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Abstract

In this paper, the outage behavior and diversity order of the mixture transceiver architecture for

multiple-input single-output broadcast channels are analyzed. The mixture scheme groups users with

closely-aligned channels and applies superposition coding and successive interference cancellation de-

coding to each group composed of users with closely-aligned channels, while applying zero-forcing

beamforming across semi-orthogonal user groups. In order to enable such analysis, closed-form lower

bounds on the achievable rates of a general multiple-input single-output broadcast channel with superpo-

sition coding and successive interference cancellation are newly derived. By employing channel-adaptive

user grouping and proper power allocation, which ensures that the channel subspaces of user groups

have angle larger than a certain threshold, it is shown that the mixture transceiver architecture achieves

full diversity order in multiple-input single-output broadcast channels and opportunistically increases the

multiplexing gain while achieving full diversity order. Furthermore, the achieved full diversity order is

the same as that of the single-user maximum ratio transmit beamforming. Hence, the mixture scheme

can provide reliable communication under channel fading for ultra-reliable low latency communication.

Numerical results validate our analysis and show the outage superiority of the mixture scheme over

conventional transceiver designs for multiple-input single-output broadcast channels.
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I. INTRODUCTION

The multiple-input single-output (MISO) broadcast channel (BC) model is an important channel model

which captures modern cellular downlink communication in which a base station (BS) equipped with

multiple transmit antennas simultaneously serves multiple receivers each equipped with a single receive

antenna by using the spatial domain. Due to its importance it has been investigated extensively for

more than a decade and major current wireless communication standards support MISO BC downlink

communication [2]–[5]. It is known that the capacity region of a MISO BC can be achieved by dirty paper

coding (DPC) [2]. However, because of the unavailability of practical dirty paper codes, simple linear

downlink beamforming such as zero-forcing (ZF) beamforming is widely considered and used in practice

[4], [6]. Although such simple linear beamforming is not a capacity-achieving scheme, it can yield good

performance when it is combined with multi-user diversity and user scheduling [3], [4], [7]–[9]. That

is, when the number of users in the cell is sufficiently large as compared to the number N of transmit

antennas, the BS can select N users with nearly orthogonal channel vectors so that linear ZF down-

link beamforming is sufficient. However, such orthogonality-based user scheduling for linear downlink

beamforming may not be appropriate in certain cases. One example is the case in which the number of

transmit antennas is large under rich scattering environments since it is difficult to simultaneously select

multiple users with roughly orthogonal channels in this case [8]–[10]. Thus, for a MISO BC with a

large number of transmit antennas it was proposed that the BS selects the users for simultaneous service

arbitrarily and applies linear ZF beamforming [10]. Another emerging important example is ultra-reliable

low-latency communication (URLLC) for fast machine-type communication in 5G. In the case of URLLC,

such orthogonality-based user scheduling induces extra delay in communication since the users requiring

immediate data transmission may not have channel vectors nearly orthogonal to each other or to other

on-going overlapping data users under spatial multiplexing. Hence, it is preferred that the BS immediately

schedules the users requiring low-latency data transmission regardless of their channel vectors’ mutual

orthogonality. In both examples, the channel vectors of the scheduled users are not guaranteed to be

nearly orthogonal and the performance of linear ZF beamforming can be severely degraded since the

channel vectors of some of the scheduled users can be closely aligned and the channel alignment causes

poor conditioning of the channel matrix for ZF inversion.

Recently, inspired by the usefulness of superposition coding and successive interference cancellation

(SIC) decoding in non-orthogonal multiple access (NOMA) [11], [12], a mixture (or hybrid) transceiver

architecture was considered for MISO BCs to overcome the drawback of the fully linear ZF downlink
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beamforming based on user grouping and mixture of linear and non-linear reception [13], [14]. The

basic idea of the mixture transceiver architecture is as follows. Under the assumption of independent and

identically distributed (i.i.d.) realization of K channel vectors in K-user MISO downlink, if the channel

vectors of some users are closely aligned, the performance of ZF beamforming is severely degraded.

However, if we group the closely-aligned users and apply superposition coding and non-linear SIC

decoding for each closely-aligned user group while applying ZF beamforming across roughly-orthogonal

user-groups, the performance degradation by the full ZF beamforming can be alleviated. Preliminary study

on such user grouping and mixture transreception was performed on the two-user grouping case, where

intra-group rate analysis is rather simple [13], [14]. In [13], Pareto-optimal beam design is considered

for the two-user grouping case, the beam vectors and corresponding rates are numerically obtained,

and the performance of the mixture scheme is compared with the full ZF beamforming numerically.

In [14], under the assumption of two users in each group, closed-form beam vectors are obtained to

minimize the transmit power under a signal-to-interference-plus-noise ratio (SINR) constraint for each

user based on quasi-degradation, and it was shown that such a mixture architecture based on two-user

grouping increases the diversity order by one as compared to the conventional ZF downlink beamforming.

Although such two-user grouping for the mixture transceiver architecture is tractable, it has limitation in

diversity order improvement. (The related idea of hierarchical coding and user grouping was discussed in

the dual scenario of multiple access channel in [15], and the idea of user grouping and inter-group zero

forcing was also considered in [16] using the intra-group processing of a classical spatial multiplexing

from a capacity perspective.)

In this paper, we fully generalize the mixture transceiver architecture for general MISO BCs. The

contributions of the paper are summarized as follows:

• In order to enable analysis of the outage probability and diversity order of the mixture transceiver

architecture, we derive a new lower bound on the achievable rate of each user in closed form in terms of

each user’s channel norm for a MISO BC with superposition coding and SIC decoding with an arbitrary

number of users.

• We propose a channel-adaptive user grouping method which ensures a condition for the channel

subspace angle property for the constructed user groups and a power allocation method necessary for

achievability of full diversity order.

• Combining the newly derived achievable rate result and the property of the proposed adaptive user

grouping method, we derive the diversity order of the mixture transceiver architecture, and show that

the mixture transceiver architecture achieves full diversity order in MISO BCs, which is the same as
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that of the single-user maximal ratio transmit (MRT) beamforming, and furthermore it opportunistically

increases multiplexing gain.

• We further investigate the related issues such as diversity-and-multiplexing trade-off associated with

the mixture scheme, impact of imperfect channel state information (CSI), etc.

Notations: Vectors and matrices are written in boldface with matrices in capitals. All vectors are

column vectors. For a matrix A, A∗, AH , AT and Tr(A) indicate the complex conjugate, conjugate

transpose, transpose and trace of A, respectively, and C(A) and C⊥(A) denotes the linear subspace

spanned by the columns of A and its orthogonal complement, respectively. ΠA and Π⊥
A are the projection

matrices to C(A) and C⊥(A), respectively. [a1, · · · ,an] denotes the matrix composed of column vectors

a1, · · · ,an. ||a|| represents the 2-norm of vector a. In denotes the identity matrix of size n (the subscript

is omitted when unnecessary). x ∼ CN (µ,Σ) means that random vector x is circularly-symmetric

complex Gaussian distributed with mean vector µ and covariance matrix Σ.

II. THE CHANNEL MODEL AND PRELIMINARIES

A. The Channel Model

In this paper, we consider a Gaussian MISO BC composed of a transmitter with N transmit antennas

and K single-antenna users (i.e., receivers), where the number of users is less than or equal to the number

of transmit antennas, i.e., K ≤ N . The received signal yk at the k-th user is given by

yk = hH
k x+ nk, k = 1, 2, · · · ,K, (1)

where x is the N×1 transmit signal vector at the transmitter with the total transmit power Pt = E{xxH},
nk is the additive white Gaussian noise (AWGN) at the k-th user, i.e., nk ∼ CN (0, σ2) with σ2 set to

1 for simplicity, and hk is the N × 1 (conjugated) channel vector from the transmitter to the k-th user

following independent Rayleigh fading, i.e.,

hk = [hk1, hk2, · · · , hkN ]T
i.i.d.∼ CN (0, 2I). (2)

Here, we set 2I as the covariance matrix for convenience so that both real and imaginary components

of each element of hk have variance one and thus ||hk||2 has the chi-square distribution of degrees of

freedom 2N . Different scaling can be absorbed into the transmit power. Concatenating all the received

signals y1, · · · , yK , we can write the matrix model for the received signals as

y = HHx+ n, (3)
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where y = [y1, y2, · · · , yK ]T , n = [n1, n2, · · · , nK ]T , and H = [h1,h2, · · · ,hK ]. We assume that the

channel state information (CSI) H is available at the transmitter. Due to the assumption of K ≤ N , the

K × N overall channel matrix HH is a fat matrix and hence it is right-invertible so that conventional

ZF transmit beamforming is feasible. Design of the signal vector x and receiver processing based on

{y1, y2, · · · , yK} will be explained in the subsequent sections.

B. Preliminaries: Reliability and Diversity Order

Channel fading is inherent in wireless communication, and communication reliability under channel

fading is dependent on the diversity order of the communication channel. Consider the well-known

single-user MRT beamforming with multiple transmit antennas. The corresponding channel model is

given by the channel model (1) with only a single user, i.e., K = 1. For MRT beamforming, we have

x = h1

||h1||

√
p1s1 with E{|s1|2} = 1. The resulting equivalent single-input single-output (SISO) channel

and rate are respectively given by

y1 = ||h1||
√
p1s1 + n1 and R1 = log(1 + ||h1||2SNR), SNR :=

p1
σ2

, (4)

where the probability density function (pdf) of ||h1||2 = |h11|2 + · · ·+ |h1N |2 is given by the chi-square

distribution with degree of freedom 2N since it is the sum of the squares of 2N standard normal random

variables:

f||h1||2(x) =
1

2N (N − 1)!
xN−1e−x/2 =

1

2N (N − 1)!
xN−1 + o(xN−1), as x→ 0, (5)

where o(·) is the small o notation. Communication outage is defined as the event that the channel cannot

support a given target rate Rth, and the corresponding outage probability is given by Pout = Pr{R1 <

Rth} [17]. Then, the diversity of order of the channel is defined as [17]

D := − lim
SNR→∞

logPout

log SNR
. (6)

In the single-user MRT beamforming case, the outage probability is given by Pout = Pr
{
||h1||2 ≤ 2Rth

−1
SNR

}

≈ (2Rth
−1)N

2NN !SNRN [17], and hence the diversity order in this case is N . That is, the outage probability decays

as SNR−N , as SNR increases. Note that in the case of a Rayleigh-fading SISO channel with a single

transmit antenna N = 1, the pdf (5) reduces to f|h11|2(x) =
1
2e

−x/2, and the diversity order reduces to

one. Hence, MRT beamforming with N transmit antennas increases the diversity order by N times as

compared to the SISO case.
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Now, consider the general Gaussian MISO BC (1) with ZF downlink beamforming for K = N . In the

ZF beamforming case, the overall transmit signal x is given by x = wZF
1
√
p1s1 + · · · +wZF

K

√
pKsK ,

where wZF
k and sk are the ZF beam vector and data symbol for the k-th user with ||wZF

k ||2 = 1 and

E{|sk|2} = 1, respectively. Here, the ZF beam vector wZF
k lies in C⊥([h1, · · · , hk−1,hk+1, · · · ,hK ])

so that hH
i wZF

k = 0 for all i 6= k. Then, the resulting SISO channel for the k-th user is given by

yk = hH
k wZF

k

√
pksk + nk. (7)

In the case of independent Rayleigh fading, the channel vector hk and the remaining {h1, · · · ,hk−1,hk+1,

· · · ,hK} are independent. Hence, the one-dimensional subspace C⊥([h1, · · · ,hk−1,hk+1, · · · ,hK ]) is

also independent of hk, and hence hk is circularly-symmetric Gaussian distributed over CN with respect to

a reference direction of C⊥([h1, · · · ,hk−1,hk+1, · · · ,hK ]). Therefore, taking the inner product between

hk and the unit-norm vector wZF
k ∈ C⊥([h1, · · · ,hk−1,hk+1, · · · ,hK ]) is equivalent to taking only

one component out of N complex Gaussian components, and thus |hH
k wZF

k |2 has the same pdf as

f|h11|2(x) =
1
2e

−x/2. Hence, the corresponding diversity order for the k-th user is simply one for all k

[14] as in the SISO Rayleigh fading channel. Thus, ZF downlink beamforming for MISO BCs loses the

diversity gain possibly obtainable from multiple transmit antennas.

Note that if hk is perfectly orthogonal to h1, · · · ,hk−1,hk+1, · · · ,hK , then C⊥([h1, · · · ,hk−1,hk+1,

· · · ,hK ]) is perfectly aligned with hk and hence in this case we have hH
k wZF

k = ||hk||. In this case,

the resulting SISO channel for the k-th user is the same as that of the MRT beamforming single-

user channel in (4). Furthermore, suppose that the angle between hk and one-dimensional subspace

C⊥([h1, · · · ,hk−1,hk+1, · · · ,hK ]) is equal to or less than a certain fixed threshold α. Then, we have

|hH
k wZF

k | ≥ ||hk|| cosα. Since cosα is a constant, the pdf of |hH
k wZF

k |2 is a certain scaled version

of that of ||hk||2 (the meaning of this statement will become clear in later sections), and the outage

behavior for the k-th user in this case should be the same as that of the MRT single-user case as SNR

increases without bound. Reflecting this, one can recognize that the degradation of diversity order of ZF

beamforming for a MISO BC with independent channel fading results from the uncontrolled and arbitrary

angle between hk and C⊥([h1, · · · ,hk−1,hk+1, · · · ,hK ]).

III. THE MIXTURE TRANSCEIVER ARCHITECTURE

In this section, motivated by the discussion in the previous section, we consider the mixture transceiver

architecture for Gaussian MISO BCs [13], [14] in order to overcome the diversity drawback of ZF

downlink beamforming. The mixture architecture is based on user grouping and mixture of linear ZF and
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non-linear SIC reception. First, user grouping is performed to group users with closely-aligned channel

vectors. Then, superposition coding and SIC are applied to the users with closely-aligned channel vectors

in each group, whereas ZF beamforming is applied across groups. In order to fully enhance the diversity

order of the resulting individual user channel, we generalize the mixture architecture by adopting adaptive

user grouping, which yields channel-dependent groups and enforces the angle between the subspace of

each group and the orthogonal complement of the union of all other groups’ subspaces to be less than a

certain threshold so that inter-group ZF beamforming does not harm the overall diversity order.

From here on, we explain the mixture transceiver architecture with the proposed user grouping method

in detail. We consider the MISO BC explained in Section II-A as our channel model. We assume the

following for our transceiver architecture:

A.1 (User Grouping): First, we group the K users into Ng groups. The constructed groups are denoted

by the sets G1,G2, · · · ,GNg
such that Gi∩Gj = ∅ for i 6= j and

⋃Ng

j=1 Gj = {1, 2, · · · ,K}. User grouping

is adaptive in the sense that the number of groups can vary and the number of members in each group

can vary from one to K, depending on the channels such that
∑Ng

j=1 |Gj | = K. The constructed groups

satisfy a certain subspace angle property in order to apply inter-group ZF beamforming without degrading

the diversity order. The detailed method for user grouping will be presented in Section III-B.

A.2 (Inter-Group Beamforming): With the constructed groups, in order to control inter-group interfer-

ence, we apply ZF beamforming across the constructed groups. With this inter-group ZF beamforming,

the inter-group interference across the groups is zero.

A.3 (Intra-Group Processing: Superposition Coding and SIC): With the constructed groups, for intra-

group processing we apply superposition coding and SIC decoding to each and every group with more

than one user.

Under the aforementioned transceiver architecture, the transmit signal x of the transmitter can be

expressed as

x =

Ng∑

j=1

Π(j)
∑

i∈Gj

√
p
(j)
i w

(j)
i s

(j)
i , (8)

where s
(j)
i is the transmit symbol from CN (0, 1) for User i in group Gj , w

(j)
i is the N × 1 intra-group

beamforming vector for User i in group Gj out of the feasible set W̃ := {w | ‖Π(j)w‖2 ≤ 1}, p(j)i is

the power assigned to User i in group Gj , and Π(j) is the inter-group ZF projection matrix for group Gj .
We assume that the total transmit power Pt is divided such that |Gj | × Pt/K is allocated to group Gj .
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Then, from (1) the received signal at User i in group Gj can be written as

y
(j)
i = h

(j)H
i


Π(j)

∑

i∈Gj

√
p
(j)
i w

(j)
i s

(j)
i


+ n

(j)
i

(a)
=
(
Π(j)h

(j)
i

)H

∑

i∈Gj

√
p
(j)
i w

(j)
i s

(j)
i


+ n

(j)
i , (9)

where h
(j)
i is the N×1 channel vector between the transmitter and User i in group Gj , and n

(j)
i ∼ CN (0, 1)

is the AWGN at User i in group Gj (here, the single user index k in (1) is properly mapped to the two

indices: intra-group user index i and group index j). The inter-group ZF projection matrix Π(j) is given

by Π(j) = Π⊥
H̃j

, where H̃j is the matrix composed of all channel vectors except the channel vectors of

the users in group Gj , i.e.,

H̃j := [h
(1)
1 · · ·h

(1)
|G1|

, · · · ,h(j−1)
1 · · ·h(j−1)

|Gj−1|
,h

(j+1)
1 · · ·h(j+1)

|Gj+1|
, · · · ,h(Ng)

1 · · ·h(Ng)
|GNg |

]. (10)

Due to the inter-group ZF beamforming, there is no inter-group interference in (9), and the property of

an orthogonal projection matrix, (Π⊥
H̃j

)H = Π⊥
H̃j

, is used in Step (a) in (9).

A. Intra-Group Beam Design and the Corresponding Rates

In this subsection, we consider intra-group beam vector design for the mixture transceiver architecture

and analyze the achievable rates of the intra-group processing. First, consider each group Gj with one

user. In this case, the received signal (9) reduces to

y
(j)
1 =

(
Π⊥

H̃j
h
(j)
1

)H√
p
(j)
1 w

(j)
1 s

(j)
1 + n

(j)
1 , |Gj | = 1, (11)

and the design of the intra-group beam vector w
(j)
1 is simple. The optimal intra-group beam vector

w
(j)∗
1 is the MRT beam matched to the projected effective channel vector Π⊥

H̃j

h
(j)
1 , i.e.,

√
p
(j)
1 w

(j)∗
1 =

√
Pt/KΠ⊥

H̃j

h
(j)
1 /‖Π⊥

H̃j

h
(j)
1 ‖. In this case, the optimal beam vector is equivalent to the ZF-beamforming

vector with power Pt/K.

Next, consider the intra-group beam design for each group with more than one user. As aforementioned,

we apply superposition coding and SIC in this case. Suppose that group Gj consists of L users (L > 1).

Then, with the group index (j) omitted for convenience, the received signal for User i, i = 1, · · · , L, in

group Gj is given by

yi = gH
i

(
L∑

i=1

√
piwisi

)
+ ni, i = 1 · · · , L, (12)

where
∑L

i=1 pi ≤ P with P being the total group power allocated to group Gj (i.e., P = L × Pt/K),
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and gi is the projected effective channel of User i given by

gi = Π⊥
H̃j

h
(j)
i , i = 1, · · · , L. (13)

We assume that the intra-group beam vector wi is designed based on the projected effective channels

g1, · · · ,gL. Then, the feasible set for intra-group beam vector wi is given byW := {w | ‖w‖2 ≤ 1} from

the fact that the beam design space for wi is the linear subspace spanned by {g1, · · · ,gL}. (The beam

component not in the subspace spanned by {g1, · · · ,gL} does not affect the signal or the interference.

Hence, it just wastes power.) Since wi ∈ C([g1, · · · ,gL]), we have wi ∈ C⊥(H̃j) by (13) and hence for

the actual beam power constraint ‖Π(j)wi‖2 ≤ 1, we have ‖Π(j)wi‖2 = ‖Π⊥
H̃j

wi‖2 = ‖wi‖2 ≤ 1 in

this case. So, we have the feasible set W for wi.

Note that with inter-group ZF beamforming, the intra-group signal model is separated from group to

group based on the projected effective channels, and the system model (12) is a conventional MISO BC

with L-user superposition coding beamforming. For superposition coding and SIC, we assume that the

in-group users are ordered according to their channel norms as ‖g1‖2 ≥ ‖g2‖2 ≥ · · · ≥ ‖gL‖2. With this

assumption, SIC at the in-group receivers is applied such that User i decodes and cancels the interference

from Users L,L − 1, · · · , i + 1 sequentially.∗ (Note that since User i has a better channel than Users

L,L− 1, · · · , i+ 1, User i can decode the messages intended for Users L,L− 1, · · · , i+ 1.) Then, the

rates of the in-group users can be expressed as

R1 = log2
(
1 + p1|gH

1 w1|2
)
, Ri = log2

(
1 + min

{
SINRi

1, · · · ,SINRi
i

})
, i = 2, · · · , L, (14)

where SINRi
j is the SINR when User j decodes the message intended for User i, given by

SINRi
j =

pi|gH
j wi|2∑i−1

m=1 pm|gH
j wm|2 + 1

(15)

The achievable rate region R of the MISO BC with superposition coding and SIC decoding is defined

as the union of achievable rate-tuples:

R :=
⋃

(w1,··· ,wL)∈WL

(p1,··· ,pL)|pi>0,∀i,
∑

L

i=1 pi=P

(R1, R2 · · · , RL), (16)

where (R1, · · · , RL) is from (14). The Pareto boundary of the region R is the outer boundary of

∗The considered decoding order may not be optimal if we consider the design of {wi} but is sufficient for our purpose of

analytic derivation of the diversity order of the mixture transceiver architecture.
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R and can be obtained by maximizing RL for each feasible target rate-tuple (R∗
1, · · · , R∗

L−1). The

maximization problem for given (R∗
1, · · · , R∗

L−1) can be solved by a convex programming approach

based on reformulation [18] and the convex concave procedure (CCP) [19]. However, difficulty lies in

knowing the feasible target rate-tuple set for the MISO BC with superposition coding and SIC since the

rates depend on the beam vectors and channel vectors of all in-group users, although some induction

approach for this was proposed in [20]. The difficulty to find the feasible rate tuple for Users 1, · · · , L−1
can be circumvented by formulating the problem as weighted sum rate maximization based on the rate-

profile approach [21]. However, the existing algorithms for the Pareto-optimal design problem numerically

provide rates based on numerically obtained beam vectors. Hence, these existing design algorithms do not

provide closed-form rate expressions for general MISO BCs with superposition coding and SIC decoding

which is necessary for our analytical derivation of the diversity order. In order to obtain desired closed-

form expressions for the achievable rates of the MISO BC with superposition coding and SIC decoding,

we consider beam design under the following constraint:

w1 = w2 = · · · = wL = w, ||w||2 ≤ 1, i.e. w ∈ W

pi = δiP, i = 1, 2, · · · , L, (17)

where (δ1, · · · , δL) is a power ratio-tuple out of the feasible power ratio-tuple setD := {(δ1, · · · , δL) | δi ≥
0 ∀i, ∑L

i=1 δi = 1}. Here, δi is the ratio of the total group power P to the power allocated to User i, i.e.,

pi = δiP is assigned to User i. Note that the constraint (17) satisfies the original beam design constraint

in (16). Based on the restricted constraint (17), the following proposition provides simple closed-form

lower bounds on the achievable rates for the MISO BC with superposition coding and SIC:

Proposition 1: In the MISO BC (12) with L users adopting superposition coding and SIC decoding

with channel vectors g1, · · · ,gL with ordering ‖g1‖2 ≥ ‖g2‖2 ≥ · · · ≥ ‖gL‖2 and total group power

P , for an arbitrary given power ratio-tuple (δ1, · · · , δL) out of the feasible power ratio-tuple set D, the

achievable rates (R1, R2, · · · , RL) are lower bounded as

R1 ≥ log2

(
1 +

1

c
δ1‖g1‖2P

)
(18)

Ri ≥ log2


1 +

δi∑i−1
m=1 δm

1

1 +
(
1
c‖gi‖2

∑i−1
m=1 δmP

)−1


 , i = 2, · · · , L, (19)
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where the constant c is given by

c =





L if, L ≤ 3,

8L2 if, L > 3.
(20)

Proof: See Appendix A.

Note that the power ratio-tuple set D does not depend on the beam vectors and the channel vectors,

and it is just a simplex. Thus, the rate lower bounds (18) and (19) with sweeping (δ1, · · · , δL) within D
yield an inner region of the achievable rate region R defined in (16).

0 2 4 6 8
R

1

0

2

4

6

8

R
2

Pareto boudnary

Inner region in Proposition 1

Fig. 1: Rate region: Pareto-boundary versus Propostion 1 (K = 2 with 4× 1 MISO)

The rate lower bound in Proposition 1 was evaluated and compared with the Pareto-boundary obtained

from (16) for an example case of a MISO BC of two users with SIC. The system setup is as follows: It

was a MISO BC with four transmit antennas and one receive antenna, 10 log10 P/1 = 10, ||g1||2 = 20,

||g2||2 = 10, and |gH
1 g2|2/(||g1||2||g2||2) = 0.5, where g1 is the 4× 1 channel vector of the strong user

and g2 is the 4 × 1 channel vector of the weak user. The rate region is shown in Fig. 1. It is seen that

the inner rate region by Proposition 1 is not very close to the Pareto-boundary, but it still achieves quite

a good portion of the Pareto-region. The key point in the derived lower bounds (18) and (19) on the

achievable rates (R1, · · · , RL) is that the lower bound on the rate Ri of User i in the superposition-and-

SIC group is expressed only in terms of User i’s channel norm square ||gi||2 and the power distribution

factors (δ1, · · · , δL). This enables us to analyze the distribution of Ri via the distribution of ||gi||2 and

to derive the diversity order of the mixture scheme in Section IV.
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B. Adaptive User Grouping

Now, we consider user grouping, which should be done properly for good diversity performance of the

mixture transceiver architecture. Since we apply inter-group ZF beamforming, a level of orthogonality

across the constructed groups is required to guarantee high reliability, as discussed in Section II-B. Note

that the channel orthogonality among the users within a group is not required since superposition coding

and SIC are applied to the users in each group. There can exist many user grouping methods that guarantee

certain orthogonality among the constructed groups. In this section, we provide one example for such user

grouping. The main difference between our user grouping method and several previous user grouping

methods proposed for NOMA [14], [20], [22] is that the number of groups and the number of members

in each group are not predetermined and the angle between the channel subspaces of any two user groups

is not less than a certain threshold in our user grouping method, whereas the number of groups and the

number of members in each group are predetermined and fixed for the previous methods [14], [20], [22].

This angle property is necessary for derivation of the diversity order of the mixture architecture.

To measure the orthogonality across groups, we define a new subspace angle metric θ(·, ·), which

captures the angle between the subspaces C(A) and C(B) spanned by the columns of matrices A and

B as

θ(A,B) :=





max({φ(A,bi),∀ i} ∪ {φ(B,aj),∀ j}), if A and B are non-empty matrices

0, if A or B is an empty matrix,
(21)

where ai is the i-th column of A, bj is the j-th column of B, and φ(·, ·) is another newly-defined angle

metric which captures the angle between the vector b and the subspace C(A), defined as

φ(A,b) :=
‖A(AHA)−1AHb‖2

‖b‖2 . (22)

In case of A = [a] is a vector, φ reduces to the square of the angle cosine of two vectors a and b:

φ(a,b) =
|aHb|2
‖a‖2‖b‖2 = cos2∠(a,b) ∈ [0, 1]. (23)

When B = [b] in (21) is a vector, θ(A,b) simply reduces to φ(A,b) because φ(A,b) ≥ φ(b,aj) for

all j, i.e., the angle between b and C(A) is smaller than or equal to the angle between b and individual

column aj of A, as illustrated in Fig. 2(a). When θ = 0, two subspaces C(A) and C(B) are mutually

orthogonal. When θ = 1, on the other hand, there exists either at least a column of A contained in C(B)

or at least a column of B contained in C(A), and the two subspaces C(A) and C(B) are not separated.

The proposed user grouping algorithm based on θ(·, ·) is presented in Algorithm 1. Before explaining
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AB)

Π⊥
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Fig. 2: (a) an illustration of φ(A,b) and (b) an illustration of sequential orthogonal projection

the algorithm, we introduce a useful lemma regarding sequential orthogonal projection necessary to

explain the algorithm.

Lemma 1: For a vector x and matrices A and B such that [A,B] is a tall matrix, the following

equality holds: Π⊥
[A,B]x = (I−ΠΠ⊥

A
B)Π

⊥
Ax = Π⊥

Ax−Π⊥
AB[(Π⊥

AB)HΠ⊥
AB]−1(Π⊥

AB)HΠ⊥
Ax.

Proof: See Appendix B.

Lemma 1 states that the projection of x onto the orthogonal space of C([A,B]) can be accomplished

in two steps first by projecting x onto the orthogonal space of C(A) and then by projecting this projected

vector onto the orthogonal space of C(Π⊥
AB) (not C(B)), as illustrated in Fig. 2(b). By successively

applying Lemma 1, we can obtain Π⊥
[A1,A2,··· ,An]

x in a successive manner, where [A1, · · · ,An] is a

tall matrix. That is, we first project x onto C⊥(A1) to obtain Π⊥
A1

x, and project the subspace matrices

A2,A3, · · · ,An onto C⊥(A1) to obtain Π⊥
A1

A2,Π
⊥
A1

A3, · · · ,Π⊥
A1

An. Then, we project Π⊥
A1

x onto

C⊥(Π⊥
A1

A2) to obtain (I −ΠΠ⊥

A1
A2

)Π⊥
A1

x, and also project Π⊥
A1

A3, · · · ,Π⊥
A1

An onto C⊥(Π⊥
A1

A2)

to obtain (I−ΠΠ⊥

A1
A2

)Π⊥
A1

A3, · · · , (I−ΠΠ⊥

A1
A2

)Π⊥
A1

An. Then, we project (I−ΠΠ⊥

A1
A2

)Π⊥
A1

x onto

C⊥((I−ΠΠ⊥

A1
A2

)Π⊥
A1

A3), and project the remaining subspace matrices (I−ΠΠ⊥

A1
A2

)Π⊥
A1

A4, · · · , (I−
ΠΠ⊥

A1
A2

)Π⊥
A1

An correspondingly. We continue this process until step n is reached. Then, this gives us

Π⊥
[A1,A2,··· ,An]

x.

Algorithm 1 tries to find single-user groups first (line 6). If the algorithm cannot find any single-user

group further, it increases the number of users in group to two (lines 17 and 18), and tries to find two-user

groups. It continues this process until ng becomes K (line 9). Suppose that no group is found up to

ng = K − 1. Then, at ng = K, one argument in θ(·, ·) in (24) becomes an empty matrix, θ becomes

zero by the definition (21), and hence the condition (24) is satisfied. Thus, in this case the whole set

{1, 2, · · · ,K} becomes a single group. Let us explain Algorithm 1 by using a specific example below:
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Algorithm 1 : The Proposed User Grouping Algorithm

1: Initialization:

2: A threshold value θth ∈ (0, 1) is given.

3: Initially set f1 · · · , fK as the actual channel vectors h1, · · · ,hK of the K users.

4: Set K ← {1, · · · ,K} (initial candidate set)

5: Set ig ← 0 (group index)

6: Set ng ← 1 (number of users in group)

7: Set FK ← [f1, · · · , fK ].

8: Execution:

9: While ng ≤ K

10: Find a group of users {u∗1, · · · , u∗ng
} with cardinality ng such that C(F{u∗

1 ,··· ,u
∗
ng

}) and

C(FK\{u∗

1 ,··· ,u
∗
ng

}) satisfy

θ(FK\{u∗

1,··· ,u
∗
ng

},F{u∗

1 ,··· ,u
∗
ng

}) ≤ θth. (24)

11: If we find such a group of users {u∗1, · · · , u∗ng
},

12: ig ← ig + 1 (increase the group index by one).

13: Gig ← {u∗1, · · · , u∗ng
} (construct one group).

14: K ← K\{u∗1, · · · , u∗ng
} (update K by removing the selected users from the candidate set).

15: Update the vector fu as fu ←
(
I− FGig

(FH
Gig

FGig
)−1FH

Gig

)
fu, ∀u ∈ updated K

16: Construct new FK with the updated fu,∀u ∈ updated K.

17: Else

18: ng ← ng + 1

19: Endif

20: Endwhile

21: Ng ← ig.

22: (Throughout the algorithm, FS means the submatrix of current FK composed of {current fu,∀u ∈
S ⊂ K}.)

Example 1: Suppose that initial K = {1, 2, 3, 4, 5, 6, 7} and suppose that initially user 1 satisfies

θ([h2, · · · ,h7],h1) ≤ θth. Then, we update G1 = {1} (line 13) and K = {2, 3, 4, 5, 6, 7} (line 14), and

project the channel vectors h2, · · · ,h7 onto C⊥([h1]) to obtain the projected channel vectors Π⊥
h1
h2, · · · ,

Π⊥
h1
h7 (line 15). Next, suppose that θ([Π⊥

h1
h3, · · · ,Π⊥

h1
h7],Π

⊥
h1
h2) ≤ θth. (Note that at this point

we compute θ(·, ·) using the projected channels (lines 15 and 16).) Then, we update G2 = {2} and

K = {3, 4, 5, 6, 7} and project Π⊥
h1
h3, · · · ,Π⊥

h1
h7 onto C⊥(Π⊥

h1
h2) to obtain the further projected

channels (I−ΠΠ⊥

h1
h2
)Π⊥

h1
h3, · · · , (I−ΠΠ⊥

h1
h2
)Π⊥

h1
h7. Now, suppose that we cannot find a single-user

group further and that at ng = 2 only one pair of users {3, 4} satisfies θ([(I−ΠΠ⊥

h1
h2
)Π⊥

h1
h5, · · · , (I−
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ΠΠ⊥

h1
h2
)Π⊥

h1
h7], [(I −ΠΠ⊥

h1
h2
)Π⊥

h1
h3, (I −ΠΠ⊥

h1
h2
)Π⊥

h1
h4]) ≤ θth. Then, we update G3 = {3, 4} and

K = {5, 6, 7}, and the further projected channels for users {5, 6, 7} are obtained by projecting (I −
ΠΠ⊥

h1
h2
)Π⊥

h1
h5, · · · , (I−ΠΠ⊥

h1
h2
)Π⊥

h1
h7 onto C⊥([(I−ΠΠ⊥

h1
h2
)Π⊥

h1
h3, (I−ΠΠ⊥

h1
h2
)Π⊥

h1
h4]). These

final projected channels for users {5, 6, 7} are the same as the ZF projected channels Π⊥
[h1,··· ,h4]

h5, · · · ,
Π⊥

[h1,··· ,h4]
h7 by Lemma 1. At the next iteration, ng becomes 3 since we assumed that there is no further

two-user group; one argument of θ(·, ·) becomes an empty matrix since K = {5, 6, 7} and ng = 3; hence

G4 = {5, 6, 7}; no user is left in the candidate set K after update (line 14); no further channel projection

in line 15 occurs since updated K = ∅; and the algorithm stops.

Now, let us consider the norm property of the projected ZF channels associated with the constructed

groups in the example, which is the key aspect of the proposed user grouping algorithm. Consider user

1 in firstly-constructed G1. Since θ([h2, · · · ,h7],h1) ≤ θth, by the definition of θ(·, ·) in (21), we have

φ(H̃1 = [h2, · · · ,h7],h1) =
‖H̃1(H̃

H
1 H̃1)

−1H̃H
1 h1‖2

‖h1‖2
≤ θth (25)

Hence, we have

||Π⊥
H̃1

h1||2 = ||(I− H̃1(H̃
H
1 H̃1)

−1H̃H
1 )h1||2

= (1− φ(H̃1,h1))||h1||2 by the Pythagorean theorem

≥ (1− θth)||h1||2.

Next, consider the norm of the ZF effective channel for User 2 in G2. Due to the construction of G1
based on (25), h1 and h2 satisfy the following:

||Π⊥
h1
h2||2 = (1− φ(h1,h2))||h2||2

≥ (1− φ(H̃1,h1))||h2||2, since H̃1 includes h2

≥ (1− θth)||h2||2. (26)

By Lemma 1, Π⊥
[h1,h3,··· ,h7]

h2 can be obtained by sequential orthogonal projection as

Π⊥
[h1,h3,··· ,h7]

h2 = (I−Π[Π⊥

h1
h3,··· ,Π⊥

h1
h7])Π

⊥
h1
h2,

but G2 was constructed such that Π⊥
h1
h2 and [Π⊥

h1
h3, · · · ,Π⊥

h1
h7] satisfy the threshold θth requirement.
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Combining this fact and (26), we have

||Π⊥
[h1,h3,··· ,h7]

h2||2 ≥ (1− θth)2||h2||2.

Then, consider User 3 in G3 = {3, 4}. (The same applies to User 4 in G3.) By Lemma 1, we have

Π⊥
[h1,h2]

h3 = (I−ΠΠ⊥

h1
h2
)Π⊥

h1
h3 (27)

Π⊥
[h1,h2,h5,h6,h7]

h3 = (I−Π[Π⊥

[h1,h2]h5,Π⊥

[h1,h2]h6,Π⊥

[h1,h2]h7])Π
⊥
[h1,h2]

h3. (28)

In (27), G1 = {1} was constructed such that h1 and h3 satisfy the angle constraint, and G2 = {2}
was constructed such that Π⊥

h1
h2 and Π⊥

h1
h3 satisfy the angle constraint. Hence, we have ||Π⊥

h1
h3||2 ≥

(1 − θth)2||h3||2. Furthermore, in (28), G3 = {3, 4} was constructed such that [Π⊥
[h1,h2]

h3,Π
⊥
[h1,h2]

h4]

and the remaining [Π⊥
[h1,h2]

h5,Π
⊥
[h1,h2]

h6,Π
⊥
[h1,h2]

h7] satisfy the angle constraint. Combining these facts,

we have

||Π⊥
[h1,h2,h5,h6,h7]

hk||2 ≥ (1− θth)3||hk||2, k = 3, 4. (29)

Finally, consider the norm of the ZF effective channels Π⊥
[h1,··· ,h4]

h5, · · · , Π⊥
[h1,··· ,h4]

h7 of the last group

G4 = {5, 6, 7}. These vectors are obtained by three sequential orthogonal projections based on Lemma

1, and at each projection stage the threshold θth was kept for group splitting. Hence, we have

||Π⊥
[h1,··· ,h4]

hk||2 ≥ (1− θth)3||hk||2, k = 5, 6, 7.

Note that in general the proposed user grouping algorithm satisfies the following norm reduction property

for the ZF effective channels:

||g(j)
i ||2 = ||Π⊥

H̃j
h
(j)
i ||2 ≥ (1− θth)Ng−1||h(j)

i ||2, (30)

where Π⊥
H̃j

is the ZF projection matrix for group Gj , h
(j)
i is the channel vector of User i in group Gj ,

and Ng is the number of constructed groups, which is bounded by K. Since the number of antennas N

and the number of users K (≤ N) are fixed in our MISO BC model with superposition coding and SIC,

the lower bound (1− θth)K−1 ∈ (0, 1) of (1− θth)Ng−1 is a constant.

Now, let us define a useful quantity for further exposition: We define the degrees of freedom of a

fading channel h as

d := lim
x→0

log Pr(‖h‖2 ≤ x)

log x
. (31)

This quantity captures the behavior of the tail probability of the random variable ||h||2 in its lower tail,
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and the degrees of freedom d for h means that Pr(‖h‖2 ≤ x) behaves as xd + o(xd), as x → 0. This

quantity is directly related to the diversity order of the SISO communication channel with the channel

gain ||h||. For example, a Rayleigh fading channel h ∼ C(0, 2IN ) has the degrees of freedom N since

Pr(||h||2 ≤ x) =

∫ x

0
f‖h‖2(z)dz =

1

2NN !
xN + o(xN ), as x→ 0 (32)

and limx→0
logPr(‖h‖2≤x)

log x = N , where f‖h‖2(z)dz is given in (5). Finally, we provide the main statement

of this subsection regarding the degrees of freedom of the ZF effective channels associated with the

proposed grouping method in the following proposition:

Proposition 2: With the mixture transceiver architecture and the user grouping method in Algorithm

1, the projected effective channel g
(i)
j = Π⊥

H̃j

h
(j)
i in (9) resulting from inter-group ZF beamforming has

the same degrees of freedom as the original channel h
(j)
i , i.e.,

lim
x→0

log Pr(‖g(j)
i ‖2 ≤ x)

log x
= lim

x→0

log Pr(‖h(j)
i ‖2 ≤ x)

log x
, ∀ i, j. (33)

Proof: See Appendix C.

Complexity of Algorithm 1: Note that in the worst case the number of group searches is given by

K +


 K

2


 +


 K

3


 + · · · +


 K

K


, which scales as KK/2. For each group search, we need to

compute θ(·, ·) in (24), which requires inversion of K × K matrices in the worst case (see (24) and

the term (AHA)−1 in (22)). Thus, Algorithm 1 is not scalable for large K. Nevertheless, the algorithm

is devised to prove the diversity-order optimality of the mixture architecture in this paper. Invention of

more efficient user grouping algorithms for the mixture architecture for MISO BCs is a future work. For

one possible idea for polynomial complexity, please see Appendix E.

SIC Complexity: Since in the proposed adaptive user grouping, each group can have one to K members,

it is required that each receiver be able to handle SIC of K−1 users in the worst case. SIC for a general

number of users has been investigated extensively for code-division multiple access systems [23].

IV. OUTAGE ANALYSIS AND DIVERSITY ORDER OF THE MIXTURE SCHEME

In this section, we present our main result regarding the diversity order of the mixture transceiver

architecture for MISO BCs.

Theorem 1: For the Gaussian MISO BC with N transmit antennas and K single-antenna users with in-

dependent Rayleigh fading described in Section II-A, let the channels be ordered as ‖h1‖2 ≥ ‖h2‖2 · · · ≥
‖hK‖2 and let the k-th user be the user with the k-th largest channel norm. Then, the diversity order for
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the k-th user achievable by the mixture transceiver architecture with proper user grouping is given by

Dk = N × (K − k + 1). (34)

Here, the diversity order is defined as Dk := limPt→∞− logPr{Rk<Rth}
logPt

, where Rk is the rate of the k-th

user and Rth is a rate threshold. Note that Pt → ∞ is equivalent to SNR = Pt/σ
2 → ∞ since we set

the noise variance σ2 = 1 for simplicity.

Proof: For user grouping of the mixture architecture we adopt Algorithm 1. The diversity provided

by such a grouping will provide an achievable bound for the diversity as claimed in the theorem. Proof

is based on Propositions 1 and 2. In proof, we consider not only the distribution of the channel norm

itself but also the order statistics resulting from the channel norm ordering. With the descending channel

ordering ‖h1‖2 ≥ ‖h2‖2 · · · ≥ ‖hK‖2, the pdf of the k-th channel norm square is given by order statistics

as

f‖hk‖2(x) =
K!

(k − 1)!(K − k)!
[F‖h‖2(x)]K−k[1− F‖h‖2(x)]k−1f‖h‖2(x) (35)

where f‖h‖2(·) and F‖h‖2 are the pdf and cumulative distribution function (cdf) of chi-square distribution

with degree of freedom 2N :

f‖h‖2(x) =
1

2N (N − 1)!
xN−1e−x/2 =

1

2NN !
xN−1 + o(xN−1), as x→ 0 (36)

F‖h‖2(x) =
1

2NN !
xN + o(xN ), as x→ 0. (37)

Hence, we have for the k-th largest channel norm square ||hk||2

f||hk||2(x) = ckx
N(K−k+1)−1 + o(xN(K−k+1)−1), as x→ 0, (38)

and thus

lim
x→0

log Pr(‖hk‖2 ≤ x)

log x
= N(K − k + 1). (39)

The outage probability of the k-th user is expressed as

Pr(Rk < Rth) =

Ng∑

j=1

[
Pr(k ∈ Gj) · Pr

(
Rk < Rth

∣∣∣ k ∈ Gj
)]

(40)

=

Ng∑

j=1

[
Pr(k ∈ Gj) ·

{
Pr (|Gj | = 1 | k ∈ Gj) · Pr

(
Rk < Rth | |Gj | = 1, k ∈ Gj

)

+Pr(|Gj | 6= 1 | k ∈ Gj) · Pr
(
Rk < Rth | |Gj | 6= 1, k ∈ Gj

)}]
. (41)
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i) Lower bound on the outage probability: We obtain a lower bound on the outage probability by

considering only the event that the k-th user belongs to a group with cardinality one, i.e., the first term

in the RHS of (41).

Pr(Rk < Rth) ≥
Ng∑

j=1

Pr(k ∈ Gj) · Pr (|Gj | = 1 | k ∈ Gj) · Pr
(
Rk < Rth

∣∣∣ |Gj| = 1, k ∈ Gj
)

=

Ng∑

j=1

Pr (|Gj | = 1, k ∈ Gj) · Pr
(
Rk < Rth

∣∣∣ |Gj | = 1, k ∈ Gj
)

=

Ng∑

j=1

Pr (|Gj | = 1, k ∈ Gj) · Pr
(
‖Π(j)hk‖2 < K · (2Rth − 1) · P−1

t

)
, (42)

where (42) holds due to the rate Rk = log(1 + Pt||Π(j)hk||2/K) for a single-user group based on (11)

and the corresponding optimal beam. Then, we have

−Dk = lim
Pt→∞

log Pr(Rk < Rth)

log Pt
(43)

≥ lim
Pt→∞

log
(∑Ng

j=1

[
Pr (|Gj | = 1, k ∈ Gj) · Pr

(
‖Π(j)hk‖2 < K · (2Rth − 1) · P−1

t

)])

logPt
(44)

= lim
P−1

t →0

log
(∑Ng

j=1

[
Pr (|Gj | = 1, k ∈ Gj) · Pr

(
‖Π(j)hk‖2 < K · (2Rth − 1) · P−1

t

)])

− log P−1
t

(45)

= −N(K − k + 1). (46)

Here, (46) is valid because ||hk||2 has the channel order N(K − k + 1) by (38) and (39); the projected

effective channel ‖Π(j)hk‖2 has the same channel order as ||hk||2 by Proposition 2; and the linear

combination of terms with the same order has the same order as each term. Note that Pr (|Gj| = 1, k ∈ Gj)
depends only on the joint distribution of (h1, · · · ,hk) for the given user grouping algorithm not on the

power Pt.

ii) Upper bound on the outage probability:

For the upper bound, we need to include the second term in the RHS of (41) in addition to the first

term in the RHS of (41) considered in the lower bound. The second term in the RHS of (41) is given by

Ng∑

j=1

Pr(k ∈ Gj) · Pr (|Gj | 6= 1 | k ∈ Gj) · Pr
(
Rk < Rth | |Gj | 6= 1, k ∈ Gj

)
(47)

=

Ng∑

j=1

Pr (|Gj | 6= 1, k ∈ Gj) · Pr
(
Rk < Rth | |Gj | 6= 1, k ∈ Gj

)
(48)
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=

Ng∑

j=1

K∑

ℓ=2

Pr (|Gj | = ℓ, k ∈ Gj) · Pr
(
Rk < Rth | |Gj | = ℓ, k ∈ Gj

)

︸ ︷︷ ︸
(a)

. (49)

Define the following notations:

Ek,j,i := Event that the k-th user is the i-th largest channel norm user in Gj (50)

Pk,j,i := Pr(Ek,j,i). (51)

With these notations, the term (a) in (49) can be rewritten as

Pr
(
Rk < Rth

∣∣∣ |Gj | = ℓ, k ∈ Gj
)
=

ℓ∑

i=1

Pk,j,i · Pr
(
Rk < Rth

∣∣∣ |Gj | = ℓ, k ∈ Gj, Ek,j,i

)
, (52)

where Rk conditioned on the joint event (|Gj | = ℓ, k ∈ Gj, Ek,j,i) is lower bounded by Proposition 1 as

Rk ≥





log2

(
1 + 1

c δ
(j)
1 ‖Π(j)hk‖2 ℓPt

K

)
if i = 1

log2

(
1 + δ

(j)
i∑

i−1
m=1 δ

(j)
m

1

1+( 1

c
‖Π(j)hk‖2

∑
i−1
m=1 δ

(j)
m

ℓPt
K
)
−1

)
if i = 2 · · · ℓ.

(53)

where c is given in (20), and (δ
(j)
1 , δ

(j)
2 , · · · δ(j)ℓ ) is the power ratio-tuple in group Gj , i.e., power δ

(j)
i ℓPt/K

is assigned to User i in group Gj . (ℓPt/K is the total group power for group Gj with |Gj | = ℓ.) Therefore,

the probability (52) is upper bounded as

ℓ∑

i=1

[
Pk,j,i · Pr

(
Rk < Rth

∣∣∣ |Gj | = ℓ, k ∈ Gj , Ek,j,i

)]
(54)

≤ Pk,j,1 · Pr
(
log2

(
1 +

1

c
δ
(j)
1 ‖Π(j)hk‖2

ℓPt

K

)
< Rth

)

+

ℓ∑

i=2


Pk,j,i · Pr


log2


1 +

δ
(j)
i∑i−1

m=1 δ
(j)
m

1

1 +
(
1
c‖Π(j)hk‖2

∑i−1
m=1 δ

(j)
m ℓPt/K

)−1


 < Rth







(55)

= Pk,j,1 · Pr
(
‖Π(j)hk‖2 < (2R

th − 1) · c

δ
(j)
1

· K
ℓ
P−1
t

)

+

ℓ∑

i=2


Pk,j,i · Pr


‖Π(j)hk‖2 < c

(
δ
(j)
i

2Rth − 1
−

i−1∑

m=1

δ(j)m

)−1

· K
l
· P−1

t




 , (56)

where the threshold for ‖Π(j)hk‖2 in the second term in (56) is obtained by manipulation of the second

term in (55). By Lemma 4 in Appendix D, there always exists a collection of in-group power distribution
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factors (δ
(j)
1 , · · · , δ(j)ℓ ) such that ( δ

(j)
i

2Rth−1
−∑i−1

m=1 δ
(j)
m ) in (56) is strictly positive for all i = 2, · · · , ℓ. Set

(δ
(j)
1 , · · · , δ(j)ℓ ) as one of such collections. Then, each probability term in (56) behaves as P

−N(K−k+1)
t

as Pt → ∞, since ‖Π(j)hk‖2 has the same degrees of freedom of N(K − k + 1) in (38) and (39) as

||hk||2 by Proposition 2. Hence, their linear combination (54) behaves as P
−N(K−k+1)
t as Pt →∞, and

furthermore the term (49) as a linear combination of terms (54) behaves as P
−N(K−k+1)
t as Pt → ∞.

Now, by adding (49) and the term in (42), we have the exact outage probability. We already showed that

the term in (42) behaves as P
−N(K−k+1)
t as Pt → ∞. Furthermore, the upper bound of (49) behaves

as P
−N(K−k+1)
t as Pt → ∞. Hence, we have −Dk = limPt→∞

log Pr(Rk<Rth)
logPt

≤ −N(K − k + 1).

Combining this upper bound result with the lower bound result, we have

N(K − k + 1) ≤ Dk = − lim
Pt→∞

log Pr(Rk < Rth)

logPt
≤ N(K − k + 1). (57)

Corollary 1: For the Gaussian MISO BC with N transmit antennas and K single-antenna users with

independent Rayleigh fading described in Section II-A, the diversity order of the overall system achievable

by the mixture transceiver architecture with the proposed user grouping method is given by

D = N (58)

Proof: The decay rate of the overall outage probability is dominated by the worst decay rate. The

worst diversity order in Theorem 1 occurs when k = K, and is given by N .

Note that the diversity order of the full ZF downlink beamforming is given by [14]

D = N −K + 1. (59)

Hence, a significant improvement in the diversity order is attained by the mixture scheme. Note that the

possible maximum diversity order for user k with channel hk ∼ CN (0, 2I) is simply N . Hence, the

mixture transceiver architecture achieves the full diversity order N in MISO BCs.

A. Diversity and Multiplexing Trade-off

With the cluster power factors {δi > 0, i = 1, · · · , L} fixed, as the total cluster power P increases

according to (17) without bound, in each group only the rate of the first user scales as log SNR but

the rates of all other users saturate to constants: R̄
(j)
i = log2

(
1 + δ(j)i∑

i−1
m=1 δ

(j)
m

)
, i = 2, · · · , L, as seen in
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(19).† Hence, the multiplexing gain for one user group with superposition and SIC is one regardless of

the number of users in the group. (A similar observation of multiplexing gain one per superposition-

and-SIC user group was made in [24].) Thus, the overall multiplexing gain of the mixture scheme with

the adaptive user grouping is the same as the number of user groups Ng which is less than or equal

to K(≤ N). Note that in the case of K = N , the multiplexing gain of the ZF beamforming is N ,

whereas its diversity order is one. Thus, diversity-order and multiplexing-gain trade-off known in single-

user MIMO [25] occurs even in MISO BCs [26]. In fact, it can be shown by replacing L with K in

Proposition 1 and going through the proof of Theorem 1 with Ng = 1 that the full diversity order N can

be achieved by a single superposition-and-SIC group containing all K users without considering channel

alignment and orthogonality at all. However, this single-group full superposition-and-SIC approach is

not good since it yields multiplexing gain one regardless of channel realization. This scheme can be

considered as an antipodal scheme of the ZF beamforming in terms of diversity and multiplexing trade-

off: The diversity order and multiplexing gain of the full superposition-and-SIC approach versus full ZF

beamforming are (N, 1) versus (1, N) for MISO BCs with K = N . On the other hand, the proposed

user grouping method is adaptive and depends on the channel realization. The number of groups is not

predetermined in the proposed user grouping method. The number of user groups can be K if all user

channels are semi-orthogonal. The number of user groups can be one if all user channels are aligned.

Hence, the number Ng of constructed user groups, i.e., the multiplexing gain of the mixture scheme with

the adaptive user grouping method, is adaptive to channel realization, while the full diversity order N is

always achieved. So, we can view that the mixture scheme with such an adaptive user grouping method

tries to opportunistically increase the multiplexing gain while achieving the full diversity order. Note that

Ng is a random variable under the assumption that hk, k = 1, · · · ,K are random, and it depends on the

angle threshold between the user groups used in the adaptive user grouping algorithm. We were not able

to compute an analytic form for the expectation of Ng to evaluate the multiplexing gain loss as compared

to the ZF beamforming, but a numerical assessment of the multiplexing gain loss as compared to the ZF

beamforming is provided in Section V.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to validate our theoretical analysis in the previous

sections. We considered the MISO BC described in Section II-A. In each simulation scenario, we

†The target rates of User 2, · · · , L for group Gj should be less than R̄
(j)
i , but δi’s can be designed for a common target rate

Rth based on (86). Please see Section V-C.
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Fig. 3: Outage probability of the mixture transceiver architecture: (a) N = 3, K = 2 and (b) N = 3,

K = 3

generated the K channel vectors h1, · · · ,hK of the system independently from the zero-mean complex

Gaussian distribution CN (0, 2I) sufficiently many times to numerically compute outage probability. For

each channel realization, we ran the user grouping algorithm (Algorithm 1) with θth = 0.9. With the

constructed groups, we applied inter-group ZF beamforming and designed the intra-group beam vectors

according to the constraint (17), i.e., w1 = · · · = wL = w∗ with the solution w∗ to the max-min problem

(70) used in the proof of Proposition 1. The rate Rk of the k-th user is obtained based on the designed

beam vectors in this way. (Note that the beam vectors w1 = · · · = wL = w∗ designed in this way

yield rates larger than or equal to the lower bounds in (18) and (19).) For the intra-group beam design,

the power distribution factors are chosen to satisfy the condition in Lemma 4 in Appendix D. The used

values for power distribution factors are (0.2, 0.8) for every two-user group, (0.05, 0.2, 0.75) for every

three-user group in Figs. 2(a), 2(b) and 3(a), and are the solution of (86) with C = 2 in Fig. 3(b). For

computation of the outage probability Pr(Rk ≤ Rth), we set the target rate threshold as Rth = 1.5

[bits/channel use] in all simulations.
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Fig. 4: Overall outage probability : (a) N = 4, K = 2 or 3 and (b) N = K = 4 and N = K = 8

A. Diversity Order Considering Order Statistic

First, we numerically evaluated the outage probability and diversity order of each user of the mixture

transceiver architecture with considering channel norm ordering. Fig. 3 shows the outage probability of

the mixture transceiver architecture in two cases: (a) N = 3, K = 2 and (b) N = 3 and K = 3, where

User k is defined as the user with the k-th largest channel norm (i.e. ‖h1‖2 ≥ ‖h2‖2 ≥ · · · ≥ ‖hK‖2).

In the case (a) of N = 3,K = 2, Theorem 1 states that the diversity orders of Users 1 and 2 are 6 and

3, respectively. It is seen in Fig. 3(a) that the outage probability of User 2 has the slope corresponding to

diversity order of 3, as SNR increases. It is also seen that the decay rate of User 1 is almost twice that

of User 2. (In log10 y-scale, roughly User 1 has -4 and -5.9 and User 2 has -2.2 and -3.3 at 10 log Pt =

12 and 16, respectively.) In the case (b) of N = 3, K = 3, Theorem 1 states that the diversity orders of

Users 1, 2 and 3 are 9, 6, and 3, respectively. It is observed in Fig. 3(b) that the outage probability of

User 3 has the slope corresponding to diversity order of 3, as SNR increases.

B. Overall Diversity Order

Then, we compared the mixture transceiver architecture with the full ZF downlink beamforming, based

on the overall system diversity order. In order to see the overall diversity order, we computed overall

outage probability. For this, we neglected channel norm ordering and computed the total number of

January 23, 2019 DRAFT



ARXIV PREPRINT, VERSION 3, JANUARY 23, 2019 25

outages occurred at all K users over all Monte Carlo runs. Fig. 4 shows the overall outage probability

for the same channel statistics and the same rate threshold for the mixture scheme and the ZF downlink

beamforming. We considered four cases: i) N = 4,K = 2 and ii) N = 4,K = 3 shown in Fig. 4(a) and

iii) N = K = 4 and iv) N = K = 8 shown in Fig. 4(b). For the considered cases i), ii), iii), and iv), the

corresponding system diversity orders of the mixture scheme are 4, 4, 4 and 8 by Corollary 1, whereas

the corresponding diversity orders of the ZF downlink beamforming are 3, 2, 1, and 1 by (59). It is seen

in Fig. 4(a) that indeed the diversity orders of cases i) and ii) for the mixture scheme are the same as

four. (The two red curves in Fig. 4(a) seem to have the same slope with some offset, as SNR increases.)

On the other hand, it is seen that the diversity orders of the ZF downlink beamforming depends on K

for the same N , as expected. The outage performance result for the cases with more transmit antennas

N = K = 4 and N = K = 8 is shown in Fig. 4(b). It is seen that the full ZF beamforming yields the

same slope for the two cases N = K = 4 and N = K = 8, as expected, since it yields the diversity

order of one in both cases by (59). On the other hand, it is seen that the diversity orders in the two cases

N = K = 4 and N = K = 8 are different for the mixture scheme, as predicted by Corollary 1. Indeed,

it is seen that the decay rate of the outage probability in the case of N = K = 8 is larger than that of

the case of N = K = 4, although the outage probability of the case N = K = 8 is higher than that of

the case N = K = 4 at low SNR. Note that the outage performance gain by the mixture scheme over

the ZF beamforming is drastic in the case of N = K = 4 and N = N = 8 for the meaningful range

where the outage probability is below 10−2.

C. Rate Distribution and Multiplexing Gain Loss

Next, we investigated the actual rate distribution and the multiplexing gain loss of the mixture scheme

as compared to the ZF beamforming. For a numerical study, we again considered the case of N = K = 4

considered in Fig. 4(b). For the power distribution factors δ1, · · · , δ4, we used (86) with Rth = 1.5 and

C = 2. (Other simulation setting is the same as that for Fig. 4(b).) We know that the common target

rate should be smaller than R̄
(j)
i = log2

(
1 + δ(j)i∑

i−1
m=1 δ

(j)
m

)
, i = 2, · · · , |Gj | since the rates of the users

except the first user in group Gj saturate to R̄
(j)
i , i = 2, · · · , |Gj |. However, the power distribution factors

δ
(j)
1 , · · · , δ(j)|Gj |

of group Gj can be designed for the target rate Rth by using (86). Note that channel

realization does not satisfy the target rate Rth with 100 percents and it is just a target rate. Hence, outage

can still occur for the designed target rate with small probability. (86) with Rth = 1.5 and C = 2 yields

the following power distribution factor values:

• δ
(j)
1 = 1 for the first user in any group with cardinality one.
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• δ
(j)
1 = 0.2071, δ

(j)
2 = 0.7929 for the first and second users in any group with cardinality two.

• δ
(j)
1 = 0.0429, δ

(j)
2 = 0.1642, δ

(j)
3 = 0.7929 for the first, second and third users in any group with

cardinality three.

• δ
(j)
1 = 0.0089, δ

(j)
2 = 0.0340, δ

(j)
3 = 0.1642, δ

(j)
4 = 0.7929 for the first, second, third and fourth

users in any group with cardinality four.

The corresponding R̄
(j)
i is given as follows:

• R̄
(j)
2 = 2.2716 for the second user in any group with cardinality two.

• R̄
(j)
2 = 2.2713, R̄

(j)
3 = 2.2716 for the second and third users in any group with cardinality three.

• R̄
(j)
2 = 2.2691, R̄

(j)
3 = 2.2713, R̄

(j)
3 = 2.2716 for the second, third and fourth users in any group

with cardinality four.

Note that (86) with Rth = 1.5 and C = 2 yields the power distribution factor values so that the rate

upper bound R̄
(j)
i for non-first users is set just above the target rate Rth. The margin is controlled by the

constant C . Hence, when a common target rate is given, we can design the power distribution factors

δ
(j)
i such that the rate upper bound R̄

(j)
i for non-first users is set just above the target rate Rth by using

(86).

For the N = K = 4 system, we considered 10 log10
Pt

1 = [10, 15, 20, 40, 60] dB, where one in the

denominator is the noise variance. For each SNR point, we generated 500,000 channel realizations. For

each channel realization, we applied the ZF beamforming and the mixture scheme and obtained the rates

of the four users in the system. With the overall 4×500,000 rate values, we obtained the rate distribution

with the histogram method. The rate distribution results are shown in Figs. 5 and 6. Note that the mixture

scheme with adaptive user grouping is opportunistic in multiplexing gain and at least multiplexing gain

of one is guaranteed since the number of groups is equal to or larger than one. It is observed that the rate

distribution of the mixture scheme is a mixture of the first users’ rate distribution and the non-first users’

rate distribution. The distribution component of the first users’ rates shows a similar distribution to that of

the ZF scheme. That is, as SNR increases, the first users’ rate distribution shifts to the right in the figures.

We also see the component of the distribution of the non-first users’s rates. This component accumulates

around R ≈ 2.2 as predicted by the above values of R̄
(j)
i . As SNR increases, the accumulation becomes

sharper looking like a peak just below R̄
(j)
i . Note the rate lower tail behaviors of the mixture scheme

and the ZF scheme. At SNR = 10, 15, 20 dB, the mixture has much lighter tails. At SNR=20 dB, the

mixture scheme yields most rates above the target rate Rth = 1.5, whereas still quite a portion is below

the target rate Rth = 1.5 with the ZF scheme. Even at SNR=40dB, we can still see the non-zero tail
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Fig. 5: Rate distribution (N = K = 4) (a) 10 log Pt

1 = 10dB, (b) 10 log Pt

1 = 15dB, (c) 10 log Pt

1 = 20dB
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Fig. 6: Rate distribution (N = K = 4) (a) 10 log Pt

1 = 40dB and (b) 10 log Pt

1 = 60dB

around the origin for the ZF scheme, whereas for the mixture scheme the rate distribution starts from

Rth with a sharp peak. Note that the first users’ rates of the mixture scheme almost match those of the

ZF scheme. However, still there is a large peak around R̄
(j)
i due to the non-first users for the mixture

scheme, and this reduces the multiplexing gain of the mixture scheme.
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Fig. 7: Average sum rate: K = N = 4
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Hence, we further investigated the multiplexing gain, i.e., the slope of rate increase with respect to

SNR. For each SNR point, we averaged the rates of the four users in the system over channel realizations.

Then, we plotted the average rates of the mixture scheme and the ZF scheme with respect to SNR. The

result is shown in Fig. 7. It is seen that the multiplexing gain loss of the mixture scheme compared to

the ZF scheme is insignificant at least in the case of N = K = 4.
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Fig. 8: Average sum rate: K = N = 4

We further investigated the performance of the single-group approach with more sophisticated beam

design obtained by solving the problem (16). We solved the problem (16) for the N = K = 4 system

considered above as a single group with superposition and SIC. Since the problem (16) is non-convex,

several steps are needed. First, we transform the problem (16) into a problem of maximizing sum rate

with feasible power ratio-tuples. Then, it is reformulated as maximizing the geometric mean of SINRs

with non-convex constraints [18]. Next, we approximate the non-convex constraints using the convex

concave procedure [19] and can solve the problem in an iterative manner. Sweeping (p1, p2, · · · , pK) =

(δ1Pt, δ2Pt, · · · , δKPt) yields a rate region. However, we did not perform this sweeping since our goal

is not to obtain a rate region. Instead, we determined (p1, p2, · · · , pK) = (δ1Pt, δ2Pt, · · · , δKPt) based

on (86) with C = 2 and Rth = 1.5 and computed the corresponding sum rate of the problem (16). The

corresponding rate-tuple point is on the boundary of the rate region of (16), although it may not be the

sum-rate maximizing point. The result is shown in Fig. 8. The curves of the proposed method and the

conventional ZF method are the same as those in Fig. 7, and the curve of the solution of the problem (16)
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with (p1, p2, · · · , pK) = (δ1Pt, δ2Pt, · · · , δKPt) determined based on (86) with C = 2 and Rth = 1.5 is

newly added. Even though we solve the problem (16) optimally based on the aforementioned complicated

procedure not based on user grouping, inter-group ZF, in-group simple superposition beamforming w1 =

· · · = wK , the resulting rate of the problem (16) with a single-group approach is not good. Note that

the corresponding slope is much smaller than that of the ZF scheme and the proposed scheme. This is

because as mentioned before, if we group all users in a single group and apply superposition and SIC,

we have the multiplexing gain of only one, whatever sophisticated beam design and power allocation are

used. Even if we adjust power allocation to yield maximum sum rate, this does not change the slope,

i.e., the multiplexing gain. On the other hand, the full ZF beamforming has the multiplexing gain of

four and the mixture scheme with adaptive user grouping has the multiplexing gain from one to four.

On average, the multiplexing gain of the mixture scheme with adaptive user grouping slightly falls short

of four, as seen in Fig. 7. So, it is more important to group users properly to yield as many groups as

possible, while maintaining minimum inter-group angle separation, rather than to apply a sophisticated

beam design method with one overall group from the perspective of the multiplexing gain, i.e., the sum

rate.

Now how to operate the mixture scheme is clear. Consider MISO-BC URLLC in which no retrans-

mission is allowed due to latency constraint (one round-trip delay for retransmission is in the order of

10 ms, whereas URLLC requires 1ms delay) and low-latency low-data-rate packets should be delivered

reliably. First, we determine the angle threshold between group channel subspaces to be not too large so

that we have as many groups as possible but we still avoid angle-wise very close groups. We determine

the minimum target rate that should be satisfied by all users for URLLC. With the target rate, we design

the power distribution factors, and run the adaptive user grouping. For the first users in the constructed

groups, we can still apply rate adaptation based on modulation level and coding rate by exploiting the

supportable rate channel quality indicator (CQI). (The distribution of the first users’ rates is wide across

the x-axis in Fig. 5 and 6. We should exploit this.) But, for the non-first users we just transmit data with

the target rate. In fact, we can control the first user in each group. In the case that a user wanted as the

first user does not have maximum effective channel norm, we assign more power to the wanted user so

that more power times its effective channel gain surpasses the largest effective channel norm of other

user in the group. Then, we distribute the remaining group power according to (86) with the target rate

Rth. With this, we can control the mixture system so that any user can be a high-rate first user while

supporting the target rate with high reliability.
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D. Comparison with Other Advanced Transceiver Designs for MISO BCs

We considered other advanced transceiver designs for MISO BCs, e.g., [27], [28], devised to improve

the performance over ZF downlink beamforming, and compared the outage performance of these advanced

designs with the mixture architecture. The result is shown in Fig. 9, where the setup is N = K = 4

and other parameter setting is the same as that in Fig. 4(b) with N = K = 4. It is seen that the

advanced transceiver designs having the full multiplexing gain yield the same diversity order as the ZF

beamforming, which is worse than that of our scheme, although they yield better rates compared to the

ZF beamforming. Thus, these advanced designs are at the multiplexing-gain-optimal side in terms of

diversity-and-multiplexing trade-off.
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Fig. 9: Comparison with other advanced methods: K = N = 4

E. Impact of Imperfect CSI

Although analysis of the outage performance under imperfect CSIT is beyond the scope of this paper,

we briefly investigated the impact of imperfect CSIT through simulation. Again we considered the case of

N = K = 4 with the same other setting as that in Fig. 4(b). It is known that the number of CSI feedback

bits per user should increase linearly with respect to SNR (or signal power for fixed noise variance) in

log scale in order to achieve full multiplexing gain for MISO BCs [29]. For simulation the CSI error is

assumed to be zero-mean Gaussian with variance σ2
e , where we set 1) σ2

e as a fixed constant of 0.1 and
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2) σ2
e = 1

1+Pt
to be consistent with the result in [29]. The result is shown in Fig. 10. It is seen that the

fixed CSI quality with respect to SNR shows a floor for the outage probability as SNR increases. On the

other hand, the CSI with quality σ2
e = 1

1+Pt
does not show such a floor behavior. Indeed, it seems that

the increasing CSI quality with respect to SNR is required to achieve the full diversity order although

the exact increasing rate is not known yet.

VI. CONCLUSION

In this paper, we have considered the mixture transceiver architecture with channel-adaptive user

grouping and mixture of linear and nonlinear SIC reception for MISO BCs, and have shown that the

mixture transceiver architecture opportunistically increases the multiplexing gain while achieving full

diversity order for MISO BCs. The mixture transceiver architecture can provide far better outage perfor-

mance compared to the widely-used conventional ZF downlink beamforming for MU-MISO BCs under

channel fading environments. The gain in diversity order results from possible sacrifice of multiplexing

gain through diversity-and-multiplexing trade-off, and thus the mixture scheme provides an alternative

transceiver architecture for MISO BCs to applications such as emerging URLLC in which reliability

is more important than data rate. Future research directions include optimization of angle threshold

and power distribution, finding optimal diversity-and-multiplexing trade-off in MISO BCs, finding faster
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grouping algorithms scalable with the number of users for large systems, application of the mixture

architecture to the uplink [15], and application of more advanced transmit signaling [30].

APPENDIX A: PROOF OF PROPOSITION 1

For given (δ1, · · · , δL), in order to obtain a lower bound on the achievable rate of each user, we simply

set w1 = w2 = · · · = wL = w with ||w||2 ≤ 1 as in the constraint (17), i.e., we consider that all L

users use the same beam vector. Then, the rates in (14) of the MISO BC with superposition coding and

SIC can be rewritten as

R1 = log2
(
1 + δ1P |gH

1 w|2
)

(60)

Ri = log2

(
1 +min

{
δiP |gH

1 w|2
∑i−1

m=1 δmP |gH
1 w|2 + 1

, · · · , δiP |gH
i w|2

∑i−1
m=1 δmP |gH

i w|2 + 1

})
, i = 2, · · · , L,

= log2


1 +

δi∑i−1
m=1 δm

· 1

1 + 1/
[
min {|gH

1 w|2, · · · , |gH
i w|2}(∑i−1

m=1 δm)P
]


 . (61)

Using Lemma 2 below, we can bound the terms |gH
1 w|2 in (60) and min {|gH

1 w|2, · · · , |gH
i w|2} in (61)

as follows: Using the optimal solution w∗ to the max-min problem (70), we have

|gH
1 w∗|2 ≥ min





∣∣∣∣∣

(
g1

‖g1‖

)H

w∗

∣∣∣∣∣

2

, · · · ,
∣∣∣∣∣

(
gL

‖gL‖

)H

w∗

∣∣∣∣∣

2


 ‖g1‖

2 (62)

≥ 1

c
‖g1‖2, (63)

where (62) is valid since the minimum is taken over multiple terms including |gH
1 w∗|2, and (63) is valid

by Lemma 2 below. Next, we have

min{|gH
1 w∗|2, · · · , |gH

i w∗|2} = min





∣∣∣∣∣

(
g1

‖gi‖

)H

w∗

∣∣∣∣∣

2

, · · · ,
∣∣∣∣∣

(
gi

‖gi‖

)H

w∗

∣∣∣∣∣

2


 ‖gi‖

2 (64)

≥ min





∣∣∣∣∣

(
g1

‖g1‖

)H

w∗

∣∣∣∣∣

2

, · · · ,
∣∣∣∣∣

(
gi

‖gi‖

)H

w∗

∣∣∣∣∣

2


 ‖gi‖

2 (65)

≥ min





∣∣∣∣∣

(
g1

‖g1‖

)H

w∗

∣∣∣∣∣

2

, · · · ,
∣∣∣∣∣

(
gL

‖gL‖

)H

w∗

∣∣∣∣∣

2


 ‖gi‖

2 (66)

≥ 1

c
‖gi‖2, (67)
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where (65) is valid since ||g1|| ≥ · · · ≥ ||gL||, (66) is valid since we increased the number of terms

in the minimization including the previous terms, and (67) holds by Lemma 2 below. Substituting (63)

and (67) into (60) and (61), respectively, we have the rates that can be achieved by the optimal solution

w∗ = w1 = · · · = wL to the max-min problem (70):

R1 ≥ log2

(
1 +

1

c
δ1‖g1‖2P

)
(68)

Ri ≥ log2


1 +

δi∑i−1
m=1 δm

1

1 +
(
1
c‖gi‖2

∑i−1
m=1 δmP

)−1


 , i = 2, · · · , L. (69)

The considered design here of w1 = · · · = wL = w∗ with ||w∗||2 ≤ 1 and pi = δiP with (δ1, · · · , δL) ∈
D, i.e., (17), satisfies the original beam design constraint (w1, · · · ,wL) ∈ WL and pi > 0,∀i, ∑L

i=1 pi =

P in (16). Hence, the rates achieved by w1 = · · · = wL = w∗ with (δ1, · · · , δL) are lower bounds on

the achievable rates. �

Lemma 2: Consider the following max-min optimization problem:

max min

{∣∣∣∣
(

g1

‖g1‖

)H
w

∣∣∣∣
2

, · · · ,
∣∣∣∣
(

gL

‖gL‖

)H
w

∣∣∣∣
2
}

subject to ‖w‖2 ≤ 1.

(70)

The optimal solution w∗ to the problem (70) satisfies the following:

min





∣∣∣∣∣

(
g1

‖g1‖

)H

w∗

∣∣∣∣∣

2

, · · · ,
∣∣∣∣∣

(
gL

‖gL‖

)H

w∗

∣∣∣∣∣

2


 ≥

1

c
, (71)

where

c =





L if L ≤ 3,

8L2 if L > 3.
(72)

Proof of Lemma 2: Define unit-norm vi := gi/‖gi‖ for i = 1, · · · , L. Then, (70) can be rewritten as

max min
{∣∣vH

1 w
∣∣2 , · · · ,

∣∣vH
L w

∣∣2
}

subject to ‖w‖2 ≤ 1
(73)

The problem (73) can be reformulated as

max
min

{∣∣vH
1 w

∣∣2 , · · · ,
∣∣vH

L w
∣∣2
}

||w||2 = min
||w||2

min
{∣∣vH

1 w
∣∣2 , · · · ,

∣∣vH
L w

∣∣2
} , (74)

where inversion of the cost function is taken in the right-hand side (RHS) of (74) . Thus, it is known that
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the optimal value of the problem (73) is equivalent to the inverse of the optimal value of the following

quadratic programming (QP) [31]:

min ‖w‖2

subject to |vH
i w|2 ≥ 1, i = 1, · · · , L.

(75)

The QP (75) can be solved by semi-definite relaxation of the rewritten form of (75) [31]:

min Tr(W)

subject to Tr(ViW) ≥ 1, i = 1, · · · , L
(76)

where W := wwH and Vi := viv
H
i , i = 1 · · · , L. Denote the optimal values of the optimization

problems (75) and (76) by v∗qp and v∗sdp, respectively. Then, the relationship between v∗qp and v∗sdp is

known as [32]

v∗qp = v∗sdp, if L ≤ 3,

v∗qp ≤ 8L · v∗sdp, if L > 3.
(77)

Furthermore, note that W′ :=
∑L

i=1 Vi is feasible for the problem (76) since Tr(ViW
′) = Tr(Vi

∑L
i=1Vi)) ≥

∑L
i=1 Tr(ViVi)) ≥ Tr(ViVi) = 1, and Tr(W′) = L. Hence, we have

v∗sdp ≤ L. (78)

Hence, with the optimal solution w∗ to (73), we have

min
{∣∣vH

1 w∗
∣∣2 , · · · ,

∣∣vH
1 w∗

∣∣2
}

(a)
= 1/v∗qp

(b)

≥ L/c · 1/v∗sdp
(c)

≥ 1/c, (79)

where c is given by (72). Here, Step (a) is valid due to the relationship between the original problem

(73) and the QP (75); Step (b) is valid due to (77); and Step (c) is valid due to (78). �

APPENDIX B: PROOF OF LEMMA 1

The block matrix inversion formula is given as follows:


 C U

V D


 =


 C−1 +C−1U(D−VC−1U)−1VC−1 −C−1U(D −VC−1U)−1

−(D−VC−1U)−1VC−1 (D−VC−1U)−1


 , (80)

January 23, 2019 DRAFT



ARXIV PREPRINT, VERSION 3, JANUARY 23, 2019 36

which is used in Step (a) in the below.

Π⊥
[A,B] = I− [A B]


 AHA AHB

BHA BHB



−1 
 AH

BH




(a)
= I− [A B]


 (AHA)−1 + (AHA)−1AHB(BHB−BHA(AHA)−1AHB)−1BHA(AHA)−1,

−(BHB−BHA(AHA)−1AHB)−1BHA(AHA)−1,

−(AHA)−1AHB(BHB−BHA(AHA)−1AHB)−1

(BHB−BHA(AHA)−1AHB)−1




 AH

BH




= I−A(AHA)−1AH −A(AHA)−1AHB(BHB−BHA(AHA)−1AHB)−1BHA(AHA)−1AH

+B(BHB−BHA(AHA)−1AHB)−1BHA(AHA)−1AH

+A(AHA)−1AHB(BHB−BHA(AHA)−1AHB)−1BH

−B(BHB−BHA(AHA)−1AHB)−1BH

= I−ΠA −ΠAB(BHΠ⊥
AB)−1(ΠAB)H +B(BHΠ⊥

AB)−1(ΠAB)H

+ΠAB(BHΠ⊥
AB)−1BH −B(BHΠ⊥

AB)−1BH

= I−ΠA − (B−ΠAB)(BHΠ⊥
AB)−1(B−ΠAB)H

= Π⊥
A −Π⊥

AB(BHΠ⊥
AB)−1(Π⊥

AB)H

= Π⊥
A −Π⊥

AB((Π⊥
AB)HΠ⊥

AB)−1(Π⊥
AB)H

where ΠA = A(AHA)−1AH , Π⊥
A = I −A(AHA)−1AH , and the block matrix inversion formula is

used in Step (a). In the last equality, we used Π⊥H
A Π⊥

A = (Π⊥
A)

2 = Π⊥
A. Therefore, we have

Π⊥
[A,B]x = Π⊥

Ax−Π⊥
AB((Π⊥

AB)HΠ⊥
AB)−1(Π⊥

AB)Hx

= Π⊥
Ax−Π⊥

AB((Π⊥
AB)HΠ⊥

AB)−1(Π⊥
AB)H(ΠAx+Π⊥

Ax)

(b)
= Π⊥

Ax−Π⊥
AB((Π⊥

AB)HΠ⊥
AB)−1(Π⊥

AB)HΠ⊥
Ax

= (I −Π⊥
AB((Π⊥

AB)HΠ⊥
AB)−1(Π⊥

AB)H)Π⊥
Ax

= (I −ΠΠ⊥

A
B)Π

⊥
Ax,

where Step (b) holds because Π⊥
AB((Π⊥

AB)HΠ⊥
AB)−1(Π⊥

AB)H is the projection onto C(Π⊥
AB) which

is a subspace contained in C⊥(A). �

January 23, 2019 DRAFT



ARXIV PREPRINT, VERSION 3, JANUARY 23, 2019 37

APPENDIX C: PROOF OF PROPOSITION 2

Consider the effective channel g
(j)
i = Π⊥

H̃j

h
(j)
i , where h

(j)
i is the channel vector of User i in group Gj ,

and H̃j is defined in (10). By Lemma 1, g
(j)
i = Π⊥

H̃j

h
(j)
i can be obtained from sequentially projecting h

(j)
i

onto the sequential orthogonal spaces associated with the channel vectors of G1,G2, · · · ,Gj−1,Gj+1, · · · ,
GNg

, as discussed in Lemma 1 and Example 1, i.e., g
(j)
i = P(GNg

|GNg−1, · · · ,Gj+1,Gj−1, · · · ,G1) · · · P(
Gj+1| Gj−1, · · · ,G1)P(Gj−1|Gj−2, · · · ,G1) · · · ·P(G2|G1) P(G1)h(j)

i , where P(B|A) denotes the sequen-

tial projection onto the orthogonal space of the projected subspace of B onto C⊥(A). (Please see Lemma

1 and Example 1.) Here, we have Ng − 1 projection stages. At each projection stage, the proposed user

grouping algorithm, Algorithm 1, guarantees that norm reduction is not beyond (1− θth). The norm of

the ZF effective channel can be written as (see Example 1)

||g(j)
i ||2 = Y ||h(j)

i ||2, (81)

where the reduction gain random variable Y depends on the channels, but (1−θth)K−1 =: Y th ≤ Y ≤ 1

since Ng ≤ K. By (81) and Lemma 3 below, we have the claim (33). �

Lemma 3: Let X be a random variable satisfying the condition, limx→0
log Pr(X≤x)

log x = d, and let Y be

a random variable satisfying the condition, Y th ≤ Y ≤ 1, where Y th is some constant ∈ (0, 1] and d is

some positive constant. Then, the product Z := XY satisfies limz→0
log Pr(Z≤z)

log z = d.

Proof of Lemma 3:

Pr(X ≤ z) ≤ Pr(Z ≤ z) ≤ Pr(Y thX ≤ z) (82)

⇔ Pr(X ≤ z) ≤ Pr(Z ≤ z) ≤ Pr(X ≤ z

Y th
)

⇔ lim
z→0

log Pr(X ≤ z)

log z
≤ lim

z→0

log Pr(Z ≤ z)

log z
≤ lim

z→0

log Pr(X ≤ z
Y th )

log z

⇔ lim
z→0

log Pr(X ≤ z)

log z
≤ lim

z→0

log Pr(Z ≤ z)

log z
≤ lim

z→0

log Pr(X ≤ z
Y th )

log z
Y th

· log
z

Y th

log z

⇔ d ≤ lim
z→0

log Pr(Z ≤ z)

log z
≤ d,

where (82) holds because Y thX ≤ Z = Y X ≤ X due to Y ∈ (Y th, 1). Therefore, the claim follows. �

APPENDIX D: EXISTENCE OF POWER DISTRIBUTION FACTORS

Lemma 4: There always exists a collection of in-group power distribution factors (δ
(j)
1 , · · · , δ(j)ℓ ) for

Gj with |Gj | = ℓ such that ( δ(j)i

2Rth−1
− ∑i−1

m=1 δ
(j)
m ) in (56) is strictly positive for all i = 2, · · · , ℓ.

January 23, 2019 DRAFT



ARXIV PREPRINT, VERSION 3, JANUARY 23, 2019 38

Proof: The condition is equivalent to the following:

δ
(j)
i

2R
th − 1

−
i−1∑

m=1

δ(j)m > 0 ⇔ δ
(j)
i∑i−1

m=1 δ
(j)
m

> 2R
th − 1, i = 2, · · · , ℓ (83)

Consider the following recursion

δ
(j)
i = (2R

th − 1 + C)(δ
(j)
1 + · · · + δ

(j)
i−1), (84)

where C > 0 is an arbitrary positive constant. It is easy to see that any solution to (84) satisfies (83).

Solving the recursion yields

δ
(j)
i = δ

(j)
1 (2R

th − 1 + C)(2R
th

+ C)i−2. (85)

With normalization for
∑ℓ

i=1 δ
(j)
i = 1, we have

δ
(j)
1 =

1

(2Rth + C)ℓ−1
, and δ

(j)
i =

2R
th − 1 + C

(2Rth + C)ℓ−i+1
, i = 2, · · · , ℓ, (86)

and all δ
(j)
i ≥ 0. Hence, we have a collection of power distribution factors for the condition.

APPENDIX E: SCALABLE ADAPTIVE USER GROUPING

We need the angle between the channel subspaces of any two user groups be larger than a certain

threshold. This guarantees that inter-group ZF does not harm the diversity order. A scalable adaptive

user grouping method for this purpose can be devised based on the semi-orthogonal user selection (SUS)

algorithm in [4].

PSfrag replacements
origin

θτ,1 hg
k̂

Fig. 11: A hyperslab constructed based on a channel vector (the dotted line segment from the origin to

the plane has length one)

First, we predetermine two angle threshold values θτ,1 ∈ (0, π/2) and θτ,2 ∈ (0, π/2) such that
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θτ,2 <
π
2 − θτ,1. With the channel vectors hk, k = 1, 2 · · · ,K in CN , like in the SUS algorithm,‡ we first

select the user that has the largest channel magnitude. Without loss of generality, we assume the index of

the first selected user is k1. Then, based on the CSI hk1
, we construct a user-selection hyperslab defined

as

H1 =

{
h ∈ C

N :
|hH

k1
h|

||hk1
|| · ||h|| ≤ γ

}
, (87)

as shown in Fig. 11, where the value γ is determined to satisfy the following relationship with the angle

θτ,1 in Fig. 11:

γ = cos
(π
2
− θτ,1

)
.

Note that if a vector h is contained in H1, h is semi-orthogonal to hk1
with the angle between hk1

and h being in [π2 − θτ,1,
π
2 + θτ,1]. Then, we select the user whose channel vector is contained in the

hyperslab H1 and who has maximum channel vector magnitude within H1. After the second user is

selected, another hyperslab is constructed based on its channel vector. The third user is selected as the

user with maximum channel norm within the intersection of the first and second hyperslabs and this

guarantees that the third user’s channel vector is semi-orthogonal to both first and second users’ channel

vectors with minimum angle separation of π
2 − θτ,1. We continue this procedure until either we cannot

find any user in the intersection or we reach the final K-th user. This is basically the SUS algorithm.

If the procedure reaches the K-th user, we have K user groups each with one user and the constructed

K groups satisfy the required angle separation property. If the procedure stops at the N ′
g-th step before

reaching the K-th user, then we construct N ′
g candidate user groups. At this point, each candidate user

group has one user obtained from the SUS algorithm.

Now consider the remaining K − N ′
g users. Each of the remaining K − N ′

g users’ channels should

be close to one of the channels of the N ′
g users obtained by the SUS procedure with angle less than

π
2 − θτ,1. Otherwise, one separate group had been constructed in the above SUS stage. Let the remaining

K −N ′
g users be named Users u1, u2, · · · , uK−N ′

g
. Now, pick User u1 and compute the angle between

the channel of User u1 and the channel of each of the N ′
g users obtained by the above SUS stage.

Let the angles be {θ(1)1 , θ
(1)
2 , · · · , θ(1)N ′

g
}. Assign User u1 to the group with the smallest angle distance.

Furthermore, combine the groups

{Gj | j = 1, · · · , N ′
g and θ

(1)
j < θτ,2} (88)

‡The explanation of the SUS algorithm here is adapted from [4], [7].
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as a single group. That is, if the minimum angle is not guaranteed between groups due to the inclusion

of User u1, then combine the groups violating the minimum angle distance condition. Suppose that the

assigned group is Group 1 without loss of generality and still all groups satisfy the minimum angle

distance condition. Now, pick User u2 and compute the angle between the channel of User u2 and the

channel of each of the N ′
g groups. Since we have two users in Group 1, we compute two angle values

between User u2 and the two users of Group 1 and denote them by θ
(2)
11 and θ

(2)
12 . Let the angle between

User u2 and the single user in each user of Groups 2, · · · , N ′
g be θ

(2)
2 , · · · , θ(2)N ′

g
. Compute the minimum

of {θ(2)11 , θ
(2)
12 , θ

(2)
2 , · · · , θ(2)N ′

g
} and assign User u2 to the group that has the user with the minimum angle

distance from User u2. Again, combine the groups violating the minimum angle condition due to the

inclusion of User u2 by similar computation to (88) with the same threshold θτ,2. After that, continue

to User u3. We continue this procedure until User uK−N ′
g

is assigned. Finally, the procedure will return

Ng(≤ N ′
g) groups.

The above method guarantees the minimum angle θτ,2 between any two groups and is scalable with

respect to K since the SUS algorithm is sequential and angle checking of the remaining K −N ′
g users

with the N ′
g groups requires at most K2 checkings.

We actually implemented this grouping idea and the result is shown in Fig. 12. We did not fine-tune the

two parameters. It seems that more tweaking is necessary for stable performance. However, it is observed

that the new approach also yields far better outage performance as expected. Indeed, more efficient user

grouping algorithms for the desired purpose can be devised.
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Fig. 12: Outage probability of several methods: The SUS-based grouping with θτ,1 = 0.25 and θτ,2 = 0.55
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