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Abstract. We show that there exists a non-empty special Π0
1 class in which

no member is a minimal cover for any set, hence prove that degrees of minimal
covers cannot be a basis for Π0

1 classes.

Study of effectively closed sets, or namely Π0
1 classes, has been a long-standing

theme in classical recursion theory. Particularly the problem of determining de-
gree theoretic complexity of members of Π0

1 classes, going back to Kleene [14], has
resulted in a well developed theory. By compactness of the Cantor space, degree
theoretic complexity of members of Π0

1 classes also determines reals that can be de-
fined by compactness rather than using replacement. Jockush and Soare [11] [12],
in their leading papers, showed some very interesting degree theoretic properties of
members of Π0

1 classes. Many of these results have come to known as basis theorems

for Π0
1 classes. A typical basis theorem states that every Π0

1 class has a member,
or a member of degree, of a particular kind. It may be the case that not every
Π0

1 class has members with the desired property. Similarly, it may be that there
is a Π0

1 class in which all members satisfy a property. A non-zero Turing degree a

is minimal if there is no degree b such that 0 < b < a. Relativizing the minimal
degree construction to any set, we know that every degree has a minimal cover,
yet not every degree is a minimal cover. Our motivation arises from the work of
Groszek and Slaman [9] and from the problem that which Turing degrees are mini-
mal covers, particularly their relationship with members of Π0

1 classes. We consider
a question asked by Andy Lewis-Pye in a personal communication, whether or not
there exists a non-empty Π0

1 class in which no member is a minimal cover, and we
give a positive answer, thus showing that degrees of minimal covers cannot be a
basis for Π0

1 classes.

1. Notation and Terminology

We shall first give our notation and then give some background knowledge on Π0
1

classes. We assume some familiarity with basic properties of relative computability
and Turing degrees. For a detailed account of computability, the reader may refer
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2 AHMET ÇEVİK

to [21],[2], or [7]. Readers who are familiar with computability theoretic notions
and Π0

1 classes may skip to Section 2.
Let ω denote the set of natural numbers. We let 2<ω denote the set of all finite

sequences of 0’s and 1’s. We denote sets of natural numbers by uppsercase Latin
letters A,B,C.

The subset relation (not necessarily proper) is denoted by ⊂. We identify a set
A ⊂ ω with its characteristic function f : ω → {0, 1} such that, for any n ∈ ω,
if n ∈ A then f(n) = 1; otherwise f(n) = 0. We let {Ψi}i∈ω be an effective
enumeration of the Turing functionals. Turing functionals will also be denoted by
uppercase Greek letters Ψ,Φ,Θ,Ξ, etc. We say that Ψe is total if it is defined on
every argument, otherwise it is called partial. The join of any given two sets A and
B is denoted by A ⊕ B = {2i : i ∈ A} ∪ {2i+ 1 : i ∈ B}. Ψe(A;n) ↓= m denotes
that the e-th Turing functional with oracle A on argument n is defined and equal to
m. Ψe(A;n) ↑ denotes it is not the case that Ψe(A;n) ↓. We will write Ψe(A;n)[s]
to mean Ψe(A;n) as defined at stage s. A ≤T B means B computes A via some
Turing functional Ψe. So A ≤T B iff there exists some e ∈ ω such that A = Ψe(B).
A <T B means A ≤T B and B 6≤T A. If A ≤T B and B ≤T A, then A an B are
Turing equivalent, which is denoted by A ≡T B. The Turing degree of a set A ⊂ ω

is the set {X : X ≡T A}. We denote degrees with boldcase letters a,b, c.
We denote finite strings in 2<ω by lowercase Greek letters σ, τ, η, ρ, π, υ. They

may also be denoted by the same letters with accents and subscripts such as
σ′, σ′′, σ−, σ0, σ1, etc. We let σ ∗ τ denote the concatenation of σ followed by
τ . For two strings σ and τ , we let σ ⊂ τ denote that σ is an initial segment of τ
as a substring. We say a string σ is compatible with τ if either σ ⊂ τ or τ ⊂ σ.
Otherwise we say that σ and τ are incompatible. Similarly, we say that σ extends

τ if τ ⊂ σ, i.e., σ is an extension of τ . Let |σ| denote the length of σ. The unique
string of length 0 is called the empty string and it is denoted by λ. We let σ(i)
denote the (i+ 1)st bit of σ.

For any σ ∈ 2<ω and n ∈ ω, conventionally we let Ψe(σ;n) be defined and equal
to Ψe(A;n) if σ(i) = A(i) for all i < |σ| and if computing Ψe(A;n) requires only
values A(i) for i < |σ|. Let A ↾ z and σ ↾ z denote, respectively, the restriction of
A(x) or σ(x) to those x ≤ z. For a set A ⊂ ω, we define the jump of A, denoted by
A′, to be the set {e : Ψe(A; e) ↓}. We write the n-th jump of a degree a as a(n)

A set T of strings is downward closed if σ ∈ T and τ ⊂ σ implies τ ∈ T .
Occasionally we refer to downward closed sets of strings as trees. We say that a set
A lies on a tree T if there exist infinitely many σ in T such that σ ⊂ A. A set A
is a path on T if A lies on T . We denote the set of infinite paths of T by [T ]. We
say that a string σ ∈ T is infinitely extendible if there exists some A ⊃ σ such that
A ∈ [T ]. If σ, τ ∈ T and σ ⊂ τ and there does not exist σ′ with σ ⊂ σ′ ⊂ τ then we
say that τ is an immediate successor of σ in T and σ is the immediate predecessor

of τ in T .
We say that P ⊂ 2ω is a Π0

1 class if there exists a downward closed computable
set of strings T such that P = [T ]. We can then have an effective enumeration
{Λi}i∈ω of downward closed computable sets of strings such that for any Π0

1 class
P there exists some i ∈ ω such that P is the set of all infinite paths through Λi.

1.1. Background on Π0
1 classes. In this section, we will overview some works in

the literature to give an overall idea of how our claim is related to other works.
However, for a detailed survey on Π0

1 classes we refer the reader to [1] and [6]. A
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Π0
1 class is an effectively closed subset of 2ω Cantor space. One important property

of Π0
1 classes is that for any recursively axiomatizable theory (the deductive closure

of a recursively enumerable set of sentences in a language), the set of complete
consistent extensions can be seen as a Π0

1 class [19]. The opposite direction is also
proved in [8]. That is, any Π0

1 class can be seen as the set of complete consistent
extensions of an axiomatizable theory. The compactness property of the Cantor
space is provided by Weak König’s Lemma which tells us that if T is an infinite
downward closed set of finite strings, then there exists an infinite path through T .

Countable Π0
1 classes are another type of effectively closed sets. It is important to

note that all countable Π0
1 classes contain an isolated point and that every isolated

point is computable [15]. So if a Π0
1 class contains no computable member then it

must be uncountable and so T must be perfect, i.e., every σ ∈ T has at least two
incompatible extensions in T .

Effectively closed sets in which no two members are of the same degree are
called Π0

1 choice classes, and the properties of these classes were studied in [4]. Any
countably infinite Π0

1 class has members of the same degree, hence Π0
1 choice classes

cannot be countably infinite. They also cannot be finite unless it is a singleton since
all members of a finite Π0

1 must be computable. Another property of Π0
1 choice

classes is that they do not contain any 1-random set.
We are particularly interested in complexity of members of Π0

1 classes in the
Turing degree universe. Some of the most important and frequently used results
are basis theorems: a basis theorem tells us that every non-empty Π0

1 class has a
member of a particular kind. Anything which is not a basis is called non-basis. The
most celebrated Low Basis Theorem of Jockusch and Soare [11] states that every
non-empty Π0

1 class contains a member of low degree, i.e., a degree a such that
a′ = 0′. Same authors proved that any non-empty Π0

1 class contains a member
of hyperimmune-free degree, i.e., a degree a such that for any A ∈ a and for
any function f ≤T A, there exists a computable function g such that g(n) ≥
f(n) for all n. These results were proved by forcing with Π0

1 classes in which we
successively move from a set to one of its subsets in order to force satisfaction
of a given requirement. Another important basis theorem for Π0

1 classes is that
every non-empty Π0

1 class has a member of recursively enumerable (r.e.) degree,
in particular, the leftmost path of any downward closed computable set of strings
is of r.e. degree. One interesting result by Jockusch and Soare [11] is that every
Π0

1 class which does not contain a recursive member contains members of degrees
a and b such that a ∧ b = 0. However, this does not hold for the cupping case. In
fact, it was shown in [5] that there exists a non-empty Π0

1 class P with no recursive
member such that ∅′ 6≤T A⊕B for any A,B ∈ P . Another non-basis result, given
in [12], is that the class of r.e. degrees strictly below 0′ does not form a basis.
Similarly, the class of recursive sets does not form a basis either since there exists
a Π0

1 class such that all members are non-recursive. We call Π0
1 classes with no

recursive member special Π0
1 classes. In [6], it was proven that every non-empty

special Π0
1 class contains a member of properly lown degree, i.e., a degree a such

that a(n) = 0(n) but a(n−1) 6= 0(n−1). We say that a degree a satisfies the join

property if for all non-zero b < a there exists c < a such that b ∨ c = a. In [5],
it was shown that there exists a non-empty special Π0

1 class in which no member
satisfies the join property.
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An antibasis theorem tells us that a Π0
1 class cannot have all/any members of a

particular kind without having a member of every Turing degree. Kent and Lewis
[13] proved the Low Antibasis Theorem which says that if a Π0

1 class contains a
member of every low degree, then it contains a member of every degree. In [3], the
latter result was extended in relation to the jump hierarchy, that for a given degree
a ≥ 0′, if a Π0

1 class P contains members of every degree b such that b′ = a, then
P contains members of every degree. A local version of this result is also given in
the same work. That is, when a is also Σ0

2, it suffices in the hypothesis to have a
member of every ∆0

2 degree b such that b′ = a.

2. Overall idea of the proof

The question of whether there exists a non-empty special Π0
1 class in which no

member is a minimal cover was asked by Andy Lewis-Pye in a personal communi-
cation around 2013. Our aim is to show that degrees of minimal covers cannot be
a basis for Π0

1 classes. There are three closely related results in the literature. First
was provided by Lewis [16], where he showed that there exists a non-empty special
Π0

1 class every member of which is of degree with strong minimal cover. Second
related result was given by Sasso [20], where he modified Sacks’ minimal degree
construction below 0′ to obtain, recursively in 0′, a tree the limit of every branch
of which is recursive or of minimal degree. Of course Sasso didn’t really construct
a Π0

1 class, but it can be thought of as a limit computable version of an effectively
closed set in which all members satisfy the minimal degree requirements. The third
relevant work is a paper by Groszek and Slaman [9], where they show the existence
of a non-empty special Π0

1 class in which all members compute a set which is of
minimal degree. In fact, their theorem uses some level of non-uniformity, for that
they construct a Π0

1 class in which every member is either of minimal degree or
computes a set of minimal degree. The non-uniformity here is used to satisfy the
second literal of the disjunction. They define a co-r.e. tree M , with no terminal
nodes, such that the n-th minimality requirement

Ψn(A) ≤T A ⇒ Ψn(A) is recursive or A ≤T Ψn(A)

is satisfied for all A ∈ [M ] except for countably many members B ∈ [M ]. They
start with Sacks’ [17] minimal degree construction method below 0′, that is, by
enumerating a Ψn-splitting tree Tn inM and guaranteeing that all branches through
M are either branches through Tn, in which case we have A ≤T Ψn(A), or they
extend a terminal node of Tn. Now for branches B extending a terminal node of
Tn, they guarantee that B computes a non-recursive r.e. set via some reduction
that the authors construct. Hence by Yates’ theorem [22], that every non-recursive
r.e. set computes a set of minimal degree, B computes a set which is of minimal
degree. Of course, by the hyperimmune-free basis theorem such a Π0

1 class must
contain a member of minimal degree since hyperimmune-free sets cannot compute
any non-zero r.e. set. Thus, the Π0

1 class constructed by Groszek and Slaman must
necessarily contain a member of minimal degree.

For our problem, the most naive approach in constructing a non-empty special
Π0

1 class with the property that no member is a minimal cover would be to make
sure that all members are non-recursive and of r.e. degree. But this cannot work
since every non-empty Π0

1 class contains a member of hyperimmune-free degree. Of
course if we drop the non-recursiveness condition, then obviously a Π0

1 class with all
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members recursive gives an effectively closed set in which no member is a minimal
cover. But this does not give solution to our problem. The approach we will
consider to solve our problem will be similar to the Groszek-Slaman construction,
but will contain some different features. So first we shall discuss to what extent
they are related and how they differ from each other so as to give a general idea of
our strategy. Like Groszek and Slaman, we will find it more convenient to build a
Π0

1 class from its complement, i.e., we define a co-r.e. tree T with no terminal nodes
such that no member of [T ] is a minimal cover. Groszek and Slaman use the level n
construction for satisfying the n-th minimality requirement as the main procedure of
their overall construction with a subroutine what they call the Ψn-subconstruction

procedure, where they take care of the paths B for which they fail to satisfy the
condition B ≤T Ψn(B) for countably many sets B in the Π0

1 class, but instead they
guarantee that B computes a non-recursive r.e. set via a Turing reduction that they
also construct (unless Ψn(B) is partial or recursive, thus B is subject to a successful
level n+1 construction). In other words, when enumerating a Ψn-splitting tree, as
long as the outcome is Π2, i.e., in the Ψn-splitting region of their tree at stage s,
the n-th minimality requirement is satisfied by ensuring B ≤T Ψn(B). In the Σ2

outcome, where no useable Ψn-splitting are found until stage s, they ensure that
either B computes a non-recursive r.e. set, or Ψn(B) is partial or recursive and B

is subject to a successful level n+ 1 minimality construction.
We will define Ψn-splittings inside our tree at each stage, just like in Groszek

and Slaman’s construction, and our approach for the Π2 outcome of the minimality
requirement (in the Ψn-splitting region of the tree) is the same. If A is a branch
on a Ψn-splitting tree T , then A ≤T Ψn(A). The proof of this is quite standard.
Given Ψn(A) we can generate increasingly long segments of A recursively in Ψn(A).
Given σ ⊂ A, assuming that A lies on the tree T , either σ ∗ 0 or σ ∗ 1 must be
an initial segment of A, and we have to decide which one of them is. Since T is
Ψn-splitting, there exists some x ∈ ω such that Ψn(σ ∗ 0;x) ↓6= Ψn(σ ∗ 1;x) ↓.
But then only one of them can be compatible with Ψn(A;x). We just take the
one which is compatible, and this determines which of the two strings is an initial
segment of A. So if A ≤T Ψn(A), the theorem is satisfied rather trivially and we
will win by that particular Ψn. As for the Σ2 outcome, though, our strategy will
be different since our problem is not to ensure that the branches compute a set of
minimal degree, but to ensure that if A ∈ [T ], where T , say, is the co-r.e. tree to be
constructed, then there exists a reduction Φ satisfying that Ψ(A) <T Φ(A) <T A.
In other words, we carry out a density argument inside the region of T where and
as long as we fail to find any Ψn-splittings. This is where most of work in the
paper will be given. The n-th minimality requirement, taken together with the
non-recursiveness requirement that all branches through the tree are non-recursive,
will roughly correspond to Groszek and Slaman’s level n construction. We will
not work with the n-th minimality requirement aiming to satisfy it on all branches
of T , as that would be an attempt to produce a Π0

1 class all of whose members
are of minimal degree, which is impossible anyway since every non-empty Π0

1 class
contains a member of r.e. degree (and r.e. degrees cannot be minimal due to
Sacks’ density theorem [18]). Instead, if we can’t seem to get A ≤T Ψn(A) for
satisfying the theorem trivially, we will succeed in other ways, such as making
relevant functionals in the requirements (listed below) partial or we will make A of
r.e. degree (see Figure 1 for a sketch of possible outcomes).
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Along the construction, we define Ψn-splittings inside the tree T at each stage,
and the Ψn-splitting region will grow over the dummy region where we have not yet
found any Ψn-splittings for computations up to that stage. The density strategies
(will be denoted by S1 and S2) will be divided into Π2 and Σ2 cases, depending if
the node equipped with the strategy is in the Ψn-splitting region or otherwise of
T of that particular stage. In the Ψn-splitting region, we will have no problem in
satisfying the theorem in a trivial way. The density requirements will hold trivially
in the Π2 case since we get A ≤T Ψn(A) for every A that lies on the Ψn-splitting
subtree of T . If, however, we observe that there are no Ψn-splittings by stage s,
that is where we need the density requirements. In that case we start to implement
a density construction for this Σ2 region until we get Ψn-splittings, and we have
to ensure that if A is a branch that leaves a terminal node of the Ψn-splitting
tree, then we guarantee that Φ(A) is total if Ψn(A) is total. This is to ensure that
Ψn(A) ≤T Φ(A). We will observe that if it were the case that Θ(Ψ(A)) = Φ(A),
then either Θ is partial (and so we win by that particular Θ) or we can get an anti-
chain of Φ-splits on a unique infinite path A where Ψ is partial everywhere but on
A. In that case we will show A is of r.e. degree. Similarly, as for the other density
requirement, if it were the case that Ξ(Φ(A)) = A for some Turing functional Ξ,
then we make sure that either Ξ is partial (and so we win by that particular Ξ) or
A is of r.e. degree.

Definition 2.1. Given any stage s, let σ ∈ Ts, where Ts denotes the set of strings
that are not enumerated out of T before stage s. For a given n ∈ ω, we say that σ
has an active Ψn-split at stage s if there exist two incompatible strings σ1, σ2 ⊃ σ

in Ts such that |σ1| = |σ2| = s and Ψn(σ1) 6= Ψn(σ2).

The requirements will be as follows. For any A ∈ [T ],

S0(n) : Either Ψn(A) ≥T A or ∃σ ⊂ A ∃s ∈ ω such that σ has no active Ψn-split
extension after stage s.
S1(n): Θ(Ψn(A)) = Φ(A) ⇒ A is of r.e. degree.
S2(n): Ξn(Φ(A)) = A ⇒ A is of r.e. degree.
D(n): A 6= Ψn(∅).

The non-recursiveness requirements D will be handled inside the S1 and S2

strategies separately. The strategy to satisfy the requirement denoted by S0, when
taken together with the strategy to satisfy the D requirements, will act as our
“level n construction” akin to the one in Groszek-Slaman construction. The density
requirements, where we act so long as we don’t find any active Ψn-splittings, are
denoted by S1 and S2, and will have wins by Π2 or Σ2 outcomes. The density
requirements make sure there is a set inbetween Ψn(A) and A for n ∈ ω. We sketch
the possible outcomes in Figure 1 and we will go through it in the next section.
The outcomes for S1 (not shown in Figure 1) will be similar, except that instead of
Ξ, we will have Θ partial. How we satisfy the S1 and S2 requirements will become
clear once we define the strategies.

In the next section we give the proof of our main result based on the idea we
discussed so far. It should be noted that the construction mechanics is complicated
enough that it may not be possible to work out with a single level of procedure
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Figure 1. Outcomes and wins.

and single layer of indices for construction stages, but we may require to work with
multiple construction layers, as generally occurs in recursive constructions alike.

3. Proof of the main theorem

We shall now give the main result of this paper.

Definition 3.1. A set A is a minimal cover for a set B <T A if there is no C such
that B <T C <T A. A degree a is a minimal cover for a degree b < a if there is
no c such that b < c < a.

Theorem 3.2. There exists a non-empty special Π0
1 class in which no member is

a minimal cover for any set.

The proof is a type of density argument inside a tree. We construct a non-empty
special Π0

1 class P such that for any Ψ(A) of any given A ∈ P , if Ψ(A) <T A, we
define Φ(A) with Φ(A) ≤T A and Ψ(A) ≤T Φ(A), and we satisfy the requirements
given above in Section 2.

Our approach in satisfying S0 (together with D requirements) is similar to the
method discussed in Groszek and Slaman. One difference however is the application
of the density requirements used in the splitting trees and that the D requirements
are handled separately by S1 and S2 strategies.

We shall represent the Π0
1 class as the collection of branches through a co-r.e.

tree T with no terminal strings. For this we describe a recursive construction that
will determine T by specifying at each stage s, which strings of the full binary tree
will be enumerated out of T before stage s. We denote by Ts the set of strings
that are not enumerated out of T before stage s and we let T =

⋂
s Ts. We ensure

that each Ts is an infinite perfect tree, i.e., every string in Ts has at least two
incompatible extensions. In the end, T will be an infinite tree with no terminal
strings such that [T ] 6= ∅.
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Notation. For two strings σ and τ in T such that σ ⊂ τ , let us write σ ∼ τ

to denote that there is no string η ∈ T such that σ ⊂ η and that η and τ are
incompatible. For convenience, when we enumerate a string τ out of T , we also
enumerate out any σ ∈ T such that either τ ⊂ σ or σ ⊂ τ and σ ∼ τ . This
preserves that Ts has no terminal strings. Enumerating out of T finitely many
strings (and their extensions) and guaranteeing to leave at least one string will
ensure all together that each Ts is an infinite perfect tree.

3.1. Control mechanics. We give some more conventions regarding the construc-
tion. When working with trees, the terms ‘string’ and ‘node’ will often be used
interchangably to denote the elements of the tree. The overall recursive construc-
tion will contain the instructions of how to define the Π0

1 class P = [T ] for a co-r.e.
tree T . But the main procedure used in the overall construction is the level n

construction, i.e., the S0(n)-strategy. The level n construction inside Ψn-splitting
tree above the node τ describes a part of the overall recursive construction which
produces above τ a sequence of trees {Ts}s∈ω. The Ψn-splitting tree will be a split-
ting tree on T . The level n construction is what corresponds to the strategy for
S0 (when taken together with the strategy for non-recursiveness D requirements).
The density strategies will act as a subprocedure in the level n construction so
long as we don’t find active Ψn-splits. For the level n construction, our notation
for handling the construction mechanics will be slightly different from that of the
Groszek-Slaman level n construction in the sense we will explain below.

During the construction we will place on nodes various strategies for the require-
ments that we listed earlier. A node may be equipped with more than one strategy.
A fixed priority ordering can be defined on the equipped strategies to execute them
in some particular order. At any stage s, each node which is equipped with a
strategy acts when the hypothesis of the associated requirement holds up to stage
s.

We also use what may be called flagging along the construction in the following
sense. At each stage s, every node will have a binary flag value, namely Π and Σ,
associated with the n-th Turing functional Ψn for each n such that n ≤ s. Since
the outcomes of the S0 requirement can be divided into Σ2 and Π2 cases, the flag
value of the node denotes whether the node is in the splitting region or otherwise
of Ts with respect to Ψn at stage s. We say that a node σ is in the Π-region
in Ts with respect to Ψn if for any σ1, σ2 ⊃ σ of length ≤ |s| in Ts we have that
Ψn(σ1;x)[s] 6= Ψn(σ2;x)[s] for some x ∈ ω. If there is no active Ψn-splittings above
σ, then σ is in the Σ-region of Ts. Of course a node may be in different regions with
respect to different indices of Turing functionals. For example if every incompatible
extensions of σ are Ψn-splitting but there are no active Ψm-splittings above σ, then
σ is in the Π-region with respect to Ψn, but in the Σ-region with respect to Ψm.
Depending on which region σ is in, with respect to an index i, the relevant versions
of the S1 and S2 strategies will be executed accordingly. The Π and Σ versions of
the Si-strategy, for i ∈ {1, 2}, are denoted respectively as Si,Π(n) and Si,Σ(n). In
the given scenario, then, S1,Π(n) and S2,Π(n) will be executed above σ in Ts along
with S1,Σ(m) and S2,Σ(m).

The control mechanics of the strategy for S2 may need a bit more care. We will
use a subroutine in the S2 strategy which enumerates and adjusts possible Φ values
in such a way to satisfy some condition related to Ψ values that we will explain
shortly.
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In constructions alike, it is customary to describe which requirements, in partic-
ular S2 requirements in this case, are ‘active at a node σ’ at any given stage of the
construction and which ones deserve to be called ‘complete’ in order to move on to
the next requirement.

Suppose that σ is a node and i ∈ ω is a given index. Let σ0, σ1 be two incompat-
ible successors of σ on which some strategies are placed. We describe the control
mechanics taking S2 as an example, but it can be similarly applied to the others.
We say that an S2(i)-strategy is active at σ if σ is not yet enumerated out of T by
stage s and Ξ(Φ(A))[s] = τ ⊂ A for some functional Ξ. When the S2(i)-strategy is
active at σ, given Ξi, the S2(i)-strategy placed on σ will search for each k ∈ {0, 1},

an extension σ∗

k ⊃ σk of length ≤ |s| in Ts such that Ξi(Φ(σ
∗

k)) ⊃ σk.

When such σ∗

k is found, we say that σ is complete (for the associated strategy) for
all pairs (i, σ′) such that σ′ ⊃ σk. A node with S2(i)-strategy being complete means
that the hypothesis of the S2(i) requirement is now satisfied for Ψi and extensions
of σk at stage s. Once a node is complete for a strategy, we can pass the control to
the one with next lower priority.

The level of a string σ in Ts will refer to the number of proper initial segments
of σ in Ts. We decide whether or not i ∈ ω requires the attention of S2 at node
σ as follows. Let us say that i requires S2-attention at σ unless there exists some
proper initial segment ρ ⊂ σ with an S2(i)-strategy such that S2(i) is active at ρ
but ρ is not complete for all (i, τ) such that τ ⊃ ρ. Let us also denote the set of S2

requirements active at a node σ by βσ. This will be determined by their indices.
For example if βσ = {m}, then only S2(m) is active at σ.

If σ = λ, then βσ = {0}.
Suppose that σ 6= λ and σ is a string of level n > 0. Let σ′ be the initial

segment of σ equipped with an S2-strategy placed and which is of level n− 1. If σ′

is S2-complete for all (i, σ) such that i ∈ βσ′ , then

βσ = βσ′ ∪ {i′},

where i′ is the least such number not in βσ′ which requires S2-attention at σ.
Otherwise, βσ is the set of all i ∈ βσ′ which require S2-attention at σ.

Strategy for S1 is executed over a pair of indices (i, j), for arbitrary functionals Θ
and Ψ. However, without loss of generality, we may assume for simplicity working
with a single index n = 〈i, j〉 for either of the arbitrary functionals appearing in
S1 requirements. Whenever an S1(n)-strategy is placed on a string σ such that σ0

and σ1 are two incompatible extensions of σ, it will search for strings σ∗

0 ⊃ σ0 and
σ∗

1 ⊃ σ1 satisfying either

σ0 = Φ(σ∗

0) ⊂ Θ(Ψn(σ
∗

0)) or σ1 = Φ(σ∗

1) ⊂ Θ(Ψn(σ
∗

1)).

For D requirements, given n ∈ ω, the D(n)-strategy will be executed to satisfy
the non-recursiveness requirement above σ. That is, it will ensure that for any
A ⊃ σ in [T ], A 6= Ψn(∅).

There will be finitely many requirements active on a given node bounded by
stage s. At each stage, the strategy placed on a node performs the instructions for
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all of these in order of some fixed priority. We consider the S0(n)-strategy acting
as the main procedure of the overall construction of our Π0

1 class since S1 and S2

strategies will have two versions, each depending on the outcome of S0 at each
stage. Similarly, the D(n)-strategy will be performed in accordance with S1 and
S2.

We also define a set Φ+ of strings for maintaining possible Φ axioms during the
construction. We define axioms of the form Φ(σ) ⊃ τ . Set of possible axioms of Φ
that are enumerated in Φ+ may not be necessarily consistent with each other when
they are considered as axioms, but we will be able enumerate in the construction
proper axioms of Φ from Φ+. The important point when enumerating axioms for Φ
is that we will aim to make sure that Φ(A) is total if Ψ(A) is total for any A ∈ [T ].

Now we give the strategies. First we describe how the strategy for S0 works
above a given string σ.

3.2. S0(n)-strategy above σ. Given stage s and index n ∈ ω, we say that a string
σ ∈ T is a Πs,n-boundary point if σ is in the Π-region of Ts but every τ ⊃ σ is in
the Σ-region of Ts with respect to Ψn. Intuitively, Πs,n-boundary points determine
the longest strings in T , as defined at stage s, above which there are no active
Ψn-splittings (see Figure 2 for depiction).

The role of S0 will be to update the Π-region of T at each stage. The strategy
will define the Πs,n-boundary points at each stage s which will determine the layers
containing Ψn-splitting strings and strings above which there is no active Ψn-split.
When we say σ is a Πs,n-boundary point, we mean this so relative to the given
index n in the strategy and the stage s we are in. So occasionally we will drop
the indices and just write Π-boundary point as it should be understood relativized
to that stage and functional index. Same thing when we say a string is in the
“Π-region”, where it should be understood that, in fact, we mean this so relative
to a functional index n.

Let σ be a Πs,n-boundary point on which S0(n)-strategy is placed. Intuitively, at
stage s, in S0(n)-strategy we define Ts ⊂ 2<ω such that either Ψn(σ1)[s] 6= Ψn(σ2)[s]
for every incompatible extensions σ1 ⊃ σ and σ2 ⊃ σ of length s in Ts or that there
exists some τ ⊃ σ above which there are no active Ψn-splittings of length s.

Instructions of step s inside Ts above σ are as follows:
At stage 0: Define τ ⊃ σ as the least string in T such that τ ∗ 0 and τ ∗ 1 are

not yet enumerated out.
At stage s > 0, suppose that σ is a Πs,n boundary point on which an S0(n)-

strategy is placed, where n ≤ s. We see if there exist strings σ1, σ2 ⊃ σ of length s

which are extendible in Ts such that Ψn(σ1)[s] 6= Ψn(σ2)[s]. If not, we do nothing
with the Π-boundary points and just place S1(n) and S2(n)-strategies on σ if not
placed yet. Otherwise, when we find σ1 and σ2, we enumerate out all τ ∈ T , for
τ ⊃ σ, such that τ is incompatible with σ1 and σ2. Take two least extensions τ1,i
and τ2,i of σi, for each i ∈ {1, 2}, and declare them as the new Π-boundary points.
Then place S1(n) and S2(n)-strategies on two incompatible extensions of τ1,i and
τ2,i.

Since the Π-boundary points of the previous stage are extended by the ones of
the current stage, this ensures that the Π-region expands over the Σ-region. We also
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ensure that S0(n) does not terminate any nodes in the Π-region or the permanent
Σ-region. This can be shown by induction on s that for every n and σ, step s of
level n construction inside Ts above σ does not enumerate σ out of T . At step s+1
of the construction, we execute step t for some t ≤ s of level n + 1 construction
inside Tt above τ ⊃ σ, and we apply the inductive hypothesis.

Figure 2. The Π-region grows over the Σ-region.

By the end of stage s, S0(n) will have two outcomes in Ts. Either we find Ψn-
splittings up to length s above the given string σ in the hypothesis, or there is no
active Ψn-splittings. Let us denote these outcomes, respectively, as Π2 and Σ2.

S1 and S2 will act accordingly for each outcome of S0. Then, the strategy S1

has two versions, namely S1,Π and S1,Σ. Similarly for S2. Suppose that σ is a
node with an S0(i)-strategy and consider the Π2 outcome of S0(i). In that case,
we carry out the construction as if σ has an active Ψi-split. So all low priority
S1 and S2 requirements will perform their S2,Π(i)-strategy. For instance, whenever
we have a Π2 outcome of S0(i) and Σ2 outcome of S0(i + 1), all low priority S1

and S2 requirements will be performing in that region their Sj,Π(i) and SjΣ(i+ 1)
strategies, for j ∈ {1, 2}, meaning that S1 and S2 will act as if there are active
Ψi-splits but no active Ψi+1-splits above the string on which the strategy is placed.

S1 and S2 strategies will therefore either end up with a Π2 or Σ2 outcome
depending on the flag value of the equipped node. In each case we have a different
win. In Figure 1 we sketch these possible outcomes and wins.

Note that the S0(i)-strategy we gave above is for a fixed Turing functional Ψi.
For other functionals, without loss of generality we may use, just as in the Sacks
construction, Ψj-splittings inside a Ψi-splitting tree for j > i. In the overall con-
struction, as we will give in the end, the S0(i + 1)-strategy will enumerate Ψi+1-
splittings inside the Ψi-splitting subtree of T .

Let us now analyze Figure 1. Outcome 1 is achieved when we suppose that we
are in the Ψn-splitting region. In this case we have Ψn(A) ≥T A for A on the
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Ψn-splitting subtree of T , so we have a win over that particular Ψn. Otherwise,
we have subcases. Let us suppose that we are in the Σ-region produced by the
S0(n)-strategy. We suppose there exists some σ ⊂ A such that there is no active
Ψn-splittings above σ. This is where we need to define Φ when Ψn is defined.
Assume that we are working with the S2-strategy. Now S2 will both work in the
Π-region and Σ-region of Ts. In the Π-region, we have the Outcome 1 (=Outcome
2), where we get Ψn(A) ≥T A, and we have a win over the functional Ψn. Outcome
3 is obtained when S2 has a Σ2 outcome and when Ξ appears only finitely many
times. In this case we have a win over Ξ for the fact that Ξ being partial. Otherwise,
we have Outcome 4, in which case we have that Ψ is partial on all paths except
a unique infinite path A which we can argue is of r.e. degree, hence cannot be a
minimal cover. Similar condition holds for S1, only that we replace Ξ with Θ.

Before we give the strategy for S1, let us first explain the strategy for S2. The
strategies for S1 and S2 are invoked inside the (main) S0-strategy. The S1 and S2

strategies will execute their instructions depending if the node equipped with that
strategy is in the Π or Σ-region of Ts. For the S2 strategy, for instance, if the flag
value of σ is Π, we execute S2,Π(n); otherwise we execute S2,Σ(n).

3.3. S2(n)-strategy above σ. We always try to diagonalize if possible. If we find
out that Ξ(Φ(σ)) 6= σ at any stage of any version of the S2 strategy given below,
we enumerate out from T every node incompatible with σ and cancel all strategies
placed on them.

3.3.1. S2,Π(n)-strategy instructions above σ. If the flag value of σ is Π, that is,
if we are working in a Ψn-splitting region above σ, then Ψn(σ) computes σ so
things work out easier and the requirements are satisfied trivially. We just need to
proceed with the non-recursiveness requirement to make sure no infinite path above
σ is recursive. We place the D(n) strategy on two incompatible strings of σ and
execute D(n) for both. At most one of them will get diagonalized and enumerated
out of T . Then we place S2(n + 1) strategy on the other string which remains in
T . This ensures that the S2,Π(n)-strategy does not enumerate out σ from T .

3.3.2. S2,Σ(n)-strategy instructions above σ. Suppose that we are at stage s and the
flag value of σ with respect to Ψn is Σ, and so there are no active Ψn-splits above
σ. Let τ0 and τ1 be two incompatible extensions of σ that are not yet enumerated
out of T . We ensure the following property:

For every τ ′0 ⊃ τ0 and τ ′1 ⊃ τ1, if Ψn(τ
′

0) and Ψn(τ
′

1) are defined and compatible
with each other, then Φ(τ ′0) and Φ(τ ′1) are compatible. (⋆)

Let σ0 ⊃ σ be a node on which the next highest priority D(n)-strategy is placed.
Let σ1 and σ2 be two successors of σ0. We wait until stage s′ such that Ψn is defined
on all strings τ in Ts′ up to length s′, where τ ⊃ σi, for i ∈ {1, 2}. Until we find so,
the idea is to place Φ-splits on every string which is a Π-boundary point of stage
s (This will allow us to make Ψ partial on branches where we have Φ-splittings).
We can do this so as follows. Suppose η ⊇ σ is a Π-boundary point at stage s

with respect to functional Ψn. See if there exist two incompatible strings η0, η1
in Φ+ extending Φ(η) whenever Φ(η) is defined (if Φ(η) is undefined at this stage,
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we do nothing). If they exist, choose η′0 and η′1 extending η such that η′0 and η′1
are incompatible. We then place S2(n+ 1)-strategies on η′0 and η′1 and enumerate
axioms Φ(η′0) ⊃ η0 and Φ(η′1) ⊃ η1 for a choice of shortest possible length of strings
η0 and η1. If they do not exist, let τ ′ ⊃ Φ(η) be the longest extension of Φ(η) in Φ+.
Choose two incompatible strings η0 and η1 extending η. Place S2(n+1)-strategies
on η0 and η1, and enumerate the axioms Φ(η0) ⊃ τ ∗ 0 and Φ(η1) ⊃ τ ∗ 1. Also
enumerate τ ′ ∗ 0 and τ ′ ∗ 1 into Φ+.

Along the construction we may run into the problem of having either one of the
extensions of σ removed from T , which may interfere with the preservation of (⋆).
To avoid this problem and to preserve (⋆), we use ‘reflections’ in the sense that
we arrange Φ values in such a way that any Φ value above σ1 will be available in
Φ+ above σ2. For this, we modify a subroutine which appeared in an earlier work
[5]. The Φ+-regulation subprocedure given below will ensure that if the branch
extending one of the incompatible extensions of σ, say η, is enumerated out from
T at a later stage, we will still be able to use the other Ψn-splitting pair via Φ+ to
define the value of Φ(η). So after enumerating τ ′ ∗ 0 and τ ′ ∗ 1 into Φ+, we run the
Φ+-regulation procedure on σ.

Subroutine for Φ+-regulation procedure on argument σ:
The idea is to preserve compatible Φ pairs above incompatible extensions of σ.

Let σ1, σ2 ⊃ σ be the immediate incompatible successors of σ. We ensure that if
τ ⊃ σ1, then there exists some π ⊃ σ2 such that either Φ(τ) ⊂ Φ(π) or Φ(π) ⊂ Φ(τ)
if Φ(τ) and Φ(π) are defined in Φ+.

Pick the longest string η ∈ Φ+, where σ ⊂ η, such that Φ(η) is defined and all
η0 ⊂ η are complete for all i ∈ βη0

. For every ρ of length ≤ |η| and incompatible
with η, we define an anti-chain of strings in Φ+ whose Φ values are compatible with
Φ(η). For this we take Φ(η). Then for every ρ of length l ≤ |η| such that ρ 6⊂ η and
η 6⊂ ρ, we enumerate ρ into Φ+. Then we define the axiom Φ(ρ) ⊃ Φ(η) ∗ 0l, where
0l denotes l consecutive 0′s whenever Ψ(ρ) and Ψ(η) are defined and compatible.
This ensures that all incompatible extensions ρ, η ⊃ σ have compatible values in
the Φ domain whenever Ψ(ρ) and Ψ(η) are compatible (More details as to why this
preserves the (⋆) property are given in Lemma 4.2). We then enumerate ρ ∗ 0 and
ρ∗1, as well as η∗0 and η∗1 into Φ+. This allows us to extend the possible domain
of Φ for enumerating further axioms.
End of subroutine

The Φ+-regulation subprocedure is to ensure that every value of Φ above σ1 is
also available in Φ+ as a value for Φ above σ2 in case one of them gets diagonalized.
We call these Φ values reflections of each other.

Now S2(n) will search for a string σ′

i ⊃ σi such that Ξ(Φ(σ′

i)) ⊃ σi ↾ k for some
fixed k ≥ |σ|. If there does not exist such string, we are fine as the requirement
is satisfied trivially in this case. Otherwise, we declare every string above σi ↾ k

and incompatible with σ′

i to be terminal and enumerate them out from T . We also
enumerate out those strings from T whose Φ values are defined and are incompatible
with Φ(σ′

i). We let Ts+1 to be the resulting tree. Note that if Ξ(Φ(σ′

i)) ⊃ σi ↾ k

then Ψ must be partial anywhere but above σ′

i since otherwise Ξ(Φ∗(σ′

i)) would
compute σ1−i (see Figure 3). It is also worth noting that we ensure to keep at
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Figure 3. Suppose that there are no active Ψn-splits above σ.
Provided that (⋆) holds, if Ψn(σ0) is compatible with Ψn(σ1) for
every σ0, σ1 ⊃ σ then Ξ cannot be defined above any σ− incom-
patible with σ′ ↾ k.

least one node alive above σ. The reason is that if a string σ is removed for being
inconsistent with the computation of Ξ(Φ) on a fixed argument, then we must be
keeping strings incompatible with σ since one of the two incompatible strings must
be consistent with the latter computation.

Regardless of which version we follow, after these instructions we place S2(n+1)-
strategies on strings of the least level on which no lower priority S2-strategy is placed
yet.

3.4. S1(n)-strategy above σ. We try to diagonalize if possible as usual. That
is, whenever we find that Θn(Ψn(σ)) 6= Φ(σ), we declare every string incompatible
with σ to be terminal and enumerate them out from T , and so S1(n) is satisfied
above σ. Until we falsify the hypothesis of the S1(n) requirement, the strategy
is instructed to perform the following in accordance with the flag value of σ, i.e.,
depending if σ is in the Σ or the Π-region of Ts with respect to Ψn.

3.4.1. S1,Π(n)-strategy instructions above σ. Suppose that σ has an active Ψn-split.
Then we will have no problem in satisfying the requirement trivially since we au-
tomatically get Ψn(A) ≥T A and we have a win over that particular Ψ.

We nevertheless need to apply the non-recursiveness strategy to make sure no
infinite path above σ is recursive. We place the D(m)-strategy on two incompatible
strings τ0, τ1 such that τ0, τ1 ⊃ σ and we execute D(m) on both for least such m

that has not been picked yet for the non-recursiveness requirement. At most one
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of them will get diagonalized, say τi, and enumerated out of T . We then place
S2(n+ 1)-strategy on τ1−i. Also define τ1−i to be a new Π-boundary point.

3.4.2. S1,Σ(n)-strategy instructions above σ. Suppose that an S1(n)-strategy is placed
on σ and that there are no active Ψn-splits above σ. Given Ts at stage s we perform
the following instructions:

(1) Fix some new witness l ∈ ω.
(2) See if there are two incompatible strings σ1 and σ2 in Ts, extending σ, such

that Ψn(σ1) and Ψn(σ2) are defined up to l. If so, then
(i) Place a D(m)-strategy on σ1 and σ2 for least m that has not been

picked yet, and define axioms for Φ such that Φ(σ1) and Φ(σ2) are
incompatible up to l.

(ii) Keep both extensions σ1 and σ2 in Ts until we see either one of two
things happen:
(a) There exists an extension of σi, for some i ∈ {1, 2}, say σ′

i ⊃ σi,
such that Θ(Ψn(σ

′

i)) = Φ(σi).
(b) The D(m)-strategy decides to remove one of σi.

Now one of the two cases may happen for Θ as the construction goes:

(i) Θ may appear finitely often.
(ii) Θ may appear infinitely often.

Case (i): Consider first the finite outcome. It may be that Θ stops appearing above
σ. If we have a finite outcome, then we have a win over Θ and so there is nothing
to prove as we can satisfy the S1 requirement above σ.

Case (ii): We follow a similar argument as in the Σ2 outcome for S2. We keep
both σ1 and σ2 extendible until the hypothsis in the S1 requirement is satisfied. If
we find that Θ(Ψn(σ

′

i)) = Φ(σi), we define all τ ⊃ σi to be terminal such that τ

is incompatible with σ′

i. Note that when Θ of Ψn is defined above for σ which is
compatible with σ1, then Ψ cannot be defined above for σ2 because the range of
Ψ is below σ1. If we later decide to kill the branch on which Θ is defined, then
Θ may now get defined above σ2. But let us suppose this does not happen, or at
least it happens finitely many times. This means that Θ will be defined along a
unique infinite path A and Ψn will be partial on every other path (see Figure 4).
So for this unique infinite path on which Θ is defined, we have Ψn(A) ≥T A and
Φ(A) ≥T A. This infinite path, we will prove in Lemma 4.3, is of r.e. degree.

3.5. D(n)-strategy above σ. Finally we explain the strategy D(n) for the non-
recursiveness requirements. D(n) works in accordance with S1 and S2. Hence, it
will have two versions, one for S1 and the other for S2.

Instructions of D(n) for S1 at stage s:
Let τ be a string in Ts equipped with a D(n)-strategy and suppose that D(n) has

not yet acted on n, in the sense that n is a newly picked witness. We find the least
τ ′ ⊃ τ such that τ ′ is the least string on which no S1(n)-strategy is placed. Let
τ ′0 and τ ′1 be two strings extending τ ′ such that τ ′0 and τ ′1 are incompatible. Define
Φ(τ ′0) and Φ(τ ′1) to be two incompatible strings. If we find at some later stage that
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Figure 4. If Ψn is total on a unique infinite path A and there are
infinitely many Φ-splits, Ψn(A) ≥T A and Φ(A) ≥T Ψn(A).

the n-th Turing functional Ψn extends one of τ ′i , for i ∈ {0, 1}, then we declare all
extensions of τ ′i which are incompatible with τ ′1−i as terminal, enumerate them out
of T and remove all strategies from these strings. Then place D(n+1)-strategy on
two incompatible extensions of τ ′1−i.

Instructions of D(n) for S2 at stage s:
Suppose that a D(n)-strategy is placed on σ. We want the D(n)-strategy to

decide which one of the two incompatible extensions of σ to keep in T at stage
s. When working with S2 requirements we have to be careful that the domain of
Φ should not exceed the domain of Ψn before we decide which path to choose for
diagonalization. Let σ0 and σ1 be two incompatible extensions of σ in Ts. In order
to keep at least one of σ0 and σ1 extendible, we leave reflections of Φ values above
both σ0 and σ1 in case the D(n)-strategy at a later stage decides to remove one
of them and we make sure that Φ is not defined until Ψn gets defined. For this
it suffices to ensure that it is not the case that every extendible σ′

0 ⊃ σ0 has a Φ
value incompatible with its reflection. More precisely, we make sure that above
σ0, there exist some σ′

0 for which there exists some σ′

1 ⊃ σ1 such that Φ(σ′

0) and
Φ(σ′

1) are compatible if Ψn(σ
′

0) and Ψn(σ
′

1) are compatible. This is ensured by
the (⋆) property, which is preserved by the Φ+-regulation procedure. So we only
enumerate Φ axioms while leaving a reflection of either of Φ(σ′

0) or Φ(σ′

1) in Φ+.
Again, we do this because we want to preserve (⋆) for making Φ values of extensions
compatible whenever the Ψ values are compatible. If it were the case that all Φ(σ′

0)
were incompatible with Φ(σ′

1), then assuming that Φ(σ′

0) ↓ and Φ(σ′

1) ↓, and that
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there are no active Ψn-splits above σ, we would not be able to make the reflections
compatible with each other which is necessary for the preservation of (⋆). The rest
of the instructions is similar to the instructions of D(n) for S1.

3.6. Main construction. We are now ready to define the main recursive con-
struction, which is just initiated by enumerating a Ψ0-splitting subtree of 2<ω.

Stage 0. Define T0 = 2<ω. We define λ to be the Π-boundary point initially.
We let Φ+ = {λ} and enumerate Φ(λ) ⊃ λ.

Stage s + 1. For any σ of length s + 1 in Ts+1, carry out step s of the level 0
construction inside T0 above σ.

The construction generates, at each stage, a Ψn+1-splitting subtree over the
Ψn-splitting path, on the regions where Ψn is partial.

We let T =
⋂

s Ts be the co-r.e. tree produced by the construction. Now, the
construction will never enumerate λ out of T . Furthermore, since no terminal nodes
are left in Ts, T must be infinite and so [T ] 6= ∅ (see Lemma 4.1).

4. Verification

We first argue that the constructed Π0
1 class is non-empty and contains no re-

cursive members.

Lemma 4.1. [T ] is non-empty and it does not contain a recursive member.

Proof. It should be clear from both versions of the D(n)-strategy that if A ∈ [T ]
and A = Ψn for some n, then there is some stage s where σ ⊂ A gets enumerated
out of Ts when we witness σ ⊂ Ψn(∅)[s]. Hence, if A is recursive then A 6∈ [T ]. If
σ is a node with a D(n)-strategy, the fact that we run the D(n)-strategy on each
incompatible extension σ0, σ1 ⊃ ensures that D(n) does not enumerate out σ from
T .

To prove that [T ] is non-empty, it is clear from the instructions that if σ is a
node equipped with an Si-strategy, for i ∈ {0, 1, 2}, then σ is not enumerated out
of T . Also when we enumerate out some τ from T , we also enumerate out of M all
σ ∈ T such that either τ ⊂ σ or σ ⊂ τ and σ ∼ τ . The latter property preserves
the property that Ts has no terminal nodes. Then these two facts together ensure
that Ts is an infinite perfect tree. Hence, T =

⋂
s Ts is an infinite perfect tree, and

so [T ] 6= ∅ by compactness of Cantor space.
�

Next we show that the domain of Ψ does not exceed that of Φ. This ensures
that Φ(A) computes Ψn(A) for any n ∈ ω.

Lemma 4.2. For any A ∈ [T ], Φ(A) is total if Ψ(A) is total.

Proof. Assume that A ∈ [T ] and Ψ(A) is total. Suppose that there exists some σ

and a stage s after which Φ(τ) is undefined for all τ ⊃ σ at all later stages s′ ≥ s.
The totality of Φ(A) is ensured as follows whenever we define an axiom for Φ: We
take the least n ∈ ω such that Ψ(σ;n) ↑. We then make sure that for all m < n

and j < m, if Ψ(σ;m) = τ and if Ψ(σ; j) = η such that η ⊂ τ , then enumerate
the axiom Φ(σ;n) = τ for the longest string π ∈ Φ+ such that π ⊂ τ . We then
enumerate τ ∗0 and τ ∗1 into Φ+. If we follow this convention this runs contrary to
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what we supposed for a contradiction. Hence, if there exists some k ∈ ω for which
Φ(σ; k) ↑, then there exists some l < k for which Ψ(σ; l) ↑. �

We now prove the last lemma needed to complete the proof of the main theorem.
We shall first describe the success criteria for the execution of requirements. Let
us say that, for each i ∈ {0, 1, 2}, success conditions of the Si and D requirements
depend on the satisfaction of two conditions:

(i) Step 0 of the requirements are carried out. If step s of the requirement is
carried out, then there is a stage t > s at which the requirement is carried
out.

(ii) When a strategy is permanently satisfied after stage t, i.e., there is a stage
t such that the strategy is satisfied for every t > s, no string σ above which
the strategy is permanently satisfied is enumerated out of T .

Lemma 4.3. Suppose that the success conditions for the Si-requirements, for each

i ∈ {0, 1, 2}, are satisfied on infinite paths of T . Then any A ∈ [T ] in the Σ-region
of T for which Ψn(A) is total is of r.e. degree.

Proof. The S0(n)-strategy enumerates a Ψn-splitting subtree of Ts. So with the S0-
requirements we either end up with having a Π2 outcome or Σ2 outcome. Suppose
that A ∈ [T ] and A is in the Π-region of T , i.e., for every σ ⊂ A there exist τ1 ⊃ σ

and τ2 ⊃ σ in T such that Ψn(τ1;x) ↓6= Ψn(τ2;x) for some x ∈ ω. In this case,
Ψn(A) ≥T A and so the theorem is satisfied trivially. We now prove that if A lies
in the permanent Σ-region of T such that Ψn(A) is total, then A is of r.e. on that
infinite branch of T . For the S2 requirements we have the following cases:

(i) If Θ appears finitely often, we have the Outcome 3 since in this case we win
over Θ.

(ii) If Θ appears infinitely often, we get Outcome 4. That is, we have that
Ψn(A) computes A via Θ on a unique infinite path, and Ψn is partial on
any path incompatible with A. In this case, we argue below that A is of
r.e. degree.

We give the proof for the S2 requirements, but the same argument can be adapted
to S1 requirements as well. Suppose that A is the unique path in [T ] such that
Ψn(A) is total. We can construct an r.e. set W which is Turing equivalent to A

as follows. Let Dσ denote the node σ with a D(n)-strategy placed on it. Define W

to be set of all Dσ such that there exists some stage s where Dσ is in the Π-region
with respect to Ψn and Dσ is active at stage s. More precisely, we let

W = {σ ⊂ A : ∃s such that σ is on the subtree with Ψn(A) ≥T A after stage s}.

Clearly W is an r.e. set since W is a Σ0
1 set. We claim that W ≡T A.

(i) The fact that W ≥T A is clear since A is the unique infinite path in W .
(ii) We argue that W ≤T A. We see if Dσ is used in the construction and so

whether it remains in the tree at stage |σ|. If Dσ is used then our tree at any stage
will look like an antichain of strings on a path A. Now suppose that σ is a string
from which we start our strategy. Given γ ∈ 2<ω, there are three cases to find out
whether or not γ ∈ W . First case is that γ could be off the whole tree. So if γ is
incompatible with every σ, then we know that γ 6∈ W . Secondly, if it is the case
that γ ⊃ σ and γ ⊂ A, then γ ∈ W and Ψ(A) ≥T A whenever γ is on the infinite
path on which Ψ(A) is total. Finally, suppose that γ ⊃ σ but γ is incompatible with
every τ ⊂ A. In this case, we keep finding the node with the next highest priority
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D-strategy until, at some stage t, we hit γ and we see whether γ is extended by an
active node of length t. For convenience we may suppose that the extension has
the same length as the length of the stage of the construction. So a string is in W

iff it is in W [t] enumerated at stage t where we put active node compatible with A.
Then, Dσ ∈ W if and only if Dσ ∈ W by stage |σ|. �

This completes the proof of Theorem 3.2. Hence, [T ] is a non-empty special Π0
1

class in which no member is a minimal cover for any set. Thus, class of degrees of
minimal cover is a not basis for Π0

1 classes.
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