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Abstract

We study 2k-factors in (2r+1)-regular graphs. Hanson, Loten, and Toft proved that
every (2r 4+ 1)-regular graph with at most 2r cut-edges has a 2-factor. We generalize
their result by proving for k£ < (2r+1)/3 that every (2r+1)-regular graph with at most
2r — 3(k — 1) cut-edges has a 2k-factor. Both the restriction on k and the restriction
on the number of cut-edges are sharp. We characterize the graphs that have exactly
2r — 3(k — 1) + 1 cut-edges but no 2k-factor. For k > (2r + 1)/3, there are graphs
without cut-edges that have no 2k-factor, as studied by Bollobas, Saito, and Wormald.

1 Introduction

An (-factor in a graph is an f-regular spanning subgraph. In this paper we study the
relationship between cut-edges and 2k-factors in regular graphs of odd degree. In fact, all
our results are for multigraphs, allowing loops and multiedges, so the model we mean by
“oraph” allows loops and multiedges.
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The relationship between edge-connectivity and 1-factors in regular graphs is well known.
Petersen [9] proved that every 3-regular graph with no cut-edge decomposes into a 1-factor
and a 2-factor, noting that the conclusion also holds when all cut-edges lie along a path.
Schénberger [I1] proved that in a 3-regular graph with no cut-edge, every edge lies in some
1-factor. Berge [3] obtained the same conclusion for r-regular (r — 1)-edge-connected graphs
of even order. Finally, a result of Plesnik [10] implies most of these statements: If G is an
r-regular (r — 1)-edge-connected multigraph with even order, and G’ is obtained from G by
discarding at most r — 1 edges, then G’ has a 1-factor. The edge-connectivity condition
is sharp: Katerinis [7] determined the minimum number of vertices in an r-regular (r —
2)-edge-connected graph of even order having no 1-factor. Belck [2] and Bollobés, Saito,
and Wormald [4] (independently) determined all (r,t, k) such that every r-regular t-edge-
connected graph has a k-factor; Niessen and Randerath [§] further refined this in terms of
also the number of vertices.

Petersen was in fact more interested in 2-factors. The result about 3-regular graphs
whose cut-edges lie on a path implies that every 3-regular graph with at most two cut-edges
has a 2-factor. Also, there are 3-regular graphs with three cut-edges having no 2-factor
(communicated to Petersen by Sylvester in 1889). As a tool in a result about interval edge-
coloring, Hanson, Loten, and Toft [0] generalized Petersen’s result to regular graphs with
larger odd degree.

Theorem 1.1 ([6]). For r € N, every (2r 4+ 1)-regular graph with at most 2r cut-edges has
a 2-factor.

Petersen [9] also proved that every regular graph of even degree has a 2-factor. Thus
when k£ < r every 2r-regular graph has a 2k-factor. As a consequence, regular factors of
degree 2k become harder to guarantee as k increases. That is, a decomposition of a (2r +1)-
regular graph into a 2-factor and (2r — 1)-factor is easiest to find, while decomposition into
a 2r-factor and 1-factor is hardest to find (and implies the others).

In this paper, we generalize Theorem [[.Tlto find the corresponding best possible guarantee
for 2k-factors. Limiting the number of cut-edges suffices when k£ is not too large.

Theorem 1.2. Forr k € N with k < (2r +1)/3, every (2r + 1)-regular graph with at most
2r — 3(k — 1) cut-edges has a 2k-factor. Furthermore, both inequalities are sharp.

Earlier, Xiao and Liu [I4] proved a relationship between cut-edges and 2k-factors, showing
that a (2kr + s)-regular graph with at most k(2r — 3) 4+ s cut-edges has a 2k-factor avoiding
any given edge. Their number of cut-edges in terms of degree and k is similar to ours, since
(2kr+s) —1—3(k—1) = k(2r — 3) + s + 2, but their range of validity of k in terms of the
degree of the full graph is more restricted than ours.



Our result is sharp in two ways. First, when & < (2r+1)/3 and there are 2r+1—3(k—1)
cut-edges, there may be no 2k-factor. Sylvester found examples of such graphs (forbidding
2-factors in a regular graph of odd degree greater than 1 forbids all regular factors). We
complete the Petersen—Sylvester investigation by describing all the extremal graphs without
2k-factors for general k.

Theorem 1.3. For r,k € N with k < (2r +1)/3, a (2r + 1)-regular graph with ezactly
2r+1—3(k —1) cut-edges fails to have a 2k-factor if and only if it satisfies the constructive
structural description stated in Theorem [3.2.

When k > (2r+1)/3, the condition in Theorem [[.2] cannot be satisfied, and in fact there
are (2r+1)-regular graphs that have no 2k-factor even though they have no cut-edges. A 2k-
factor can instead be guaranteed by edge-connectivity requirements. The result of Berge [3]
implies that (2r + 1)-regular 2r-edge-connected graphs have 1-factors and hence factors of
all even degrees, by the 2-factor theorem of Petersen [9]. Therefore, when k > (2r +1)/3
the natural question becomes what edge-connectivity suffices to guarantee a 2k-factor.

As mentioned earlier, this problem was solved by Bollobds, Saito, and Wormald [4], who
determined all triples (r,t, k) such that every r-regular t-edge-connected multigraph has a k-
factor (the triples are the same for simple graphs). As noted by Héggkvist [5] and by Niessen
and Randerath [8], earlier Belck [2] obtained the result (in 1950). Earlier still, Baebler [I]
proved the weaker result that 2k-edge-connected (2r + 1)-regular graphs have 2k-factors.

The special case of the result of [4] that applies here (even-regular factors of odd-regular
multigraphs) is that all (2r + 1)-regular 2¢t-edge-connected or (2t + 1)-edge-connected multi-
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which covers additional cases, is quite complicated. Here we provide a very simple construc-

graphs have 2k-factors if and only if £ < (2r +1). The general construction given in [4],

tion that completes our investigation and shows necessity of their condition for even-regular
t

factors of odd-regular graphs. In particular, for 1 <t < r and k > m(% + 1) we present
an easily described (2t + 1)-connected simple graph that has no 2k-factor.

Our results use the necessary and sufficient condition for the existence of /-factors that
was initially proved by Belck [2] and is a special case of the f-Factor Theorem of Tutte [12),
13]. When T is a set of vertices in a graph G, let dg(T") = >, .y dg(v), where dg(v) is the
degree of v in G. With |T'| for the size of a vertex set 1", we also write ||T'|| for the number
of edges induced by T" and || A, BJ| for the number of edges having endpoints in both A and

B (when AN B = @). The characterization is the following.
Theorem 1.4 ([2, 12 13]). A multigraph G has a (-factor if and only if
(5, T) — da-s(T) < £(|S] = [T1) (1)

for all disjoint subsets S, T C V(G), where q(S,T) is the number of components QQ of G—S—T
such that ||V(Q), T +£|V(Q)| is odd.



Since we consider only the situation where ¢ = 2k, the criterion for a component ) of
G — S — T to be counted by ¢(S,T) simplifies to ||V (Q),T|| being odd.

2 Cut-edges and 2k-factors

In this section we generalize Theorem [[.1] to 2k-factors.

Theorem 2.1. Forr k € N with k < (2r + 1)/3, every (2r + 1)-reqular multigraph with at
most 2r — 3(k — 1) cut-edges has a 2k-factor.

Proof. Let G be a (2r 4+ 1)-regular multigraph having no 2k-factor, and let p be the number
of cut-edges in G. We prove p > 2r — 3(k — 1). By setting ¢ = 2k in Theorem [[.4] lack of a
2k-factor requires disjoint sets S,7 C V(G) such that ¢(S,T") > 2k(|S| — |T'|) + dg—s(T).
Letting R = V(G) — S — T, the quantity ¢(S,T) becomes the number of components
of G[R] such that ||[V(Q),T| is odd. Thus ¢(S,T) has the same parity as ||R,T||. In turn,
|R, T|| has the same parity as dg_s(T"), since the latter counts edges from R to 1" once and
edges within T" twice. Hence the two sides of the inequality above have the same parity. We

conclude
4(S,T) > de_s(T) + 2k(|S| — |T) + 2 (2)

Say that a subgraph H of G — T is T-odd if ||V (H),T| is odd. The components of
G — S — T that are T-odd are the components counted by ¢(S,T"). Each T-odd component
contributes at least 1 to dg_s(T"). Hence (2)) cannot hold with |S| > |7'|, and we may assume
IT| > |S].

Let ¢ be the number of T-odd components having one edge to T" and no edges to S;
since that edge is a cut-edge, ¢; < p. Let ¢o be the number of T-odd components having one
edge to T" and at least one edge to S; note that g2 < ||R, S||. Let g3 be the number of T-odd
components having at least three edges to T'; thus ¢; + g2 + 3¢z < dg_s(T"). Note also that
q(S,T) = q1 + g2 + q3. Summing the last inequality with two copies of the first two yields

3¢(S,T) =3(qn + g2 + q3) < 2p+ 2||R, S|| + de—s(T).
Combining this inequality with (2) yields
20+ 2||R, S| + dg_s(T) > 3dg_s(T) + 6k(|S| — |T|) + 6,

which simplifies to
IR, S| =3 —p+de-s(T) + 3k(|S| — [T). (3)

On the other hand, since G is (2r + 1)-regular,
dg—s(T) = (2r + V|T| = [T, S[| = (2r + DIT] = [(2r + DIS| = || R, S]]
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Using this inequality, (3]), and |7'| — | S| > 1, the given hypothesis 2r + 1 — 3k > 0 yields
IR, S| =3 =p+ (2r+1=3k)(T|—[S))+[R, S| =23 —p+ (2r+1—=3k)+|R,5].

This simplifies to p > 2r +1 — 3(k — 1), as claimed. O

3 Fewest cut-edges with no 2k-factor

To describe the extremal graphs, we begin with a definition. Keep in mind that here “graph”
allows loops and multiedges.

Definition 3.1. In a (2r + 1)-regular graph G, the result of blistering an edge e € E(G) by
a (2r + 1)-regular graph H having no cut-edge is a graph G’ obtained from the disjoint union
G + H by deleting e and an edge ¢’ € E(H) (where ¢ may be a loop if r > 1), followed by
adding two disjoint edges to make each endpoint of e adjacent to one endpoint of ¢/. The
resulting graph G’ is (2r + 1)-regular.

Figure[lillustrates blistering of one edge joining S and 7" in a 3-regular graph G with three
cut-edges and no 2-factor to obtain a larger such graph G’. The components of G' — S — T
labeled @; are components counted by ¢;, for i € {1,2,3}.

Figure 1: A class of 3-regular graphs with three cut-edges and no 2-factor.

Theorem 3.2. Fork < (2r+1)/3, a (2r + 1)-regular graph with 2r + 4 — 3k cut-edges has
no 2k-factor if and only if the vertex set V(G) has a partition into sets R, S, T such that
(a) S and T are independent sets with |T| > |S],

(b) all cut-edges join T to distinct components of G[R),



(c) all edges incident to S lead to T' (possibly via blisters that are components of G[R]),

(d) exactly k(|T| — |S|) — 1 components of G[R| are joined to T by exactly three edges each,
(e) each remaining component of R is (2r + 1)-regular, with no cut-edge, and

(f) if k < (2r+1)/3, then |T| — |S| = 1.

Proof. Sufficiency: Let G be a graph G with 2r + 4 — 3k cut-edges, and suppose that such a
partition {R, S, T} of V(G) exists. Let ¢go be the number of components of G[R] that blister
edges from S to T'. Each cut-edge joins 7" to a T-odd component, by (b). The k(|T'|—|S|)—1
components of G[R] joined to T" by three edges (according to (d)) are also T-odd, as are the
¢2 components of G|R)] arising as blisters. Hence ¢(S,T) > 2r+4—3k+k(|T|—|5]) — 1+ qa.
The number of edges joining S and T is (2r 4+ 1) |S| — g2, by (c). Using also (a), we have
dg_s(T) = (2r + 1)(|T| — |S]) + g2 We compute

q(S,T) —dg-s(T) > (2r+1—=3k)+ 2+ (k—2r — 1)(|T| — |5])
=—2r+1-=-3k)(|T| = |S| = 1)+ 2k(|S| = |T|) + 2 = 2k(|S| — |T) + 2,

where the last equality uses (f) and the restriction k& < (2r+1)/3. Hence the given partition
R, S, T satisfies (2]), and G has no 2k-factor.

Necessity: Suppose that G has 2r + 1 — 3(k — 1) cut-edges and no 2k-factor; we obtain
the described partition of V(G). The proof of Theorem [2.1] considers (2r 4 1)-regular graphs
with no 2k-factor and produces p > 2r + 4 — 3k, where p is the number of cut-edges. To
avoid having more cut-edges, we must have equality in all the inequalities used to produce
this lower bound.

Recall that ¢(S, T") counts the components @) of G[R] with ||V (Q),T'|| odd. Also ¢(S,T") =
q1 + q2 + g3, where ¢1, 2, g3 count the components having one edge to T" and none to .S, one
edge to T and at least one to S, and at least three edges to T, respectively. Equality in the
computation of Theorem 2] requires all of the following.

@ =p (4)

@ =R, S| (5)

¢+ ¢+ 3¢5 = dg-s(T) (6)

@r+DIS[ =T, 5[+ IR, S| (7)

IT| —|S| > 1, with equality when & < (2r + 1)/3 (8)
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By (@), contributions to dg(T") not in ||T, S|| are counted in ||T, R||, so T is independent.
By ([7), all edges incident to S lead to T or R, so S is independent, proving (a). The first
observation in proving Theorem 2.1l was |T'| > |S|, and equality in the last step requires
|T| —|S| = 1 when 2r +1 > 3k, as stated in (§) and desired in (f). By (@), the cut-edges
join T" to distinct components of G[R], proving (b).

By (@) and (@), ¢ = 0 implies (2r + 1)|S| = ||7, 5|, making all edges incident to S
incident also to T'. Since (2r 4+ 1)|S| = ||T, S|| + ¢, each component of G[R] counted by ¢,
generates only one edge from R to S. Thus each such component blisters an edge joining
S and 7" in a smaller such graph. This explains all the edges counted by ||, R||. Hence we
view the edges incident to S as edges to 7" with possible blisters, proving (c).

We have accounted for (2r + 1)|.S| edges incident to T" leading to .S, including through g¢-
blisters. There are also p cut-edges leading to components of G[R|, where p = 2r+1—-3(k—1).
This leaves (2r + 1)|T| — (2r +1) + 3(k — 1) — (2r + 1)| S| edges incident to T that are not
cut-edges and join T to components of G|R] not counted by gs.

When k < (2r+1)/3 and |T'| — |S| = 1, this expression simplifies to 3(k — 1). When k =
(2r+4-1)/3, it simplifies to 3[k(|T"|—|S|)—1], which is valid for both cases. By (@), all remaining
edges incident to T' connect vertices of T' to T-odd components of G[R] counted by g3, using
exactly three edges for each such component. Hence there are exactly k(|7'| — |S|) — 1 such
components of G[R], proving (d). This completes the description of the T-odd components.

Since we have described all edges incident to S and T, any remaining components of
G|[R] are actually (27 + 1)-regular components of G without cut-edges, proving (e). They do
not affect the number of T-odd components or the existence of a 2k-factor. O

Theorem can be viewed as a constructive procedure for generating all extremal exam-
ples from certain base graphs. Given r and k with k£ < (2r + 1)/3, we start with a bipartite
graph having parts 7' and R U S, where |T| — |S| > 1, with equality if £ < (2r + 1)/3.
Also, vertices in T'U S have degree 2r + 1, and R has 2r + 4 — 3k vertices of degree 1 and
k(|T|—|S]) — 1 vertices of degree 3. We expand the vertices of R to obtain a (2r+ 1)-regular
multigraph G. This is a base graph. We can then blister edges from S to 7" and/or add
(2r 4+ 1)-regular 2-edge-connected components.

The case |T| = 1 and |S| = 0 gives the graphs found by Sylvester. When k > (2r+1)/3,
an inequality used in the proof of Theorem 2.1]is not valid. In this range no restriction on
cut-edges can guarantee a 2k-factor; we present a simple general construction. As mentioned
earlier, this is a sharpness example for the result of Bollobdas, Saito, and Wormald [4] that
every (2r + 1)-regular 2t-edge-connected or (2t + 1)-edge-connected multigraph has a 2k-

factor if and only if £ < ﬁ(% +1). It is simpler than their more general construction.



Theorem 3.3. For 1 <t <7 and k > 3=(2r + 1), there is a (2t + 1)-connected (2r + 1)-

reqular graph having no 2k-factor.

Proof. Let H,; be the complement of Cyyq+ (r —t+1)K,. That is, H,, is obtained from the
complete graph Ky, 3 by deleting the edges of a (2t + 1)-cycle and r — ¢ + 1 other pairwise
disjoint edges not incident to the cycle. Note that in H,, the vertices of the deleted cycle
have degree 2r, while the remaining vertices have degree 2r 4+ 1. Let GG be the graph formed
from the disjoint union of 2r 41 copies of H,; by adding a set T" of 2¢ 41 vertices and 2r + 1
matchings joining 7" to the vertices of the deleted cycle in each copy of H,; (see Figure [2).
Deleting 2t vertices cannot separate any copy of H,; from T, and any two vertices of T’
are connected by 2r + 1 disjoint paths through the copies of H,;, so G is (2t + 1)-connected.
Suppose that G has a 2k-factor F'. Every edge cut in an even factor is crossed by an even
number of edges, since the factor decomposes into cycles. Hence F' has at most 2t edges
joining 7' to each copy of H,;. On the other hand, since 7" is independent, F' must have
2k|T| edges leaving T'. Thus 2k(2t + 1) < 2t(2r 4 1). O

Figure 2: (2r + 1)-regular, (2t 4+ 1)-connected, no 2k-factor ((r,t, k) = (2,1, 2) shown).
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