Ω.
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For aij ∈ C1(Ω), c(x) ∈ C(Ω), b(x) ∈ C(∂Ω), then (3.44) has the following countable eigenvalues:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λν ≤ · · · , lim
ν→∞

λν = ∞

(If (aij) = I is a unit matrix, then λ1 = 0 when b(x) = c(x) = 0. When b(x) ≥ 0, c(x) ≥ 0

and one of them does not identically equal to zero, λ1 > 0) and the corresponding eigenfunctions

e1(x), e2(x), · · · , eν(x), · · · , satisfy
n∑

i,j=1

∂

∂xj

(

aij(x)
∂ei
∂xi

)

+ c(x)ei = −λiei, (ei, ej) = δij (3.45)

and {ej(x)}∞j=1 are complete in L2(Ω). Thus for any f(x) ∈ L2(Ω), there exists cj such that

lim
ν→∞

‖f −
ν∑

i=1

ciei‖L2(Ω) = 0.

• Let Ω ∈ Rn be a bounded smooth domain. Then for the eigenvalue problem of the Laplace

operators
{

∆u = −λu, x ∈ Ω,

u|∂Ω = 0,
(3.46)

an orthogonal system of the Hilbert space H1
0 (Ω) is composed of its solutions {ej(x)}∞j=1.

Therefore, for the solving formulas (3.7), (3.18), (3.20) and (3.34), if f(x, τ), ϕr(x) ∈ L2(Ω),

we also have

lim
ν→∞

‖f(x, τ)−
ν∑

i=1

ci(τ)ei(x)‖L2(Ω) = 0,

lim
ν→∞

‖ϕr(x)−
ν∑

i=1

ciei(x)‖L2(Ω) = 0.

Clearly, based on (3.43) and (3.45), the eigenfunctions {ej(x)}∞j=1 from the eigenvalue problem

(3.44) can be called the base functions of Hilbert space. Therefore, the abstract operators

etajP (∂x),
sinh(tajP (∂x)

1/2)

ajP (∂x)1/2
and cosh(tajP (∂x)

1/2) =
∂

∂t

sinh(tajP (∂x)
1/2)

ajP (∂x)1/2

defined on the Hilbert space are also called the abstract operators taking P (∂x) as the operator

element, denoted by f(t, P (∂x)) : L
2(Ω) → L2(Ω), and which acts on the base functions {ej(x)}∞j=1

such that

f(t, P (∂x))ei(x) := f(t,−λi)ei(x),

where {f(t,−λi)}∞i=1 are the symbols of abstract operators f(t, P (∂x)) on L2(Ω). Thus we obtain

eτajP (∂x)ei(x) = e−τajλiei(x) and
sinh(τajP (∂x)

1/2)

ajP (∂x)1/2
ei(x) =

sin(aj
√
λi τ)

aj
√
λi

ei(x), (3.47)

where x ∈ Ω ⊂ Rn, j = 1, 2, · · · ,m. Thus we have the following results:

lim
ν→∞

‖eτ ′ajP (∂x)f(x, τ)−
ν∑

i=1

(f, ei)e
−τ ′ajλiei(x)‖L2(Ω) = 0;
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lim
ν→∞

‖eτajP (∂x)ϕr(x) −
ν∑

i=1

(ϕr, ei)e
−τajλiei(x)‖L2(Ω) = 0;

lim
ν→∞

∥
∥
∥
∥
∥

sinh(τ ′ajP (∂x)
1/2)

ajP (∂x)1/2
f(x, τ) −

ν∑

i=1

(f, ei)
sin(aj

√
λi τ

′)

aj
√
λi

ei(x)

∥
∥
∥
∥
∥
L2(Ω)

= 0;

lim
ν→∞

∥
∥
∥
∥
∥

sinh(τajP (∂x)
1/2)

ajP (∂x)1/2
ϕr(x)−

ν∑

i=1

(ϕr, ei)
sin(aj

√
λi τ)

aj
√
λi

ei(x)

∥
∥
∥
∥
∥
L2(Ω)

= 0.

In summary, we can attach respectively the boundary condition Bu|∂Ω = 0 to the linear higher-

order partial differential equations (3.6), (3.17), (3.19) and (3.33), such that if the orthogonal

complete system {ej(x)}∞j=1 from the eigenvalue problem (3.44) can be solved, we will obtain the

explicit solutions of the corresponding initial-boundary value problems respectively.
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