arXiv:1806.05460v1 [math.PR] 14 Jun 2018

SEMI-FRACTIONAL DIFFUSION EQUATIONS
PETER KERN, SVENJA LAGE, AND MARK M. MEERSCHAERT

ABSTRACT. It is well known that certain fractional diffusion equations can be solved
by the densities of stable Lévy motions. In this paper we use the classical semigroup
approach for Lévy processes to define semi-fractional derivatives, which allows us to
generalize this statement to semistable Lévy processes. A Fourier series approach for
the periodic part of the corresponding Lévy exponents enables us to represent semi-
fractional derivatives by a Griinwald-Letnikov type formula. We use this formula
to calculate semi-fractional derivatives and solutions to semi-fractional diffusion
equations numerically. In particular, by means of the Griinwald-Letnikov type
formula we provide a numerical algorithm to compute semistable densities.

1. INTRODUCTION

Space-fractional diffusion equations are useful to model anomalous diffusions with
a faster spreading rate than the classical Brownian motion model predicts [I7]. In
this case the behavior is super-diffusive and a spreading rate t'/* with time ¢ for some
a € (0,2) may be modeled by a space-fractional partial differential equation

0 0
ap(l‘,t) = Dl @]?(.’E,t) + D2 Wp(l’,t)

for constants Dy, Dy € R with Dy, Dy < 0 if a € (0,1) or Dy, Dy > 0 if a € (1,2)
and Dy + Ds # 0 in both cases. Together with the initial condition p(x,0) = d, (the
Dirac delta distribution) the solution is well-known to consist of densities x — p(z,t)
of a stable Lévy process (X;);>o; see [5, [15]. Here, 2= and a(é—;)a are the positive and
negative fractional derivatives of order o € (0,2) \ {1}. We refer to [111 15 1] for
details on fractional derivatives, corresponding fractional partial differential equations

and their connection to stochastic processes with heavy tails. Numerous applications
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of fractional diffusions are known from physics, biology, hydrology and other sciences;
e.g., see [I1] [15], 18] and the references cited therein.

Our goal is to generalize these fractional diffusion models so that the more general
class of semistable Lévy process densities also appears as solutions of certain non-
local diffusion equations which we will call semi-fractional. The difference between
the stable and the semistable Lévy processes is that the power law behavior of the
tails of the Lévy measure can additionally be disturbed by log-periodic functions as
described below. Such log-periodic perturbations naturally appear in many physical
applications [20] and also in finance [2I]. We further aim to give numerical solutions
to semi-fractional diffusion equations by means of a Griinwald-Letnikov type formula
similar to [16] which also provides a method to calculate any semistable probabil-
ity density numerically. To the best of our knowledge, the only available numerical
method to calculate semistable probability densities is given in [4] by Laplace inver-
sion techniques for the special case of one-sided semistable distributions.

For some fixed ¢ > 1 and a € (0,2] a non-degenerate probability measure v is
called (c'/®, c)-semistable if v is infinitely divisible and there exists d € R such that

(1.1) V¥ = (M) % gq,

where v*¢ is the c-fold convolution power of v, well-defined by the Lévy-Khintchine
representation [I3, Theorem 3.1.11], (c}/®v) is the image measure of v under the
dilation x — ¢z and e, denotes the Dirac measure concentrated at d € R. If
holds for every ¢ > 1 and some d = d(c) € R then v is a-stable and thus semistability
generalizes stability with a discrete scaling property. If o = 2, then v is a normal
law and thus stable. We will exclude this case in our considerations and thus for
o € (0,2) the Fourier transform v(z) = [, €™ dv(y) = exp(¥(z)) is given by the
log-characteristic function
1Y

1+ 42

(1.2) v(x) =dax + / (eiwy —1-
R\{0}
for some unique a € R and a Lévy measure ¢ determined by

) do(y)

o(r,00) =r “O1(logr) and  ¢(—o0, —1) = r “Oy(logr)

for every r > 0, where 0,60, : R — [0, 00) are log(c'/®)-periodic functions, such that

0 := 0, + 05 is strictly positive. Due to the fact that ¢ is a measure, we know that
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r — r~*f(logr) is non-increasing, equivalently 6 fulfills the growth restriction
(1.3) O(y + 6) < e*0(y) for every y € R and 6 > 0

and carries over to #; and 0, instead of #. For more details on semistable
distributions we refer the reader to the monographs [I3] and [19].

The following result is from Theorem 3.17 of [I5]. Let (X;);>o be a Lévy process
with Fourier transform E[exp(izX;)] = exp(t¢(z)), then the family of linear operators
(T))io given by

Tif(x) :=E[f(x — X;)] forallt>0and z €R

determines a Cy-semigroup for functions f in Cy(R) with generator

L @ =—af@ [ (e -0+ ) )
R\{0}
where at least functions f with f, f’, f” € Co(R) N L*(R) belong to the domain of the

generator, and we have
(1.5) Lf(z) = ¥(2)f(z) forallz € R,

where ¢ is the log-characteristic function in and the Fourier transform of a
function f € L'(R) is given by f(m) = [p €™ f(y) dy.

This is our starting point to introduce semi-fractional derivatives in Section 2 in
terms of the generators of semistable semigroups. Using a Fourier series approach
for the periodic functions 6,0y we will establish a series representation of the log-
characteristic function in Section 3 which sheds some light on semi-fractional deriva-
tives. The Fourier series approach also enables us to give a useful numerical approx-
imation formula to semi-fractional derivatives by a Griinwald-Letnikov type formula
in Section 4. Finally, in Section 5 we consider semi-fractional diffusion equations for
which the densities of semi-stable Lévy processes are a valid solution. These densities

are then approximated numerically by means of our Griinwald-Letnikov type formula.

2. SEMI-FRACTIONAL DERIVATIVES AND DIFFUSION EQUATIONS

We introduce the following notation for periodic functions suitably appearing in

the log-characteristic function of a semistable law.
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Definition 2.1. Given ¢ > 1 and « € (0,2) we call a function 6 : R — (0, 00) admiss-
able if 6 is log(c'/®)-periodic and fulfills the growth restriction (L.3). An admissable
function 6 as above is called smooth if 6 is continuous on R and piecewise continuously
differentiable.

We will now define semi-fractional derivatives as a direct generalization of classi-
cal fractional derivatives by their generator form. For details on the connection of
ordinary fractional derivatives and stable distributions we refer to [I5]. Note that
the generators of semistable Lévy processes have been used in [I4] to approximate
fractional derivatives as ¢ | 1. As in the special case of classical fractional deriva-
tives, we will distinguish between the cases a € (0,1) and a € (1,2) and between
Lévy measures concentrated on the positive or negative half-line. We will need the

following auxiliary result for a € (1,2).

Lemma 2.2. Given ¢ > 1, a € (1,2) and a corresponding admissable function 6 we

have

(2.1) / v *0(logx) dr = y' *y(logy) for all y > 0,
y

where v is the continuous admissable function given by

(2.2) v(z) = e(a_l):”/ y “O(logy)dy  for all z € R.

xT

Proof. Clearly, from (2.2) it follows that + is continuous and v(x) € (0,00) for all
x € R. Further, v fulfills the growth restriction (|1.3]), since the left-hand side in (2.1
is strictly decreasing, and by a change of variables y = z ¢/* we get

V(@ +log e'/*) = eloDrelat/e / y~“0(logy) dy

etel/a

— el Dt [l b log s 4 log ) dz = (o)

xT

for all z € R, showing that 7 is an admissable function. ([l

2.1. Semi-fractional derivatives. We will first consider @ € (0,1). Given ¢ > 1

and a € (0,1) let ¢ be the Lévy measure given by

(2.3) ¢1(r,00) =r~“0(logr) and  ¢y(—o0,—7) =0
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for all » > 0 and some fixed admissable function 6. Let

(o)
ap = d
v [ s da)
0+
which is a positive and finite constant, and write L; for the corresponding generator

in (1.4) with a = a; and ¢ = ¢;. Then the generator takes a simpler form:

Definition 2.3. With the above assumptions, for a function f belonging to the
domain of L; we define the positive (or left-sided) semi-fractional derivative of order
a € (0,1) with respect to ¢, 6 by its generator form

aj;a f(z) = —Lif(z) = /Ooo(f(a:) — flz —y)) dor(y).

Jr

By reflection of the Lévy measure ¢ we get a new Lévy measure ¢, on the negative
half-line with

¢o(r,00) =0 and  ¢o(—o0, —1) =1 *d(logr)
for all » > 0. Write L, for the corresponding generator in (|1.4)) with ¢ = ¢ and

0—
Ty
dé(y) = —ar.
o) = [ o) = o

By a change of variables y — —y in ((1.4), we may express Ly in terms of the Lévy

a = Q9 =

—00

measure ¢; from (2.3). Then the generator takes a simpler form, similar to the

nonlocal operator in Definition but involving the values of f(y) for y > z:

Definition 2.4. With the above assumptions, for a function f belonging to the
domain of Ly we define the negative (or right-sided) semi-fractional derivative of
order o € (0,1) with respect to ¢, 6 by
-
Ocp(—x)
For functions f with f, f/, f” € Co(R)NL*(R) we know that the fractional derivative
of order a € (0,1) exists and integration by parts in combination with yields

[e.9]

F() = —Lof(a) = / (F(x) - Flz +9)) dés(y).

+

the equivalent Caputo form

P p@) = (o — ) — F()y~"0(ogy)] / f(@ — y)y8(log y) dy

807933“
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= /OO f'(x —y)y™0(logy) dy,
0+

where the first term vanishes since 6 is bounded, f, f' € Cy(R) and thus for some

constant C' > 0 we have
lim [(f(z —y) = f(2))y™*0(logy)| < Clim |f(z —y) — f(z)ly™
= C|f'(z)|limy'~* = 0.
(@) lim y
Analogously, the Caputo form of the negative semi-fractional derivative of order

a € (0,1) is given by

o~ < “a
mf(l’) = _/o+ f'(x+y)y “0(logy) dy.

Note that for constant # = 1/I'(1 — a) > 0 we get back the usual (positive and
negative) Caputo fractional derivatives of order o € (0,1).
Now we will consider a € (1,2). Given ¢ > 1 and a € (1,2) let ¢; be as above and

define .
o y
" '_/<1+y2 y) dorta)
0+

which is a real constant due to our assumptions. Write L3 for the corresponding
generator in (|1.4) with a = az and ¢ = ¢;. Then the generator equation (|1.4]) takes

a simpler form:

Definition 2.5. With the above assumptions, for a function f belonging to the
domain of Lz we define the semi-fractional derivative of order o € (1,2) with respect
to ¢, 6 by its generator form

aa

86791‘0‘

o)

f(2) = Lyf(x) = / (Fx—y) — F(2) +y f(2) dbrw).

0+

Again, by reflection of the Lévy measure ¢; we get the Lévy measure ¢, on the

negative half-line and we write L, for the corresponding generator in (|1.4]) with

o= 4= /(1 2 —y) dnly) = —70(1 L —y> don(y) = —as

— o0

Again, by a change of variables y — —y in ({1.4)), we may express L4 in terms of the
Lévy measure ¢; from (2.3). With this Lévy measure and the above shift, we obtain

the following generator:
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Definition 2.6. With the above assumptions, for a function f belonging to the
domain of L, we define the negative semi-fractional derivative of order a € (1,2)
with respect to ¢, 8 by
aa
Ocg(—x)
As before, for functions f with f, f/, f € Co(R)NLY(R) we know that the (negative)

fractional derivative of order a € (1,2) exists. Integrate by parts twice to obtain the

o0

J(2) = Lof(x) = / (Flx+y) — F(2) —y f(2) dbay).

0+

equivalent Caputo forms

P ) = / T (@) — Fle— )y 0(log y) dy

86791'0‘

(2.4) o
= [ [f'lz—y)y “v(logy)dy,
0+

where + is the function from Lemma , using that f/, f” € Cy(R) and the fact that

v is bounded, we obtain for some constant C' > 0
lim |(f(z —y) = f(x))y' v (logy)| < Clim |(f(z —y) = f(x)y"
< O|f"(@)|Tim == = 0.
yJ0
Analogously we get

)= /O T (Faty) — F(2) y0(ogy) dy

+
_ / (x4 y) y - (log ) d.
0+

Note that for constant § = (a« —1)/T'(2—a) = —1/T'(1 —«a) > 0,ie. vy = 1/T'(2 - ),
we get back the usual positive and negative) Caputo fractional derivatives of order
a € (1,2).

2.2. Zolotarev derivative and ballistic scaling. In our previous considerations
we have excluded the case a = 1 and we now briefly illustrate by an example the
technical difficulties that may arise for &« = 1. A prominent example of a semistable
distribution is the limit distribution of cumulated gains in a sequence of St. Petersburg
games, where ¢ = 2 and o = 1. The Lévy measure of the semistable limit distribution

was first established in [I2] and is the discrete measure ¢; given by

o1 (2") =27 forall k € Z.
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One can easily show that for » > 0 we have

¢1(r,00) =r “O(logr) and  ¢1(—o0,—r) =0,
where 6 is the admissable function

0(x) = exp (x - LéJ log 2) for all z € R.

We further obtain

y — 1
p— d pu— p—
0+ k=—o0
and
[( v [ -
— —y) d S d — _
w= [ (s -v) dot =~ [ Loanm == Y = o0
0+ 0+ k=00
Hence, both Definitions and fail to give a suitable semi-fractional derivative
in this special case with a = 1. To overcome this problem, recently in [I0] the

Zolotarev fractional derivative was introduced. In the ballistic case @ = 1 a direct
generalization of the Zolotarev fractional derivative in [I0] to our semistable situation
is the following. As in Section 3.2.3 of [9] we define

a = as /0+ (1 Y Sin y) b1(y)

in the Lévy-Khintchine representation ((1.2)) of the log-characteristic function ¢ with

Lévy measure ¢; as above and write LY, for the corresponding generator in ([1.4)):

Definition 2.7. With the above assumptions, for a function f belonging to the
domain of L% we define the positive Zolotarev semi-fractional derivative of order

a = 1 with respect to ¢, 8 by its generator form
Oz o

G )= L21@) = [ (=) = (@) + (@) siny) dono).

0+

Note that for functions f with f, f’, f” € Co(R)N L*(R) by the mean value theorem

we observe for some € € [z —y, 2| and 1 € [€, 7]
f@—y) = fx) + f(x)siny = —y f'(§) + f'(z)siny
= f'(@)(siny —y) +y (f'(x) = f(€))
= f'(@)(siny —y) +y (= &) f"(n)
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showing that as y | 0

|flz—y) = f(@) + f(z)siny] < || f'llo| siny — y| + ¥ /"l = O%?).

Hence the Zolotarev semi-fractional derivative of order o« = 1 exists for such functions

and integration by parts yields the Caputo form

02 1(r) = / " (@) cosy — f'(x — )y 6(logy) dy.

(90,9x +

Note that for constant § = 2/7 we get back the Zolotarev fractional derivative of
order a = 1 in [10].
Again, by reflection of the Lévy measure ¢; we get the Lévy measure ¢, on the

negative half-line and we write L for the corresponding generator in (1.4]) with

0= 00
a:= /_OO (153/2 —siny) dea(y) = —/0+ (1fy2 —siny) do(y) = —as,

then, by a change of variables y — —y in (1.4)), this generator takes the simpler form:

Definition 2.8. With the above assumptions, for a function f belonging to the
domain of L7 we define the negative Zolotarev semi-fractional derivative of order

a = 1 with respect to ¢, 0 by its generator form

(93 - B oo ) '
—30,9(—:17) f(x) = Lzf(z) = / (f(x+y) — f(x) — f'(x)siny) do, (y).

0+

As before, for functions f with f, f/, f” € Co(R) N L'(R) the negative Zolotarev
semi-fractional derivative of order @ = 1 exists and integration by parts yields the

Caputo form

0= flz) = /0°° (f'(z +y) — f'(x) cosy) y~'0(logy) dy.

+

3. SEMISTABLE LOG-CHARACTERISTIC FUNCTIONS

An alternative, equivalent definition of the semi-fractional derivative using the
Lévy-Khintchine representation together with is the following. Given c > 1,
a € (0,2) \ {1} and a corresponding admissable function 6, with our choice of the
shift a; for a € (0,1) and a3 for a € (1,2), we may define 9“f /0. px* as the function
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with Fourier transform

5‘7(%) _ ~Lif(@) = - /:(emy ~1)déi(y) f(z)  ifac(0,1),

Laf@) = [ (e =1 i) doaty) Fla) it e (12

+

for suitable functions f. Analogously, with the shift ay for @ € (0,1) and a4 for

a € (1,2), we can define 0“f/0.9(—x)* as the function with Fourier transform

o “Liw) = - [ (e -Danw) fe) a0,
(32) ————(@)= o ~
Oco(—2) Taf(x) = /O - Lpim)do) @) fae(1,2)

for suitable functions f, as well as the positive Zolotarev semi-fractional derivative

for = 1 (using the shift as) as the function with Fourier transform

63 g = L3 = [ (=1 = iwsiaty) din(y) Flo)
respectively

@? T T i . -~
B @ =15 = [ e i) dory) Flo

for the negative Zolotarev semi-fractional derivative.

Our aim is to reduce - to simpler forms. Since the right-hand sides in
— coincide with F(x) f(a:) for the log-characteristic functions ¢ without
drift part, corresponding to the generators L; to L, in Definitions and Lf, in
Definitions and [2.8] we will now derive a series representation of ¢ depending on
the Fourier coefficients of the periodic function 6, provided @ is a smooth admissable
function. This will directly provide us with a series representation of the Fourier
transform of semi-fractional derivatives and will also enable us to give a formula of
Griinwald-Letnikov type for the semi-fractional derivatives in Section 4. Given ¢ > 1
and a € (0,2), let § be a smooth admissable function as in Definition 2.1 In this

case for all z € R we have the Fourier series representation

oo o 9
(3.5) b(z)= Y ™ with é::%

k=—o00
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and the Fourier coefficients (cx)rez € C fulfill

o

C
cr=c and || < = for all k € Z \ {0} and some C' > 0;
e.g., see [7] for details.

3.1. Log-characteristic function for o # 1.

Theorem 3.1. Givenc > 1, a € (0,2)\ {1} and a corresponding smooth admissable
function 0 with Fourier series representation , let 1) denote the log-characteristic
function corresponding to the generator Ly in Deﬁnitz’onfor a € (0,1), respectively
the generator Ly in Definition [2.5 for a € (1,2). Then we have

o0

(3.6) P(r) = — Z wD(iké — o+ 1) (—iz)*™™*  for all v € R.

k=—o00

To prove Theorem [3.1] we will need the following refinement of Lemma [2.2] for the
case o € (1,2).

Lemma 3.2. Givenc > 1, o € (1,2) and a corresponding smooth admissable function
0 with Fourier series representation (3.5)), the admissable function v from Lemma

15 continuously differentiable with Fourier series representation

(3.7) v(z) = Z Gk ik for all z € R.

Proof. For any y > 0 we obtain by dominated convergence

/ z~*0(log x)dx :/ Z cpe*elos(®) g —/ Z cpr Ot dg
Y k=—o00 k=—o0
re yfaJr’ikchl
— —a+1 cd g
Z / e e Z L

k=—c0 VY k=—o00

_ y—a-l-l E Ck : ~ezkclog( Y)

a—1—1ikc
k=—0o0

showing (3.7) by Lemma . Since the admissable function 6 is smooth we have
lex| < Ck=2 for all k € Z\ {0} and some C' > 0. Thus we get
_ x| [

Ve =12+ k& ~ [kle T |k

which according to Theorem 2.6 in [7] leads to continuous differentiability of v. [

Ck

oa—1—1ke
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Proof of Theorem [3.1 We first consider the case « € (0, 1). For the log-characteristic
function 1 corresponding to the generator L; we obtain by dominated convergence

and integration by parts

v@) = [ @ =ndont) = [ tm (6 1) dorty

-+ + n—oo
— lim (e(”_l) ) déy (y)
= lim (m; - —) e(’x_%)yy_ae(log y) dy
n—oo foi n

Since 6 is a smooth admissable function with Fourier series (3.5) we have for some

constant C; > 0

i L ikc
‘e(w n) ]ogy‘ Z ’ yk

k=—0o0

< Z e—y/ny—a|ck| < Ole—y/ny—a
k=—00

and thus by dominated convergence we get
1) < o -
— 1 ot (sz;)y —a—i—zkzcd
b=t (1= 3) 30 e [ ey
1 o0 1 —iké+a—1
— ] i — — — ['(eke — 1
Tim (w n) Z Ck (n m) (k¢ —a+ 1),

k=—o00
where the last equality follows as on page 144 in [3], since (1 — a+iké) = 1 —a > 0.
We further obtain for k € Z \ {0} using |'(1ké — a + 1)| < Cy|k| @1/ 2e7IFem/2 a5 on
page 20 of [I]
1 —ikéta—1
Ck (— - m) L(iké —a+1)

n

1
< |Clc|(x2 + n_Q)a/2 exp (kc arg <— — Zx)) IT(iké — a +1)]
< Cyle| (2% 4 1)/ 2elklen/2) | mat1/2 = Iklen/2
< CQC(.TQ + 1)0‘/2|k’7a73/2’

where the last inequality follows again by the smoothness assumption for 6, since
lci| < C|k|72 for some C' > 0. Thus the series in (3.8) is absolutely convergent and
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by dominated convergence we get

[e'S) 1 a—iké
Y(z) = _kZOO ¢ lim (ﬁ — zm) [(iké —a +1)

=— Z cr(—iz) " * T (iké — a + 1),

k=—o00
showing (3.6]) in case o € (0,1).

Now we consider the case a € (1,2). Since the proof is similar to the case o € (0, 1)
we only list the main steps and skip the technical details. For the log-characteristic
function ¢ without drift part, corresponding to the generator Ls, we obtain by dom-
inated convergence and integration by parts

P(a) = / (e 1~ iay) dé (y)

+

— /0:0 lim (e<”_) —1- <m - %) y) de1(y)

= lim b (m— %) (e(””) = 1) “0(log y) dy.

0+
Let p be the measure on (0,00) with Lebesgue density y — y~“f(logy), then by

Lemma we have u(y,o0) = y'~*vy(logy) for a continuously differentiable admiss-
able function . Thus, as in the case a € (0, 1) we get with integration by parts

b(z) = lim (ix— 1) /O h (e(w ol 1) *G(log y) duly)

n—oo n +

IR
= lim <z’x— —) / e(w_ﬂyyl*a’Y(logy) dy.
0

n—o0 n +
Since 7 is a smooth admissable function with Fourier series (3.7) and o« — 1 € (0, 1),

we can proceed as above to obtain
1 2 oo cn 1 —ikc+a—2
= I T — — S . T'(ikc — 2
(z) = lim (”” n> k;wa— 1— ike <n m) (ike—a+2)

o0 1 a—iké
= — Z cknhg)lo (E—m) [(iké —a+1)

k=—0o0
== > op(—ix)* (ke — o+ 1)
k=—00

concluding the proof. 0
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Remark 3.3. According to (3.6)), we can also represent the log-characteristic function

as
Y(x) = —|z|*h(x) for all z € R,
where
h(z) = Z cr T'(iké — a + 1) (—isgn(x))*ke| | e
k=—o0

showing that h is bounded and z +— h(e®) and = — h(—e®) are continuous and
log(c/*)-periodic functions. In particular we have 1(0) = — lim,_,¢ |z|*h(log |z]) = 0.
Together with (3.1) we may also write for x € R

0f S

8c7gxa

(3.9)

where
cpl'(tké — a+ 1) if @ € (0,1),
Wy =

") —al(iké—a+1)  ifae (1,2).
Equation (3.2) shows that for the Fourier transform of the negative semi-fractional
derivative, due to reflection, we simply have to replace x by —z in (3.6)), so that

@T = - Na—iké 7

W(x) = Y wi(ix)* " f(x).

k=—o00

(3.10)

3.2. Log-characteristic function for o = 1.

Theorem 3.4. Given ¢ > 1, a« =1 and a corresponding smooth admissable function
0 with Fourier series representation (3.5)), let ¢ denote the log characteristic functwn
corresponding to the generator LY in Deﬁmtzon with L} f=v- f as in

Then we have

(3.11)  ¢(x) =— Z e [ (ike) (( ix) TR 4 i cos (g%é)) — ¢g iz log(—ix)

keZ\{0}
for all x € R where we define 0 -1log(0) := 0.

Proof. Since the statement is obviously true for z = 0, we only consider = # 0. The

log-characteristic function 1 corresponding to the generator L% is given by

(z) = / (% — 1 —iwsin(y)) dés(y)
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~gim [ (e(ixi)y”” R (w; - l) sin(y' "/ ")) do: (y)

n— 00 0+ n
1 1 o - n
= lim (1 + —) (w: — —) / yl/m <e(”_%>yl+1/ — cos(y1+1/”)> vy '0(log y)dy
n—00 n n 0+

for every x € R\ {0} using dominated convergence and integration by parts. To solve
the first part of the integral above, for all n € N we obtain by dominated convergence

and a change of variables z = y!T1/

1

1\ [ 1 1
I (x): = (1 * ﬁ) / yrel =2 10 log ) dy
0+
_ Ck/ pliz=1)z g+ fiyike-1 g,
0

k=—o00 +

[e's) 1 __ikE_n_
1 n+1 n+1 1 n
_ L r 1%
ch(n zx) (n—i—l—H Cn—i—l)’

k=—oc0

where the last equality follows from page 144 in [3], since R(—=7 + 25ik¢) = 5 > 0,

Similarly, for the remaining part of the integral we obtain

1 © 1. _
Iy = (1 + —) / yr cos(y' )y~ 0(log y) dy
nj Jo+

o 00
1 . n gpa
= g ck/ cos(z) zart tar el gy
0

k=—o00 +

Since R (n%l + ike)) = n%l € (0,1), we get

= 1 n T 1 n
Iy = r ke = ke
9 ch (n+1+n+1Z C)COS(2(n+1+n+1Z c))

k=—o00

according to page 319 in [3]. Combining these two results, the log-characteristic

function reads as follows

o(a) = Jim (0= 1) (1) = 1)

n—00
> 1 1
:chlim (ix——)T( + n iké)
ft oo n n+1 n+1

1 ke T 1 n
— — —cos | = + ikc
n 2\n+1 n+1
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where the last equation follows with dominated convergence. To compute the limit
for £ = 0 we make use of the fact that

cos (2(#) —1-0(n™?) and (1 - zx)+ _ o8 L gy,

n+1) n n

Hence, since F(%H) =n+ 11+ n+r1) we get

() ((2-o) () ) i

as n — 00. Since the gamma function is continuous on C\ {—1, —2,...}, alltogether

we obtain
P(x) = — Z el (ike) ((—z’x)lfiké + iz cos (g%é))
keZ\{0}
4o i : 1 r 1 1\ 7r
co lim iz — — — —ix —cos | —/—=
¥ o0 n n+1 n 2(n+1)
= — Z el (ike) ((—z':c)l_ik6 +ix cos <gzké>> — coizlog(—ix).
keZ\{0}
for every x € R\ {0} concluding the proof. O

Remark 3.5. Analogously to Remark [3.3] we may define

— D(ike)  if bk #0
3.12 -
(3.12) ok {0 if k=0
and
cxl'(ike) cos (5ike) if k#0
3.13 = 2
(3.13) 2 {0 if & = 0

so that for suitable functions f by (3.3)) we can write

314) 2Ly = [ 3w (i) 4 wpa( i) + ol i) log(—ix) | Fla)
Ocox keZ\ {0}

A comparison of (3.3) and (3.4)) shows that for the Fourier transform of the negative

Zolotarev semi-fractional derivative, due to reflection, we simply have to replace x by
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—z in (3.11)), so that

0=/ i ) -
(3.15) #_fx)a(x): Z Wi (1) ¢ wpo iz 4 coizlogliz) | flzx).
6 kezZ\{0}
3.3. Continuity at a = 1 of log-characteristic functions. Let (a;,).en be a

sequence in (0,2) \ {1} with «,, — 1. Define ¢, := 27w,/ log ¢ and assume that
(3.16) On(x) := Z cr et xR,
keZ

is a sequence of smooth admissable functions with respect to ¢ > 1 and «,, # 1. For

the corresponding log-characteristic functions we write

(3.17) Unl(r) = = > e Dk, — oy + 1) (—ix)on ke
k=—0c0
according to Theorem 3.1} Clearly, we have for all 2 € R
(3.18) On(x) = ) cre™™ = 0(x),
kEZ

where ¢ = 27/ log ¢ and 6 is a smooth admissable function with respect to ¢ > 1 and

« = 1. Hence, according to Theorem [3.4] the corresponding log-characteristic function

is given by

(3.19) wz(z)=— Y ¢T(ike) ((—ix)l—iké + iz cos <gzkc>) — ey iz log(—iz).
keZ\{0}

We will now show that appropriate shifts of 1, converge to ¢z and thus get a certain

continuity result as a — 1 for the log-characteristic functions, which transfers to

weak convergence of the corresponding semistable distributions by Lévy’s continuity

theorem.

Theorem 3.6. For all n € N define

v
2 d, = I'(ike, — o, + 1 —(iké, — o, + 1
(3.20) éck (iké, — an + )cos<2(z Cp, — Qpy + ))

then for all x € R as n — oo we have

(3.21) U(x) +ixd, — Yz(z).
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Further, the shifts d,, are representable as

/ cos(x) x~ "0, (log x) dx if ay, € (0, 1),
(3.22) d, = 7%

/Oo(cos(x) — Dz *0,(logz)dx if a, € (1,2).
0+

Proof. First note that ¢, — ¢ as a,, — 1 and thus by dominated convergence we get
forall z € R

Z Ck F(z’kén —a, + 1) (_ix)anfikén N Z Ch F(iké) (_Z-x)lfiké.
kez\{0} kezZ\{0}
Hence to prove (3.21)) it remains to show

col'(1 — ap)(—iz)* +ixd, — iz Z cx I'(ik€) cos (g%é)) + coix log(—iz),
keZ\{0}

which according to (3.20]) reduces to
I'(1—ay,) ((—z’x)o‘" + iz cos (g(l — ozn))) — iz log(—ix).
For the latter we observe
Il —ay,) ((—im)o‘" + iz cos (g(l - an)>>

(i) + cos (31 )

=2 —ay,) .
(an—1)log(—iz) __ 1 cos (Z(1 — o)) — 1
=iz D(2 - ay) (e —————— + (2(1_a ) )
d ~ d s
— iz (1) (— etlos—i) | L — cog (— t) ) = ixlog(—iz),
dt o dt 2 /|,

concluding the proof of (3.21]). Further, for a;,, € (0,1) an application of (21) on page
319 of [3] to (3.20) and dominated convergence shows

d,, = Z cx I'(iké, — vy, + 1) cos <g(zkén —ay, + 1))

keZ
- ke > ey~
— Z Ck/ COS(:L‘) :L.foerzkcn dr = / COS(:I;‘) o Z Cr ezkcn log dr
keZ 0+ 0+ Pyt
o0
=/ cos(z) x~ "0, (log x) dz
0+

and a similar calculation in case «,, € (1,2), applying (12) on page 348 of [3] instead,
concludes the proof of (3.22)). O
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Remark 3.7. Note that the representation ([3.22)) directly shows that for functions f
with f, f/, f" € Co(R) N L*(R) we get convergence of the shifted Caputo forms

O p@) + duf'(2) » 22 f(a)

Oc.p,, T Oco
if dominated convergence can be applied here. This can even be shown without the
smoothness assumption on the admissable functions 6,,, we only need that the Fourier
coefficients (¢, )nez are absolutely summable, to ensure that 6,,(x) — 6(z), and that
dominated convergence can be applied to the shifted Caputo forms. Using ,
and Plancherel’s Theorem as in Theorem 3.11 of [I0] for the special case of constant

0, = 0 = cy, this further shows L?-convergence

Oz f

2
of the corresponding shifted semi-fractional derivatives for suitable functions f with
fG L*(R) and Lf € L*(R) for all generators L corresponding to the semi-fractional

derivatives 0°" /0., x*" and 0z /0, g, if again dominated convergence can be applied.

4. SEMI-FRACTIONAL GRUNWALD-LETNIKOV TYPE FORMULA

The results of the last section provide an infinitesimal approach to semi-fractional
derivatives. This can be applied to approximate semi-fractional derivatives numeri-
cally. It will also enable us to give a numerical algorithm for the solution of certain
semi-fractional diffusion equations in Section 5. Similar to the assumption above, for
given ¢ > 1 and a € (0,2) \ {1} let 6 be a fixed smooth admissible function with
Fourier coefficients (cj)rez and recall from Remark

_Jal(iké —a+1) if a € (0,1),
"7l -al(ki—a+1) ifae(1,2).

Definition 4.1. Let 6 be a smooth admissable function with respect to ¢ > 1 and
a € (0,2)\ {1}. For every h > 0 and a bounded function f we define the Grinwald-
Letnikov semi-fractional difference in x € R by

o G iké—a G a —ikc j .
N ED DR L D G Ch L !

k=—o0 §=0 J

which is well-defined and real-valued due to the following result.
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Lemma 4.2. For every bounded function f and x € R the double series in (4.1)) is
absolutely convergent and ,AZ,f(v) € R.

Proof. First note that since 6 is a smooth admissable function the Fourier coefficients
(ck)rez are absolutely summable and fulfill €= = ¢;. Thus also (wg)kez is absolutely
summable due to |['(ik¢ — o+ 1)| < |I'(1 — «)] for all k& € Z. Further, by Theorem
VI.1in [6] we have |(j)\ < C-j717%@ for all € C, j € N and some C > 0 and hence

with M := || ]| we get

ol (0] < 3l (1 €350 < oo

k=—00 =
Using
(a—iké><_1)j _ (iké—a+j— 1) _ L(iké¢ — a+ )
J J §IT(iké — a)
we may rewrite
WAL f(z) = £h™ Z e D(iké — a + 1) Z F.(ch.—~a +7) Flw — jh)ekeiosh
: oo s JjIT(ike — )

. - \D(iké — o+ j R
= +h Z (ck(zkc—a)z ( 7 J) f(:v—yh))eklgh
=0

k=—o00

to see that ,AZ,f(z) € Riff &y = a; for all k € Z. Using I'(z) = I'(2) for all
ze€ C\{0,-1,—1,...} we get

. ~T(—ikc —a+
a_p = (—zk:c—oz)z ( S J) f(z —jh)
— J!
J
— I'(iké — o+
:ck(zk‘c—a)z ( T J) f(@—jh) = ax
=0 I
concluding the proof. ([l

Lemma 4.3. Let f € L'Y(R) be bounded and let 6 be a smooth admissable function
with respect to ¢ > 1 and o € (0,2) \ {1}. Then for every x € R as h | 0 we have

o0

AT (@) = S wl(—iz) e fa).

k=—o00
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Proof. For fixed h > 0 and every x € R we obtain using dominated convergence

AT () = / 1,08, 1) dy

_ / Wk_zoo;w b ( ‘j"ké)<—1>ﬂ‘f<y—jh>dy

e} o

= Y e (a _jmc)(—w / e fy — jh) dy

k=—00 §=0

_ Z oy ik Z <a _jlké) (_1)jeixjhf(x)

k=—00 7=0

- ikéi—a T — (o —iké izh\j

= Z wph™ " f(z) : (—e™").
k=—o00 7=0 J
Since R(a — iké) > 0 it follows that

ad — iké o , -
Z (Oé .l C) (_em;h)] _ (1 . eth)aflkc,
i=0 J

e.g., see [8, p.397-398]. Thus by dominated convergence we get

oo

' 1— Bmh a—iké R
A% =t Y (F5) T

=—00

0o __izh a—iké N o] DR
= Z Wy l}iﬂ} (1 he ) f(z) = Z wk(—ix)a_mf(l“)
k=—o00

concluding the proof. O

Combining (3.9) and Lemma [4.3] Fourier inversion directly yields a Grinwald-

Letnikov type formula for the semi-fractional derivative.

Theorem 4.4. Let 0 be a smooth admissable function with respect to ¢ > 1 and
a € (0,2)\{1}. Further, let f € L*(R) be a bounded function such that all derivatives
of f up to an integer order n > o+ 1 exist and f™ € L'(R). Then for almost every
x € R we have

o~ f( ) = hmhA 9f = hm Z Wi hlkc az ( —.]Z/{f) (—1)]f(x _jh>

0,01 10
) ] =0
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Remark 4.5. Analogously, by (3.10) and the same steps of proof as in Lemma [4.3]
with the same conditions on f as in Theorem [4.4] we get a Griinwald-Letnikov type

formula for the negative semi-fractional derivative
o ke |
- _1 hzkc a _1)/ )
ac,e(—x) ﬁfg Z Wk JZO( j )( ) f(z+ jh)

for almost every = € R.

Example 4.6. Let f(z) = exp(—z?) then f,f’, f” € Co(R) N L'(R) so that the

generator and Caputo forms of semi-fractional derivatives are equivalent. For fixed
€ (0,2) \ {1}, we define the 27-periodic function
asin(z) N 1

6I'l—a) T'(1—-aw)
asin(z) 1

6T -a) Ti—a To€l2)

if « € (0,1),
O(z) =

Thus, eliminating the first term we will receive the ordinary fractional derivative of
order a. Then 0 is a smooth admissable function and according to Theorem the
Griinwald-Letnikov formula approximates the semi-fractional derivative of f of order

Ima and 0. For a = 1.5, the numerically evaluated Caputo

a with respect to ¢ := e
form of the fractional (cancel the sine part in the definition of #) and the semi-
fractional derivative of Definition on the intervals [—5,5] and [0, 0.5] are shown
in Figure [1] together with the corresponding Griinwald-Letnikov approximation of
the semi-fractional derivative. For the numerical approximation of the Caputo forms
we used the function quadcc in GNU Octave [2], which uses adaptive Clenshaw-
Curtis rules to calculate the integral. For all computations, we used a step size of
h = 0.01 and for each point of interest, we truncated the inner sum to j < 200 in
the Griinwald-Letnikov approximation (4.1)). To study the influence of the parameter
a on this derivative, we varied a between 0.4 and 1.6 in Figure The derivatives
shown are the Caputo forms of the semi-fractional derivatives numerically evaluated

by the same quadcc method as above.

Finally, we want to answer the question of Griinwald-Letnikov type formulas for
the Zolotarev semi-fractional derivative of order aw = 1. Let again ¢ > 1 be fixed and

let 6 be a smooth admissable function with Fourier coefficients (¢ )rez.
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T semi-fractional
(a) (Semi-)fractional derivative of order @ = 1.5
from Example in the interval [-5, 5].

(b) Zoom of (a) to the interval [0, 0.5].

FI1GURE 1. Comparison of numerically evaluated Caputo forms (solid

lines) and Griinwald-Letnikov approximations (dashed lines) for frac-
tional and semi-fractional derivatives.
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FIGURE 2. Semi-fractional derivative from Example for different
orders « on the interval [—5, 5].
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Definition 4.7. For every fixed h > 0 and a bounded, differentiable function f we
define

(42) pAcof(x) = Z <wk,1 piket Z (1 _.i%) (=1) f(x — jh) + wk,zf/(iv)) ;

k=—00 j=0 J

for every x € R, where (wg1)kez and (wk2)kez are given by (3.12)) and (3.13]).

With the same arguments as in Lemma [£.2] and [£.4) we get the following result.

Lemma 4.8. Let f € L'(R) be bounded and differentiable. Then for every r € R,

the series in 15 absolutely convergent, real-valued and as h | 0 we have

(4.3) Noof(z) = ( 3w (i) wm(—m)) o).

k=—00

Definition 4.9. For every fixed h > 0 and a bounded, differentiable function f with
f'(y) = O(Jy|=?) for some B > 0 as y — —oo, we define

P00 f(x) = —covf () + co Z n1(5) = f'(x = jh))
for every x € R, where v ~ 0.5772 is the Euler-Mascheroni constant.

Remark 4.10. Due to the assumptions on f’ in Definition 1.9 ?A.qf(z) exists for
every € R. Further, for h € (0, 1), we are able to give an alternative representation

of the limit as A | 0, namely
ah—s—l

(4.4 it Acaf(0) = iy (3 f0) — 1(0) )

for every x € R, where % f is the Caputo form of the usual fractional derivative
of order h + 1 € (1,2). To see this, first note that

WAcof () = —covf'(x) + co Z Lioy(5h) — f'(x — jh))
(4.5) -
S e f'(#) + o / (@) )~ =) dy

due to the convergence of the Riemannian sums for A | 0. On the other hand, the
right-hand side of (4.4) equals

v (g0~ 1'0))
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1 00 , . - /oo , 1
S — flx— dy — d
(F<1_h)/0 (f'(@) = flle=y)y ™ dy 1 f@)y™dy

1
-1 _ 1 /
( (e =) 7@
1 (o]
! 1 ! . —h—1 )
e @) - - n) )
Since as h | 0
1 d 1
R ———1 _——
<r(1 S ) a1 - 1)
with the Euler-Mascheroni constant v, it follows that
- ah—"_l / / * ! !/ -
0 (@) = 1)) =)+ [ (00 ) - £ = )y
as h | 0 and this together with (4.5)) proves (4.4)).

Lemma 4.11. Let f € LY (R) be a bounded, differentiable function with f'(y) =
O(ly|=?) for some B >0 as y — —oo. Then for every x € R as h | 0 we have

_ @

T

=0

-~

(4.6) INoof () = col—iz) log(—iz) f(z).

Proof. Using equation (4.4]), we get

lm Ao f (z) = lmcoh™ ((—ix)*™ — (~ix)) f(x)
L (i) =14 . S
= 1’1&1 CO(—W)TJC(QU) — —cgizlog(—ix) f(x)
for every x € R. 0

Combining Lemma and with equation (3.14)), Fourier inversion directly

yields a Grinwald-Letnikov type formula for the Zolotarev semi-fractional derivative.

Theorem 4.12. Let f € LY(R) be a bounded, differentiable function with f'(y) =
O(ly|™?) for some B > 0 as y — —oo such that f@, O3 exist and f3 € L'(R).

Then for almost every x € R we have

22 () = lim A f(2) + F A0 (2)

86,9.73
— lim S w1 hike1 i (1 B iké) (=1)7 f(x — jh) + wraf'(x)
h10 ' 0 J ,

=—0Q
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—covf'(x +coZ (@)1 (G) = f(x = jh)),

where (Wi 1)kez and (wi2)kez are given by (3.14) and .

Note that for constant § = 2/7m = ¢y the Grinwald-Letnikov type formula for the

ordinary Zolotarev fractional derivative of order e = 1 from [10] is given by

0 2 2 1, ., N
oo F@) = ==af'(x) + “lim 25 (') o1 (5) = f'(x = ) -

o0

Remark 4.13. Analogously to Remark and under the same conditions as in The-
orem [4.12] except that now f’(y) = O(|Jy|=?) for some 8 > 0 as y — +oo, we get a
Griinwald-Letnikov type formula for the negative Zolotarev semi-fractional derivative
of order a =1
) R ot = (1 —iké . ,
=z f(z) = lim (wk,l piket Z < , )(—1)]f(x + jh) — qu,Qf/(SE')>

8079(—I> hi0 j—O 7

k=—o00

+covf'(z +COZ f'@+5h) = f'(@)lon-10)) »

Zolotarev derivative of order 1

FIGURE 3. Zolotarev semi-fractional derivative (dashed line) of order
a = 1 in Definition[2.7|on the interval [—5, 5] and its Griinwald-Letnikov
approximation (4.2)) (solid line) from Example [4.14]
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Example 4.14. We consider again f(z) = exp(—z?) and §(z) = Qs%ﬂ(x) + 2 such that
eliminating the first term, we get back the ordinary Zolotarev fractional derivative of
order a = 1. Then we are able to approximate the Zolotarev semi-fractional derivative
of order o = 1 with our Griinwald-Letnikov approach in Theorem [4.12] The result is
shown in Figure [3, where the approximation with step size h = 0.05 as well as the
numerically evaluated Caputo form as described in Example are plotted in the
interval [—5, 5]. Note that the dashed line shows some numerical anomaly which may
be caused by the cosine integral part CC’% together with the strong fluctuations of

O(logy) near y = 0 in the Caputo form of the Zolotarev semi-fractional derivative.

5. SEMI-FRACTIONAL DIFFUSION EQUATIONS

We are now able to deal with semi-fractional diffusion equations. In particular, for
given ¢ > 1, a € (0,2) and corresponding admissable functions 6;, 60y we aim to give

a solution of the equation

0 0 “ .
1 2 — v — D Dy
(5 ) at p('xﬁt) v ax p(’I’ t) + 1 807011,04 p(x7t) + 2 80792(_1))04

for constants v, D1, Dy € R with Dy, Dy < 0if a € (0,1) or Dy, Dy > 0 if a € [1,2)

and D1+ Dy # 0 in both cases. In case a = 1 the semi-fractional derivatives are given

p(x,t)

by their Zolotarev form from Section 2.2. Note that in the symmetric case Dy = Do
and 0 := 0; = 0y we may summarize
o 0% 0%p

8679|.I‘|a T 86,9xa 8619(—x)0‘

to a semi-fractional Laplacian which can also be considered as a semi-fractional Riesz

derivative; see [11], [I§] for their fractional counterparts. Let v be the semistable

distribution with Lévy measure ¢ given by

(5.2) P(r,00) = r D101 (logr) and  @(—o0, —1) =1~ ¥ Dy|0z(logr)
and define
4
Yy .
——do(y) if a € (0,1),
/ T (0,1)

(5.3) a:=v-+ — sin y) do(y) ifa=1,

r\fo} \ 1+ ¥

Y .
—y | do(y) if € (1,2).
(Jr\fo3 \ 1+ 42 > (1.2
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as the drift coefficient in ((1.2). Note that the infinitely divisible distribution v gen-
erates a continuous convolution semigroup (v**);>¢ representing the family of one-
dimensional marginal distributions of a semistable Lévy process (Xt);>o with genera-
tor L from . Hence the semi-fractional diffusion equation ([5.1)) is the correspond-
ing abstract Cauchy problem for this semistable generator and the problem is

well-posed.

Theorem 5.1. Let (X;)i>0 be the semistable Lévy process given uniquely in law by
the semistable distribution v of Xy with Lévy measure (5.2) and drift (5.3). Then
X, has a continuous Lebesque density x — p(z,t) for every t > 0 and these densities
are a solution to the semi-fractional diffusion equation if D1,Dy < 0 in case
a € (0,1) or D1,Dy >0 in case a € [1,2).

Proof. First note that for every semistable Lévy process (X;);>o a continuous
Lebesgue density of X; exists for £ > 0 and is in fact a function belonging to C*°(R);
see [13| [19] for details. Denoting dz = ' in case a = 1 to simplifiy notation, for the
Fourier transform of the density we obtain with the log-characteristic function v as
in and the generator L of the Lévy process

0 0 0 —~

5; Pk, 1) = 5 Elexp(ikXe)] = = exp(ty(k)) = ¢(k)p(k, t) = Lp(k, 1)
o 0op EN .
) wk p(k,t) — D1 RS (k,t) — D Do (—2)° (k,t) ifae(0,1)
z’vk’A(kt)+|D|w(kt)jL]Dlﬂ(kt) ifaell,2)
PR, 1 80791370[ ’ 2 86702(_37)& ) 9
o 0op EX)
= ZUkp(k, t) + D1 867913}0‘ (k?, t) + D2 80’92(—13)04 (k’, t)

where the last equalities follow according to Definitions [2.3H2.6] in case a # 1 and
Definitions in case o = 1 together with the sign restrictions of the constants
Dy, Dy. Since the densities x — p(z,t) belong to Co(R)NLY(R) for all ¢ > 0, applying
Fourier inversion directly leads to . ([l

We now turn to numerical solutions of the semi-fractional diffusion equation (/5.1)) on
a rectangle x € [—b,b], t € [T, Ts] for some b > 0, T}, T» > 0, assuming for simplicity
v = 0 for the drift part. Given ¢ > 1 and « € (0, 1) we choose a smooth admissable
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function 0 = 0, = 0, and Dy, Dy < 0 with Dy + Dy # 0. To calculate the solution p
numerically, we approximate the left-hand side of by a classical finite difference
of order one and the (negative) semi-fractional derivative of order « on the right-hand
side of by our Griinwald-Letnikov formula. Thereby, we choose fixed step sizes
At :=0.01 in time and h := 0.01 in space. In order to get a good approximation for
the semi-fractional derivatives, we approximate the solution on a larger interval in
space, such that we consider 50 neighboring points to the left and to the right of every
point of interest x € [—b,b] for the calculation. To start our numerical algorithm for
the calculation of a semistable density p, the initial condition p(x,0) = J, given by
the Dirac delta function is not appropriate. Therefore, we choose p(x,T}) ~ p1(x,T})
for T7 = 0.01 as the solution of the corresponding fractional diffusion equation; i.e.

0 0
&pl(:pu t) = Dl@lﬁ(% t) + DQWZH@J)-

with initial condition p;(z,0) = §,. This is a stable density for which numerical
algorithms exist. Since p;(z,T7) is a function with a single sharp peak around zero, the
influence of the log-periodic perturbations of the semi-fractional derivative (compared
to the fractional derivative) should be very low. We calculated all starting values of
p1 with the function ’dstable’ in R (version 3.2.3).

...... 1=0.5
=057

— AN
\
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PSR
"’u_‘_.\.m.

FIGURE 4. Left: Solution of the semi-fractional differential equation
in Example [5.2] at different times (¢ = 0.5, 0.7 and 1.0). Right: log-log
plot of the solution in Example [5.2]
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Example 5.2. Let D; = —1, Dy =0, b =5 and T; = 1 such that (5.1)) reduces to

0 0
- = — f 11 — 1].
(1) =5 oplet) forall v [-5.5) € [0,1]

In addition, we choose o = 0.5, ¢ = €™ and 0(z) = asin(z) + I'(1 — «). Then 6 is

a smooth admissable function with respect to ¢ and a. Following Remark 5.10 in
[15] the solution p; of the corresponding fractional equation at time 77 = 0.01 (our
starting point) is given by S, (1, 0,0), where o = (77 cos(%2))/®. Starting from p; We
are now able to approximately calculate the solution of the semi-fractional diffusion
equation. In Figure {4| the result is given for different values of ¢t € [T1,T5] and a
log-log plot of the solution shows oscillations about a straight line which can also be

seen in practical applications [20].

px,0.3)
p(x,0.35)

°
S
°

.6 -

p(x,04)
p(x,0.45)

02

F1GURE 5. Solution of the semi-fractional differential equation in Ex-
ample at different times (¢ = 0.3, 0.35, 0.4 and 0.45).

Example 5.3. Let D; = —0.5 = Dy, b =5 and Ty = 0.45. Again, we choose o = 0.5

but this time we consider the function #(x) = acos(x) + I'(1 — ) with ¢ = ™. Then
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6 is a smooth admissable function with respect to o and c¢. Our starting point is the
corresponding stable density at 71 = 0.01 with representation S, (0, 0,0), where o is as
in Example [5.2] In Figure [5 the numerically calculated semistable density is shown
for different values of t € [T},T3]. Note that the pictures indicate the appearance
of more than one change between convexity and concavity in each of the tails of
the semistable densities, which for stable distributions cannot happen. This is also
apparent from numerical calculations of one-sided semistable densities by Laplace

inversion techniques in [4].
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