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Abstract

We show that the Poincaré bundle gives a fully faithful embedding from the
derived category of a curve of sufficiently high genus into the derived category of
itsmoduli space of bundles of rank r with fixed determinant of degree 1. Moreover
we show that a twist of the embedding, together with 2 exceptional line bundles,
gives the start of a semi-orthogonal decomposition. This generalises results of
Narasimhan and Fonarev–Kuznetsov, who embedded the derived category of a
single copy of the curve, for rank 2.

1 Introduction

LetC be a smooth projective curve of genus д ≥ 2 and let r ≥ 2 and d be integers such
that gcd(r ,d) = 1. Then the moduli space MC (r ,L) of stable vector bundles of rank r
and fixed determinant L of degree d is a smooth and projective Fano variety, such
that PicMC (r ,L) � ZΘ. Moreover there exists a universal vector bundle W (called
the Poincaré bundle) on C × MC (r ,L). We can use W to construct a Fourier–Mukai
functor ΦW from the derived category of the curve to the derived category of the
moduli of vector bundles.

In [14] Narasimhan showed that the Fourier–Mukai functorΦW is fully faithful, if r = 2,
d = 1, д ≥ 4 andW is suitably normalized (see equation (6)). His proof uses the Hecke
correspondence to check the Bondal–Orlov criterion. Independently, in [9] Fonarev–
Kuznetsov showed the fully faithfulness for r = 2,d = 1 andд ≥ 2 whenC is a generic
curve. Their proof involves an explicit model by Desale–Ramanan [7] of MC (2,L)
when C is hyperelliptic, and checking the Bondal–Orlov criterion in this special case
using the Borel–Weil–Bott theorem.

The first result in this article is a generalisation of these fully faithfulness results: the
rank r is now arbitrary, the degree d is 1, and д ≥ д0, where д0 is the smallest integer
such that

(1) 2rд0 − 2(r + д0) ≥ r 2 − 1.

In particular when r = 2, we get that д0 is 4. The vanishing results in theorem 3
together with the Bondal–Orlov criterion then imply the following.
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Theorem A. The Fourier–Mukai transform ΦW gives a fully faithful embedding

(2) D
b(C) → D

b(MC (r ,L))

for any smooth curve C of genus д ≥ д0.

In [14, remark 4] Narasimhan explains that the results in op. cit. also show that

(3) Θ
∨
,OMC (2,L),ΦW(Db(C))

is the start of a semiorthogonal decomposition of Db(MC (r ,L)). The second result
in this article is a generalisation and more interestingly an extension of this result
to higher rank: we exhibit a second copy of the derived category of the curve. To do
this we twist the functor ΦW by Θ

∨, or equivalently we consider the Fourier–Mukai
functor associated to W ⊗ p∗2(Θ

∨).

TheoremB. LetC be any smooth curve of genusд ≥ д0, then there exists a semiorthog-
onal decomoposition of the form

(4) D
b(MC (r ,L)) =

〈

Θ
∨
,ΦW(Db(C)) ⊗ Θ

∨
,OMC (r ,L),ΦW(Db(C)),A

〉

,

where A is the left-orthogonal complement to the admissible subcategory generated
by the 2 exceptional objects and the 2 copies of Db(C).

Remark 1. This result is already new in the case of r = 2. In a work in progress joint
with Sergey Galkin [3] we are studyingDb(MC (2,L)) from the point of view of mirror
symmetry for Fano varieties:

1. quantum cohomology can be used to give expectations on natural semiorthog-
onal decompositions;

2. there are various conjectures [10] regarding the eigenvalues of the quantum
multiplication c1(X ) ∗ − that can be checked for MC (2,L).

The suggested decomposition into indecomposable pieces (recall that Db(C) is inde-
composable by [17]) will involve symmetric powers Symi C for i ≤ д − 1. For r ≥ 3
the picture becomesmore complicated, and it is currently unclear what the systematic
description could be.

The Bondal–Orlov criterion To check fully faithfulness of the Fourier–Mukai
functor ΦW, we will use following criterion due to Bondal–Orlov [5, theorem 1.1].
We denote the skyscraper at a point x by k(x).

Proposition 2 (Bondal–Orlov). Let X and Y be smooth projective varieties. Let E be
an object in D

b(X × Y ). Then ΦE is fully faithful if and only if

1. HomY (ΦE(k(x)),ΦE(k(x))) � k for all x ∈ X ;

2. HomY (ΦE(k(x)),ΦE(k(x))[i]) � 0 for all x ∈ X and i < [0, dimX ];

3. HomY (ΦE(k(x)),ΦE(k(y))[i]) � 0 for all x ,y ∈ X such that x , y and i ∈ Z.

Vanishing results To apply the Bondal–Orlov criterion in the proof of theorem A
we need the following generalisation of [14, parts (1), (2) and (3) of theorem 1.2]. For
any point z ∈ C , we denote by Wz the restriction ofW to {z} ×C .
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Theorem 3. Let C be a smooth projective curve of genus д ≥ д0, and L a line bundle
of degree 1. Let W be the normalised Poincaré bundle on C ×MC (r ,L). Then

1. H0(MC (r ,L),Wx ⊗ W∨
x ) � k for all x ∈ C;

2. Hi (MC (r ,L),Wx ⊗ W∨
x ) � 0 for all x ∈ C and i ≥ 2;

3. Hi (MC (r ,L),Wx ⊗ W∨
y ) � 0 for all x ,y ∈ C such that x , y and i ≥ 0.

For the proof of the semiorthogonal decomposition of theorem B we need another set
of vanishing results, which generalise [14, parts (4) and (5) of theorem 1.2], together
with a new vanishing result.

Theorem 4. Let C be a smooth projective curve of genus д ≥ д0, and L a line bundle
of degree 1. Let W be the normalised Poincaré bundle on C ×MC (r ,L). Then

1. Hi (MC (r ,L),W
∨
x ) = 0 for all x ∈ C and all i ≥ 0.

2. Hi (MC (r ,L),W
∨
x ⊗ Θ

∨) = 0 for all x ∈ C and all i ≥ 0.

2’. Hi (MC (r ,L),Wx ⊗ Θ
∨) = 0 for all i ≥ 0.

3. Hi (MC (r ,L),W
∨
x ⊗ Wy ⊗ Θ

∨) = 0 for any x ,y ∈ C and all i ≥ 0.

Remark 5. If r = 2 then parts (1) and (2) are related via Serre duality, but in higher
rank this is no longer the case. In arbitrary rank, (2) and (2’) are related via Serre
duality.

Structure of the paper We prove parts (1) and (2) of theorem 3 in section 3. The
proof of part (3) is more technical, and occupies sections 5 and 6. The structure of the
proof is as in [14], but we highlight the complications arising in the higher rank case,
and why one only gets a proof in the case where d = 1.

The proof of parts (1) and (2) (resp. (2’)) of theorem 4 is done in section 7, where we
prove a more general vanishing statement for exterior powers ofW∨

x , along the same
lines as sections 5 and 6. Finally, the proof of part (3) occupies section 8.

In section 9 we explain how theorems A and B follows from theorems 3 and 4, and
give some concluding remarks.

Acknowledgements Both authors were supported by the Max Planck Institute for
Mathematics in Bonn. They thank Patrick Brosnan and Sergey Galkin for interesting
conversations.

2 Preliminaries and notation

Let k be an algebraically closed field of characteristic 0. Throughout this article we
will takeC a smooth projective curve over k of genusд ≥ 2. Associated to a rank r and
degreed such that gcd(r ,d) = 1 there exists a smooth projectivemoduli spaceMC (r ,d)

of dimension r 2(д − 1) + 1, with a determinant morphism to Picd (C). Fixing a line
bundle L of degree d on C we can consider the fibre over the point [L] in Picd (C),
which will be denoted MC (r ,L).
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Now MC (r ,L) has Pic(MC (r ,L)) � ZΘ with Θ the ample generator of the Picard
group, such that

(5) ωMC (r ,L) � Θ
⊗−2
.

In particular, MC (r ,L) is a (r 2−1)(д−1)-dimensional Fano variety of index 2. We will
also use the appropriate analogues of these results when gcd(r ,d) ≥ 2. For a proof
one is referred to [8].

As MC (r ,L) is a fine moduli space, there exists a universal familyW onC ×MC (r ,L),
the Poincaré bundle. This universal family is unique if we normalise it as in [18, re-
mark 2.9]: if we denote ℓ ≥ 0 the minimal integer such that ℓd ≡ 1 mod r then we
can assume

(6) c1(Wx ) � Θ
⊗ℓ
,

where Wx =W{x }×MC (r ,L).

Remark 6. The dependence on ℓ is the reason why we have to restrict tod ≡ 1 mod r .
Remark that by Serre duality and tensoringwithOC (x)we can always assumed ∈ [0, . . . , r/2],
as one can identify the moduli spaces for different d , so we will use d = 1. We expect
that for other residue classes the result still holds.

Using W and the projections

(7)

C ×MC (r ,L)

C MC (r ,L)

p1 p2

we can then construct the Fourier–Mukai functor

(8) ΦW = Rp2,∗(p
∗
1(−) ⊗ W) : Db(C) → D

b(MC (r ,L)).

3 Generalisation of a result byNarasimhan–Ramanan

In this section we prove parts (1) and (2) of theorem 3. At this point it is not required
that d = 1, it is enough that gcd(r ,d) = 1.

For (1) it suffices to observe that the result cited in [14] (i.e. [15, theorem 2(b)]) is al-
ready valid for all ranks. However for the proof of (2) [15, proposition 7.7] is used,
which is only given for д = 2. We will show that the expectation expressed in [15, re-
mark 7.2] is correct, and that the vanishing of cohomologyof adx W (i.e. the restriction
to {x} ×MC (r ,L) of the traceless endomorphisms of W) is indeed valid in arbitrary
rank, using some new information on Hodge numbers which was not available when
op. cit. was published.

Proposition 7. LetC be a smooth projective curve of genusд ≥ 2, andL a line bundle
of degree d on C such that gcd(r ,d) = 1. Let W be the normalised Poincaré bundle
on C ×MC (r ,L), where gcd(r ,d) = 1. For all x ∈ C and i ≥ 2 we have that

(9) Hi (MC (r ,L), adx W) = 0

4



The proof of [15, proposition 7.7] can be generalised to arbitrary rank, provided one
has control over the Hodge numbers h1,i (MC (r ,L)). In order to do this, we will use
the closed formula for the Hodge–Poincaré polynomial as obtained in del Baño [2,
corollary 5.1]. Recall that the Hodge–Poincaré polynomial HP(X , x ,y) of a smooth
projective variety X is given by

∑

p,q≥0 h
p,q(X )xpyq .

The formula in loc. cit. gives the Hodge–Poincaré polynomial of MC (r ,d), and fixing
the determinant changes theHodge–Poincaré polynomial by removing a factor (1+x)д(1+y)д

arising from the Jacobian of C1. Taking these observations into account, and denot-
ing 〈α〉 the decimal part of a real number α , we have

(10)

HP(MC (r ,L), x ,y) =
∑

r1+...+rℓ=r

(−1)ℓ−1
((1 + x)д(1 + y)д)ℓ−1

(1 − xy)ℓ−1

·

ℓ
∏

j=1

r j−1
∏

i=1

(1 + x iyi+1)д(1 + x i+1yi )д

(1 − (xy)i )(1 − (xy)i+1)

·

ℓ−1
∏

j=1

1

1 − (xy)r j+r j+1

· (xy)
∑

i< j ri r j (д−1)+
∑

ℓ−1
i=1 (ri+ri+1)〈−(r1+...+ri )d/r 〉

where we sum over all compositions of r .

From this we can read off the following dimensions.

Lemma 8.We have that

1. h0,1(MC (r ,L), ) = 0,

2. h1,1(MC (r ,L), ) = 1,

3. h2,1(MC (r ,L), ) = д,

4. hi,1(MC (r ,L), ) = 0 for all i ≥ 3.

Proof. We observe that the only composition r = r1+ . . .+ rℓ contributing to the coef-
ficient of x iy is the composition with ℓ = 1. Indeed, developing all the denominators
as a power series in xy and multiplying them, we see that factor on the fourth line of
(10) is zero for ℓ = 1 and bounded below by 2 for ℓ ≥ 2. Hence for the equalities in
the lemma, it suffices to understand the contribution with ℓ = 1.

In this case the only non-trivial factor in (10) is the second one. It now suffices to
observe that there will not be a monomial y, that xy appears with coefficient 1 by the
factor (1−xy) in the denominator for i = 1, that x2y appears with coefficient д by the
factor (1 + x2y)д for i = 2 and that there cannot be any monomials of the form x iy

for i ≥ 3. �

Proof of part (2) of theorem 3. It suffices to combine proposition 7 with the defining
short exact sequence

(11) 0 → adx W → End(Wx ) � Wx ⊗ W
∨
x → OMC (r ,L) → 0,

1There is a minor typo in the second summation in the exponent of the last factor in [2, corollary 5.1].
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and the vanishing of the higher cohomology of the structure sheaf as MC (r ,L) is
Fano. �

Remark 9. One can actually prove more. Recall that the level of a Hodge structure is
defined as the maximum value of |p − q | as (p,q) ranges over hp,q , 0. In [6] it was
shown that for MC (2,L) the level of Hi (MC (2,L),Q) was bounded above by ⌊i/3⌋.
For r ≥ 3 the same is true, which immediately implies lemma 8. For i ≫ 0 this bound
can even be improved, but we haven’t found a nice closed formula for it.

4 Determinant of cohomology

One of the main ingredients in the proof of part (3) of theorem 3 is an explicit de-
scription of the determinant of cohomology. The following proposition is a generali-
sation of [14, proposition 3.1], taking the extra complication for arbitrary r and d such
that gcd(r ,d) = 1 into account.

Proposition 10. Let C be a smooth projective curve of genus д ≥ 2, and L a line
bundle of degree d on C such that gcd(r ,d) = 1. Let W be the normalised Poincaré
bundle onC ×MC (r ,L), where gcd(r ,d) = 1. Then there exists an isomorphism

(12) det
(

Rp2,∗(W)∨
)∨
� L

⊗(1−ℓd )/r+ℓ(1−д)

where ℓ ≥ 0 is minimal such that ℓd ≡ 1 mod r .

Proof. Consider themoduli spaceMC (r ,L
∨). The family of vector bundlesW∨ onC×MC (r ,L)

gives an isomorphism

(13) ϕ : MC (r ,L)
�

→ MC (r ,L
∨).

Let us denote the ample generators of Pic(MC (r ,L)) (resp. Pic(MC (r ,L
∨))) byΘ (resp.Θ′).

By [14, proposition 2.1] we get that

(14) Θ � ϕ∗(Θ′) �
(

det(Rp2,∗W
∨)∨

) ⊗r
⊗ det(W∨

x )
⊗−d+r (1−д)

.

Because W is normalised we get detWx � Θ
ℓ as explained in section 2, where ℓ is

the minimal non-negative integer such that ℓd ≡ 1 mod r . Hence we obtain

(15) Θ �
(

det(Rp2,∗W
∨)∨

)⊗r
⊗ Θ

⊗ℓd+ℓr (д−1)
.

This proves the proposition. �

In appendix A we give an alternative proof of this result using the Grothendieck–
Riemann–Roch formula.

5 Cohomology vanishing for Wx ⊗ W∨
y in high de-

grees

From this point on we will impose the condition that d = 1. As mentioned before, we
expect the result is still valid for any degree coprime to the rank, but leave this for
future work.
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We will split the proof of the vanishing as stated in part (3) of theorem 3 into two
parts: first we show it for i ≥ r 2, and then we deal with the vanishing in low degrees
in section 6. For both parts we use the Hecke correspondence, which we will recall now.

Hecke correspondence Let x ∈ C be a closed point. If we restrict the Poincaré bun-
dleW to {x}×MC (r ,L), we can consider the projective bundle π : P(Wx ) → MC (r ,L).
We will denote the projective bundle by Q(W, x).

A point q on Q(W, x) corresponds to the vector bundle Wπ (q) together with a mor-
phism Wπ (q) ։ k(x). We can take the dual of the kernel, which is a vector bundle
of rank r and determinant L∨ ⊗ OC (x) of degree 1 − d . The variety Q(W, x) can be
seen to parametrise a family of such bundles. However in general the family of vector
bundles may not be semistable.

Consider the short exact sequence

(16) 0 → E1 → E → k(x) → 0,

on a curve C , where E1 and E are vector bundles of rank r and deg(E) = 1. Then we
have the following:

Lemma 11. If E is stable, then E1 is semistable.

Proof. First observe that the slope µ(E1) = 0. Suppose that E is not semistable. Let F′

be a subbundle of E1 such that µ(F′) > µ(E1) = 0. Now since E is stable, we have

(17) 0 < µ(F ) < µ(E) =
1

r
.

But this is impossible since 0 < r ′ < r and deg(F′) > 0. �

The above lemma shows that Hecke transforms for degree one bundles preserves
semistability. Thus we get a diagram

(18)

Q(W, x) ≔ P(Wx )

MC (r ,L
∨ ⊗ OC (x)) MC (r ,L).

ψ π

Remark 12.When d , 1 we don’t have a well-defined morphism ψ in (18), there is
only a rational morphism. It is conceivable that using parabolic bundles it is possible
to resolve the indeterminacy, and continue the proof in this way. We leave this for
future work.

With the above considerations, the statement and proof of [14, proposition 3.3] gen-
eralises to the following.

Lemma 13. Let Θ′ be the ample generator of Pic(MC (r ,L
∨ ⊗ OC (x)). Then

(19) ψ ∗(Θ′) � OQ (W,x )(1)

The following proposition is a generalisation of [14, proposition 3.2].

7



Proposition 14. Let C be a smooth projective curve of genus д ≥ 2, and L a line
bundle of degree 1 on C . Let W be the normalised Poincaré bundle on C ×MC (r ,L).
For all x ,y ∈ C such that x , y the vector bundle Wx ⊗ W

∨
y ⊗ ω∨

MC (r ,L)
is ample.

Proof. By lemma 13 we get that OQ (W,x )(1) is nef, hence Wx is nef. By [13, proposi-
tion 6.2.12(iv)] the exterior power

∧r−1
Wx is again nef, and so

∧i
Wx ⊗ Θ is ample.

Using the ampleness of

(20)

∧r−1
Wx ⊗ Θ �

∧r−1
Wx ⊗ Θ

∨ ⊗ L
⊗2

�

∧r−1
Wx ⊗ detW∨

x ⊗ Θ
⊗2

� W
∨
x ⊗ ω∨

MC (r ,L)

we can conclude that

(21)
Wx ⊗ W

∨
y ⊗ ω∨

MC (r ,L)
� Wx ⊗ Θ ⊗ W

∨
y ⊗ Θ

� Wx ⊗ Θ ⊗
∧r−1

Wy

is again the tensor product of a nef bundle with an ample bundle, so is ample itself. �

From this we get the vanishing of Wx ⊗ W∨
y in high degree.

Corollary 15.We have that for i ≥ r 2.

(22) Hi (MC (r ,L),Wx ⊗ W
∨
y ) = 0

Proof. It suffices to apply Le Potier vanishing [13, theorem 7.3.5] to the ample vector
bundle Wx ⊗ W∨

y ⊗ ω∨
MC (r ,L)

of rank r 2. �

6 Cohomology vanishing forWx⊗W
∨
y in lowdegrees

Tofinish the proof of part (3) theorem3we need to show vanishing in degrees i ≤ r 2−1.
For this we will use the morphismψ from (18).

Because degL∨ ⊗ OC (x) = 0 is not coprime with r , there is a dense open subset

(23) Ms
C (r ,L

∨ ⊗ OC (x)) ( MC (r ,L
∨ ⊗ OC (x))

of stable vector bundles, the complement being the strictly semistable locus.

Remark 16. If we take a stable bundle V ∈ MC (r ,L
∨ ⊗ OC (x)), then by [16, re-

mark 5.2(v) and lemma 5.6(i)] the Hecke transform of V is also stable.

Using remark 16, the proof of [14, proposition 3.4] also gives a proof of the following
generalisation.

Proposition 17. The restriction ofψ to Ms
C
(r ,L∨ ⊗ OC (x)) is a Pr−1-fibration. More-

over, for every point y ∈ C \ {x} the restriction of π ∗(Wy ) to a fibre ofψ in the stable
locus is isomorphic to OPr−1(1)

⊕r .

For completeness’ sake, we give the proof.
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Proof. Consider a pointm ∈ Ms
C
(r ,L∨ ⊗OC (x)), which corresponds to a stable vector

bundle V onC of rank r and determinant L∨ ⊗ OC (x). We wish to show that

(24) π ∗(Wy )|ψ −1(m) � OPr−1(1)
⊕r
.

Let us denoteVx = Vx ⊗k(x) the fibre of V at x . Then as in [15, §4] we obtain a family
of vector bundles K(V) on C parametrised by P(Vx ) � Pr−1, where T = Speck is just
a point. It should be mentioned that we will also use results from [16, §5], and it is
important to highlight remark 5.7 of op. cit., which explains how the results in §5 of
op. cit. are to be interpreted in the context of [15, §4], in particular we have x ∈ C

fixed.

AsK(V) is a family of stable vector bundles of rank r and determinantL, the universal
property of MC (r ,L) gives us a morphism

(25) f : P(Vx ) → MC (r ,L)

which is a closed immersion by [16, lemma 5.9], where in the setting of loc. cit. we
restricted the morphism to the point x ∈ C . The same universal property gives us an
isomorphism

(26) (f × idC )
∗(W) � K(V) ⊗ д∗(ξ )

on P(Vx ) × C , for some line bundle ξ on P(Vx ), where д : P(Vx ) × C → P(Vx ) is the
projection onto the first factor.We wish to determine the line bundle ξ more explicitly,
and we do this by computing the restriction f ∗(Θ).

First, by [16, remark 5.7 and corollary 5.16] we get an isomorphism

(27) f ∗(ωMC (r ,L)) � ω
⊗2
P(Vx )
,

and as MC (r ,L) is Fano of index 2 we get

(28) f ∗(Θ) � OP(Vx )(r ).

On the other hand, using (26) we get

(29)
f ∗(Θ) � f ∗(det(Wy ))

� det(K(V)|P(Vx )×{y } ⊗ ξ ).

But as K(V)|P(Vx )×{y } � O
⊕r
P(Vx )

by [15, remark 4.7], we get

(30) f ∗(Θ) � ξ ⊗r .

Hence ξ � OP(Vx )(1), and (26) gives

(31) f ∗(Wy ) � OP(Vx )(1)
⊕r
.

Finally, similar to [15, §5] there exists a commutative diagram

(32)

P(Wx )

P(Vx ) MC (r ,L)

π

f

F

such that the image of F is identified with ψ−1(m). But then (24) follows. �
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We will need the following codimension estimate for the preimage under ψ for the
strictly semistable locus. The proof is similar to that in [19, §2.V.A], but we will now
fix the determinant.

Lemma 18. Denoting U ≔ ψ−1(Ms
C
(r ,L∨ ⊗ OC (x)) we have that

(33) codimQ (W,x )(Q(W, x) \U ) ≥ 2(r − 1)(д − 1) − 1

Proof. Let M be a line bundle of degreem. Recall that polystable bundles in

(34) K ≔ MC (r ,M) \Ms
C (r ,M)

are direct sums of stable bundles with the same slope. If we denote a = gcd(r ,m) ≥ 2
and r0 = r/a we get

(35)
dimK = max

c=1, ..., ⌊a/2⌋

(

r 20(c
2
+ (a − c)2(д − 1) + 2 − д

)

= (2r 20 + r
2 − 2rr0 − 1)(д − 1) + 1,

where we can choose the determinant for one of the summands freely.

In the situation of (18) we have d = 1, and hence r0 = 1. By a generalisation of the
proof of [19, lemma 5], it follows that the fibers of the mapψ are at most (r −1)-dimen-
sional. Thuswe see that the dimension ofψ−1(K) is atmost (2+r 2−2r−1)(д−1)+1+(r−1).
Hence we get that

(36)

codimQ (W,x )(Q(W, x) \U )

= (r 2 − 1)(д − 1) + r − 1 − dimψ−1(K)

≥ 2(r − 1)(д − 1) − 1.

�

Remark 19. If r = 2, it is known that ψ is surjective by [16, lemma 7.3] and the
inequality in the statement of lemma 18 is an equality.

In corollary 15 we have shown the vanishing of Hi (MC (r ,L),Wx ⊗ W∨
y ) for i ≥ r 2.

We can now show vanishing for i ≤ r 2 − 1.

Proof of part (3) of theorem 3. By the Leray spectral sequence for ψ and (19) we get
that

(37)
Hi (MC (r ,L),Wx ⊗ W

∨
y ) � Hi (Q(W, x),OQ (W,x )(1) ⊗ π ∗(W∨

y ))

� Hi (Q(W, x),ψ ∗(Θ′) ⊗ π ∗(W∨
y )).

Let д0 be the smallest integer such that

(38) 2rд0 − 2(r + д0) ≥ r 2 − 1,

where we have used the codimension estimate from lemma 18. Then by [11, §III.3] we
have an inclusion

(39) Hi (Q(W, x),ψ ∗(Θ′) ⊗ π ∗(W∨
y )) ֒→ Hi (U ,ψ ∗(Θ′) ⊗ π ∗(W∨

y ))

for i ≤ r 2 − 1.
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By proposition 17 we have that ψ restricted to U is a Pr−1-fibration. Applying the
projection formula

(40) Rjψ∗

(

ψ ∗(Θ′) ⊗ π ∗(W∨
y )

)

� Θ ⊗ Rjψ∗(π
∗(W∨

y ))

and using that the fibers of π ∗(W∨
y ) restricted to ψ−1(p) for p ∈ Ms

C (r ,L
∨ ⊗ OC (x))

are isomorphic to OPr−1(−1)
⊕r we are done. �

7 Cohomology vanishing forW∨
x and Wx ⊗ Θ

∨

In this section we prove parts (1), (2) and (2’) of theorem 4. The proof goes along the
same lines as the proof of part (3) of theorem 3, and uses ingredients from sections 5
and 6.

To prove cohomology vanishing for W∨
x and Wx ⊗ Θ

∨ we prove the following more
general vanishing statement for

∧j
W∨

x with j = 1, . . . , r−1. Setting j = 1 and j = r−1
then implies the result, as

(41)
∧r−1

W
∨
x � Wx ⊗ Θ

∨

because detWx � Θ.

Proposition 20. For any i ≥ 0 and for j = 1, . . . , r − 1 we have that

(42) Hi (MC (r ,L),
∧j

W
∨
x ) = 0

whenever д ≥ дj , where дj is the smallest positive integer satisfying the condition

(43) 2rдj − 2(r + дj ) ≥

(

r

j

)

− 1.

Proof. The strategy of the proof is similar to the proof of part (3) of theorem 3. First
we claim that

∧j
W∨

x ⊗ ωMC (r ,L) is ample. This follows from the isomorphism

(44)
∧j

W
∨
x ⊗ ωMC (r ,L) �

∧r−j
Wx ⊗ Θ

and the fact that Wx is nef, using lemma 13, as in the proof of proposition 14

Thus by Le Potier vanishing [13, theorem 7.3.5] we get that

(45) Hi (MC (r ,L),
∧j

W
∨
x ) = 0

for i ≥
(r
j

)

, as in section 5. Thus now we only have to prove vanishing when i <
(r
j

)

.

As in section 6 the Leray spectral sequence tells us

(46) Hi (MC (r ,L),
∧j

W
∨
x ) � Hi (Q(W, z),

∧j
π ∗(W∨

x ),

where z is any point on C \ {x}.

11



Assuming that д ≥ дj and using the codimension estimate of lemma 18 together
with [11, §III.3], we obtain an inclusion

(47) Hi (Q(W, z),
∧j

π ∗(W∨
x ) ⊆ Hi (U ,

∧j
π ∗(W∨

x )

for any i <
(r
j

)

andU as in lemma 18. Now by proposition 17, we get thatψ restricted

to U is a Pr−1-fibration.

Moreover by proposition 17, we see that the fiber of π ∗(W∨
x ) restricted to ψ−1(p)

for p ∈ Ms
C
(r ,L∨ ⊗ OC (z)) is isomorphic to OPr−1(−1)

⊕r . In particular, the fibers

of
∧j π ∗(W∨

x ) restricted to ψ−1(p) are direct sums of line bundles of degree −j . This
implies that Rkψ∗(

∧j π ∗(W∨
x )) is zero, hence we are done. �

8 Cohomology vanishing forW∨
x ⊗ Wy ⊗ Θ

∨

In this section we discuss the vanishing result of part (3) of theorem 4 required for the
proof of theorem B. We will recall the notion of k-ample vector bundles, as the role of
Le Potier vanishing in the proof of theorem 3 will be replaced by Sommese vanishing.

Definition 21. Let X be a projective variety. A line bundle L is said to be k-ample if

1. some power of L is globally generated, i.e. L is semi-ample;

2. the fibers of the morphism

(48) X → P(H0(X ,L⊗r )∨)

have dimension at most k .

A vector bundle E on X is said to be k-ample if the line bundle OP(E)(1) is k-ample.

The notion of 0-ampleness agrees with ampleness and furthermore k-ampleness im-
plies (k + 1)-ampleness.

Proposition22. LetC be a smooth projective curve of genusд ≥ 2 andL a line bundle
of degree 1. Let W be the normalised Poincaré bundle on C × MC (r ,L). Then Wx

is (r − 1)-ample.

Proof. By the generalisation of [19, lemma 5] we know that the fibres of the mor-
phism ψ in the Hecke correspondence of (18) are at most (r − 1)-dimensional. More-
over, we have already (see 19) shown that

(49) OQ (W,x )(1) � Θ
′
,

where Θ′ is the ample generator of the Picard group of MC (r ,L
∨ ⊗ OC (x )). Since Θ

′

is (0-)ample, we get by [13, example 6.2.19(ii)]) that OQ (W,x )(1) is (r − 1)-ample. In
particular this implies that Wx is (r − 1)-ample. �

We will use this to prove part (3) of theorem 4.

Proof of part (3) of theorem 4. Let x and y be any two points of C , not necessarily dis-
tinct, and denote

(50) V ≔ Wy ⊗ W
∨
x ⊗ Θ.

12



By proposition 22 we know that Wx and Wy are (r − 1)-ample. Now by [12, theo-
rem 3.5] we get that both

∧r−1
Wx and Wy ⊗

∧r−1
Wx are (r − 1)-ample. By our

choice of normalisation ofW there is a natural isomorphism

(51) V � Wy ⊗ W
∨
x ⊗ Θ � Wy ⊗

∧r−1
Wx .

Thus, we can conclude that the vector bundleV is (r−1)-ample. It follows by Sommese
vanishing [20, proposition 1.14], that

(52) Hi (MC (r ,L),Wy ⊗ W
∨
x ⊗ Θ

∨) = 0

for all i ≥ r 2 + (r − 1).

Since ω∨
MC (r ,L)

is isomorphic to Θ
⊗2 we get by Serre duality that

(53) Hi (MC (r ,L),Wy ⊗ W
∨
x ⊗ Θ

∨)∨ � H(r 2−1)(д−1)−i (MC (r ,L),Wx ⊗ W
∨
y ⊗ Θ

∨).

The same argument shows that

(54) H(r 2−1)(д−1)−i (MC (r ,L),Wx ⊗ W
∨
y ⊗ Θ

∨) = 0

when (r 2 − 1)(д − 1) − i ≥ r 2 + (r − 1).

Combining the above with (52), we get that if (r 2 − 1)(д − 1) ≥ 2(r 2 + r − 1), then the
cohomology Hi (MC (r ,L),V) vanishes for all i . But this is satisfied for all д ≥ 4. �

9 Concluding remarks

The proofs of theorems A and B We can now explain how the vanishing theo-
rems imply the fully faithfulness of the Fourier–Mukai functor, and how they give the
semiorthogonal decomposition of (4).

Proof of theorem A. The Bondal–Orlov criterion from proposition 2 can be applied
using theorem 3. �

For the proof of theorem B we need to use the following lemma.

Lemma23. LetX be a smooth projective variety. Let F : A ֒→ D
b(X ) andG : B ֒→ D

b(X )

be admissible embeddings. To check that A is in the right orthogonal to B, it suffices
to check this for spanning classes for A and B, i.e. whether

(55) Hom
Db(X )(G(T ), F (S)) = 0

for all objects S in a spanning class for A and all objectsT in a spanning class for B.

For sake of notational simplicity a spanning class will be closed under shifts.

Proof. We need to check that

(56) Hom
Db(X )(G(B), F (A)) = 0

13



for allA ∈ A and B ∈ B. Applying the adjunctionG ⊣ GR this is equivalent toGR◦F (A)

being isomorphic to 0 for all A. This in turn is implied by

(57) HomB(T ,GR ◦ F (A)) = 0,

where T runs over a spanning class for B. Now applying G ⊣ GR and F L ⊣ F , this is
equivalent to

(58) HomA(F L ◦G(T ),A) = 0,

which is equivalent to F L ◦ G(T ) being isomorphic to zero for all T . This in turn is
implied by

(59) HomA(F L ◦G(T ), S) = 0,

where S runs over a spanning class for A. �

Proof of theorem B. The orthogonality criterion from lemma 23 can be applied to the
images of Db(C) under ΦW and ΦW ⊗ Θ

∨ by using the spanning class given by the
skyscrapers, and using part (3) of theorem 4.

The other orthogonality checks (there are 5 more) follow from Kodaira vanishing, and
parts (1) and (2) of theorem 4. �

On theorem B for rank 2 and genus 2 It is expected that in theorem A the condi-
tion on the genus is not essential, and combining [14, remark 5] with [9, theorem 1.1]
we know that the functor ΦW is fully faithful for r = 2 and all д ≥ 2, so a posteriori
we can conclude the vanishing results in theorem 3.

But when r = 2 and д = 2 it is shown in [5, theorem 2.9] that (3) is the whole
semiorthogonal decomposition, i.e.

(60) D
b(MC (2,L)) =

〈

Θ
∨
,OMC (2,L),ΦW(Db(C))

〉

.

In particular, theorem B cannot hold for r = 2 and д = 2, so we cannot have the
vanishing result in part 3 of theorem 4. We leave it to the interested reader to com-
pute directly on the intersection Q1 ∩ Q2 of 2 smooth quadrics in P5 that the sheaf
cohomology of the tensor product of the restriction of (dual) spinor bundles twisted
by OQ1∩Q2(−1) is non-zero.

On the other hand, for all other combinations of rank and genus (and degree) it is
expected that theorem B holds.

Generalised Picard bundles The fully faithfulness result from theorem A allows
us to reprove known results on the inversion of generalised Picard bundles, and their
deformation theory, originally proven in [1, 4]. This is remarked upon in [14, remark 1]
in the case when r = 2. We will now give some details in the more general case here.

Definition 24. Let E be a semistable vector bundle of rank n and degree e , such that

(61) re + n > rn(2д − 2).

Then the Fourier–Mukai transformΦW(E) is again a vector bundle, of rank re+n+rn(1−д),
called a generalised Picard bundle.

14



The first result that follows from theorem A is [4, theorem 19]. Recall that the ker-
nel WR for the right adjoint of ΦW is given by W∨ ⊗ p∗1(ωC )[1]. By fully faithfulness
we have a natural equivalence ΦWR ◦ ΦW � id

Db(C )).

Proposition 25 (Inversion formula). Let E be a vector bundle as in definition 24. Then
there exists an isomorphism

(62) E � R1p1,∗
(

p∗2(p2,∗(p
∗
1(E) ⊗ W) ⊗ W

∨ ⊗ p∗1(ωC )
)

.

Similarly we can describe the deformation theory of generalised Picard bundles as in
[4, theorem 22]. As the infinitesimal deformation theory of any sheaf E on a smooth
projective variety X is described by Hi (X ,End(E)) for i = 0, 1, 2, the fully faithfulness
of ΦW gives the isomorphism in the next theorem.

Proposition 26. Let E be a vector bundle as in definition 24. Then there exists an
isomorphism

(63) ExtiC (E,E) � ExtiMC (r ,L)
(ΦW(E),ΦW(E))

Proof. One uses that

(64) Hi (C,End(E)) � ExtiC (E,E)

and

(65) Hi (MC (r ,L),End(ΦW(E))) � ExtiMC (r ,L)
(ΦW(E),ΦW(E)),

and the left-hand sides are isomorphic by fully faithfulness. �

So the (infinitesimal) deformation theory of a generalised Picard bundle agrees with
that of the original bundle. In particular, if E is simple, then by Riemann–Roch the
deformation space has dimension n2(д − 1) + 1.

A An alternative proof of proposition 10

Because MC (r ,L) is Fano, we have an isomorphism Pic(C × MC (r ,L)) � PicC ⊕ Z.
Using this isomorphism we have

(66) c1(W) = c1(Wx ) + d .

For a vector bundle E we will use the following shorthand

(67) N2(E) ≔ c1(E)
2 − 2 c2(E).

We start with a preliminary lemma.

Lemma 27.We have an equality

(68) r · p2,∗(N2(W)) = −2[Θ] + 2d c1(Wx ).
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Proof. By [18, theorem 1] we have that

(69)
−2[Θ] = [ωMC (r ,L)]

= c1
(

detRp2,∗ adW
)

.

Using Grothendieck–Riemann–Roch we can further rewrite this to

(70)

c1
(

detRp2,∗ adW
)

= ch(p2, ! adW)deg=1

= p2,∗
(

(ch(adW) ⊗ p∗1tdC )deg=2
)

= p2,∗
(

(ch(End(W)) ⊗ p∗1tdC )deg=2
)

.

Restricting ourselves to the terms that contribute to the part in degree 2 we obtain

(71)

p2,∗
(

(ch(End(W)) ⊗ p∗1tdC )deg=2
)

= p2,∗

(

((

r 2 +
1

2
N2(W ⊗ W

∨)

) (

1 +
1

2
p∗1 c1(TX )

))

deg=2

)

= p2,∗

(

1

2
N2(W ⊗ W

∨)

)

= p2,∗

( r

2

(

N2(W) + N2(W
∨)

)

+ c1(W) c1(W
∨)

)

= p2,∗
(

rN2(W) − c1(W)2
)

.

�

We will now apply the normalisation for the Poincaré bundle W.

Proof of proposition 10. By Grothendieck–Riemann–Roch we get

(72)

c1(detRp2,∗W
∨) = ch(p2, !W

∨)deg=1

= p2,∗
(

ch(W∨)p∗1tdC
)

= p2,∗

(

(

r − c1(W) +
1

2
N2(W)

) (

1 +
1

2
p∗1 c1(TC )

)

deg=2

)

= p2,∗

(

1

2
c1(W)p∗1 c1(KC )

)

+

1

2
p2,∗N2(W)

= (д − 1) c1(Wx ) +
1

r
(−[Θ] + d c1(Wx ))

where in the last step we used lemma 27. Now proposition 10 follows from (6). �
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