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Abstract

We study 2k-factors in (2r+1)-regular graphs. Hanson, Loten, and Toft proved that

every (2r + 1)-regular graph with at most 2r cut-edges has a 2-factor. We generalize

their result by proving for k ≤ (2r+1)/3 that every (2r+1)-regular graph with at most

2r − 3(k − 1) cut-edges has a 2k-factor. Both the restriction on k and the restriction

on the number of cut-edges are sharp. We characterize the graphs that have exactly

2r − 3(k − 1) + 1 cut-edges but no 2k-factor. For k > (2r + 1)/3, there are graphs

without cut-edges that have no 2k-factor, as studied by Bollobás, Saito, and Wormald.

1 Introduction

An ℓ-factor in a graph is an ℓ-regular spanning subgraph. In this paper we study the

relationship between cut-edges and 2k-factors in regular graphs of odd degree. In fact, all

our results are for multigraphs, allowing loops and multiedges, so the model we mean by

“graph” allows loops and multiedges.
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The relationship between edge-connectivity and 1-factors in regular graphs is well known.

Petersen [9] proved that every 3-regular graph with no cut-edge decomposes into a 1-factor

and a 2-factor, noting that the conclusion also holds when all cut-edges lie along a path.

Schönberger [11] proved that in a 3-regular graph with no cut-edge, every edge lies in some

1-factor. Berge [3] obtained the same conclusion for r-regular (r− 1)-edge-connected graphs

of even order. Finally, a result of Plesńık [10] implies most of these statements: If G is an

r-regular (r − 1)-edge-connected multigraph with even order, and G′ is obtained from G by

discarding at most r − 1 edges, then G′ has a 1-factor. The edge-connectivity condition

is sharp: Katerinis [7] determined the minimum number of vertices in an r-regular (r −

2)-edge-connected graph of even order having no 1-factor. Belck [2] and Bollobás, Saito,

and Wormald [4] (independently) determined all (r, t, k) such that every r-regular t-edge-

connected graph has a k-factor; Niessen and Randerath [8] further refined this in terms of

also the number of vertices.

Petersen was in fact more interested in 2-factors. The result about 3-regular graphs

whose cut-edges lie on a path implies that every 3-regular graph with at most two cut-edges

has a 2-factor. Also, there are 3-regular graphs with three cut-edges having no 2-factor

(communicated to Petersen by Sylvester in 1889). As a tool in a result about interval edge-

coloring, Hanson, Loten, and Toft [6] generalized Petersen’s result to regular graphs with

larger odd degree.

Theorem 1.1 ([6]). For r ∈ N, every (2r + 1)-regular graph with at most 2r cut-edges has

a 2-factor.

Petersen [9] also proved that every regular graph of even degree has a 2-factor. Thus

when k ≤ r every 2r-regular graph has a 2k-factor. As a consequence, regular factors of

degree 2k become harder to guarantee as k increases. That is, a decomposition of a (2r+1)-

regular graph into a 2-factor and (2r − 1)-factor is easiest to find, while decomposition into

a 2r-factor and 1-factor is hardest to find (and implies the others).

In this paper, we generalize Theorem 1.1 to find the corresponding best possible guarantee

for 2k-factors. Limiting the number of cut-edges suffices when k is not too large.

Theorem 1.2. For r, k ∈ N with k ≤ (2r + 1)/3, every (2r + 1)-regular graph with at most

2r − 3(k − 1) cut-edges has a 2k-factor. Furthermore, both inequalities are sharp.

Earlier, Xiao and Liu [14] proved a relationship between cut-edges and 2k-factors, showing

that a (2kr+ s)-regular graph with at most k(2r− 3)+ s cut-edges has a 2k-factor avoiding

any given edge. Their number of cut-edges in terms of degree and k is similar to ours, since

(2kr + s)− 1− 3(k − 1) = k(2r− 3) + s+ 2, but their range of validity of k in terms of the

degree of the full graph is more restricted than ours.
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Our result is sharp in two ways. First, when k ≤ (2r+1)/3 and there are 2r+1−3(k−1)

cut-edges, there may be no 2k-factor. Sylvester found examples of such graphs (forbidding

2-factors in a regular graph of odd degree greater than 1 forbids all regular factors). We

complete the Petersen–Sylvester investigation by describing all the extremal graphs without

2k-factors for general k.

Theorem 1.3. For r, k ∈ N with k ≤ (2r + 1)/3, a (2r + 1)-regular graph with exactly

2r+1− 3(k− 1) cut-edges fails to have a 2k-factor if and only if it satisfies the constructive

structural description stated in Theorem 3.2.

When k > (2r+1)/3, the condition in Theorem 1.2 cannot be satisfied, and in fact there

are (2r+1)-regular graphs that have no 2k-factor even though they have no cut-edges. A 2k-

factor can instead be guaranteed by edge-connectivity requirements. The result of Berge [3]

implies that (2r + 1)-regular 2r-edge-connected graphs have 1-factors and hence factors of

all even degrees, by the 2-factor theorem of Petersen [9]. Therefore, when k > (2r + 1)/3

the natural question becomes what edge-connectivity suffices to guarantee a 2k-factor.

As mentioned earlier, this problem was solved by Bollobás, Saito, and Wormald [4], who

determined all triples (r, t, k) such that every r-regular t-edge-connected multigraph has a k-

factor (the triples are the same for simple graphs). As noted by Häggkvist [5] and by Niessen

and Randerath [8], earlier Belck [2] obtained the result (in 1950). Earlier still, Baebler [1]

proved the weaker result that 2k-edge-connected (2r + 1)-regular graphs have 2k-factors.

The special case of the result of [4] that applies here (even-regular factors of odd-regular

multigraphs) is that all (2r + 1)-regular 2t-edge-connected or (2t+1)-edge-connected multi-

graphs have 2k-factors if and only if k ≤ t
2t+1

(2r+1). The general construction given in [4],

which covers additional cases, is quite complicated. Here we provide a very simple construc-

tion that completes our investigation and shows necessity of their condition for even-regular

factors of odd-regular graphs. In particular, for 1 ≤ t < r and k > t
2t+1

(2r + 1) we present

an easily described (2t+ 1)-connected simple graph that has no 2k-factor.

Our results use the necessary and sufficient condition for the existence of ℓ-factors that

was initially proved by Belck [2] and is a special case of the f -Factor Theorem of Tutte [12,

13]. When T is a set of vertices in a graph G, let dG(T ) =
∑

v∈T dG(v), where dG(v) is the

degree of v in G. With |T | for the size of a vertex set T , we also write ‖T‖ for the number

of edges induced by T and ‖A,B‖ for the number of edges having endpoints in both A and

B (when A ∩B = ∅). The characterization is the following.

Theorem 1.4 ([2, 12, 13]). A multigraph G has a ℓ-factor if and only if

q(S, T )− dG−S(T ) ≤ ℓ(|S| − |T |) (1)

for all disjoint subsets S, T ⊂ V (G), where q(S, T ) is the number of components Q of G−S−T

such that ‖V (Q), T‖+ ℓ |V (Q)| is odd.
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Since we consider only the situation where ℓ = 2k, the criterion for a component Q of

G− S − T to be counted by q(S, T ) simplifies to ‖V (Q), T‖ being odd.

2 Cut-edges and 2k-factors

In this section we generalize Theorem 1.1 to 2k-factors.

Theorem 2.1. For r, k ∈ N with k ≤ (2r + 1)/3, every (2r + 1)-regular multigraph with at

most 2r − 3(k − 1) cut-edges has a 2k-factor.

Proof. Let G be a (2r+1)-regular multigraph having no 2k-factor, and let p be the number

of cut-edges in G. We prove p > 2r − 3(k − 1). By setting ℓ = 2k in Theorem 1.4, lack of a

2k-factor requires disjoint sets S, T ⊆ V (G) such that q(S, T ) > 2k(|S| − |T |) + dG−S(T ).

Letting R = V (G)− S − T , the quantity q(S, T ) becomes the number of components Q

of G[R] such that ‖V (Q), T‖ is odd. Thus q(S, T ) has the same parity as ‖R, T‖. In turn,

‖R, T‖ has the same parity as dG−S(T ), since the latter counts edges from R to T once and

edges within T twice. Hence the two sides of the inequality above have the same parity. We

conclude

q(S, T ) ≥ dG−S(T ) + 2k(|S| − |T |) + 2. (2)

Say that a subgraph H of G − T is T -odd if ‖V (H), T‖ is odd. The components of

G− S − T that are T -odd are the components counted by q(S, T ). Each T -odd component

contributes at least 1 to dG−S(T ). Hence (2) cannot hold with |S| ≥ |T |, and we may assume

|T | > |S|.

Let q1 be the number of T -odd components having one edge to T and no edges to S;

since that edge is a cut-edge, q1 ≤ p. Let q2 be the number of T -odd components having one

edge to T and at least one edge to S; note that q2 ≤ ‖R, S‖. Let q3 be the number of T -odd

components having at least three edges to T ; thus q1 + q2 + 3q3 ≤ dG−S(T ). Note also that

q(S, T ) = q1 + q2 + q3. Summing the last inequality with two copies of the first two yields

3q(S, T ) = 3(q1 + q2 + q3) ≤ 2p+ 2 ‖R, S‖+ dG−S(T ).

Combining this inequality with (2) yields

2p+ 2 ‖R, S‖+ dG−S(T ) ≥ 3dG−S(T ) + 6k(|S| − |T |) + 6,

which simplifies to

‖R, S‖ ≥ 3− p+ dG−S(T ) + 3k(|S| − |T |). (3)

On the other hand, since G is (2r + 1)-regular,

dG−S(T ) = (2r + 1)|T | − ‖T, S‖ ≥ (2r + 1)|T | − [(2r + 1)|S| − ‖R, S‖] .
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Using this inequality, (3), and |T | − |S| ≥ 1, the given hypothesis 2r + 1− 3k ≥ 0 yields

‖R, S‖ ≥ 3− p+ (2r + 1− 3k)(|T | − |S|) + ‖R, S‖ ≥ 3− p+ (2r + 1− 3k) + ‖R, S‖ .

This simplifies to p ≥ 2r + 1− 3(k − 1), as claimed. �

3 Fewest cut-edges with no 2k-factor

To describe the extremal graphs, we begin with a definition. Keep in mind that here “graph”

allows loops and multiedges.

Definition 3.1. In a (2r+ 1)-regular graph G, the result of blistering an edge e ∈ E(G) by

a (2r+1)-regular graph H having no cut-edge is a graph G′ obtained from the disjoint union

G +H by deleting e and an edge e′ ∈ E(H) (where e′ may be a loop if r > 1), followed by

adding two disjoint edges to make each endpoint of e adjacent to one endpoint of e′. The

resulting graph G′ is (2r + 1)-regular.

Figure 1 illustrates blistering of one edge joining S and T in a 3-regular graphG with three

cut-edges and no 2-factor to obtain a larger such graph G′. The components of G′ − S − T

labeled Qi are components counted by qi, for i ∈ {1, 2, 3}.

•

•

•

•

•
•

•

•
•

S

Q2Q2

T

T

T

Q1

Q1

Q1

Q3

• •
•
•

Figure 1: A class of 3-regular graphs with three cut-edges and no 2-factor.

Theorem 3.2. For k ≤ (2r + 1)/3, a (2r + 1)-regular graph with 2r + 4− 3k cut-edges has

no 2k-factor if and only if the vertex set V (G) has a partition into sets R, S, T such that

(a) S and T are independent sets with |T | > |S|,

(b) all cut-edges join T to distinct components of G[R],
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(c) all edges incident to S lead to T (possibly via blisters that are components of G[R]),

(d) exactly k(|T | − |S|)− 1 components of G[R] are joined to T by exactly three edges each,

(e) each remaining component of R is (2r + 1)-regular, with no cut-edge, and

(f) if k < (2r + 1)/3, then |T | − |S| = 1.

Proof. Sufficiency: Let G be a graph G with 2r+4− 3k cut-edges, and suppose that such a

partition {R, S, T} of V (G) exists. Let q2 be the number of components of G[R] that blister

edges from S to T . Each cut-edge joins T to a T -odd component, by (b). The k(|T |−|S|)−1

components of G[R] joined to T by three edges (according to (d)) are also T -odd, as are the

q2 components of G[R] arising as blisters. Hence q(S, T ) ≥ 2r+4−3k+k(|T |− |S|)−1+ q2.

The number of edges joining S and T is (2r + 1) |S| − q2, by (c). Using also (a), we have

dG−S(T ) = (2r + 1)(|T | − |S|) + q2. We compute

q(S, T )− dG−S(T ) ≥ (2r + 1− 3k) + 2 + (k − 2r − 1)(|T | − |S|)

= −(2r + 1− 3k)(|T | − |S| − 1) + 2k(|S| − |T |) + 2 = 2k(|S| − |T |) + 2,

where the last equality uses (f) and the restriction k ≤ (2r+1)/3. Hence the given partition

R, S, T satisfies (2), and G has no 2k-factor.

Necessity: Suppose that G has 2r + 1 − 3(k − 1) cut-edges and no 2k-factor; we obtain

the described partition of V (G). The proof of Theorem 2.1 considers (2r+1)-regular graphs

with no 2k-factor and produces p ≥ 2r + 4 − 3k, where p is the number of cut-edges. To

avoid having more cut-edges, we must have equality in all the inequalities used to produce

this lower bound.

Recall that q(S, T ) counts the components Q of G[R] with ‖V (Q), T‖ odd. Also q(S, T ) =

q1 + q2 + q3, where q1, q2, q3 count the components having one edge to T and none to S, one

edge to T and at least one to S, and at least three edges to T , respectively. Equality in the

computation of Theorem 2.1 requires all of the following.

q1 = p (4)

q2 = ‖R, S‖ (5)

q1 + q2 + 3q3 = dG−S(T ) (6)

(2r + 1)|S| = ‖T, S‖+ ‖R, S‖ (7)

|T | − |S| ≥ 1,with equality when k < (2r + 1)/3 (8)
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By (6), contributions to dG(T ) not in ‖T, S‖ are counted in ‖T,R‖, so T is independent.

By (7), all edges incident to S lead to T or R, so S is independent, proving (a). The first

observation in proving Theorem 2.1 was |T | > |S|, and equality in the last step requires

|T | − |S| = 1 when 2r + 1 > 3k, as stated in (8) and desired in (f). By (4), the cut-edges

join T to distinct components of G[R], proving (b).

By (5) and (7), q2 = 0 implies (2r + 1)|S| = ‖T, S‖, making all edges incident to S

incident also to T . Since (2r + 1)|S| = ‖T, S‖ + q2, each component of G[R] counted by q2
generates only one edge from R to S. Thus each such component blisters an edge joining

S and T in a smaller such graph. This explains all the edges counted by ‖S,R‖. Hence we

view the edges incident to S as edges to T with possible blisters, proving (c).

We have accounted for (2r+1)|S| edges incident to T leading to S, including through q2
blisters. There are also p cut-edges leading to components ofG[R], where p = 2r+1−3(k−1).

This leaves (2r + 1)|T | − (2r + 1) + 3(k − 1)− (2r + 1)|S| edges incident to T that are not

cut-edges and join T to components of G[R] not counted by q2.

When k < (2r+1)/3 and |T | − |S| = 1, this expression simplifies to 3(k− 1). When k =

(2r+1)/3, it simplifies to 3[k(|T |−|S|)−1], which is valid for both cases. By (6), all remaining

edges incident to T connect vertices of T to T -odd components of G[R] counted by q3, using

exactly three edges for each such component. Hence there are exactly k(|T | − |S|)− 1 such

components of G[R], proving (d). This completes the description of the T -odd components.

Since we have described all edges incident to S and T , any remaining components of

G[R] are actually (2r+1)-regular components of G without cut-edges, proving (e). They do

not affect the number of T -odd components or the existence of a 2k-factor. �

Theorem 3.2 can be viewed as a constructive procedure for generating all extremal exam-

ples from certain base graphs. Given r and k with k ≤ (2r + 1)/3, we start with a bipartite

graph having parts T and R ∪ S, where |T | − |S| ≥ 1, with equality if k < (2r + 1)/3.

Also, vertices in T ∪ S have degree 2r + 1, and R has 2r + 4 − 3k vertices of degree 1 and

k(|T |− |S|)−1 vertices of degree 3. We expand the vertices of R to obtain a (2r+1)-regular

multigraph G. This is a base graph. We can then blister edges from S to T and/or add

(2r + 1)-regular 2-edge-connected components.

The case |T | = 1 and |S| = 0 gives the graphs found by Sylvester. When k > (2r+1)/3,

an inequality used in the proof of Theorem 2.1 is not valid. In this range no restriction on

cut-edges can guarantee a 2k-factor; we present a simple general construction. As mentioned

earlier, this is a sharpness example for the result of Bollobás, Saito, and Wormald [4] that

every (2r + 1)-regular 2t-edge-connected or (2t + 1)-edge-connected multigraph has a 2k-

factor if and only if k ≤ t
2t+1

(2r + 1). It is simpler than their more general construction.
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Theorem 3.3. For 1 ≤ t < r and k > t
2t+1

(2r + 1), there is a (2t + 1)-connected (2r + 1)-

regular graph having no 2k-factor.

Proof. Let Hr,t be the complement of C2t+1+(r−t+1)K2. That is, Hr,t is obtained from the

complete graph K2r+3 by deleting the edges of a (2t+ 1)-cycle and r − t+ 1 other pairwise

disjoint edges not incident to the cycle. Note that in Hr,t the vertices of the deleted cycle

have degree 2r, while the remaining vertices have degree 2r+1. Let G be the graph formed

from the disjoint union of 2r+1 copies of Hr,t by adding a set T of 2t+1 vertices and 2r+1

matchings joining T to the vertices of the deleted cycle in each copy of Hr,t (see Figure 2).

Deleting 2t vertices cannot separate any copy of Hr,t from T , and any two vertices of T

are connected by 2r+1 disjoint paths through the copies of Hr,t, so G is (2t+1)-connected.

Suppose that G has a 2k-factor F . Every edge cut in an even factor is crossed by an even

number of edges, since the factor decomposes into cycles. Hence F has at most 2t edges

joining T to each copy of Hr,t. On the other hand, since T is independent, F must have

2k|T | edges leaving T . Thus 2k(2t+ 1) ≤ 2t(2r + 1). �

• • •

•
• •

•
•••

•
• •

•
•••

•
• •

•
•••

•
• •

•
•••

•
• •

•
•••

Figure 2: (2r + 1)-regular, (2t+ 1)-connected, no 2k-factor ((r, t, k) = (2, 1, 2) shown).
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