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Abstract

In our earlier work [13, Fareed et al., Comput. Math. Appl. 75 (2018), no. 6, 1942-1960], we
developed an incremental approach to compute the proper orthogonal decomposition (POD) of
PDE simulation data. Specifically, we developed an incremental algorithm for the SVD with
respect to a weighted inner product for the discrete time POD computations. For continuous
time data, we used an approximate approach to arrive at a discrete time POD problem and then
applied the incremental SVD algorithm. In this note, we analyze the continuous time case with
simulation data that is piecewise constant in time such that each data snapshot is expanded in a
finite collection of basis elements of a Hilbert space. We first show that the POD is determined
by the SVD of two different data matrices with respect to weighted inner products. Next, we
develop incremental algorithms for approximating the two matrix SVDs with respect to the
different weighted inner products. Finally, we show neither approximate SVD is more accurate
than the other; specifically, we show the incremental algorithms return equivalent results.

Keywords: Proper orthogonal decomposition, continuous time, incremental SVD, weighted
inner products
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1 Introduction

Proper orthogonal decomposition (POD) is a data approximation technique that has been success-
fully used for many applications in various fields; see, e.g., [1, 4, 9, 14, 16, 17, 19, 21, 22, 27, 31, 37, 40,
41,43]. The first part of any such application is to use POD to extract basis elements, called POD
modes, from experimental or simulation data. The POD modes are then used in various ways, such
as forming optimal low order reconstructions of the data or constructing reduced order models of
ordinary and partial differential equations (PDEs).

In the most basic case, the POD modes for a data set can be found using the singular value
decomposition (SVD) of an appropriate data matrix. Therefore, as the amount of data increases
the computational cost and storage requirement for finding the POD modes also increase. For
this reason, researchers have investigated various approaches to lowering the computational cost
and storage requirement for constructing the POD modes, the matrix SVD, and other related
quantities [3, 5–8, 11, 18, 20, 25, 26, 39]. These more efficient algorithms have been used in various
applications involving POD and other related approaches, such as the dynamic mode decomposition
[2, 10,28–30,32,34,42,44,45].

We developed an incremental algorithm for POD computations in our earlier work [13]. In
that algorithm, we considered simulation data arising from a Galerkin-type approximation method
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(e.g., a finite element method) for a PDE and updated the POD singular values and POD modes
as new data became available. Due to the class of PDE simulation data considered in [13], we
developed an incremental SVD algorithm with respect to a weighted inner product to perform the
POD computations. The algorithm is computationally efficient, needs very little storage, and is
also easily used in conjunction with an existing time stepping PDE approximation code. We also
recently performed an error analysis of the method in [12].

In both of these earlier works [12,13], we only performed analysis for the discrete time case, i.e.,
the data set is a finite collection of elements in a Hilbert space. In [13, Section 5], we developed an
algorithm for the case of time varying data by approximating the POD integral operator using a
Riemann sum and then performing an incremental POD/SVD update with respect to the weighted
inner product. In this note, we analyze the continuous time case assuming the data is piecewise
constant in time. First, in Section 3 we rigorously establish a precise relationship between the POD
of the data and the SVD of two different matrices with respect to different weighted inner products.
In Section 4, we develop approximate incremental SVD algorithms for both cases and show that
neither computed SVD is more accurate than the other; specifically, we show the incrementally
computed approximate SVDs are equivalent.

2 Background

We begin by recalling material concerning the SVD of compact linear operators, the continuous
time proper orthogonal decomposition, and the SVD of matrices with respect to weighted inner
products.

2.1 The SVD of a compact linear operator

In order to discuss the continuous time proper orthogonal decomposition, we first need to recall
the singular value decomposition of a compact linear operator.

Let X and Y be separable Hilbert spaces with inner products (·, ·)X and (·, ·)Y , and let A : X →
Y be a compact linear operator. The Hilbert adjoint operator A∗ : Y → X is the compact linear
operator satisfying (Ax, y)Y = (x,A∗y)X for all x ∈ X and y ∈ Y . The self-adjoint nonnegative
compact operators AA∗ : Y → Y and A∗A : X → X both have nonnegative eigenvalues and an
orthonormal basis of eigenvectors. The positive eigenvalues of these operators are equal and can
be ordered as λ1 ≥ λ2 ≥ · · · > 0. The square roots of the positive eigenvalues are equal to the
(ordered) positive singular values {µk} of A, and zero is included as a singular value of A if either
AA∗ or A∗A has a zero eigenvalue. Denoting the orthonormal basis of eigenvectors of AA∗ by
{ηk} ⊂ Y and the orthonormal basis of eigenvectors of A∗A by {ξk} ⊂ X, we have the singular
value expansions

Aξ =
∑
k≥1

µk (ξ, ξk)X ηk, A∗η =
∑
k≥1

µk (η, ηk)Y ξk,

for all ξ ∈ X and η ∈ Y . This gives

Aξi = µiηi, A∗ηi = µiξi, ∀µi > 0. (2.1)

Since only the positive singular values and corresponding singular vectors appear in the above
formulas, we call these quantities the core singular values and singular vectors.

For more information, see, e.g., [15, Chapters VI–VIII], [24, Chapter 30], [33, Sections VI.5–
VI.6].
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2.2 Continuous time proper orthogonal decomposition

Let X be a separable Hilbert space with inner product (·, ·)X and corresponding norm ‖ · ‖X , and
let I ⊂ R be an interval. Suppose u is a given element of the Bochner space L2(I;X), i.e., roughly,∫
I ‖u(t)‖2X dt < ∞. The continuous time proper orthogonal decomposition problem is to find an

orthonormal basis {xk} ⊂ X (called the POD modes) minimizing the data approximation error

Er :=

∫
I
‖u(t)− Pru(t)‖2X dt,

where Pr : X → X is the orthogonal projection onto the first r basis elements, i.e.,

Pru =
r∑

k=1

(u, xk)Xxk.

The solution of the POD problem comes from the continuous time POD operator K : L2(I)→ X
for the data u defined by

Kf =

∫
I
u(t)f(t) dt. (2.2)

The POD operator is compact, and the Hilbert adjoint operator K∗ : X → L2(I) is given by

(K∗x)(t) =
(
x, u(t)

)
X
. (2.3)

Let {σi, fi, xi}i≥1 ⊂ R× L2(I)×X be the ordered singular values and corresponding orthonormal
singular vectors. The orthonormal basis minimizing the error is exactly given by the singular
vectors {xi}i≥1 ⊂ X, and the minimal value for the error is

Emin
r =

∑
i>r

σ2
i .

Given the data u, a typical computation of the solution of the POD problem above focuses
on finding the POD eigenvalues and modes {λi, xi}i≥1, where the POD eigenvalues are simply
the squares of the POD singular values. Also, in many applications the POD singular values
for the data decay rapidly; therefore, only the first R singular values and modes are computed,
where R is chosen so that Emin

R or σR is small enough for the application. If one is interested
in approximately reconstructing the data (without storing the data), then one may desire to also
compute the dominant L2(I) POD singular vectors {fi}i≥1 since the optimal data approximation
Pru(t) can be rewritten as

Pru(t) =

r∑
k=1

σk fk(t)xk,

where the bar denotes complex conjugate (for complex Hilbert spaces) [36, Section 2.3].
For more information, see, e.g., [16, 23,35,38].

2.3 The matrix SVD and weighted inner products

In continuous time POD applications, the given data u(t) is often finite dimensional; for example,
the data is an approximate solution of a partial differential equation. As we show in this note,
for certain types of finite dimensional data the SVD required for the continuous time POD can be
reduced to a matrix SVD with respect to weighted inner products. Below, we review this type of
matrix SVD, mostly following [13].
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First, we give notation. For a symmetric positive definite matrix M ∈ Rm×m, let Rm
M denote the

Hilbert space Rm with the M -weighted inner product and corresponding norm given by (x, y)M =

yTMx and ‖x‖M = (x, x)
1/2
M = (xTMx)1/2 for all x, y ∈ Rm. The space Rs

∆ is defined in the same
way, where ∆ is also symmetric positive definite. Also, Rk without a subscript indicates the space
is given the standard unweighted inner product and norm.

Next, for a matrix A ∈ Rm×s considered as a linear operator A : Rs
∆ → Rm

M , the Hilbert adjoint
operator A∗ : Rm

M → Rs
∆ is the matrix A∗ ∈ Rs×m satisfying

(Ax, y)M = (x,A∗y)∆ for all x ∈ Rs
∆ and y ∈ Rm

M .

It is straightforward to show A∗ = ∆−1ATM .
Now we use the definition of the SVD of a compact operator in Section 2.1 applied to the matrix

A : Rs
∆ → Rm

M . Furthermore, we only focus on positive (or core) singular values since zero singular
values are typically not of interest in POD applications. Suppose A has exactly k positive singular
values σ1 ≥ σ2 ≥ · · · ≥ σk > 0. Let V = [v1, v2, . . . , vk] ∈ Rm×k be the matrix whose columns are
the first k M -orthonormal eigenvectors of AA∗ : Rm

M → Rm
M , and let W = [w1, w2, . . . , wk] ∈ Rs×k

be the matrix whose columns are the first k ∆-orthonormal eigenvectors of A∗A : Rs
∆ → Rs

∆.
Equation (2.1) gives

AW = V Σ, A∗V = WΣ, Σ = diag(σ1, . . . , σk). (2.4)

Since {vj}mj=1 and {wj}sj=1 are orthonormal in Rm
M and Rs

∆, respectively, we have W T∆W = I and

V TMV = I. Alternatively, we write W ∗W = I and V ∗V = I, where W ∗ = W T∆ and V ∗ = V TM
are the Hilbert adjoint operators for W : Rk → Rs

∆ and V : Rk → Rm
M . This implies (2.4) is

equivalent to
A = V ΣW ∗. (2.5)

This leads to the following definition:

Definition 2.1. For a matrix A : Rs
∆ → Rm

M with exactly k positive singular values, a core SVD
of A is given by A = V ΣW ∗, where V ∈ Rm×k, Σ ∈ Rk×k, and W ∈ Rs×k are defined above.

See [13] for more discussion about the core SVD. If both inner products are unweighted, we call
the core SVD the standard core SVD for clarity.

In the following result, we give a basic property of the core SVD. The result is similar to
Proposition 2.3 in [13]. The proof is also similar, and is omitted.

Proposition 2.2. Suppose Vu ∈ Rm×k has M -orthonormal columns and Wu ∈ Rs×k has ∆-
orthonormal columns. If Q ∈ Rk×k has standard core SVD Q = VQΣQW

T
Q and A : Rs

∆ → Rm
M is

defined by A = VuQW
∗
u , then

A = V ΣQW
∗, V = VuVQ, W = WuWQ, (2.6)

is a core SVD of A.

Other notation: For a vector v ∈ Rn and k ≤ n, let v(1:k) denote the vector of the first
k components of v. Similarly, for a matrix A ∈ Rm×n, let A(p:q,r:s) denote the submatrix of A
consisting of the entries of A from rows p, . . . , q and columns r, . . . , s. Also, the notation A(:,r:s) is
defined similarly, except all rows are included in the submatrix.
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3 Continuous time POD with finite dimensional data

Next, we consider continuous time POD of a specific class of finite dimensional data that is often
generated by Galerkin-type methods for approximating solutions of partial differential equations.
First, in Section 3.1 we review our approximate approach from [13]. Next, in Section 3.2 we show
that the SVD of the POD operator is equivalent to the SVD of two different matrices with respect
to different weighted inner products. Below, let X be a real separable Hilbert space with inner
product (·, ·)X , and suppose u ∈ L2(I;X), where I = (0, T ) and T > 0 is fixed.

3.1 Approximate approach using a Riemann sum

Below, we give a brief summary of our approximate approach in [13, Section 5]. Assume the data u
is known at certain points in time 0 = t1 < t2 < · · · < ts+1 = T and approximate the POD integral
operator (2.2) using a Riemann sum to get

Kg ≈
s∑

j=1

δj uj g(tj), δj = tj+1 − tj , uj = u(tj).

Next, define ũj = δ
1/2
j u(tj) and hj = δ

1/2
j g(tj) and approximate the continuous POD operator

K : L2(0, T )→ X by a discrete POD operator K̃ : Rs → X as follows:

Kg ≈ K̃h :=
s∑

j=1

ũj hj .

Assume uj ∈ X for each j is expressed in terms of a finite set of basis functions:

uj =

m∑
k=1

Uk,jφk, for j = 1, . . . , s, (3.1)

where {φk}mk=1 ⊂ X is a linearly independent set. Define the matrices M ∈ Rm×m and U ∈ Rm×s

by their entries Mj,k := (φj , φk)X and Uk,`, for j, k = 1, . . . ,m and ` = 1, . . . , s. Also, define the
matrix ∆ ∈ Rs×s by ∆ = diag(δ1, ..., δs). We can use Appendix A.1 in [13] to see that the core
SVD of the discrete POD operator K̃ : Rs → X is obtained from the core SVD of the matrix
U∆1/2 : Rs → Rm

M . We do not give the details here since similar details will be provided below.
We note that we approximated the POD integral operator and found that the SVD of the

resulting discrete POD operator can be obtained by the SVD of the matrix U∆1/2 : Rs → Rm
M .

This SVD with respect to a weighted inner product can be updated incrementally, as in [13].

3.2 Exact approach assuming the data is piecewise constant in time

Next, we show that the SVD of the POD operator can be obtained without approximation assuming
the data u is piecewise constant in time. Specifically, we assume the data u has the form

u(t) =

s∑
j=1

uj χj(t), (3.2)

where {uj} ⊂ X is given as in (3.1), 0 = t1 < t2 < · · · < ts+1 = T , and the characteristic functions
are defined by

χj(t) =

{
1, tj < t < tj+1,

0, otherwise.
(3.3)
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We first show in Proposition 3.1 that the core singular values and singular vectors of K can be
computed by finding the core SVD of a weighted coefficient matrix with respect to two weighted
inner products.

As in Section 3.1, throughout this section let the matrices M ∈ Rm×m and U ∈ Rm×s have
entries Mj,k := (φj , φk)X and Uk,`, for j, k = 1, . . . ,m and ` = 1, . . . , s. Also, let ∆ ∈ Rs×s be given
by ∆ = diag(δ1, ..., δs), where δj = δj = tj+1 − tj for j = 1, . . . , s.

Proposition 3.1. Suppose {φk}mk=1 ⊂ X are linearly independent, and assume u ∈ L2(0, T ;X) is
given by (3.1)-(3.3). Then {σi, wi, vi} ⊂ R × Rs

∆ × Rm
M are the core singular values and singular

vectors of U∆ : Rs
∆ → Rm

M if and only if {σi, fi, xi} ⊂ R×L2(0, T )×X are the core singular values
and singular vectors of K : L2(0, T )→ X, where, for all i, vi ∈ Rm

M and xi ∈ X are related by

xi =
m∑
k=1

vi,k φk, (3.4)

and wi ∈ Rs
∆ (with entries wi,j) and fi ∈ L2(0, T ) are related by

wi,j =

∫ T

0
δ−1
j χj(t)fi(t) dt, (3.5)

fi(t) =
s∑

`=1

wi,` χ`(t). (3.6)

Proof. First, since {φk}mk=1 ⊂ X is a linearly independent set, we know M is symmetric positive
definite.

Next, assume Kfi = σixi holds with σi > 0, and define wi ∈ Rs
∆ as in (3.5). Use the definitions

of K in (2.2) and u in (3.1)-(3.3) to get

m∑
k=1

(∫ T

0

s∑
j=1

Uk,j χj(t) fi(t) dt

)
φk = σi xi.

This implies there exists constants vi,k so that (3.4) holds. Substitute (3.4) in the formula above,
and then use that {φk}mk=1 ⊂ X is a linearly independent set to obtain

s∑
j=1

Uk,j δj wi,j = σi vi,k.

Therefore,
U∆wi = σivi. (3.7)

Now assume (3.7) holds with σi > 0, and define fi ∈ L2(0, T ) by (3.6). A similar argument implies
that Kfi = σixi, where xi is given in (3.4).

Next, assume K∗xi = σifi holds with σi > 0, xi satisfies (3.4), and wi,j is defined by (3.6). Use
the definitions of K∗ in (2.3) and u in (3.1)-(3.3) to get

s∑
q=1

m∑
k=1

s∑
`=1

vi,k
(
φk, φ`

)
X
U`,qχq(t) = σifi(t).
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Multiply by χj(t), integrate over (0, T ), and use
∫ T

0 χq(t)χj(t) dt = δj δqj , where δqj denotes the
Kronecker delta symbol, to obtain

m∑
k=1

s∑
`=1

vi,kMk,`U`,jδj = σiδjwi,j .

This gives vTi MU∆ = σiw
T
i ∆, or UTMvi = σiwi. Since (U∆)∗ = ∆−1(U∆)TM = ∆−1∆UTM =

UTM , we have
(U∆)∗vi = σiwi. (3.8)

Now assume (3.8) holds with σi > 0, and define fi ∈ L2(0, T ) by (3.6). Again, a similar argument
implies that K∗xi = σifi, where xi is given in (3.4).

This implies we have

U∆wi = σivi, (U∆)∗vi = σiwi for all i with σi > 0

if and only if
Kfi = σixi, K∗xi = σifi for all i with σi > 0.

Furthermore, xi, vi, wi, and fi are related by (3.4)-(3.6).
Next, assume {σi, fi, xi} ⊂ R × L2(0, T ) ×X are the core singular values and singular vectors

of K : L2(0, T )→ X. We show {wi} ⊂ Rs
∆ and {vi} ⊂ Rm

M are both orthonormal sets. First, using
the definition of M and (3.4) gives

(vi, vj)M = (xi, xj)X = δij .

Next,

(wi, wj)∆ =
1

σj

(
wi, (U∆)∗vj)∆

=
1

σj

(
(U∆)wi, vj

)
M

=
σi
σj

(vi, vj)M

=
σi
σj
δij = δij .

Therefore {σi, wi, vi} ⊂ R × Rs
∆ × Rm

M are the core singular values and singular vectors of U∆ :
Rs

∆ → Rm
M .

Finally, assume {σi, hi, ci} ⊂ R × Rs
∆ × Rm

M are the core singular values and singular vectors
of U∆ : Rs

∆ → Rm
M . Similar arguments show {xi} ⊂ X and {fi} ⊂ L2(0, T ) are orthonormal sets,

and therefore {σi, fi, xi} ⊂ R × L2(0, T ) × X are the core singular values and singular vectors of
K : L2(0, T )→ X.

In Section 3.1, we rescaled {uj} ⊂ X by the square roots of the time steps to arrive at a
different matrix SVD problem. Again assuming u is piecewise constant in time as in (3.2), we have
the alternative expansion

u(t) =
s∑

j=1

ũj χ̃j(t), (3.9)
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where ũj = δ
1/2
j uj and

χ̃j(t) =

{
δ
−1/2
j , tj−1 < t < tj ,

0, otherwise.
(3.10)

We show below that the core SVD of K is equivalent to the core SVD of the matrix U∆1/2 : Rs →
Rm
M . Note that this is the same matrix SVD we obtained using the Riemann sum approximation

approach in Section 3.1.

Proposition 3.2. Suppose {φk}mk=1 ⊂ X are linearly independent, and assume u ∈ L2(0, T ;X) is
given by (3.1)-(3.3). Then {σi, w̃i, vi} ⊂ R × Rs × Rm

M are the core singular values and singular
vectors of U∆1/2 : Rs → Rm

M if and only if {σi, fi, xi} ⊂ R × L2(0, T ) × X are the core singular
values and singular vectors of K : L2(0, T )→ X, where, for all i, vi ∈ Rm

M and xi ∈ X are related
by (3.4) and w̃i ∈ Rs (with entries w̃i,j) and fi ∈ L2(0, T ) are related by

w̃i,j =

∫ T

0
χ̃j(t)fi(t) dt, (3.11)

fi(t) =
s∑

`=1

w̃i,` χ̃`(t) =
s∑

`=1

δ
−1/2
` w̃i,` χ`(t). (3.12)

The proof is similar, and is omitted. We note that the weighted characteristic functions {χ̃j} ⊂
L2(0, T ) are an orthonormal set, i.e., (χ̃i, χ̃j)L2(0,T ) = δij . This leads to the removal of the weight
on the space Rs in the above result.

We also present the connection between the core SVDs of the two matrices U∆ : Rs
∆ → Rm

M

and U∆1/2 : Rs → Rm
M .

Proposition 3.3. Let U ∈ Rm×s, and suppose M ∈ Rm×m and ∆ ∈ Rs×s are symmetric positive
definite. Then the core SVD of U∆ : Rs

∆ → Rm
M is given by U∆ = V ΣW ∗ if and only if the core

SVD of U∆1/2 : Rs → Rm
M is given by U∆1/2 = V ΣW̃ T , where W̃ = ∆1/2W .

Proof. We have U∆ = V ΣW ∗ = V ΣW T∆ where V TMV = I and W T∆W = I if and only if
U∆1/2 = V ΣW T∆1/2 = V ΣW̃ T , where W̃ = ∆1/2W , V TMV = I, and W̃ T W̃ = I.

4 Incremental SVD with weighted inner products

In Section 3, we showed the continuous POD of a certain class of finite dimensional time varying
data can be found exactly using the SVD of two different matrices with respect to different weighted
inner products. In this section, we consider incremental approaches to approximating both of these
matrix SVDs. Since incremental SVD algorithms involve approximation, it is possible that one of
the two matrix SVDs is computed more accurately than the other. We show in fact that this is not
the case for a specific type of incremental SVD algorithm; specifically, the incremental algorithms
for approximating these two matrix SVDs yield equivalent results.

We begin in Section 4.1 and follow a similar approach to our earlier work [13] to develop an
incremental SVD with two weighted inner products for U∆ : Rs

∆ → Rm
M . The incremental SVD

for U∆1/2 : Rs → Rm
M only utilizes one weighted inner product and was developed in [13]. In

Section 4.2 we show the incremental SVD algorithm for U∆1/2 : Rs → Rm
M with one weighted inner

product gives an equivalent result as the incremental SVD with two weighted inner products for
U∆ : Rs

∆ → Rm
M .

Throughout this section we assume M ∈ Rm×m is symmetric positive definite, and ∆ ∈ Rs×s is
given by ∆ = diag(δ1, . . . , δs), where δi > 0 for i = 1, . . . , s. We assume we know the SVDs of the
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matrices U∆ : Rs
∆ → Rm

M and U∆1/2 : Rs → Rm
M , and we focus on updating the SVDs when a new

column is added to U and a new positive diagonal entry δs+1 is added to ∆. Adding a new column
to U and a new positive diagonal entry to ∆ corresponds to obtaining the value of the data u(t)
in the new time interval ts+1 < t < ts+2. As discussed in [13], the SVDs can be initialized using a
single column of data, and then updated incrementally as new data becomes available.

We note that it is possible to further rescale the data in order to remove the weight matrix M
from the inner product for the space Rm

M . Since M is often not diagonal in applications, there are
computational disadvantages to performing such a rescaling; see [13] for a discussion of this issue.
Therefore, we do not consider this type of rescaling here.

4.1 Incremental SVD with two weighted inner products

Suppose an exact core SVD of U∆ : Rs
∆ −→ Rm

M is known, and the goal is to update the core
SVD when a new column c ∈ Rm

M is added to U . First, we prove that the exact core SVD can be
updated exactly when no truncation is performed.

Theorem 4.1. Suppose U∆ = V ΣW ∗ is the exact core SVD of U∆ : Rs
∆ → Rm

M , where V TMV = I
for V ∈ Rm×k, W T∆W = I for W ∈ Rs×k, W ∗ = W T∆, and Σ ∈ Rk×k. Let c ∈ Rm

M and define

h = c− V V ∗c, p = ‖h‖M , Q =

[
Σ δ

1/2
s+1V

∗c

0 δ
1/2
s+1p

]
,

where V ∗ = V TM . If p > 0 and the standard core SVD of Q ∈ Rk+1×k+1 is given by

Q = VQ ΣQW
T
Q , (4.1)

then the core SVD of [U c ]∆new : Rs+1
∆new

→ Rm
M is given by

[U c ]∆new = VnewΣQW
∗
new,

where

Vnew = [V j ] VQ, j = h/p, Wnew = WuWQ, Wu =

[
W 0

0 δ
−1/2
s+1

]
,

and
W ∗

new = W T
u ∆new, ∆new = diag(δ1, . . . , δs+1).

Proof. By the definition of j, we have c = V V ∗c+ jp. This gives

[U c ]∆new = [V ΣW ∗ δs+1c ]

= [V ΣW ∗ δs+1(V V ∗c+ jp) ]

= [V j ]

[
ΣW T∆ δs+1V

∗c
0 δs+1p

]

= [V j ]

[
Σ δ

1/2
s+1V

∗c

0 δ
1/2
s+1p

][
W 0

0 δ
−1/2
s+1

]T [
∆ 0
0 δs+1

]

= [V j ]VQ ΣQW
T
Q

[
W 0

0 δ
−1/2
s+1

]T [
∆ 0
0 δs+1

]

= ([V j ]VQ) ΣQ

([
W 0

0 δ
−1/2
s+1

]
WQ

)T [
∆ 0
0 δs+1

]
.
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Next, the same argument in the proof of Theorem 4.1 in [13] shows [V j ]TM [V j ] = I ∈ Rk+1×k+1.
Also, since W ∗W = W T∆W = I ∈ Rk×k,[

W 0

0 δ
−1/2
s+1

]∗ [
W 0

0 δ
−1/2
s+1

]
=

[
W 0

0 δ
−1/2
s+1

]T [
∆ 0
0 δs+1

][
W 0

0 δ
−1/2
s+1

]
=

[
I 0
0 1

]
.

Proposition 2.2 completes the proof.

Next, we follow the implementation strategy in [13, Section 4.2] to develop the full algorithm.
We only provide a brief summary of various parts of the complete implementation, and refer
to [13, Section 4.2] for more details and discussion.

Initialization. We initialize the SVD using a nonzero column of data c by setting

Σ = ‖ c ‖M = (|cTMc|)1/2, V = cΣ−1, W = δ
−1/2
1 , ∆ = δ1,

where δ1 is the first time step.1

Exact SVD update. Once we have an existing SVD of U∆ : Rs
∆ → Rm

M , to update the SVD
we first compute p = ‖c− V V ∗c‖M using the new column c. In Theorem 4.1, p = ‖c− V V ∗c‖M is
assumed to be positive in order to guarantee an exact SVD update. In practice, we use Theorem 4.1

for the SVD update only if δ
1/2
s+1p ≥ tol, for a given tolerance tol.

Truncation I. If instead δ
1/2
s+1p < tol, the final row of Q is set to zero. Since δs+1 > 0, we set

p = 0 and this implies c = V V ∗c. Using a similar argument to part of the proof of Theorem 4.1,
setting p = j = 0, and following a similar approach to [13, Section 4.2] provides the SVD update:

V −→ V VQ(1:k,1:k)
, Σ −→ ΣQ(1:k,1:k)

, W −→

[
W 0

0 δ
−1/2
s+1

]
WQ(:,1:k)

,

where VQΣQWQ = Q is the SVD of Q. We note in this case the rank of the SVD does not increase.
Orthogonalization. To avoid a loss of orthogonality, we apply a modified M -weighted Gram-

Schmidt procedure with reorthogonalization to the columns of V ; see [13, Algorithm 3].
Truncation II. To reduce the computational cost and storage, we keep only the singular values

and corresponding singular vectors above a user specified tolerance, tolsv.
Complete Implementation. The incremental SVD update algorithm for two weighted inner

products is given in Algorithm 1. This algorithm is used every time a new column of data is added.

4.2 Incremental SVD with one weighted inner product is equivalent

Next, we consider the incremental SVD algorithm for U∆1/2 : Rs → Rm
M with one weighted inner

product from [13]. However, instead of recalling that algorithm here, for brevity we simply modify
Algorithm 1 to work for the present case.

Since the space Rs does not utilize a weighted inner product, we start with an SVD U∆1/2 =
V ΣW̃ T , where V TMV = I and W̃ T W̃ = I. Recall from Proposition 3.3 that W̃ = ∆1/2W , where
U∆ = V ΣW ∗ is the SVD of U∆ : Rs

∆ → Rm
M .

Let cj denote the jth column of U , and let ∆ = diag(δ1, . . . , δs), as before. Then the matrix

U∆1/2 has jth column c̃j = δ
1/2
j cj . To update the SVD of U∆1/2 : Rs → Rm

M , we simply use

1Although M is symmetric positive definite, as in [13, Section 4.2] absolute values are used since sometimes round
off errors may cause cTMc to be small and negative.
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Algorithm 1 Incremental SVD with two weighted inner products

Input: V ∈ Rm×k, Σ ∈ Rk×k, W ∈ R`×k, c ∈ Rm, M ∈ Rm×m, ∆ ∈ R`×`, δ > 0, tol, tolsv,

% Prepare for SVD update

1: d = V TMc, p = sqrt(|(c− V d)TM(c− V d)|), α = δ1/2

2: if (pα < tol) then
3: Q =

[
Σ dα

]
4: else

5: Q =

[
Σ dα
0 pα

]
6: end if
7: [VQ,ΣQ,WQ ] = svd(Q)

8: ∆new =

[
∆ 0
0 δ

]
% SVD update

9: if (pα < tol) or (k ≥ m) then

10: V = V VQ(1:k,1:k)
, Σ = ΣQ(1:k,1:k)

, W =

[
W 0

0 δ−1/2

]
WQ(:,1:k)

11: else
12: j = (c− V d)/p

13: V = [V j]VQ, Σ = ΣQ, W =

[
W 0

0 δ−1/2

]
WQ

14: k = k + 1
15: end if

% Orthogonalize if necessary (see Algorithm 3 in [13])

16: if ( |V T
(:,end)MV(:,1)| > min(tol, tol×m)) then

17: V = modifiedGSweighted(V,M)
18: end if

% Neglect small singular values: truncation

19: if (Σ(r,r) > tolsv) and (Σ(r+1,r+1) ≤ tolsv) then
20: Σ = Σ(1:r,1:r), V = V(:,1:r), W = W(:,1:r)

21: end if
22: return V , Σ, W , ∆new
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Algorithm 1 with (∆, δ, c,W ) replaced by (I, 1, c̃, W̃ ) in the algorithm. Since the jth column of U

is c̃j = δ
1/2
j cj and the matrix Q depends only on V and c̃, it is easily checked that the algorithm

produces the same V and the same Σ as produced by Algorithm 1 in the two weighted inner product
case. Furthermore, it is also easily checked that the W̃ produced by the algorithm still satisfies
W̃ = ∆1/2W , where W is the update produced by Algorithm 1 in the two weighted inner product
case.

Therefore, the two incremental SVD approaches yield equivalent results.

5 Conclusion

We revisited our earlier work [13] on an incremental POD algorithm for PDE simulation data.
For the case of time varying data, in [13] we developed an approximate Riemann sum approach
to arrive at a discrete time POD problem and an incremental POD algorithm. In this work, we
considered an alternative viewpoint to develop and analyze incremental POD approaches for time
varying data. We considered piecewise constant in time data taking values in a Hilbert space,
where each data snapshot is expanded in a fixed basis. We first showed that the POD of this
data is exactly determined by the SVD of two different matrices with respect to different weighted
inner products. The two different SVDs come from two different ways of expressing the piecewise
constant in time data. Next, we developed incremental SVD algorithms for each case. Since the
incremental algorithms compute approximate SVDs, it was possible that one approach could be
more accurate than the other; however, we showed that the incremental SVD algorithms produce
equivalent results. Therefore, the two different ways of expressing the data did not lead to different
incrementally computed POD modes for the data.

One benefit of this result is that the error analysis of the discrete time incremental POD
algorithm (with one weighted inner product) in [12] is directly applicable to continuous time case,
assuming the data is piecewise constant in time and is expressed using the weighted characteristic
functions as in (3.9)-(3.10).

Furthermore, we note that it may be possible to extend the incremental SVD approach developed
here for the case of two weighted inner products to treat time varying data that is not piecewise
constant in time. We leave this to be considered in the future.
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