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REFLEXIVITY OF MODULES

ADRIÁN GORDILLO-MERINO, JOSÉ NAVARRO AND PEDRO SANCHO

Abstract. Let R be an associative ring with unit. We consider R−modules
as functors in the following way: if M is a (left) R-module, let M be the
functor of R−modules defined by M(S) := S ⊗R M for every R−algebra
S. With the corresponding notion of dual functor, we prove that the natural
morphism of functors M → M∗∗ is an isomorphism.

1. Introduction

Every undergraduate student knows the following, elementary Linear Algebra
fact: if k is a field, V is a k-vector space and V ∗ = Homk(V, k) is its dual vector
space, then the natural morphism

V → V ∗∗, v 7→ ṽ , where ṽ(w) := w(v), ∀w ∈ V ∗,

is not an isomorphism in general—only if V is finite-dimensional.
In addition, if R is a commutative ring andM∗ = HomR(M,R) denotes the dual

of an R-module M , the natural morphism M → M∗∗ may not be an isomorphism,
even if M is finitely generated—just take R = Z and M = Z /2Z , so that
M∗ = HomZ(Z /2Z,Z) = 0 , and hence M∗∗ = 0.

However, it should be noticed that, if we consider modules as functors on the cat-
egory of commutative R-algebras, and the linear dual is the corresponding functor
of homomorphisms, then these module functors are reflexive ([1], [4]). The aim of
this paper is to extend this result to modules defined over non-commutative rings.

To be more precise, let R be an associative ring with unit, M an R-module,
and N a right R-module. Consider the following covariant functors defined on the
category of R-algebras:

The functor of rings R , defined, for any R-algebra S , as

R(S) := S ,

and the functors of R-modules M and N ∗ , defined by

M(S) := S ⊗R M ,

N ∗(S) := HomS(N ⊗R S, S) ,

for any R-algebra S.

Having adopted this point of view, this is our main result (Th. 5.3):

Theorem. Let M be an R-module. The natural morphism of R-modules

M → M∗∗

is an isomorphism.
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When R is a commutative ring, this theorem has been proved for finitely gener-
ated modules using the language of sheaves in the big Zariski topology, in [5], and
it is implicit in [4, II,§1,2.5]. The reflexivity of these quasi-coherent R-modules
M has been used for a variety of applications in theory of linear representations
of affine group schemes ([1],[2],[3]). Likewise, we think that this new reflexivity
theorem will be useful in the theory of comodules over non-commutative rings.

Let us briefly sketch how we get to prove it.
The first two sections include preliminary definitions, as well as certain techni-

calities that will be required later on. In particular, we observe that any R−module
M can be described as a kernel of a morphism (of groups) between algebras:

R〈M〉
q1−q2

−−−−−−−→ R〈M ⊕Rx〉

p(m) 7−→ p(m · x) − p(m) · x

where R〈M〉 stands for the R−algebra generated by M (see 3.4).
Using this idea, Section 4 is devoted to proving that everyR−module F naturally

extends to a functor F from the category of right R−modules to the category of
abelian groups.

As examples, for any R−module M , the extension of M is

M(Q) = Ker[Q⊗R M ⊗Z R
p1−p2

−→ Q⊗R M ⊗Z R⊗Z R]

q ⊗m⊗ r 7−→ q ⊗m⊗ r ⊗ 1− q ⊗m⊗ 1⊗ r

and, for any right R−module N , the extension of N ∗ is

N ∗(Q) = HomR(N,Q),

which is the the functor of (co)points of the R−module N .
Under some assumptions, we are able to prove the existence of the following

isomorphism (Theorem 4.8):

HomR(F,F′) = HomR(F,F′) .

Finally, in Section 5 we use the isomorphism just mentioned and Yoneda’s lemma
to prove that

HomR(N ∗,M) = M(N) .

and, as a corollary, that M = M∗∗.

An effort has been made to make this paper as self-contained as possible.

2. Preliminaries

Let R be an associative ring with unit, and let R be the covariant functor from
the category of R-algebras, R-Alg , to the category of rings, defined by R(S) := S,
for any R-algebra S.

Definition 2.1. A functor of R-modules is a covariant functor M : R-Alg → Ab
together with a morphism of functors of sets R×M → M that endows M(S) with
an S-module structure, for any R-algebra S.

A morphism of R-modules f : M → M
′ is a morphism of functors such that the

morphisms fS : M(S) → M
′(S) are morphisms of S-modules.
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If S is an R-algebra, the restriction of an R-module M to the category of
S-algebras will be written

M|S(S
′) := M(S′),

for any commutative S-algebra S′.

Definition 2.2. The functor of homomorphisms HomR(M,M′) is the covariant
functor R-Alg → Ab defined by

HomR(M,M′)(S) := HomS(M|S ,M
′
|S),

where HomS(M|S ,M
′
|S) stands for the set1 of all morphisms of S-modules from

M|S to M
′
|S′ .

In particular, the dual of an R-module M is the functor

M
∗ := HomR(M,R).

In the following, it will also be convenient to consider another notion of dual
module:

Definition 2.3. If M is an R-module, the extended dual M
∨ is the following

functor R-Alg → Ab

M
∨(S) := HomR(M,S) .

Definition 2.4. The quasicoherentR-module associated to an R-module M is the
following covariant functor

M : R-Alg → Ab , M(S) := S ⊗R M.

Quasi-coherent modules are determined by its global sections. In particular, we
will make use of the following statement, whose proof is immediate:

Proposition 2.5. Restriction to global sections f 7→ fR defines a bijection:

HomR(M,M) = HomR(M,M(R)) ,

for any quasicoherent R-module M and any R-module M.

As a consequence, both notions of dual module introduced above coincide on
quasi-coherent modules; that is, M∗ = M∨ .

In fact, if S is an R-algebra, then

M∨(S) = HomR(M,S) = HomR(M,S)

and, as M|S is the quasi-coherent S-module associated to S ⊗R M ,

M∗(S) = HomS(M|S,S) = HomS(S ⊗R M,S) = HomR(M,S) = M∨(S) .

Finally, any definition or statement in the category of R-modules has a corre-
sponding definition or statement in the category of right R-modules, that we will
use without more explicit mention.

1In this paper, we will only consider well-defined functors HomR(M,M′), that is to say, functors
such that HomS(M|S ,M

′
|S) is a set, for any R-algebra S.
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As examples, if M is an R-module, then M
∗ = HomR(M,R) is a right R-

module. If N is a right R-module, then the dual module defined by

N
∗ := HomR(N,R)

is an R-module, etc.

3. Modules as kernels of morphisms between algebras

Hypothesis 3.1. Let N be a right R-module and let M be an R-module. The
sequence of morphisms of groups

N ⊗R M
i
→ N ⊗R M ⊗Z R

p1
//

p2

//N ⊗R M ⊗Z R⊗Z R

where i(n⊗m) := n⊗m⊗ 1, p1(n⊗m⊗ r) := n⊗m⊗ r⊗ 1 and p2(n⊗m⊗ r) :=
n⊗m⊗ 1⊗ r, is exact.

The following three Propositions provide situations where this hypothesis is sat-
isfied.

Proposition 3.2. Let N be a right R-module and let M be an R-module. If M
(or N ) is an R-bimodule or a flat module, then Hypothesis 3.1 is satisfied.

Proof. Suppose that M is a bimodule. It is clear that Im i ⊆ Ker(p1 − p2). Let
s : N⊗RM⊗ZR → N⊗RM , s(n⊗m⊗r) = n⊗mr and s′ : N⊗RM⊗ZR⊗ZR →
N ⊗R M ⊗Z R, s′(n⊗m⊗ r⊗ r′) = n⊗mr⊗ r′. Observe that s ◦ i = Id, so that i
is injective. Also, s′ ◦ p2 = Id and s′ ◦ p1 = i ◦ s. Thus, if x ∈ Ker(p1 − p2), then
p1(x) − p2(x) = 0; hence, 0 = s′(p1(x)) − s′(p2(x)) = i(s(x)) − x and x ∈ Im i.

In particular, taking the bimodule M = R , the following sequence of morphisms
of groups is exact:

N
i
→ N ⊗Z R

p1
//

p2

//N ⊗Z R ⊗Z R .

Thus, if M is flat, tensoring by M it also follows that Hypothesis 3.1 is satisfied.
�

Proposition 3.3. Hypothesis 3.1 is satisfied if there exists a central subalgebra
R′ ⊆ R such that Q → Q⊗R′ R is injective, for any R′-module Q .

Proof. Let us write M ′ := M ⊗R′ R , which is a bimodule as follows: r1 · (m ⊗
r) · r2 = r1m ⊗ rr2. The morphism of R-modules i : M → M ′, i(m) := m ⊗ 1
is universally injective: Given an R-module P , put Q := P ⊗R M . Then, the
morphism P ⊗R M = Q → Q⊗R′ R = P ⊗R M ′ is injective.

Put Q := M ′/M and M ′′ := Q ⊗R′ R. Let p1 be the composite morphism
M ′ → M ′/M = Q → Q ⊗R′ R = M ′′. The sequence of morphisms of R-modules

0 → M
i
→ M ′ p

→ M ′′

is universally exact. Consider the following commutative diagram

0 // N ⊗R M
Id⊗i

//

��

N ⊗R M ′ Id⊗p
//

��

N ⊗R M ′′

��

0 // N ⊗R M ⊗Z R
Id⊗i⊗Id

//

����

N ⊗R M ′ ⊗Z R
Id⊗p⊗Id

//

����

N ⊗R M ′′ ⊗Z R

����

0 // N ⊗R M ⊗Z R⊗Z R
i′
// N ⊗R M ′ ⊗Z R⊗Z R

p′

// N ⊗R M ′′ ⊗Z R⊗Z R
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(where i′ = Id⊗i⊗ Id⊗ Id and p′ = Id⊗p⊗ Id⊗ Id) whose rows are exact, as well
as both the second and third columns, by Proposition 3.2. Hence, the first column
is exact too.

�

Notation 3.4. If M is an R-module, observe that M ⊗ZR is an R-bimodule and
we can consider the tensorial R-algebra

R〈M〉 := T ·
R(M ⊗Z R) = (T ·

Z
M)⊗Z R .

Remark 3.5. If N is a right R-module, then:

R〈N〉 := T ·
R(R⊗Z N) .

Lemma 3.6. The following functorial map is bijective:

HomR−alg(R〈M〉, S) → HomR(M,S) , f 7→ f ′ ,

where f ′(m) := f(m⊗ 1) for any m ∈ M .

Proof. HomR−alg(T
·
R(M ⊗Z R), S) = HomR⊗ZR(M ⊗Z R,S) = HomR(M,S). �

Any R-linear morphism φ : M → M ′ uniquely extends to a morphism of R-
algebras φ̃ : R〈M〉 → R〈M ′〉, m⊗ 1 7→ φ(m) ⊗ 1.

If we use the notation M
n
· · ·M · R := M ⊗Z

n
· · · ⊗Z M ⊗Z R, m1 · · ·mn · r 7→

m1 ⊗ · · · ⊗mn ⊗ r, then

R〈M〉 = ⊕∞
n=0 M

n
· · ·M · R ,

and the product in this algebra can be written as follows:

(m1 · · ·mn · r) · (m′
1 · · ·m

′
n′ · r′) = m1 · · ·mn · (rm′

1) ·m
′
2 · · ·m

′
n′ · r′.

Notation 3.7. Let us use the following notation

M ⊕Rx := M ⊕R , (m, r · x) 7→ (m, r) .

Lemma 3.8. Let M be an R-module and N a right R-module. Then,

Ker[N ⊗RR〈M〉
q1
//

q2
//N ⊗RR〈M ⊕Rx〉] = Ker[N ⊗RM ⊗ZR

p1
//

p2

//N ⊗RM ⊗ZR⊗ZR],

where for any given p(m) =
∑

mi1 · · ·mis · ri1...is ∈ R〈M〉 and n ∈ N the maps
q1 and q2 are defined as follows:

q1(n⊗ p(m)) := n⊗ p(mx) := n⊗
∑

mi1x · · ·misx · ri1...is

and

q2(n⊗ p(m)) := n⊗ p(m)x := n⊗
∑

mi1 · · ·mis · ri1...is · x .
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Proof. It is easy to prove that the kernel of the morphism

N ⊗R R〈M〉 → N ⊗R R〈M〉[x], n⊗ p(m) 7→ n⊗ (p(m)x− p(mx))

is included inN⊗RM⊗ZR. Observe that the morphism ofR-algebrasR〈M⊕Rx〉 →
R〈M〉[x], m 7→ m and x 7→ x, is an epimorphism.

Then,
Ker(q1 − q2) ⊆ N ⊗R M ⊗Z R

and Ker(q1 − q2) = Ker(p1 − p2). �

As a consequence of this Lemma, it readily follows:

Proposition 3.9. Hypothesis 3.1 is satisfied if and only if the following sequence
of morphisms of groups is exact:

N ⊗R M // N ⊗R R〈M〉
q1

//

q2
// N ⊗R R〈M ⊕Rx〉

n⊗m
✤ // n⊗m, n⊗ p(m)

✤ //
✤ // n⊗ p(mx), n⊗ p(m)x .

4. Extension of a functor on the category of algebras to a functor

on the category of modules

Let F be a functor defined on the category of R-algebras. Our aim in this Section
is to define its extension to a functor F defined on the category of R-modules.
Using this procedure, the reflexivity theorem will be recovered as a particular case
of Yoneda’s lemma.

Notation 4.1. Let M be an R−module. Consider the morphism of R−algebras

hx : R〈M ⊕Rx〉 −→ R〈M ⊕Rx〉

defined by hx(m) = m · x , for any m ∈ M , and hx(x) = x .

Definition 4.2. The extension of a functor F of right R−modules is the functor
F , from the category of R−modules to the category of abelian groups, defined by

F(M) := Ker[F(R〈M〉) → F(R〈M ⊕Rx〉), f 7→ F(hx)(f)− f · x],

for any R-module M and any f ∈ F(R〈M〉).

If w : M → M ′ is a morphism of R-modules, it induces morphisms of R-algebras

w̃ : R〈M〉 → R〈M ′〉 , w̃(m) = w(m)

and ˜̃w : R〈M ⊕ Rx〉 → R〈M ′ ⊕ Rx〉, ˜̃w(m) = w(m), ˜̃w(x) = x. Observe that
˜̃w ◦ hx = hx ◦ ˜̃w. Hence, we have the morphism

F(w) : F(M) → F(M ′) , F(w)(f) := F(w̃)(f)

for any f ∈ F(M) ⊂ F(R〈M〉).

Note 4.3. In a similar vein, we can define the extension of a functor F of R-
modules, which is a functor F from the category of right R-modules to the category
of abelian groups.

Proposition 4.4. Hypothesis 3.1 is satisfied if and only if

N (M) = N ⊗R M .
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Proof. It is an immediate consequence of Lemma 3.8. �

Remark 4.5. Observe that

N (M) = Ker[N ⊗R M ⊗Z R
p1−p2

−→ N ⊗R M ⊗Z R⊗Z R] = M(N) .

Proposition 4.6. Let F be a functor of R-modules. Then,

F∨(M) = HomR(F,M).

Proof. By Propositions 3.9 and 3.2, the sequence of morphisms

0 // M // R〈M〉
//
// R〈M ⊕Rx〉

m
✤ // m, p(m)

✤ //
✤ // p(mx), p(m)x

remains exact when tensoring by R-algebras. Hence, F∨(M) = HomR(F,M).
�

Let S be an R-algebra and s ∈ S. The morphism of R-modules ·s : S → S,
s′ 7→ s′ · s induces the morphism of R-algebras ·̃s : R〈S〉 → R〈S〉, s′ 7→ s′ · s, which
in turn induces the morphism of groups

F(·s) : F(S) → F(S) , f 7→ F(·̃s)(f) .

Proposition 4.7. Let S be an R-algebra and s ∈ S. Then, for any f ∈ F(S) ⊂
F(R〈S〉)

F(·s)(f) = f · s.

Therefore, F(S) has a natural structure of right S-module

Proof. Given f ∈ F(S), we know that F(hx)(f) = f · x in F(R〈S ⊕Rx〉). Consider

the morphism of R-algebras R〈S ⊕Rx〉
x=s
→ R〈S〉, s′ 7→ s′ and x 7→ s. We have the

commutative diagrams

R〈S ⊕Rx〉
x=1

//

hx

��

R〈S〉

·̃s

��

R〈S ⊕Rx〉
x=s

// R〈S〉

F(R〈S ⊕Rx〉)
F(x=1)

//

F(hx)

��

F(R〈S〉)

F(·̃s)

��

F(R〈S ⊕Rx〉)
F(x=s)

// F(R〈S〉)

and the composite morphism F(R〈S〉) → F(R〈S ⊕ Rx〉)
F(x=s)
→ F(R〈S〉) is the

identity, for any s ∈ S. Hence, F(x = s)(f) = f and

F(·s)(f) = F(·̃s)(f) = F(·̃s)(F(x = 1)(f)) = F(x = s)(F(hx)(f)) = F(x = s)(f · x)

= F(x = s)(f) · s = f · s.

�

Let S be an R-algebra and let πS : R〈S〉 → S be the morphism of R-algebras
s 7→ s , for any s ∈ S. Consider the following composition of morphisms of S-
modules

F(S) ⊆ F(R〈S〉)
F(πS)
−→ F(S) .
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Theorem 4.8. Let F be a right R-module such that the natural morphism

F(πS)|F(S) : F(S) → F(S)

is an isomorphism, for any R-algebra S .
If F

′ is another right R-module, there exists a natural isomorphism

HomR(F,F′)
∼

−−→ HomR(F,F′) ,

where HomR(F,F′) stands for the set of morphisms of functors of groups from F

to F′ .

Proof. First of all, any morphism of right R-modules φ : F → F
′ can be extended

to a morphism of functors of groups

φ : F → F
′
, φM (f) := φR〈M〉(f) ,

for any R-module M and any f ∈ F(M) ⊂ F(R〈M〉).
On the other hand, given ϕ ∈ HomR(F,F′), let ϕ̃ ∈ HomR(F,F′) be defined by

ϕ̃S := (F′(πS) ◦ i
′
S) ◦ ϕS ◦ (F(πS) ◦ iS)

−1,

for any R-algebra S (iS : F(S) ⊆ F(R〈S〉) and i′S : F
′(S) ⊆ F

′(R〈S〉) are the inclu-
sion morphisms).

1. φ̃ = φ: The diagram

F(S)

φ
S

��

iS
// F(R〈S〉)

F(πS)
//

φR〈S〉

��

F(S)

φS

��

F′(S)
i′
S

// F
′(R〈S〉)

F
′(πS)

// F
′(S)

is commutative. Hence, φ̃S := (F′(πS) ◦ i
′
S) ◦φS ◦ (F(πS) ◦ iS)

−1 = φS ◦F(πS) ◦ iS ◦
(F(πS) ◦ iS)−1 = φS .

2. ϕ̃ = ϕ: The diagram

F(N) //

ϕN

��

F(R〈N〉) //

ϕR〈N〉

��

F(R〈R〈N〉〉) // F(R〈N〉)

ϕ̃R〈N〉

��

F′(N) // F′(R〈N〉) // F
′(R〈R〈N〉〉) // F

′(R〈N〉)

is commutative. Hence, (ϕ̃)N = ϕ̃N |F(N) = ϕN . �

Example 4.9. Any extended dual F
∨ satisfies the hypothesis of Theorem 4.8: the

composition F∨(S) ⊆ F
∨(R〈S〉) → F

∨(S) is the identity morphism, as follows from

Proposition 4.6 and the fact that the composition S → R〈S〉
πS→ S is the identity

morphism.

5. Reflexivity theorem

Let M be an R−module. The functor M∨ is precisely the functor of (co)points
of M in the category of R−modules: if Q is another R−module, in virtue of
Proposition 4.6:

M∨(Q) = HomR(M,Q) = HomR(M,Q) .
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Theorem 5.1. Let M be an R-module and N be a right R-module. Then,

HomR(M∗,N ) = N (M) .

Proof. The dual M∗ = M∨ satisfies the hypothesis of Theorem 4.8 (see Example
4.9), so that

HomR(M∗,N ) = HomR(M∨,N ) = HomR(M∨,N ) .

As M∨ is a functor of points, the statement now follows applying Yoneda’s
lemma:

HomR(M∨,N ) = N (M) .

�

As a consequence of this Theorem and Proposition 4.4, we obtain the following
formula:

Corollary 5.2. Let M be an R-module and N be a right R-module. The following
equality of abelian groups holds

HomR(M∗,N ) = N ⊗R M

if and only if Hypothesis 3.1 is satisfied.

Theorem 5.3. Let M be an R-module. The natural morphism of R-modules

M −→ M∗∗

is an isomorphism.

Proof. On the one hand, M∗∗(S) = HomS(M∗
|S ,S) = HomS(M|S

∗,S).
On the other, any R-algebra S is a bimodule, so that Hypothesis 3.1 is satisfied

(Proposition 3.2) and we can apply Corollary 5.2. As M|S is the quasicoherent
module associated to S ⊗R M , it follows:

HomS(M|S
∗,S) = S ⊗S S ⊗R M = S ⊗R M = M(S) .

�

Finally, let us show how the techniques we have developed also allow to prove a
reflexivity theorem for the extended dual of quasicoherent modules:

Theorem 5.4. Let M be an R-module. The natural morphism of R-modules

M −→ M∨∨

is an isomorphism.

Proof. It is a consequence of M∨ = M∗ and Corollary 5.2:

M∨∨(S) = HomR(M∨,S) = HomR(M∗,S) = S ⊗R M = M(S) .

�
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