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A PROPER MAPPING THEOREM FOR COADMISSIBLE
ÙD-MODULES

ANDREAS BODE

Abstract. We study the behaviour of ÛD-modules on rigid analytic varieties
under pushforward along a proper morphism.
We prove a ÛD-module analogue of Kiehl’s Proper Mapping Theorem, con-
sidering the derived sheaf-theoretic pushforward from ÛDX -modules to f∗ÛDX -
modules for proper morphisms f : X → Y . Under assumptions which can be
naturally interpreted as a certain properness condition on the cotangent bun-
dle, we show that any coadmissible ÛDX -module has coadmissible higher direct
images. This implies among other things a purely geometric justification of the
fact that the global sections functor in the rigid analytic Beilinson–Bernstein
correspondence preserves coadmissibility, and we are able to extend this result
to twisted ÛD-modules on analytified partial flag varieties.

1. Introduction

Let K be a complete discretely valued field of mixed characteristic (0, p), with
discrete valuation ring R and uniformizer π, and let f : X → Y be a proper
morphism of rigid analytic K-varieties.
Recall Kiehl’s Proper Mapping Theorem for coherent O-modules.

Theorem 1.1 (see [18]). IfM is a coherent OX-module, then Rjf∗M is a coherent
OY -module for each j ≥ 0.

The main goal of this paper is to prove a noncommutative analogue of Theorem
1.1, considering coadmissible ÙD-modules.
The sheaf ÙDX of analytic differential operators on X was introduced by Ardakov–
Wadsley in [4]. This sheaf consists of differential operators, possibly of infinite order,
with rapidly decreasing coefficients. It was shown in [10] that for any smooth rigid
analytic K-variety U , ÙDU is a full Fréchet–Stein sheaf (see section 3 for precise
definitions), which allows us to consider the category of coadmissible modules, a
natural analogue of coherent modules in this setting.
We present in this paper several conditions one can impose to guarantee that the
derived pushforward functors Rjf∗ preserve coadmissibility.
In this introduction, we say that a Lie algebroid L on X is locally free relative to
Y if there exists an admissible covering (Yi) of Y such that the restriction L |Xi to
each Xi = f−1Yi is a free OXi -module for each i.

Theorem 1.2. Let f : X → Y be a proper morphism of rigid analytic K-varieties,
where X is smooth.
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(i) Suppose the tangent sheaf TX is locally free relative to Y . Then f∗ÙDX is a

full Fréchet–Stein sheaf on Y , and if M is a coadmissible ÙDX-module then

Rjf∗M is a coadmissible f∗ÙDX-module for each j ≥ 0.
(ii) Suppose TX is the quotient of a Lie algebroid L on X which is locally free

relative to Y . Then f∗ÙDX is a Fréchet–Stein sheaf on Y , and if M is a

coadmissible ÙDX -module then Rjf∗M is a coadmissible f∗ÙDX-module for each
j ≥ 0.

We obtain as a consequence the following corollary.

Corollary 1.3. Let X be a smooth proper rigid analytic variety over K. If TX is

generated by global sections then ÙDX(X) is a Fréchet–Stein algebra, and if M is a

coadmissible ÙDX-module then Hj(X,M) is a coadmissible ÙDX(X)-module for each
j ≥ 0.

We make a couple of remarks.

(i) Note that in Theorem 1.2.(ii), the sheaf f∗ÙDX is not claimed to be a full
Fréchet–Stein sheaf, but only a Fréchet–Stein sheaf, meaning that the desired
properties need not hold on any admissible open affinoid subspace, but only
on a certain base of the topology, see section 3. This is a familiar feature
already occuring in results in [4]. While we were able to overcome these issues
pertaining to the results in [4] with our paper [10], our situation here seems to
be more complicated. In fact, the difficulties do not just arise from possible π-
torsion in certain formal models, but rather from the limited scope of Lemma
3.13.

(ii) The condition of being locally free relative to Y imposed in Theorem 1.2 en-
sures that we can lift f to a proper morphism between certain vector bundles.
As we can think intuitively of ÙDX as a noncommutative analogue of functions
on the cotangent bundle T ∗X , our result is strictly speaking not in parallel
with Kiehl’s Theorem applied to f , but rather (in the case of Theorem 1.2.(i))
to the induced map T ∗X → g∗T

∗X , where g : X → Z is the first map in the
Stein factorization of f , and g∗T

∗X is the vector bundle (dually) associated to
g∗TX , which is locally free by assumption. This map is proper as it is locally
of the form X × An,an → Z × An,an by assumption. A similar description
works for (ii), see Proposition 6.10.

(iii) The results given in this paper are actually more general than Theorem 1.2.
We consider full Fréchet–Stein sheaves which are in a ‘natural’ way coadmis-
sible over U̇ (L ), where L is some Lie algebroid on X which is locally free
relative to Y . This setup allows us to extend results to twisted ÙD-modules,
see below.

(iv) It is obviously necessary to work with f∗ÙDX rather than the sheaf ÙDY , as can
be seen by just considering the point Y = SpK. This is due to the fact that
we are considering the sheaf-theoretic pushforward f∗ rather than a ÙD-module
pushforward via transfer bimodules, which hasn’t been developed yet beyond
the case of a closed embedding (see [5]). We hope that our result can actually
be used as a stepping stone to establishing a theory of ÙD-module pushforwards
more generally, with an analogue to the Proper Mapping Theorem (i.e. a p-
adic analytic version of [15, Theorem 2.5.1]) as a natural consequence.
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(v) The main motivation for this work (and a justification for using f∗) comes
from the discussion of a rigid analytic Beilinson–Bernstein correspondence in
[1]. If X = (G/B)an is the analytified flag variety of some split reductive
algebraic group G over K, Corollary 1.3 states that ÙDX(X) is a Fréchet–
Stein algebra, and that the global sections of any coadmissible ÙDX -module
are coadmissible. Also note that in this case, the geometric picture given in
remark (ii) translates to the properness of the moment map. We thus recover
part of the statement of [1, Theorem 6.4.7] (without equivariance) by purely
geometric means, and are able to extend this straightforwardly to arbitrary
coadmissible twisted ÙD-modules on partial flag varieties.

Corollary 1.4. Let G be a split reductive affine algebraic group scheme over K, P
a parabolic subgroup scheme and X = (G/P)an the analytification of the partial flag
variety. Let g be the Lie algebra of G = G(K) and h a Cartan subalgebra. If M

is a coadmissible ÙDλ

X-module for some λ ∈ h∗, then RjΓ(X,M) is a coadmissible

Ū(g)λ-module for each j ≥ 0.

All relevant definitions will be given in section 6.

We now give a brief overview of the structure of the paper.
In section 2, we distill those parts of the original proof of Theorem 1.1 which can
naturally be adapted to our situation: Schwartz’ Theorem for strictly completely
continuous morphisms and a finiteness result for cohomology groups due to Cartan–
Serre. We will be working with a certain class of Noetherian Banach K-algebras
which we call strictly NB, which includes both affinoid K-algebras and the algebras
◊�U(πnL)K involved in the definition of ÙDX .
We also recall some results from [10] concerning completed tensor products.

In section 3, we recall the basic theory of ÙDX -modules, using the more general
language of Fréchet completed enveloping algebras for Lie algebroids, as in [4]. In

order to capture sheaves like ÙDλ
, we introduce the even more general notion of a

Fréchet–Stein sheaf. We then establish enough terminology to state the main result
(for a free Lie algebroid, Theorem 3.19) and reduce all claims to statements about
strictly NB K-algebras and finitely generated modules over them.

Sections 4 and 5 then deal with the proof of Theorem 3.19.
Taking Y to be a suitable affinoid, the proof can be split into two parts: one
statement about global sections (section 4) and one about localization (section 5).
Having reduced to strictly NB K-algebras, the global sections part becomes quite
straightforward, using section 2. This means that the proof of this part is almost
entirely analogous to the original proof in [18]. The only subtlety lies in ensuring
that the finitely generated pieces we exhibit match up in the right way to produce a
coadmissible module. This can be dealt with using the results on completed tensor
products developed in [10], which also provide the main tools for the arguments in
section 5.

In section 6, we formulate more general versions and variants of our theorem. We
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then go on to discuss a geometric interpretation of our results to provide more in-
tuition for the conditions we impose, and describe several examples. We conclude
with our main application, twisted ÙD-modules on partial flag varieties, Corollary
1.4 and some generalizations of it.

As already mentioned, we hope that it will be possible in the future to employ
our results in order to study a ÙD-module pushforward using transfer bimodules
(see [15, 1.5]) – for this, it seems necessary to work in a larger category than that
of coadmissible modules in order to allow for a ‘derived’ picture. We suspect that
the quasi-abelian category of ÙD-modules whose sections are complete bornological
of convex type might be a suitable framework, as was indicated in [2] and [7]. Once
a ÙD-module pushforward is in place, a corresponding Proper Mapping Theorem
(at least for projective morphisms) should be a fairly straightforward consequence
of our results, as we can consider in turn the cases of closed embeddings and pro-
jections, both of which are dealt with in this paper – see Theorem 6.11 and the
remarks following it.

On the representation theoretic side, our discussion of pushforwards between par-
tial flag varieties strongly suggests a theory of intertwining operators analogous to
[8].

The results in this paper form part of the author’s PhD thesis, which was pro-
duced under the supervision of Simon Wadsley. We would like to thank him for his
encouragement and patience.

Notation. Throughout, K is a complete nonarchimedean, discretely valued field
of mixed characteristic (0, p), with discrete valuation ring R and uniformizer π.
Given a semi-normed K-vector space V , we denote by V ◦ the unit ball of all ele-
ments in V with semi-norm ≤ 1. We define the value set of V to be the set |V |\{0}.
For instance, the value set of K is |K∗| = |π|Z.

A normed K-algebra A is always required to have a submultiplicative norm, so
that A◦ is always a subring. Similarly, a normed A-module is a normed K-vector
space M with an A-module structure satisfying |am| ≤ |a| · |m| for all a ∈ A,
m ∈M . In particular, M◦ is an A◦-module.
We denote the completion of a semi-normed K-vector space V by “V . We also write
M̂ for the π-adic completion of an R-module M , but it should always be clear from
context which completion we are using. We sometimes shorten M ⊗R K to MK .
If i = (i1, . . . , im) ∈ Nm is a multi-index, we write |i| = i1 + i2 + · · · + im, and
abbreviate the expression

X i1
1 X i2

2 . . . X im
m

to X i.
We denote by Tm = K〈X1, . . . , Xm〉 the mth Tate algebra over K, given by con-
verging power series

K〈X〉 =

{ ∑

i∈Nm

aiX
i : ai ∈ K, |ai| → 0 as |i| → ∞

}
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Given an affinoid K-variety X = SpA, we let Xw denote the weak Grothendieck
topology (consisting of affinoid subdomains, with finite coverings by affinoid sub-
domains as coverings) and Xrig the strong Grothendieck topology (admissible open
subspaces and admissible coverings, see [11, Definition 5.1/4]).

2. Background

2.1. Schwartz’ Theorem and the Cartan–Serre argument. We begin by dis-
cussing those parts of the argument in [18] (see [11, sections 6.3, 6.4] for an account
in English) which lend themselves to generalization to the noncommutative setting.

Throughout, A will be a (not necessarily commutative) unital left Noetherian Ba-
nach K-algebra, whose norm is determined by an R-algebra A◦ as its unit ball,
which we assume to be also left Noetherian. We summarize this by saying that A
is a strictly Noetherian Banach (NB) K-algebra.
By considering the gauge norm associated with A◦ (see [23, Lemma 2.2]), we can
assume that |A| \ {0} = |K∗|.
Note affinoid K-algebras equipped with a residue norm are obvious examples of
strictly NB algebras: they are Noetherian Banach by [11, Propositions 3.1/3.(i),
3.1/5.(ii)], and the unit ball of any residue norm is Noetherian as long as K is
discretely valued by [11, Remark 7.3/1].

Lemma 2.1. Let A be a left Noetherian R-algebra containing R.

Then “AK = “A⊗R K carries a natural structure of a strictly NB K-algebra.

Proof. Note that the K-algebra AK is naturally equipped with a gauge semi-norm
(see [23, Lemma 2.2]) with unit ball A = A/π−tor(A), and its completion is iso-

morphic to “AK = “A⊗K, a Banach K-algebra. By [9, 3.2.3.(iv)], “A injects into “AK

and can thus be naturally identified with the unit ball. But by [9, 3.2.3.(vi)], “A is

left Noetherian, so “AK is a left Noetherian Banach K-algebra with left Noetherian
unit ball, and hence a strictly NB K-algebra.

Finally, the natural morphism “AK →
“AK is an isometric isomorphism of Banach

K-algebras, by the same argument as in [4, Lemma 2.5]. �

In this section, we will verify that Schwartz’ theorem as given in [18, Satz 1.2] as
well as the Cartan–Serre argument about finite cohomology groups ([18, Proof of
Satz 2.5], see [17, Lemma 1.10] for another generalization) hold in the more general
context of strictly NB K-algebras. All proofs will be essentially as in [18], except
that some of our arguments become easier to formulate due to our assumptions on
the field K (note in particular that R is always Noetherian in our setting).

The module category we will be working with consists of all (left) Banach A-
modules, together with continuous A-module morphisms. We call this category
BanA.
We recall the following facts.

(i) Since every A-module is also a K-vector space, an A-module morphism be-
tween normed A-modules is continuous if and only if it is bounded (see [23,
Proposition 3.1]).

(ii) Any surjection in BanA is open (Open Mapping Theorem, [23, Proposition
8.6]).



6 ANDREAS BODE

(iii) Any finitely generated A-module is in BanA, equipped with a canonical topol-
ogy (see [12, Proposition 3.7.3/3]). Any A-module morphism between finitely
generated A-modules is continuous with respect to the canonical topologies
(see [12, Proposition 3.7.3/2]).

(iv) Given two objects M , N of BanA, their direct sum M⊕N carries the structure
of a Banach A-module with respect to the max norm (see [12, Definition
2.1.5/1, Proposition 2.5.1/6]).

Note that for any M,N ∈ BanA, the space of morphisms

BanA(M,N) = Homcts
A (M,N)

may be equipped with the supremum norm

|f |sup := sup
x 6=0

|f(x)|

|x|
.

This turns Homcts
A (M,N) into a Banach K-vector space by the same argument as

in [23, Proposition 3.3].
When we speak of a sequence of morphisms fi converging to some f ∈ BanA(M,N),
we mean uniform convergence, i.e. convergence with respect to the supremum norm.

We also need to define topologically free modules. Given an indexing set S, consider
the A-module

⊕s∈SAes,

equipped with the direct sum (maximum) norm, where |aes| = |a| for each s ∈ S,
a ∈ A. Its completion

FS := “⊕s∈SAes

lies in BanA and satisfies the following universal property.

Proposition 2.2. Given M in BanA and any map f : S → M such that the set
{|f(s)| : s ∈ S} is bounded in R, there exists a unique morphism φ : FS → M in
BanA satisfying φ(es) = f(s) for each s ∈ S.
Moreover, the operator norm of φ is |φ| = sups∈S |f(s)|.

Proof. By the universal property of (abstract) free modules, there exists a unique
A-module morphism extending f , given by

θ :⊕s∈S Aei →M
∑

ases 7→
∑

asf(s).

Moreover, |θ(
∑

ases)| = |
∑

asf(s)| ≤ max |as||f(s)| for any finite sum
∑

ases,
so that θ is continuous by the boundedness assumption, with operator norm |θ| =
sup |f(s)|. By continuity, θ extends uniquely to a continuous map φ between the
completions FS →M , and |φ| = |θ|. �

We call FS the topologically free module over S or the topologically free
module (topologically) generated by S.
An obvious example is the K-algebra A〈X1, . . . , Xn〉 = A“⊗KTn for any n ∈ N,
which has a natural structure of a topologically free A-module over Nn as it is the
completion of the polynomial algebra A[X1, . . . , Xn] with respect to the natural
norm.

The following corollary is a direct consequence of the proposition above.
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Corollary 2.3. For any M ∈ BanA, there exists a topologically free module F ∈
BanA and a continuous surjection

p : F →M.

We now introduce a special kind of morphism in the category BanA.

Definition 2.4. A morphism f : M → N in BanA is called strictly completely

continuous if f is the limit of morphisms fi : M → N in BanA such that fi(M
◦)

is a finitely generated A◦-module for each i.

It follows from Noetherianity of A◦ that this notion does not depend on a par-
ticular choice of norm on M , but only on its equivalence class.
We mention here that Kiehl phrases this definition differently in [18, Definition
1.1], since he does not assume K to be discretely valued (in particular, an affinoid
K-algebra might have a unit ball which is not Noetherian). It is easy to check that
the two definitions are equivalent in BanA, where A is some strictly NB algebra.

We discuss one example which will feature in our proofs later.

Lemma 2.5. Let F = “⊕SAes be a topologically free A-module over S.
If f : F →M is a morphism in BanA such that for any ǫ > 0 there are only finitely
many s ∈ S with |f(es)| ≥ ǫ, then f is strictly completely continous.

Proof. For any ǫ > 0, denote by Sǫ the finite set of s ∈ S such that |f(es)| ≥ ǫ.
Given s ∈ S, consider the continuous A-module morphism

gs : F −→ M
∑

ajej 7→ asf(es),

i.e. we only consider the es part of f . Now we set for any n ∈ N

fn =
∑

s∈S1/n

gs,

a continuous A-module morphism such that

fn(F
◦) ⊆

∑

s∈S1/n

A◦f(es)

is a finitely generated A◦-module.
It thus remains to show that the fn tend to f . By Proposition 2.2, |f − fn| =
sups∈S |f(es)−fn(es)|. Now if s ∈ S1/n, then f(es) = fn(es), and if s is not in S1/n,
then fn(es) = 0 and |f(es)− fn(es)| < 1/n by construction. Thus |f − fn| < 1/n,
proving the result. �

Corollary 2.6. Let f : A〈x1, . . . , xn〉 → M be a morphism in BanA such that
f(xi) tends to zero as |i| → ∞. Then f is strictly completely continuous.

We briefly record the following properties.

Lemma 2.7. Let f : M → N be a strictly completely continuous morphism in
BanA, and let L, G be in BanA. Then the following holds:

(i) For any morphism g : N → G in BanA, the composition gf is strictly com-
pletely continuous.
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(ii) For any morphism h : L → M in BanA, the composition fh is strictly com-
pletely continuous.

Proof. Let (fi : M → N) be a sequence of morphisms in BanA as in Definition 2.4.
(i) For any continuous morphism g, the compositions gfi converge to gf , and

since fi(M
◦) is finitely generated, so is gfi(M

◦): if fi(M
◦) is generated by

n1, . . . , nr, then gfi(M
◦) is generated by g(n1), . . . , g(nr).

(ii) Since |(f − fi)h| ≤ |f − fi| · |h|, we know that fih converges to fh. Since h is
continuous, boundedness implies that there exists some integer a such that

h(L◦) ⊆ πaM◦,

and thus fih(L◦) is contained in πafi(M
◦), a finitely generated A◦-module by

definition of the fi (multiplication by πa establishes an isomorphism fi(M
◦) ∼=

πafi(M
◦)). By Noetherianity of A◦, fih(L◦) is thus a finitely generated A◦-

module.
�

Lemma 2.8. Let f1 : M1 → N1, . . . , fr : Mr → Nr be a finite set of strictly
completely continuous morphisms in BanA. Then the finite direct sum

⊕r
i=1fi : ⊕Mi → ⊕Ni

is also a strictly completely continuous morphism in BanA.

Proof. As mentioned earlier, the modules ⊕Mi and ⊕Ni are in BanA and ⊕fi is a
morphism in BanA, as each fi is bounded.
For each i, let fi be the limit of A-module morphisms gij such that gij(M

◦
i ) is

finitely generated for each j ∈ N. Then clearly ⊕fi is the uniform limit of (⊕igij)j ,
and moreover

(⊕igij)(⊕M
◦
i ) = ⊕igij(M

◦
i )

is a finitely generated A◦-module for any j, as required. �

The class of strictly completely continuous morphisms is used in the proof of
Kiehl’s Proper Mapping Theorem by applying Theorem 2.10, which is known as
Schwartz’ Theorem. First, we need a definition.

Definition 2.9. Let N be an object of BanA, and let M be a submodule of N . We
say M is closed and of finite index in N if M is a closed submodule such that
the quotient module N/M is a finitely generated A-module.

Theorem 2.10 ([18, Satz 1.2]). Let f : M → N be a surjection in BanA, and let
g : M → N be a strictly completely continuous homomorphism of A-modules. Then
Im(f + g) is closed and of finite index in N .

Before turning to the proof of Theorem 2.10, note that we have the following
easy properties concerning submodules which are closed and of finite index.

Lemma 2.11. Let N be in BanA and let M be some A-submodule of N . Suppose
there exists some morphism

f : N → G

in BanA such that f(M) is closed and of finite index in G, and M contains the
kernel of f . Then M is closed and of finite index in N .
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Proof. By continuity of f , we know that f−1(f(M)) is closed in N . But f−1(f(M)) =
M , because M contains the kernel of f . Moreover, as abstract A-modules we have
isomorphisms

N/M ∼= (N/ ker f)/(M/ ker f) ∼= f(N)/f(M) ≤ G/f(M),

which is finitely generated by Noetherianity of A. �

Lemma 2.12. Let N be in BanA and let M be some A-submodule of N . Suppose
M contains some A-module M ′ which is closed and of finite index in N . Then M
is closed and of finite index in N .

Proof. Since M ′ is closed in N , the quotient semi-norm on N/M ′ is actually a
complete norm, i.e. N/M ′ equipped with the quotient norm is in BanA. It follows
from [12, Proposition 3.7.3/3] that this gives rise to the canonical topology on the
finitely generated A-module N/M ′.
Now apply the above lemma to the natural projection pr : N → N/M ′, noting that
pr(M) is closed in N/M ′, as every A-submodule of a finitely generated A-module
(with the canonical topology) is closed by [12, Proposition 3.7.2/2], while finite
generation of the quotient (N/M ′)/pr(M) follows directly from finite generation of
N/M ′. �

Lemma 2.13. Let M and N be modules in BanA such that M is closed and of
finite index in N . Let f : N → G be a surjection in BanA. Then f(M) is closed
and of finite index in G.

Proof. By Lemma 2.12, the submodule M + ker f is closed and of finite index in
N . Since f(M) = f(M + ker f), we can assume without loss of generality that
ker f ⊆M .
By the Open Mapping Theorem, f is open. By assumption, the set complement
N \M is open in N , so f(N \ M) is open in G. But since f is surjective and
ker f ⊆M , we have

f (N \M) = G \ f(M),

so that f(M) is a closed submodule of G.
Moreover, we have the following isomorphisms as abstract A-modules

G/f(M) ∼= (N/ ker f)/(M/ kerf) ∼= N/M,

which is finitely generated by assumption. �

The content of the following lemma can be summarized as: small continuous
displacements of surjections are still surjective.

Lemma 2.14. Let f : M → N be a surjection in BanA. Then there exists a real
number c > 0 such that for any ǫ ∈ BanA(M,N) with |ǫ| < c (again with respect to
the supremum norm), the map f − ǫ is still surjective.

Proof. This is exactly [18, Lemma 1.3]. The proof given there works for any strictly
NB K-algebra. �

Proof of Theorem 2.10. We follow the argument in [18, Satz 1.2].
Since g is strictly completely continuous, we have a sequence of homomorphisms
gi : M → N converging to g such that each gi(M

◦) is a finitely generated A◦-
module. Note in particular that for each i, the image gi(M) is a finitely generated
A-module.
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By Lemma 2.14, we can choose i large enough such that f − (gi − g) is surjective.
We set h = f − (gi − g), and note that f + g = h+ gi.
Let K = ker gi, which is closed (by continuity of gi) and of finite index in M , since
M/K ∼= gi(M) as abstract A-modules. Thus by surjectivity of h, Lemma 2.13
implies that h(K) is closed and of finite index in N . But now h(K) = (h+ gi)(K)
by definition of K, and (h + gi)(K) is contained in (h + gi)(M). Thus by Lemma
2.12, (h+ gi)(M) is closed and of finite index in N , as required. �

We can now straightforwardly generalize two results from [18] regarding affinoid
K-algebras A to arbitrary strictly NB algebras.

Theorem 2.15 (see [18, Satz 1.4]). Let f : M → N be a morphism in BanA.
Suppose that N is a closed submodule of some G ∈ BanA via the injection j : N → G
such that the composition jf is strictly completely continuous. Then there exists a
topologically free A-module F and a surjection p : F →M in BanA such that fp is
strictly completely continuous.

Proof. We only sketch the argument, as it is entirely analogous to [18, Satz 1.4].
By Corollary 2.3, there exists a topologically free A-module F and a continuous
surjection p : F → M in BanA. By Lemma 2.7, the composition jfp is strictly
completely continuous, so replacing M by F , we can assume that M is topologi-
cally free, and we only need to show that f is strictly completely continuous in that
case.

Write M = “⊕s∈SAes, M◦ = “⊕A◦es, and let 0 < ǫ < 1. Since jf is strictly com-
pletely continuous, there exists some continuous morphism h : M → G such that
|jf − h| ≤ ǫ, with h(M◦) a finitely generated A◦-module, generated by y1, . . . , yr,
say.
For any s ∈ S, let ast ∈ A◦, t = 1, . . . , r, such that

h(es) =
r∑

t=1

astyt.

Since yt ∈ h(M◦) for any t, we can choose xt ∈ M◦ such that h(xt) = yt, and set
zt = f(xt) ∈ N .

Now define elements

fs =
r∑

t=1

astzt ∈ N

for any s ∈ S, and consider the continous morphism φ : M = “⊕Aes → N obtained
by applying Proposition 2.2 to the function

S → N

s 7→ fs,

which is bounded as |fs| ≤ maxt |zt| for any s ∈ S. Moreover, φ(M◦) ⊆
∑

A◦zt is
a finitely generated A◦-module by Noetherianity.
The same calculation as in [18] verifies that |f − φ| ≤ ǫ, showing that f is strictly
completely continuous. �

Theorem 2.16 (see [18, Korollar 1.5]). Let f : M → N be a surjection in BanA,
and let g : M → N be another morphism in BanA. Suppose N is a closed submodule
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of some G ∈ BanA via the injection j : N → G, and suppose that the composition
jg is strictly completely continuous. Then Im(f + g) is closed and of finite index
in N .

Proof. By Theorem 2.15, there exists a topologically free module F and a surjection
p : F →M in BanA such that gp is strictly completely continuous. By surjectivity
of p, we have that fp is still surjective, so Theorem 2.10 implies that Im(fp+gp) =
Im((f + g) ◦ p) is closed and of finite index. But since p is surjective, this is the
same as Im(f + g), and the result follows. �

Note that the same result holds for Im(f − g). If jg is strictly completely con-
tinuous, written as the limit of some (hi)i, then j ◦ (−g) is strictly completely
continuous, as it is the limit of (−hi)i.

These results are applied in the proof of Theorem 1.1 using the following obser-
vation, which in [17] is attributed to Cartan–Serre.

Proposition 2.17. Let C•, D• be two cochain complexes in BanA, and let α =
(αi ∈ BanA(C

i, Di)) be a quasi-isomorphism. Assume further that for each i there
exists F i ∈ BanA together with a continuous surjection βi : F i → Ci such that
αiβi is a stricly completely continuous morphism of A-modules. Then Hi(D•) is a
finitely generated A-module for each i.

Proof. This proof can be found in [18] as part of the proof of Satz 2.5 and Satz 2.6.
In a slight abuse of notation, all differentials will be denoted by the same letter d.
Let Gi be the preimage of Zi(C•) = ker d ⊆ Ci in F i. Note that Zi(C•) is closed
in Ci, so it is complete when equipped with the subspace norm. Similarly it follows
from continuity that Gi is closed in F i, and hence an object in BanA.

We wish to apply Theorem 2.16 to

Gi ⊕Di−1 →Zi(D•)

(a, b) 7→ d(b) = (αiβi(a) + d(b))− αiβi(a).

Firstly, we claim that the map

f : Gi ⊕Di−1 → Zi(D•)

(a, b) 7→ αiβi(a) + d(b)

is a surjection in BanA.
We have already shown that each of the modules appearing is an object in BanA
(recall that BanA is closed under taking finite direct sums with the corresponding
max norm), and since αi, βi and d are all bounded, f is clearly also bounded. For
surjectivity, note that we assume that αi induces an isomorphism of cohomology
groups, and hence the map

Zi(C•)⊕Di−1 → Zi(D•)

(a, b) 7→ αi(a) + d(b)

is surjective.
Since βi is surjective, it follows that the restriction βi|Gi : Gi → Zi(C•) is surjective
by definition of Gi. Therefore the composition

f : Gi ⊕Di−1 → Zi(C•)⊕Di−1 → Zi(D•)
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is also surjective, as required.

Secondly, we need to show that the map

g : Gi ⊕Di−1 → Zi(D•)

(a, b) 7→ αiβi(a)

is strictly completely continuous after composition with the injection j : Zi(D•)→
Di.
Again, it is straightforward to see that g is a morphism in BanA. Note that it fits
into the commutative diagram

Gi ⊕Di−1

pr

��

g
// Zi(D•)

j

��

Gi

ι

��

F i βi
// Ci αi

// Di

where the bottom row is strictly completely continuous by assumption, the map pr
is the projection onto the first factor, and ι is the natural inclusion.
By Lemma 2.7, the composition αiβiιpr is strictly completely continuous.
It follows by commutativity of the diagram that the composition jg is a strictly
completely comtinuous morphism of A-modules, as required.

We can therefore apply Theorem 2.16 (and the remark after its proof) to conclude
that Im d = Im(f − g) is closed and of finite index in Zi(D•), i.e.

Hi(D•) = Zi(D•)/d(Di−1)

is a finitely generated A-module. �

Recall that a morphism of semi-normed K-vector spaces φ : M → N is strict if
the induced morphism Coimφ→ Imφ is a linear homeomorphism (i.e. the quotient
semi-norm on M/ kerφ is equivalent to the subspace semi-norm on Imφ). Due to
the Open Mapping Theorem, a morphism in BanA is strict if and only if it has
closed image (see [12, Proposition 3.7.3/4], [10, Lemma 2.6]).

Corollary 2.18. In the situation of Proposition 2.17, D• is a cochain complex with
strict morphisms.

Proof. By the above, Im dj−1 is a closed subspace of Zj(D•), which is in turn a
closed subspace of Dj by continuity. Thus we can apply [12, Proposition 3.7.3/4]
to show that dj−1 is strict for each j. �

2.2. Completed tensor products. Recall the definition of the completed tensor
product M“⊗AN from [11, Appendix B], where A is a normed K-algebra, M a
normed right A-module, N a normed left A-module.
We note the following straightforward properties.
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Lemma 2.19. Let A and B be Noetherian Banach K-algebras. Let N be a finitely
generated left Banach A-module, and let M be a Banach (B,A)-bimodule which is
finitely generated as a left B-module. Then the natural morphism

M ⊗A N →M“⊗AN,

is a B-linear homeomorphism, i.e. the tensor semi-norm is a norm with respect to
which M ⊗N is already complete.

Proof. This is a straightforward generalization of [12, Proposition 3.7.3/6].
By [12, Proposition 3.7.3/3], the norm on N is equivalent to one induced by a
surjection ρ : A⊕r → N for some integer r. The map ρ is then strict by definition.
Now [12, Proposition 2.1.8/6] implies that the map M ⊗ ρ : M ⊗A A⊕r →M ⊗A N
is a strict surjection of semi-normed left B-modules, i.e. the tensor semi-norm on
M ⊗N is equivalent to the quotient semi-norm induced by M ⊗ ρ.
Note that M ⊗A⊕r ∼= M⊕r as semi-normed left B-modules. But M⊕r is a finitely
generated left Banach B-module. Therefore the kernel of M ⊗ ρ is closed by [12,
Proposition 3.7.2/2], making M ⊗ N a Banach B-module by [12, Propositions
2.1.2/1, 3]. �

Lemma 2.20. Let A be a strictly NB K-algebra, and let M be a finitely generated
left Banach A-module. Then M◦ is a finitely generated A◦-module.

Proof. Since A◦ is Noetherian, the property of having a finitely generated unit ball
is preserved under replacing an A-module norm by an equivalent one. So by [12,
Proposition 3.7.3/3], we can assume that the norm on M is induced by a surjection
ρ : A⊕r → M for some positive integer r, giving the finitely generated unit ball
M◦ ⊆ π−1ρ((A◦)⊕r). �

We now recall a result from [10] concerning exactness properties of “⊗.
Let A be any normed K-algebra, and let (C•, ∂) be a cochain complex of left Ba-
nach A-modules, with strict differentials.
Let U be normed right A-module that is flat as an abstract A-module.

We equip the cohomology groups Hj(C•) with the quotient norm induced from
the subspace norm on ker ∂j . For any left A◦-module M , we will abbreviate the
R-module TorA

◦

s (U◦,M) to Ts(M).

Theorem 2.21 ([10, Theorem 2.16]). Suppose that for large enough j, Ts((Coim ∂j)◦)
and Ts((ker ∂

j)◦) have bounded π-torsion for all s ≥ 0. Suppose further that for all
j, the following is satisfied:

(i) Ts

(
Hj(C•)◦

)
has bounded π-torsion for all s ≥ 0.

(ii) Ts

(
(Cj)◦

)
has bounded π-torsion for all s ≥ 0.

Then the complex U ⊗A C•, with each term being equipped with the tensor product
semi-norm, consists of strict morphisms, and the canonical morphism

U“⊗AH
j(C•)→ Hj(U“⊗AC

•)

is an isomorphism for each j.

Note that this applies in particular whenever U◦ is a flat A◦-module (see [10,
Corollary 2.15]).
We now give some further applications. We assume that Cj = 0 for sufficiently
large j, so that the condition on Ts((Coim ∂j)◦) and Ts((ker ∂

j)◦) is automatically
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satisfied. Also note that since Hj(C•) is Banach with respect to the quotient norm,
the A-module structure extends to an Â-module structure.

Corollary 2.22. Suppose that U◦ and A◦ are left Notherian rings such that the
module structure on U◦ is given by a ring morphism A◦ → U◦, and that the multi-

plication extends to endow U◦ ⊗A◦ Â◦ with the structure of a left Noetherian ring.
Assume further that for each j, the following is satisfied:

(i) Hj(C•) is a finitely generated Â-module.
(ii) Ts((C

j)◦) has bounded π-torsion for each s ≥ 0.

Then U ⊗A C• consists of strict morphisms and the natural morphism

“U ⊗
Â
Hj(C•)→ Hj(U“⊗AC

•)

is an isomorphism of “U -modules.

Proof. By Lemma 2.1, Â is a strictly NB K-algebra whose unit ball is Â◦. Therefore
by Lemma 2.20, Hj(C•)◦ is a finitely generated Â◦-module. Now

Ts(H
j(C•)◦) = TorA

◦

s (U◦,Hj(C•)◦) ∼= TorÂ
◦

s (U◦ ⊗A◦ Â◦,Hj(C•)◦)

by [26, Proposition 3.2.9], as Â◦ is flat over A◦ by [9, 3.2.3.(iv)].
By Noetherianity of Â◦, Hj(C•)◦ now admits a free resolution of finitely generated
Â◦-modules, so that each

TorÂ
◦

s (U◦ ⊗ Â◦,Hj(C•)◦)

is a finitely generated left U◦⊗Â◦-module, as we assume this ring to be Noetherian.
So by Noetherianity, the π-torsion submodule is also finitely generated, and thus
Ts(H

j(C•)◦) has in fact bounded π-torsion for each s ≥ 0. Now apply Theorem 2.21.

For the last isomorphism, note that we have

“U“⊗
Â
Hj(C•) ∼= U“⊗AH

j(C•) ∼= Hj(U“⊗AC
•)

by [12, Proposition 2.1.7/4] and the above, and we can remove the completion
symbol over the first tensor product by Lemma 2.19. �

Corollary 2.23. Suppose that U◦ and A◦ are left Noetherian rings such that the
module structure on U◦ is given by a ring morphism A◦ → U◦, and that both A and
U are Banach algebras. Assume further that for each j, the following is satisfied:

(i) Hj(C•) is a finitely generated A-module.
(ii) Ts((C

j)◦) has bounded π-torsion for each s ≥ 0.

Then U ⊗A C• consists of strict morphisms and U ⊗A Hj(C•) ∼= Hj(U“⊗C•).

Proof. This is just a special case of the above: Â◦ = A◦, as we assume A to be
complete, so U◦ ⊗A◦ Â◦ = U◦, which is a left Noetherian ring by assumption. �

3. Statement of the Theorem

3.1. Fréchet–Stein algebras and coadmissible modules. We recall some im-
portant notions from [4].
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Definition 3.1 (see [4, Definition 9.1]). A Lie algebroid on a rigid analytic K-
variety X is a pair (ρ,L ), where L is a locally free OX-module of finite rank on
Xrig which is also a sheaf of K-Lie algebras, and the anchor map ρ : L → TX is
an O-linear map of sheaves of Lie algebras, satisfying

[x, ay] = a[x, y] + ρ(x)(a)y

for any x, y ∈ L (U), a ∈ OX(U), U any admissible open subset of X.

This is the natural sheaf analogue of Rinehart’s notion of a (K,A)-Lie algebra,
see [22].

Let X be a rigid analytic K-variety. To any Lie algebroid (ρ,L ) on X we can

associate the sheaf of Fréchet completed enveloping algebras U̇ (L ), whose sec-
tions can be described as follows.
Let U = SpA be an admissible open affinoid subspace of X , and let A be the unit
ball of A with respect to some residue norm (an ‘affine formal model’). Inside
L (U), choose an (R,A)-Lie lattice, i.e. a finitely generated A-submodule L such
that

(i) L generates L (U) as an A-module;
(ii) L is closed under the Lie bracket of L (U);
(iii) A is preserved under the induced action of L on A via ρ.

Then U̇ (L )(U) is given by

U̇ (L )(U) = ˛�UA(L (U)) := lim
←−
n

Ÿ�UA(πnL)K ,

where UA(L) is the enveloping algebra introduced in [22]. A standard argument
shows that this expression is independent of the choices made, see [4, section 6.2].

By construction, U̇ (L )(U) carries the structure of a Fréchet K-algebra.

If X is a smooth rigid analytic K-variety, then the tangent sheaf TX is a Lie
algebroid, and we denote the resulting sheaf ˚�U (TX) by ÙDX .

Definition 3.2 (see [24, section 3]). A topological K-algebra U is called a (left,
two-sided) Fréchet–Stein algebra if U ∼= lim

←−
Un is an inverse limit of countably

many (left, two-sided) Noetherian Banach K-algebras Un, such that for every n the
following is satisfied:

(i) The morphism Un+1 → Un makes Un a flat Un+1-module (on the right, on
both sides).

(ii) The morphism Un+1 → Un has dense image.

Given a Lie algebroid L on a rigid analytic K-variety X , it was shown in [10,

Theorem 3.5] that U̇ (L )(U) is a two-sided Fréchet–Stein algebra for any admissi-
ble open affinoid subspace U of X .
For Fréchet–Stein algebras, the natural analogue of a coherent module is a coad-
missible module, whose definition we recall below.

Definition 3.3 (see [24, section 3]). A left module M of a left Fréchet–Stein algebra
U = lim

←−
Un is called coadmissible if M = lim

←−
Mn, such that the following is

satisfied for every n:
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(i) Mn is a finitely generated left Un-module.
(ii) The natural morphism Un ⊗Un+1

Mn+1 →Mn is an isomorphism.

By [24, Lemma 3.8], the notion of coadmissibility is independent of the chosen
presentation U ∼= lim

←−
Un.

We record the following basic results from [24, section 3].

Proposition 3.4. Let M = lim
←−

Mn be a coadmissible U = lim
←−

Un-module. Then
the following hold:

(i) The natural morphism Un ⊗U M → Mn is an isomorphism for each n (see
[24, Corollary 3.1]).

(ii) The system (Mn)n has the Mittag-Leffler property as described in [14, 0.13.2.4],
so that lim

←−
(j) Mn = 0 for any j ≥ 1 (see [24, section 3, Theorem B]).

(iii) The category of coadmissible U -modules is an abelian category, containing all
finitely presented U -modules (see [24, Corollaries 3.4, 3.5]).

Given a (K,A)-Lie algebra L which is finitely generated projective over A, finitely

generated UA(L)-modules give rise to coadmissible U̇A(L)-modules in a natural way
as follows.
As UA(L) is Noetherian, any finitely generated UA(L)-module M is finitely pre-
sented, so the module

ıM := U̇A(L)⊗U(L) M

is a finitely presented Ŭ(L)-module and thus coadmissible by property (iii) of Propo-
sition 3.4.
Choose an (R,A)-Lie lattice L in L and write Un = UA(π

nL). It now follows from
property (i) in Proposition 3.4 that

ıM ∼= lim
←−

(”UnK ⊗U(L) M).

We call ıM the coadmissible completion of M , as in [4, Definition 7.1].

Lemma 3.5 ([10, Lemma 4.14]). The functor M 7→ ıM is exact on finitely generated
UA(L)-modules.

Theorem 3.6. Let L be a (K,A)-Lie algebra which is finitely generated projective

as an A-module. Then U̇A(L) is flat as a (left and right) UA(L)-module.

Proof. Let I be a left ideal of UA(L), which is automatically finitely generated by
Noetherianity of UA(L). By [26, Proposition 3.2.4], it is sufficient to show that the
map Ŭ(L)⊗ I → Ŭ(L) is injective. But this follows immediately from the previous

lemma. Thus U̇A(L) is flat as a right U(L)-module. The proof concerning the left
module structure is entirely analogous. �

3.2. Fréchet–Stein sheaves. We now introduce a class of sheaves of algebras
which is large enough to include not only those of the form U̇ (L ), but also various

quotients, for example the twisted sheaves ÙDλ
which we are going to define in

section 6.

Definition 3.7. A sheaf of topological K-algebras F on a rigid analytic K-variety
X is called a (left) global Fréchet–Stein sheaf if there exists
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(i) a collection of sites (Xn)n∈N on X such that Xn is contained in Xn+1 for each
n, and any U ∈ Xw is in Xn for sufficiently large n, likewise for Xw-coverings;
and

(ii) for each n, a sheaf of K-algebras Fn on Xn, together with morphisms Fn+1|Xn →
Fn,

such that the following holds:

(i) there is an isomorphism F ∼= lim
←−
Fn (where we write lim

←−
Fn for the sheaf on X

obtained from U 7→ lim
←−
Fn(U) for U ∈ Xw) which exhibits F(U) ∼= lim

←−
Fn(U)

as a (left) Fréchet–Stein algebra for every admissible open affinoid subspace
U of X;

(ii) if V is an affinoid subdomain of an admissible open affinoid subspace U ⊆ X
such that both U and V are open in Xn, then the restriction map Fn(U) →
Fn(V ) is flat (on the right); and

(iii) if U ⊆ X is an admissible open affinoid subspace which is open in Xn and U

is a finite covering of U in Xn by affinoid subdomains, then Ȟj(U,Fn) = 0
for each j > 0.

Given a left global Fréchet–Stein sheaf on an affinoid K-variety X , we can repeat
all the arguments in [4, sections 5, 8] to produce a localization functor Loc, sending
a coadmissible left F(X)-module M to the sheaf of F -modules given by

U 7→ F(U)Ù⊗F(X)M

for each U ∈ Xw. By the same argument as in [10, Theorem 4.16], LocM is a sheaf
with vanishing higher Čech cohomology for every finite affinoid covering.

Definition 3.8. Let F be a left global Fréchet–Stein sheaf on a rigid analytic K-
variety X. A left F-module M is then called coadmissible if there exists an admis-
sible covering U of X by affinoid subspaces such that for every U ∈ U, the following
holds:

(i) M(U) is a coadmissible F(U)-module;
(ii) the natural morphism LocM(U)→M|U is an isomorphism.

Definition 3.9. A sheaf of K-algebras F on a rigid analytic K-variety X is a
full Fréchet–Stein sheaf if for any admissible open affinoid subspace U of X, the
restriction F|U is a global Fréchet–Stein sheaf on U .
An F-module M is called coadmissible if there exists an admissible covering U by
affinoid subspaces such that for all U ∈ U, M|U is a coadmissible F|U -module.

The analogue of Kiehl’s Theorem ([4, Theorem 8.4], [10, Theorem 4.17]) still
holds in this generalized context, so that if M is coadmissible with respect to one
covering, then it is coadmissible with respect to any affinoid covering.

If there exists a collection S of admissible open affinoid subspaces of X forming
a basis of the topology with the property that F|U is a global Fréchet–Stein sheaf
for each U ∈ S, we call F simply a Fréchet–Stein sheaf. For this it is evidently
sufficient to give one admissible covering (Ui) of X by affinoid subspaces such that
F|Ui is a global Fréchet–Stein sheaf for each i.
There is a natural analogue of the theory above for Fréchet–Stein sheaves, see [4].

We can now restate a result from [10] as follows.
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Proposition 3.10 (see [10, Theorems 3.5, 4.9, 4.10]). If L is a Lie algebroid on

some rigid analytic K-variety X, then U̇ (L ) is a full Fréchet–Stein sheaf.

Let L be a Lie algebroid on an affinoid K-variety X . For future reference, we
recall the corresponding sites Xn and sheaves Fn explicitly in this case.

Let X = SpA, and let A be an affine formal model in A. Choose an (R,A)-
Lie lattice L in L (X). Recall from [4, Definition 3.1] that an affinoid subdomain
Y = SpB of X is called L-admissible if B contains an L-stable affine formal
model, i.e. an affine formal model which contains the image of A under restriction
and is preserved by the L-action.
We now consider the site Xn = Xac(π

nL) of πnL-accessible subdomains as defined
in [4].

Definition 3.11 ([4, Definitions 4.6, 4.8]). Let Y be a rational subdomain of X. If
Y = X, we say that it is L-accessible in 0 steps. Inductively, if n ≥ 1 then we say
that it is L-accessible in n steps if there exists a chain Y ⊆ Z ⊆ X such that the
following is satisfied:

(i) Z ⊆ X is L-accessible in (n− 1) steps,
(ii) Y = Z(f) or Z(f−1) for some non-zero f ∈ O(Z),
(iii) there is an L-stable affine formal model C ⊂ O(Z) such that L · f ⊆ C.

A rational subdomain Y ⊆ X is said to be L-accessible if it is L-accessible in n
steps for some n ∈ N.
An affinoid subdomain Y of X is said to be L-accessible if it is L-admissible and
there exists a finite covering Y = ∪rj=1Yj where each Yj is an L-accessible rational
subdomain of X.
A finite covering {Yj} of X by affinoid subdomains is said to be L-accessible if each
Yj is an L-accessible affinoid subdomain of X.

We then define the sheaf Un(L ) on Xac(π
nL) by setting

Un(L )(Y ) = ¤�UB(B ⊗A πnL)K ,

for any πnL-accessible affinoid subdomain Y = SpB of X , where B ⊂ B is some
πnL-stable affine formal model.
Also note that by [4, Proposition 2.3], Un(L )(Y ) is isomorphic as a B-module
to B“⊗AUA(L (X)), where B is equipped with some residue norm (without loss of
generality with unit ball B as above) and UA(L (X)) is equipped with the gauge
semi-norm associated to UA(π

nL).
It was shown in [10] that the sheaves Un(L ) have the desired properties.

Recall the following result from [24].

Lemma 3.12 (see [24, Proposition 3.7, Lemma 3.8]). Let I be a closed two-sided
ideal in a Fréchet–Stein algebra U . Then U/I is a Fréchet–Stein algebra, and a
U/I-module is coadmissible if and only if it is coadmissible as a U -module.

We will slightly extend this result and its sheaf analogue in order to produce
further examples of global Fréchet–Stein sheaves.
Just as a Fréchet–Stein algebra B = lim

←−
Bn carries a natural Fréchet topology as the

inverse limit topology of the Banach norms on Bn, so any coadmissible B-module
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M = lim
←−

Mn carries a canonical Fréchet topology induced by the canonical Banach
module structures on each Mn.
An algebra structure on M is said to have continuous multiplication (with
respect to (Bn)) if we can choose for each sufficiently large n a Banach Bn-module
norm | − | on Mn such that the natural morphism ιn : M →Mn endows M with a
semi-norm | − |n which is submultiplicative, i.e.

|xy|n := |ιn(xy)| ≤ |ιn(x)| · |ιn(y)|

for any x, y ∈ M . If this holds, multiplication on M extends continously to make
Mn = Bn ⊗B M a Banach K-algebra.
It is important to note that this definition depends on the presentation B ∼= lim

←−
Bn,

and is stronger than requiring that M be a Fréchet algebra with respect to the
canonical Fréchet topology.

Lemma 3.13. Let B = lim
←−

Bn be a left Fréchet–Stein K-algebra, and let C be a
K-algebra which is also a left coadmissible B-module with continuous multiplication
via an algebra morphism B → C. Then C is a left Fréchet–Stein algebra.
If M is a left C-module, then it is coadmissible if and only if it is coadmissible as
a B-module.

Proof. By assumption, Cn := Bn ⊗B C is a finitely generated left Bn-module and
the canonical Banach norm gives rise to a submultiplicative semi-norm | − |n on C.
Note that the image of ιn : C → Cn is dense by [24, Theorem A]. But then the
completion of C with respect to | − |n is a Banach K-algebra, which as a Banach
space is naturally isomorphic to Cn by construction.
Thus C = lim

←−
Cn is the limit of Banach K-algebras, and each Cn is left Noetherian,

as it is finitely generated over Bn via the natural morphism Bn → Cn.

Since the functor Cn ⊗Cn+1
− can be written as

(Bn ⊗Bn+1
Cn+1)⊗Cn+1

−,

flatness follows from flatness of the maps Bn+1 → Bn.
Since the map Bn+1 → Bn has dense image, it follows that Cn+1 → Cn =
Bn ⊗Bn+1

Cn+1 also has dense image for each n. Thus C is a left Fréchet–Stein
algebra.

The second part of the statement is now a simplified version of [24, Lemma 3.8].
If M is a left C-module, then

Mn := Cn ⊗C M ∼= (Bn ⊗B C)⊗C M = Bn ⊗B M

as a Bn-module, and Mn is finitely generated as a Cn-module if and only if it
is finitely generated as a Bn-module, because Cn is finitely generated over Bn.
Moreover,

Bn ⊗Bn+1
Mn+1

∼= (Bn ⊗Bn+1
Cn+1)⊗Cn+1

Mn+1

∼= Cn ⊗Cn+1
Mn+1,

finishing the proof. �

Proposition 3.14. Let X be a rigid analytic K-variety and let F ′ = lim
←−
F ′

n be a
left global Fréchet–Stein sheaf on X.
Let F be a sheaf of K-algebras on X which is also a left coadmissible F ′-module
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via a morphism θ : F ′ → F . Assume that F(U) has continuous multiplication with
respect to (F ′

n(U)) for each admissible open affinoid subspace U .
Then F is itself a left global Fréchet–Stein sheaf on X, and an F-module M is
coadmissible if and only if it is coadmissible as an F ′-module.

Proof. Consider the sheaves Fn := F ′
n⊗F ′ F on Xn. By assumption, this is in fact

a sheaf of K-algebras, extending the multiplication on F by continuity. Now let U
be an admissible open affinoid subspace of X .
We have shown in [10, Theorem 4.16] that the sheaf Fn|U on Xn has vanishing
higher Čech cohomology. The flatness of restriction maps is again inherited from
F ′

n, and F(U) is a Fréchet–Stein K-algebra by Lemma 3.13. This makes F a global
Fréchet–Stein sheaf on X .
The statement on coadmissible modules is now just Lemma 3.13 combined with the
natural isomorphism

F(V )Ù⊗F(U)M ∼=
(
F ′(V )Ù⊗F ′(U)F(U)

)Ù⊗F(U)M ∼= F
′(V )Ù⊗F ′(U)M

for any coadmissible F(U)-module M and any affinoid subdomain V of U (see [4,
Proposition 7.4]). �

In this case, we call F a coadmissible enlargement of F ′.
A standard example of a coadmissible enlargement is given by the following. If
L ′ → L is an epimorphism of Lie algebroids on an affinoid K-variety X = SpA,
we can choose an affine formal model A in A and an (R,A)-Lie lattice L′ in L′ :=
L ′(X), and let L denote the image of L′ in L := L (X). Then L is an (R,A)-Lie
lattice in L, and the induced map UA(π

nL′)→ UA(π
nL) is surjective for each n.

By [9, 3.2.3.(iii)],Ÿ�UA(πnL) is isomorphic to ÿ�U(πnL′)⊗U(πnL′)U(πnL) as a ÿ�U(πnL′)-
module, and hence tensoring with K yields

◊�U(πnL)K
∼= ÿ�U(πnL′)K ⊗U(L′) U(L).

Thus U̇ (L )(X) = U̇A(L) is the coadmissible completion of the finitely generated

UA(L
′)-module UA(L) as discussed in Lemma 3.5. This shows that U̇ (L )(X) is a

coadmissible ˚�U (L ′)(X)-module with continuous multiplication, and repeating the
argument for arbitrary affinoid subdomains shows that the natural epimorphism
˚�U (L ′) → U̇ (L ) turns U̇ (L ) into a coadmissible enlargement of ˚�U (L ′). The
proposition above can then be viewed as the sheaf analogue of Lemma 3.12.

Note that another example of coadmissible enlargement was already given in [24,
Theorem 5.1]: there, the distribution algebra D(G0,K) was described as a free
D(H0,K)-module of finite rank, and a crucial step in the proof that D(G0,K) was
Fréchet–Stein consisted in checking that the multiplication on D(G0,K) satisfied
the necessary continuity condition.
We will see other examples arising as quotients of U̇ (L ) in section 6.

Lemma 3.15. Let h : X → Y be an affinoid morphism of rigid analytic K-
varieties, and let F be a global Fréchet–Stein sheaf on X. Then h∗F is a global
Fréchet–Stein sheaf on Y .
If M is a coadmissible F-module, then h∗M is a coadmissible h∗F-module.
If G is a coadmissible enlargement of F , then h∗G is a coadmissible enlargement of
h∗F .



A PROPER MAPPING THEOREM FOR COADMISSIBLE ÛD-MODULES 21

Proof. Let Fn be sheaves on sites Xn, satisfying the conditions given in Definition
3.7. Define Yn to be the Grothendieck topology on Y induced by Xn, i.e. an affinoid
subspace U in Yw is open in Yn if h−1U is open in Xn, analogously for coverings.
Then the sheaf h∗Fn is defined on Yn, and h∗F ∼= lim

←−
h∗Fn.

The claims now follow immediately from the definitions, as for any admissible open
affinoid subspace U of Y , its preimage h−1U is an admissible open affinoid subspace
of X by assumption. �

3.3. Proper morphisms. We now describe the geometric situation we will be
concerned with in this paper.

Definition 3.16 (see [11, Definition 6.3/6]). Let f : X → Y be a morphism of
rigid analytic varieties with Y being affinoid, and let U ⊆ U ′ ⊆ X be admissible
open affinoid subspaces. We say U is relatively compact in U ′ (with respect to
Y ), or U lies in the interior of U ′ with respect to Y , if the map OY (Y )→ OX(U ′)
gives rise to a surjection

θ : OY (Y )〈x1, . . . xl〉 → OX(U ′)

for some integer l, such that

U ⊆ {x ∈ U ′ : |fi(x)| < 1},

where fi is the image of xi under θ.

Recall that |fi(x)| is the norm of the residue class fi in OX(U ′)/mx, a finite field
extension of K, with mx the maximal ideal of OX(U ′) corresponding to x ∈ U ′.

Definition 3.17 (see [11, Definition 6.3/8]). A morphism f : X → Y between rigid
analytic varieties is proper if it is separated and there exists an admissible affinoid
covering (SpAi)i∈I of Y such that for all i ∈ I, Xi = f−1(SpAi) has two finite
admissible affinoid coverings (Uij), (Vij) with Vij being relatively compact in Uij

with respect to SpAi for each j.

As properness is local on the base (see [12, Proposition 9.6.2/3]), we will often
restrict our attention to the case when Y = SpA is itself affinoid and satisfies the
condition in Definition 3.17, i.e. we have two finite admissible affinoid coverings
U = (Ui), V = (Vi) of X such that Vi is relatively compact in Ui with respect to Y
for each i. Thus there exists a commutative diagram

A〈x1, . . . , xl〉

θi

��

hi

&&◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

OX(Ui)
res

// OX(Vi)

such that the map θi is surjective and

|hi(xj)|sup < 1

for any j = 1, . . . , l by the maximum principle [11, Theorem 3.1/15].
In particular, hi(xj) is topologically nilpotent in OX(Vi) for each j (it follows from
[11, Corollary 3.1/18] that this notion is independent of the choice of norm on
OX(Vi)).
Moreover, writing Ui1...ij for the finite intersection Ui1 ∩ · · · ∩ Uij , it follows from
separatedness that all Ui1...ij and Vi1...ij are admissible open affinoid subspaces
of X , and that Vi1...ij is relatively compact in Ui1...ij with respect to Y (see [11,
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Lemma 6.3/7.(iii)]).

In this situation (i.e. when the covering (SpAi) in Definition 3.17 consists of a
single affinoid) we say that f : X → Y is elementary proper.

Note that if f : X → Y = SpA is elementary proper, then OX(X) is a finitely
generated A-module by Theorem 1.1. In particular, it is of topologically finite
type, and hence an affinoid K-algebra. The morphism f thus admits a factoriza-
tion X → SpOX(X)→ Y .
More generally, we have the following version of Stein factorization.

Proposition 3.18 (see [12, Proposition 9.6.3/5]). Let f : X → Y be a proper
morphism of rigid analytic K-varieties. Then there exists a rigid analytic K-variety
Z and a factorization

X

f
  ❅

❅

❅

❅

❅

❅

❅

❅

g
// Z

h
��

Y

where g is a surjective proper morphism with connected fibres and g∗OX
∼= OZ , and

where h is finite.

Let f : X → Y be a proper morphism of rigid analytic K-varieties, and let
(ρ,L ) be a Lie algebroid on X .
Most of this paper will be devoted to the special case when L is a free OX -module.
The more general result will be a relatively straightforward corollary.

Theorem 3.19. Let f : X → Y be an elementary proper morphism of rigid analytic
K-varieties, and let L be a Lie algebroid on X which is free as an OX-module.

Then U̇ (L ) is a global Fréchet–Stein sheaf on X, f∗U̇ (L ) is a global Fréchet–

Stein sheaf on Y , and if M is a coadmissible left U̇ (L )-module, then Rjf∗M is a

coadmissible left f∗U̇ (L )-module for each j ≥ 0.

While we will prove the above theorem for coadmissible left modules, all ar-
guments can be easily adapted to right modules. From now on, all coadmissible
modules will be understood to be left modules.

By Lemma 3.15, we can assume without loss of generality that f is equal to the
first map in its Stein factorization, i.e. Y = SpA, where A = OX(X). We will
work in this specific setting until the end of section 5.
Note that if U ⊆ Y is an affinoid subdomain of Y , then all our assumptions are still
satisfied after restricting to f |f−1U : f−1U → U . If U = SpB, then OX(f−1U) = B
by Kiehl’s Proper Mapping Theorem, L |f−1U is a free Lie algebroid and f |f−1U is
an elementary proper morphism f−1U → U by the behaviour of relative compact-
ness under direct products (see [11, Lemma 6.3/7.(i)]).

3.4. The sheaves Un and Mn. Let us abbreviate U̇ (L ) to ıU , and let M be a
coadmissible ıU -module.
We begin by showing that both ıU and f∗ıU are global Fréchet–Stein sheaves. For
this, we will construct sheaves Un such that lim

←−
Un
∼= ıU , similarly to the discussion
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of U̇ (L ) on an affinoid K-variety in [10]. We will then proceed by describing a
similar construction forM, which will allow us to reduce to the Noetherian case.

Lemma 3.20. The pushforward f∗L is a Lie algebroid on Y .

Proof. By Kiehl’s Proper Mapping Theorem, f∗L is a coherent OY -module, and
it is free by assumption.
The anchor map ρ : L → TX gives rise to a Lie algebra action of L on OX(X) = A.
Restricting to an admissible affinoid covering of X , it follows from the definition
of a Lie algebroid that L acts via derivations (see [4, Proposition 9.1]), and that
the corresponding map ρ′(Y ) : L → DerK(A) satisfies the Leibniz property of an
anchor map.
By the remark at the end of the previous subsection, we obtain corresponding
morphisms ρ′(U) : f∗L (U) → TY (U) for any affinoid subdomain U ⊆ Y , which
naturally give rise to an anchor map ρ′ : f∗L → TY , finishing the proof. �

We now fix an affine formal model A inside A = OX(X), and let L be an (R,A)-
Lie lattice inside L = L (X). Since L is assumed to be free, L is a free A-module,
so that we can (and will) take L to be a free A-module.

Proposition 3.21. The sheaf ıU is a global Fréchet–Stein sheaf on X.

Proof. For each n ≥ 0, we define a Grothendieck topology on X , whose site we
denote by Xn, and a sheaf Un on Xn satisfying the conditions in Definition 3.7.

Let U = (Ui), V = (Vi) be affinoid coverings of X as described in Definition
3.17, i.e. for each i, Vi is relatively compact in Ui with respect to Y .

Note that by [4, Lemma 3.1], each OX(Ui) admits an affine formal model con-
taining the image of A under the restriction map

OX(X)→ OX(Ui).

Replacing L by πnL for suitable n, we can assume that OX(Ui) admits an affine
formal model Bi that

(i) contains the image of A, and
(ii) is preserved under the action of L induced via the map L (X) → L (Ui) (as

any affine formal model is topologically of finite type).
We adopt the same terminology as in the case of affinoid subdomains and call such
a Bi an L-stable affine formal model.

Thus
Li := Bi ⊗A L ⊆ OX(Ui)⊗A L = L (Ui)

is an (R,Bi)-Lie lattice inside Li = L (Ui) for each i.

Recall that for each i, we have defined the G-topology Ui,ac(Li) of Li-accessible
subdomains of Ui in Definition 3.11. Again, replacing L by πnL for suitable n and
invoking [4, Proposition 7.6], we can assume that each Ui1...ij and each Vi1...ij is
Li-accessible whenever it is a subspace of Ui (here we are using the fact that both
coverings are finite).
Furthermore, using [4, Lemma 3.1], we can find affine formal models Bij in OX(Uij)
such that Bij contains the image of Bi and Bj under restriction. Replacing L by
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πnL, we can assume that Bij is L-stable for each i, j, and thus both Li-stable and
Lj-stable by construction.
In particular,

Bij ⊗Bi Li
∼= Bij ⊗A L ∼= Bij ⊗Bj Lj

is an (R,Bij)-Lie lattice inside L (Uij).

We now define the site Xn to be the G-topology on X generated by the Ui,ac(Li),
i.e. the finest G-topology on X inducing on Ui the topology Ui,ac(Li) – see [12,
9.1.3].

Recall from the discussion after Definition 3.11 that we have for each non-negative
integer n a sheaf of K-algebras Un,i on Ui,ac(π

nLi) given by

U 7→ OX(U)“⊗Bi
ÿ�U(πnLi)K ,

satisfying lim
←−

Un,i(U) = U̇ (L )(U) for each affinoid subdomain U ⊆ Ui.
On each overlap Uij = Ui ∩ Uj, we have

Un,i|Uij = (OX(Uij)“⊗BiU(Li))˜

= ¤�U(Bij ⊗A L)K˜
= (OX(Uij)“⊗BjU(Lj))˜
= Un,j |Uij ,

where we write M˜ for the presheaf V 7→ OX(V )“⊗M . Thus the sheaves Un,i agree
on all overlaps and glue to give a sheaf Un on Xn.
Since lim

←−
Un,i = ıU |Ui on each Ui, this implies the equality lim

←−
Un(U) = ıU (U) for

any admissible open subspace U of X .

Restricting to any admissible open affinoid subspace U of X , the construction
above coindices with the one given after Definition 3.11, so that the conditions on
flat restriction and vanishing cohomology on U follow directly from [10, Theorems
4.9, 4.10].
Thus ıU ∼= lim

←−
Un is a global Fréchet–Stein sheaf. �

Lemma 3.22. The natural morphism ¸�U (f∗L ) → f∗ıU is an isomorphism. In

particular, f∗ıU is a global Fréchet–Stein sheaf on Y .

Proof. Consider the Čech complex Č•(V,OX), where V = (Vi). It follows from
Corollary 2.18 that this is a finite cochain complex of Banach A-modules with
strict morphisms, where each cohomology group is a finitely generated A-module
by Kiehl’s Proper Mapping Theorem.
Since πnL is a free A-module, so is UA(π

nL) by Rinehart’s Theorem, [22, Theorem
3.1]. In particular, applying [10, Corollary 2.15], the complex

◊�U(πnL)K“⊗AČ
•(V,OX) = Č•(V,Un)

has cohomology

Ȟj(V,Un) ∼= ◊�U(πnL)K“⊗AȞ
j(V,OX) = ◊�U(πnL)K ⊗A Ȟj(V,OX)
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by Lemma 2.19.
This naturally identifies Un(X) with ◊�U(πnL)K , and f∗ıU (Y ) = ıU (X) = U̇A(L).

Restricting f to f |f−1U : f−1U → U preserves all assumed properties of the mor-
phism, so that the same argument applies to arbitrary affinoid subdomains U of Y .
Thus the natural morphism ¸�U (f∗L ) → f∗ıU is bijective on each affinoid subdo-
main of Y , and is hence an isomorphism.
Since the sheaf of Fréchet completed enveloping algebras on an affinoid K-variety
is a global Fréchet–Stein sheaf by Proposition 3.10, the last statement follows im-
mediately. �

We can also read off from the above discussion that Ȟj(V,Un) is a finitely gen-
erated Un(X)-module for any j ≥ 0, which can be seen as a first partial result in
the direction of Theorem 3.19.

We conclude this section by constructing Un-modulesMn such that lim
←−
Mn

∼=M.

In [10, subsection 4.3], we showed thatM|Ui can be written as the inverse limit of
sheavesMn,i on Ui,ac(π

nLi), given by

U 7→ Un(U)⊗ÙU (Ui)
M(Ui).

Note that then by definition of Ù⊗,

Mn,i(U) = Un(U)⊗ÙU (U)
(ıU (U)Ù⊗ÙU (Ui)

M(Ui))

= Un(U)⊗ÙU (U)
M(U)

for any U ∈ Ui,ac(π
nL).

ThusMn,i agrees withMn,j on Uij , giving a sheafMn on the site Xn defined in the
proof of Proposition 3.21. Since lim

←−
Mn,i

∼=M|Ui , we see that lim
←−
Mn(U) ∼=M(U)

for any admissibe open subspace U of X .

It follows from [10, Theorem 4.16] and [25, Tag 03F9] that U resp. V are ad-
missible coverings such that if U ∈ Xn is a finite intersection of sets in U resp. V,
then Hj(U,Mn) = 0 for any j > 0.
Thus applying [25, Tag 03F7] gives

Ȟj(U,Mn) ∼= Hj(Xn,Mn) ∼= Ȟj(V,Mn)

for any j ≥ 0.

Finally, we will see later that

Rjf∗M(Y ) = Hj(X,M) ∼= lim
←−

Ȟj(V,Mn),

so we have found natural candidates exhibiting the coadmissibility of Hj(X,M).

4. Global sections

In particular, we can reduce our problem to a ‘Noetherian’ setup. For the global
sections, we wish to show the following.

(i) For each j ≥ 0 and each n, Ȟj(V,Mn) is a finitely generated Un(X)-module.
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(ii) The natural morphism

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1)→ Ȟj(V,Mn)

is an isomorphism of Un(X)-modules.
(iii) The natural morphism

Ȟj(V,M)→ lim
←−

Ȟj(V,Mn)

is an isomorphism of ıU (X)-modules.
The argument for (i) will rest on the discussion in section 2 and be analogous

to the argument in [18], while (ii) will be established through an application of
Theorem 2.21. The last statement (iii) will then follow easily from property (ii) in
Proposition 3.4.

Recall the commutative diagram of A-modules

A〈x1, . . . , xl〉
hi1...ij

''❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

��

OX(Ui1...ij ) // OX(Vi1...ij )

induced from the definition of properness, where hi1...ij (xm) is topologically nilpo-
tent in OX(Vi1...ij ) for each m = 1, . . . , l.

Equip A〈x1, . . . xl〉 with the natural residue norm (i.e. with unit ball A〈x〉), and
recall that in the proof of Proposition 3.21 we have already chosen residue norms
for the other terms given by L-stable affine formal models as unit balls, which turns
the above into a diagram in BanA.
Now apply the functor Un(X)“⊗A− to the diagram to obtain

Un(X)“⊗AA〈x1, . . . , xl〉

θ′

��

h′

**❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

Un(X)“⊗AO(Ui1...ij ) // Un(X)“⊗AOX(Vi1...ij )

which is a commutative diagram in BanUn(X).
Note that h′ is no longer a homomorphism of algebras, but only of left Banach
Un(X)-modules. It inherits from hi1...ij the property that

h′(xr) = (Un(X)“⊗Ahi1...ij )(x
r)

tends to zero as |r| → ∞, so Corollary 2.6 implies that h′ is strictly completely
continuous in BanUn(X).

Now note that by [12, Proposition 2.1.7/4]

Un(X)“⊗AOX(Ui1...ij )
∼= UA(L)“⊗AOX(Ui1...ij ),

where UA(L) is equipped with the norm with unit ball U(πnL).
Thus Un(X)“⊗AOX(Ui1...ij )

∼= Un(Ui1...ij ).

The corresponding statement holds for Vi1...ij , and the horizontal map between
the two terms is simply the restriction map.
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Thus we can read the above diagram as

Un(X)“⊗AA〈x1, . . . , xl〉

θ′

��

h′

))❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

Un(Ui1...ij )
res

// Un(Vi1...ij )

where h′ is strictly completely continuous.

Lemma 4.1. If M is a left coadmissible ıU -module, then Ȟj(V,Mn) is a finitely
generated Un(X)-module for all j ≥ 0.

Proof. By functoriality, both θ′ and h′ are maps in BanUn(X). Likewise, the re-
striction maps are naturally morphisms in BanUn(X).

By [12, Proposition 2.1.8/6], the map θ′ is a strict surjection in BanUn(X).
We have thus shown that all the maps in the diagram are in BanUn(X), the arrow
on the left is surjective, and h′ is strictly completely continuous.

We now verify the conditions of Proposition 2.17 by following the corresponding
steps from the proof of Theorem 1.1 as in [18].
SinceMn(Ui1...ij ) is finitely generated over Un(Ui1...ij ), it is equipped with a canon-
ical topology, making it an object in BanUn(Ui1...ij

) and hence a fortiori in BanUn(X).

All the restriction maps are naturally continuous, so the Čech complexes Č•(U,Mn)
and Č•(V,Mn) are cochain complexes in BanUn(X).
By construction, we have

Mn(Vi1...ij )
∼= Un(Vi1...ij )⊗Un(Ui1...ij

)Mn(Ui1...ij ),

so that finite generation induces a commutative diagram in BanUn(X)

Un(Ui1...ij )
⊕r //

��

Un(Vi1...ij )
⊕r

��

Mn(Ui1...ij )
res

//Mn(Vi1...ij )

where both vertical maps are surjections and r is the size of some finite generating
set.

Attaching this to r copies of the previous diagram, we obtain

Un(X)“⊗AA〈x1, . . . , xl〉
⊕r

�� ))❙❙
❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

Un(Ui1...ij )
⊕r //

��

Un(Vi1...ij )
⊕r

��

Mn(Ui1...ij ) //Mn(Vi1...ij )
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Writing Gi1...ij := (Un(X)“⊗AA〈x1, . . . xl〉)
⊕r and β′

i1...ij
: Gi1...ij → Mn(Ui1...ij )

for the surjective morphism on the left-hand side of the diagram, we can invoke
Lemma 2.8 and Lemma 2.7 to see that

res ◦ β′
i1...ij : Gi1...ij →Mn(Vi1...ij )

is strictly completely continuous in BanUn(X), by commutativity of the diagram.

Fixing j and summing over all different Ui1...ij , Lemma 2.8 thus implies that

βj : F
j := ⊕Gi1...ij → ⊕Mn(Ui1...ij ) = Čj(U,Mn)

is a surjection in BanUn(X) with the property that res ◦ βj is strictly completely
continuous.
But res : Čj(U,Mn) → Čj(V,Mn) induces an isomorphism on the level of co-
homology groups, as seen in the previous section. Thus we have verified that
Proposition 2.17 applies, proving the result. �

We note that it now follows from Corollary 2.18 that Č•(V,Mn) consists of
strict morphisms.

In general, we see that the part of Theorem 3.19 which is concerned with cer-
tain finiteness properties is still very close to the proof of Theorem 1.1. The only
additional difficulties here lie in passing to sheaves Un andMn whose structure is
more ‘finite’ than that of the original sheaves, and analyzing some easy completed
tensor products.

Note however that there remains an additional property to be checked which has
no counterpart in Theorem 1.1. We need to show that the finite components which
we have exhibited match up in the right way, that is to say

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1) ∼= Ȟj(V,Mn).

Replacing L by πnL, it is enough to consider the case n = 0.

Recall that U0(X) = ’U(L)K is flat over U1(X) by [4, Theorem 6.6], so we know
that

U0(X)⊗U1(X) Ȟ
j(V,M1) ∼= Hj(U0(X)⊗ Č•(V,M1)).

Our first goal will be to show that the isomorphism claimed above can be viewed
as a “⊗-version of this statement.

Lemma 4.2. If V is an admissible open affinoid subspace of X and V ∈ X0, then
the natural map

U0(X)“⊗U1(X)M1(V )→M0(V )

is an isomorphism of U0(X)-modules.
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Proof. Using Lemma 2.19 and associativity of the completed tensor product (see
[12, Proposition 2.1.7/6]), we have the following chain of isomorphisms

M0(V ) ∼= U0(V )⊗U1(V )M1(V )

∼= U0(V )“⊗U1(V )M1(V )

∼=
(’U(L)K“⊗AOX(V )

)
“⊗U1(V )M1(V )

∼=

Å
’U(L)K“⊗’U(πL)K

÷U(πL)K“⊗AOX(V )

ã
“⊗U1(V )M1(V )

∼=’U(L)K“⊗’U(πL)K

((÷U(πL)K“⊗AOX(V )
)
“⊗U1(V )M1(V )

)

∼= U0(X)“⊗U1(X)

(
U1(V )“⊗U1(V )M1(V )

)

∼= U0(X)“⊗U1(X)M1(V ),

as required. �

To continue in our proof of Theorem 3.19, we therefore wish to show that

U0(X)“⊗U1(X)Ȟ
j(V,M1) ∼= Hj(U0(X)“⊗U1(X)Č

•(V,M1)).

This will be achieved by checking all the conditions in Corollary 2.22, where the
role of A◦ is played by U(πL), and that of U◦ by U(L).

Lemma 4.3. U(L)⊗U(πL)
÷U(πL) carries a natural ring structure, making it a left

and right Noetherian ring.

Proof. By freeness of L, we have a natural injection UA(L)→ UA(L) (by Rinehart’s

Theorem, [22, Theorem 3.1]). Since ÷U(πL) is flat over U(πL) by [9, 3.2.3.(iv)], we

thus can view U(L)⊗U(πL)
÷U(πL) as a subset of

UA(L)⊗U(πL)
÷U(πL) = UA(L)⊗UA(L)

÷U(πL)K = ÷U(πL)K ,

identifying it with U(L) ·÷U(πL). We will show that this is a Noetherian subring of
÷U(πL)K .

Since [L, πL] ⊆ πL, an easy inductive argument shows that [L, U(πL)] ⊆ U(πL),
where the commutator is understood in UA(L).
Hence we have that for each ∂ ∈ L, the commutator map

[∂,−] : UA(L)→ UA(L)

preserves U(πL), i.e. is a bounded linear map on UA(L) with unit ball U(πL),
where we can take 1 as a bound.
Thus passing to the completion, [L,÷U(πL)] ⊆ ÷U(πL), where the commutator is

understood in ÷U(πL)K . Therefore

U(L) ·÷U(πL)

is a subring of ÷U(πL)K by another easy induction argument, as required.
Denote this ring by E .
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Let F•U(L) be the usual degree filtration on UA(L). Then E is filtered by

F ′
iE = FiU(L) ·÷U(πL),

such that the following is satisfied:

(i) F ′
0E = ÷U(πL).

(ii) F ′
iE · F

′
jE ⊆ F ′

i+jE , by reiterating the above commutator expression.
Just as in the proof of [10, Theorem 3.5], the associated graded ring gr′E is generated

by finitely many central elements over the zeroth piece ÷U(πL), which is Noetherian
by Rinehart’s Theorem and [9, 3.2.3.(vi)].
Thus E is a Noetherian ring by [21, Corollary D.IV.5]. �

We thus have confirmed that the first condition in Corollary 2.22 is satisfied. It
remains to show that the relevant Tor groups have bounded π-torsion.

Write OX(Vi1...ij ) = B, and let B = BVi1...ij
be an L-stable affine formal model, as

discussed in the previous section.
Denote by UB the Noetherian ring UB(B ⊗A πL) and by ”UB its π-adic completion.
Note that this is the unit ball of U1(Vi1...ij ).
Similarly to the above, we have the following lemma.

Lemma 4.4. U(L)⊗U(πL)
”UB carries a natural ring structure, making it a left and

right Noetherian ring.

Proof. As before, we identify the tensor product with a certain subset of a K-
algebra.
Since U(L) is flat over A, we have an injection

U(L)⊗U(πL) U(πL)⊗A B = U(L)⊗A B → U(L)⊗A B = UA(L)⊗A B.

As U(πL)⊗B ∼= U(B⊗πL), and ⁄�U(B ⊗ πL) is flat over U(B⊗πL) by [9, 3.2.3.(iv)],
this induces an injective map

U(L)⊗U(πL)
⁄�U(B ⊗ πL)→ U(B ⊗ L)⊗U(B⊗L)

⁄�U(B ⊗ πL)K ,

and the right-hand side is clearly just ⁄�U(B ⊗ πL)K = ”UB ⊗ K. The map above
identifies U(L)⊗”UB with U(L) ·”UB in this algebra.
Since B is L-stable, we can repeat the argument in Lemma 4.3 to show this is a

Noetherian subring of ⁄�U(B ⊗ πL)K . �

Lemma 4.5. Let N be a finitely generated ”UB-module.

Then the module TorU(πL)
s (U(L), N) has bounded π-torsion for each s ≥ 0.

Thus TorU(πL)
s (U(L), Čj(V,M1)

◦) has bounded π-torsion for each s ≥ 0 and each
j.

Proof. We abbreviate the functor TorU(πL)
s (U(L),−) to Ts(−).

By Noetherianity, we have a short exact sequence

0→ N ′ →”UB

⊕r
→ N → 0

for some integer r and some finitely generated ”UB-module N ′.
We will use this to prove the lemma inductively via the corresponding long exact
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sequence.

For s = 0, we have that

U(L) ⊗U(πL) N = U(L)⊗U(πL)
”UB ⊗ÛB

N

is a finitely generated U(L) ⊗”UB-module and hence has bounded π-torsion by
Noetherianity (see Lemma 4.4).

Next, we show that
TorU(πL)

s (U(L),”UB) = 0

for s ≥ 1.
For this note that by flatness of U(L) and U(πL) over A, we have

0 = TorAs (U(L),B) = TorU(πL)
s (U(L), U(πL) ⊗A B),

using [26, Proposition 3.2.9]. Therefore, TorU(πL)
s (U(L), UB) = 0.

As moreover”UB = ⁄�U(B ⊗ πL) is flat over UB by [9, 3.2.3.(iv)], we obtain

TorU(πL)
s (U(L),”UB) = 0

for s ≥ 1 by [26, Corollary 3.2.10].

Thus, the long exact sequence

· · · → Ts(N
′)→ Ts

Ä”UB

ä⊕r
→ Ts(N)→ Ts−1(N

′)→ . . .

shows that Ts(N) → Ts−1(N
′) is an injection for all s, and an isomorphism for

s ≥ 2.
So if we suppose that Ts−1(N) has bounded π-torsion for any finitely generated
”UB-module N , this holds in particular for N ′, proving that Ts(N) has bounded
π-torsion as well.
By induction, this finishes the proof of the first statement.

NowM1(Vi1...ij )
◦ is a finitely generated”UB = ⁄�U(B ⊗ πL)-module by Lemma 2.20,

so taking the corresponding finite direct sum to form the jth term of the Čech
complex proves the result. �

Theorem 4.6. The natural morphism

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1)→ Hj(Un(X)“⊗Un+1(X)Č

•(V,Mn+1))

is an isomorphism of Un(X)-modules for each n ≥ 0, j ≥ 0.

Proof. Without loss of generality, we can assume n = 0.
Then the theorem is precisely Corollary 2.22 applied to the Čech complex Č•(V,M1).
This is a finite cochain complex in BanU1(X) with strict morphisms by Corollary
2.18.
By Lemma 4.3, U(L) ⊗U(πL)

÷U(πL) is a Noetherian ring, Ȟj(V,M1) is a finitely

generated U1(X) = ÷U(πL)K-module by Theorem 4.1, and Lemma 4.5 ensures
bounded π-torsion for each of the Tor groups. Thus Corollary 2.22 states that

UA(L)
′ ⊗UA(L) Č

•(V,M1)
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is a strict complex, where U(L) is equipped with the norm with unit ball U(πL)
and we write U(L)′ for U(L) with unit ball U(L).
Thus Corollary 2.22 together with [12, Proposition 2.1.7/4] implies that

U0(X)⊗U1(X) Ȟ
j(V,M1) = ’U(L)′ ⊗‘U(L)

Ȟj(V,M1)

∼= Hj(U(L)′“⊗U(L)Č
•(V,M1))

∼= Hj(U0(X)“⊗U1(X)Č
•(V,M1)),

proving the result. �

Corollary 4.7. The ıU (X)-module lim
←−

Ȟj(V,Mn) is coadmissible for each j ≥ 0.

Proof. Each module Ȟj(V,Mn) is a finitely generated Un(X)-module by Theorem
4.1, and

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1) ∼= Ȟj(V,Mn)

by the theorem above combined with the observation that

Un(X)“⊗Un+1(X)Č
•(V,Mn+1) = Č•(V,Mn)

by Lemma 4.2. �

Finally, fixing an integer j, we show that lim
←−

Ȟj(V,Mn) gives indeed the corre-
sponding higher direct image ofM.

Proposition 4.8. For each j ≥ 0, the canonical morphism of ıU (X)-modules

Hj(X,M) ∼= lim
←−

Ȟj(V,Mn)

is an isomorphism.

Proof. By Proposition 3.4.(ii), each system (Čj(V,Mn))n satisfies the Mittag-
Leffler property as described in [14, 0.13.2.4], and by Corollary 4.7, so does the
inverse system (Ȟj(V,Mn))n. Hence we can apply [14, Proposition 0.13.2.3] to
deduce that

Ȟj(V,M) = Hj(lim
←−

Č•(V,Mn)) ∼= lim
←−

Ȟj(V,Mn).

Since M also has vanishing higher Čech cohomology on affinoids by the comment
following [10, Theorem 4.16], we have Hj(X,M) ∼= Ȟj(V,M) by [25, Tag 03F7],
and the result follows. �

This concludes the proof that Rjf∗M(Y ) = Hj(X,M) is a coadmissible ıU (X)-
module.

5. Localization

It remains to show that other sections of the sheaf are obtained by localization,
that is if U = SpB ⊆ Y is an affinoid subdomain, we want to show that

ıU (f−1U)Ù⊗ÙU (X)
Hj(X,M) := lim

←−

(
Un(f

−1U)⊗Un(X) H
j(X,Mn)

)
∼= Hj(f−1U,M)

via the natural morphism.
Similarly to the above, our strategy will consist in a reduction to the Noetherian
components of the coadmissible module and an argument involving completed ten-
sor products similar to Theorem 4.6.
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Recall from Lemma 3.20 that f∗L is a Lie algebroid on Y with f∗L (Y ) = L.
In particular, we can talk about the πnL-accessible affinoid subdomains of Y , as
introduced in Definition 3.11.

Our plan looks as follows.

• Step A: Consider the case where U is a rational subdomain which is πnL-
accessible in one step. As B = OY (U) can be described as a quotient of
A〈t〉, we will establish some properties relating to A〈t〉 before passing to
the quotient via some homological algebra.
• Step B: An easy inductive argument extends the result to any πnL-accessible

rational subdomain.
• Step C: Passing to suitable coverings and arguing locally, we can generalize

to arbitrary πnL-accessible affinoid subdomains. Since any affinoid sub-
domain is πnL-accessible for sufficiently large n ([4, Proposition 7.6]), this
finishes the proof.

Step A. Let x ∈ A be non-zero such that πnL · x ⊆ A, and consider

Y1 = Y (x) = SpB1, Y2 = Y (x−1) = SpB2.

We adopt the notation from [4]. Let a be a positive integer satisfying πax ∈ A, and
define

u1 = πax− πat ∈ A〈t〉, u2 = πaxt− πa ∈ A〈t〉.

Then we have short exact sequences

0 // A〈t〉
ui·

// A〈t〉
ρ

// Bi
// 0

for i = 1, 2 by [4, Lemma 4.1].
We define Bi = A〈t〉/uiA〈t〉. Then Bi = Bi/π−tor(Bi) = ρ(A〈t〉) is a πnL-stable
affine formal model in Bi, see [4, Lemma 4.3].

By the definition of Ù⊗ and Proposition 4.8, it will be enough to show that the
natural morphism

Un(f
−1Yi)⊗Un(X) Ȟ

j(V,Mn)→ Ȟj(V ∩ f−1Yi,Mn)

is an isomorphism for i = 1, 2.

First recall that by Kiehl’s Proper Mapping Theorem, OX(f−1Yi) = Bi, and

Un(f
−1Yi) =

¤�U(Bi ⊗ πnL)K
∼= Bi“⊗AUn(X)

by Corollary 3.22.

Note that for any admissible open affinoid subspace V ⊆ X , we have

f−1Yi ∩ V = SpBi ×SpA SpOX(V ) = Sp
(
Bi“⊗AOX(V )

)
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by [12, Proposition 7.1.4/4], and hence

Mn(f
−1Yi ∩ V ) = Un(f

−1Yi ∩ V )⊗Un(V )Mn(V )

= Un(f
−1Yi ∩ V )“⊗Un(V )Mn(V )

=
(
(Bi“⊗AOX(V ))“⊗OX (V )Un(V )

)“⊗Un(V )Mn(V )

= (Bi“⊗AOX(V ))“⊗OX (V )Mn(V )

= Bi“⊗AMn(V ).

Thus
Č•(V ∩ f−1Yi,Mn) ∼= Bi“⊗AČ

•(V,Mn),

which in turn can be written as Un(f
−1Yi)“⊗Un(X)Č

•(V,Mn) by the above.

We thus wish to show that

Un(f
−1Yi)“⊗Un(X)Ȟ

j(V,Mn) ∼= Hj(Un(f
−1Yi)“⊗Un(X)Č

•(V,Mn)).

We will prove this isomorphism by a number of lemmas, mainly exploiting the short
exact sequence

0→ A〈t〉 → A〈t〉 → Bi → 0

and our study of completed tensor products.

Recall from [4, Proposition 4.2] that the πnL-action on A lifts to an action σi :
πnL → DerR(A〈t〉), turning A〈t〉 ⊗A πnL into an (R,A〈t〉)-Lie algebra. We will
write

Un(X)〈t〉i = ¤�U(A〈t〉 ⊗A πnL)K
for the corresponding completed enveloping algebra.

Lemma 5.1. The natural map

Un(X)〈t〉i ⊗Un(X) Ȟ
j(V,Mn)→ Hj(Un(X)〈t〉i“⊗Un(X)Č

•(V,Mn))

is an isomorphism of left Un(X)〈t〉i-modules for each j ≥ 0.

Proof. We know that Č•(V,Mn) is a finite cochain complex of Banach Un(X)-
modules, a fortiori of Banach A-modules, with strict morphisms.

As as right Un(X)-module, Un(X)〈t〉i is isomorphic to

A〈t〉“⊗AUn(X)

by [4, Proposition 2.3], which is the completion of A〈t〉 ⊗A Un(X) with respect to
the tensor product semi-norm with unit ball given by

A〈t〉 ⊗A
÷U(πL).

In particular, viewing the morphism in the statement of the lemma as a morphism
of A〈t〉-modules, it can be written as

A〈t〉“⊗AȞ
j(V,Mn)→ Hj(A〈t〉“⊗AČ

•(V,Mn)).

Since A〈t〉 is flat over A by [11, Remark 7.3/2], this is an isomorphism of A〈t〉-
modules by [10, Corollary 2.15] and hence a bijection. Thus the natural morphism

Un(X)〈t〉i“⊗Un(X)Ȟ
j(V,Mn)→ Hj(Un(X)〈t〉i“⊗Č•(V,Mn))

is an isomorphism of Un(X)〈t〉i-modules. �
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We now fix a finite set of indices i1, . . . , ij and write V = Vi1...ij , C = OX(V ).

Lemma 5.2. Let C be a πnL-stable affine formal model in C. Then

Bi ⊗A
¤�UC(C ⊗A πnL)

has bounded π-torsion.

Proof. Define B′
i = A[t]/uiA[t]. Note that the π-adic completion of the short exact

sequence

0 // A[t]
ui·

// A[t] // B′
i

// 0

is obtained by applying the exact functor A〈t〉 ⊗A[t] − by [13, Theorem 7.2]. In

particular, “B′
i = Bi.

Since B′
i is of finite type over A, the ring B′

i ⊗A C is of finite type over C and
is hence Noetherian. In particular, it has bounded π-torsion.

Tensoring with a flat module preserves the property of bounded π-torsion, as the π-
torsion of an R-module M is given by the kernel of the natural map M →M⊗RK.
Since Bi = “B′

i, it is flat over B′
i by [13, Theorem 7.2]. Moreover,

U(C ⊗A πL) ∼= C ⊗A U(πnL)

is flat over C, and ¤�U(C ⊗A πnL) is flat over U(C ⊗A πnL), again by [9, 3.2.3.(iv)].
Thus

Bi ⊗A
¤�U(C ⊗A πnL) ∼= Bi ⊗B′

i
(B′

i ⊗A C)⊗C
¤�U(C ⊗ πnL)

has bounded π-torsion, as required. �

Corollary 5.3. Let C be a πnL-stable affine formal model in C. Then

Bi ⊗A
¤�U(C ⊗A πnL)

has bounded π-torsion.

Proof. Writing T = π−tor(Bi), we have a short exact sequence

0→ T → Bi → Bi → 0.

Since Bi is Noetherian, T is annihilated by some power of π, i.e. for some r we
have πrT = 0.

Now consider the exact sequence

T ⊗ ¤�U(C ⊗A πnL)→ Bi ⊗ ¤�U(C ⊗A πnL)→ Bi ⊗ ¤�U(C ⊗A πnL)→ 0.

If x ∈ Bi ⊗ ¤�U(C ⊗A πnL) is killed by πs, then any preimage y ∈ Bi ⊗ ¤�U(C ⊗A πnL)
has the property that πsy gets sent to 0. In particular, πr+sy = 0, as πrT = 0. So

if y is a preimage of x, then y is π-torsion. Since Bi ⊗ ¤�U(C ⊗A πnL) has bounded
π-torsion by the previous lemma, this proves the result. �

Lemma 5.4. There is a short exact sequence

0 // A〈t〉“⊗AUn(V )
ui·

// A〈t〉“⊗AUn(V ) // Bi“⊗AUn(V ) // 0

of left A〈t〉-modules.
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Proof. This is an easy variant of [10, Lemma 4.11] and [4, Proposition 4.3.c)].
First note that the short exact sequence

0→ A〈t〉 → A〈t〉 → Bi → 0

consists of strict morphisms by [11, Proposition 3.1/20] and [10, Lemma 2.6].

Since Bi is flat over A by [11, Corollary 4.1/5], we have

TorA1 (Bi,Un(V )) = 0,

so tensoring with Un(V ) yields a short exact sequence

0→ A〈t〉 ⊗A Un(V )→ A〈t〉 ⊗A Un(V )→ Bi ⊗A Un(V )→ 0.

Finally, Bi ⊗A
¤�U(C ⊗A πnL) has bounded π-torsion by Corollary 5.3, so that the

short exact sequence above consists of strict morphisms and stays exact after com-
pletion by [10, Lemma 2.13]. �

Lemma 5.5. Let N be a finitely generated left Banach Un(V )-module. Then we
have a short exact sequence

0 // A〈t〉“⊗AN
ui·

// A〈t〉“⊗AN // Bi“⊗AN // 0

of left A〈t〉-modules, analogously for right modules.

Proof. Since N is finitely generated over the Noetherian algebra Un(V ), we have a
short exact sequence

0→ N ′ → Un(V )⊕r → N → 0,

where N ′ is another finitely generated Banach module over Un(V ). By [10, Lemma
2.6], this consists of strict morphisms.

Since A〈t〉 is flat over A by [11, Remark 7.3/2], we know by [10, Lemma 2.13]
that

0→ A〈t〉“⊗AN
′ → A〈t〉“⊗AUn(V )⊕r → A〈t〉“⊗AN → 0

is exact.

Moreover, Bi“⊗AN
′ ∼= Un(f

−1Yi ∩ V ) ⊗Un(V ) N
′ as left Bi-modules, where we

could omit the completion symbol on the right-hand side by Lemma 2.19. Likewise
for the other terms.
Now f−1Yi ∩ V is a rational subdomain of V by [11, Proposition 3.3/13], and is
actually C ⊗ πnL-accessible - it is V (x) if i = 1, V (x−1) if i = 2, again by [11,
Proposition 3.3/13]. So by [10, Theorem 4.10], we know that

0→ Bi“⊗AN
′ → Bi“⊗AUn(V )⊕r → Bi“⊗AN → 0

is exact.
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We thus obtain the following commutative diagram of left A〈t〉-modules

0 // A〈t〉“⊗AN
′ //

f1
��

A〈t〉“⊗AUn(V )⊕r //

g1

��

A〈t〉“⊗AN //

h1

��

0

0 // A〈t〉“⊗AN
′ //

f2
��

A〈t〉“⊗AUn(V )⊕r //

g2

��

A〈t〉“⊗AN //

h2

��

0

0 // Bi“⊗AN
′ // Bi“⊗AUn(V )⊕r // Bi“⊗AN // 0

where each row is exact.
We know from [12, Proposition 2.1.8/6] that f2, g2 and h2 are surjections, so we
have a long exact sequence

0→ ker f1 → ker g1 → kerh1 → ker f2/ Im f1 → ker g2/ Im g1 → kerh2/ Imh1 → 0.

By Lemma 5.4, this becomes

0→ ker f1 → 0→ kerh1 → ker f2/ Im f1 → 0→ kerh2/ Imh1 → 0,

so we immediately get that kerh2 = Imh1. But this argument holds for any finitely
generated Un(V )-module, so in particular for N ′. Thus ker f2 = Im f1, and by ex-
actness kerh1 = 0.

Thus
0→ A〈t〉“⊗AN → A〈t〉“⊗AN → Bi“⊗AN → 0

is a short exact sequence. �

Theorem 5.6. The natural morphism

Un(f
−1Yi)⊗Un(X) Ȟ

j(V,Mn)→ Hj(Un(f
−1Yi)“⊗Un(X)Č

•(V,Mn))

is an isomorphism of Un(f
−1Yi)-modules for each j ≥ 0.

Proof. We abbreviate Ȟj(V,Mn) to Hj and Č•(V,Mn) to C•.

Since
Un(f

−1Yi) ∼= Bi“⊗AUn(X)

as Bi-modules, it is enough to show that the natural morphism

Bi“⊗AH
j → Hj(Bi“⊗AC

•)

is an isomorphism of left Bi-modules, or equivalently of A〈t〉-modules.

Since Un(f
−1Yi) = Un(f∗L )(Yi) is flat over Un(X) = Un(f∗L )(Y ) on the right

by [10, Theorem 4.10], we know that

Tor
Un(X)
1

(
Un(f

−1Yi), H
j
)
= 0,

so that the short exact sequence of (A〈t〉,Un(X))-bimodules from [10, Lemma 4.11],

0 // Un(X)〈t〉i
ui·

// Un(X)〈t〉i // Un(f
−1Yi) // 0

remains exact after applying the functor − ⊗Un(X) H
j, producing a short exact

sequence of left A〈t〉-modules, which can be written as

0→ A〈t〉“⊗AH
j → A〈t〉“⊗AH

j → Bi“⊗AH
j → 0.
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By Lemma 5.5, we also have a short exact sequence

0→ A〈t〉“⊗AC
• → A〈t〉“⊗AC

• → Bi“⊗AC
• → 0,

of left A〈t〉-modules.

This now induces a long exact sequence

· · · → Hj(A〈t〉“⊗C•)→ Hj(A〈t〉“⊗C•)→ Hj(Bi“⊗C•)→ . . .

fitting into a commutative diagram

A〈t〉“⊗Hj ui·
//

∼=

��

A〈t〉“⊗Hj //

∼=

��

Bi“⊗Hj ξ
//

θ

��

A〈t〉“⊗Hj+1 ui·
//

∼=

��

A〈t〉“⊗Hj+1

∼=

��

Hj(A〈t〉“⊗C•) // Hj(A〈t〉“⊗C•) // Hj(Bi“⊗C•) // Hj+1(A〈t〉“⊗C•) // Hj+1(A〈t〉“⊗C•)

where the vertical maps are isomorphisms as indicated by Lemma 5.1.

The top row is exact (with ξ being the zero map) by the exactness of the short
exact sequences above, and the bottom row is exact by construction, so θ is an
isomorphism by the 5-lemma, as required. �

Step B. We now generalize the argument to arbitrary πnL-accessible rational sub-
domains.

Proposition 5.7. Let U ⊆ Y be a πnL-accessible rational subdomain of Y . Then
the natural morphism

Un(f
−1U)⊗Un(X) Ȟ

j(V,Mn)→ Hj(Un(f
−1U)“⊗Un(X)Č

•(V,Mn))

is an isomorphism for each j ≥ 0, and thus

ıU (f−1U)Ù⊗ÙU (X)
Hj(X,M) ∼= Hj(f−1U,M).

Proof. Let U be πnL-accessible in r steps. Theorem 5.6 proves the case of r = 1.
We proceed inductively. Let V ⊆ Y be a πnL-accessible rational subdomain in
r − 1 steps, containing U and satisfying the properties in Definition 3.11, so that
U = V (x) or V (x−1) for a suitable x ∈ OY (V ).
By induction hypothesis, we have

Un(f
−1V )⊗Un(X) Ȟ

j(V,Mn) ∼= Hj(Un(f
−1V )“⊗Un(X)Č

•(V,Mn))

∼= Hj(f−1V ∩V,Mn).

Moreover, the restriction

f |f−1V : f−1V → V

is an elementary proper morphism with trivial Stein factorization, and L |f−1V is a
free Lie algebroid on f−1V , i.e. all our assumption remain valid under restriction.
But now U is a rational subdomain of V which is C ⊗A πnL-accessible in one step,
where C is a suitable affine formal model in OY (V ). Thus Theorem 5.6 implies that

Un(f
−1U)⊗Un(f−1V )Ȟ

j(f−1V ∩V,Mn) ∼= Hj(Un(f
−1U)“⊗Un(f−1V )Č

•(f−1V ∩V,Mn)).
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Writing Hj for Ȟj(V,Mn), we therefore obtain

Un(f
−1U)⊗Un(X) H

j ∼= Un(f
−1U)⊗Un(f−1V ) Un(f

−1V )⊗Un(X) H
j

∼= Un(f
−1U)⊗Un(f−1V ) Ȟ

j(f−1 ∩V,Mn),

and thus

Un(f
−1U)⊗Un(X) H

j ∼= Hj(Un(f
−1U)“⊗Un(f−1V )Č

•(f−1V ∩V,Mn))

∼= Hj(Un(f
−1U)“⊗Un(f−1V )Un(f

−1V )“⊗Un(X)Č
•(V,Mn))

∼= Hj(Un(f
−1U)“⊗Un(X)Č

•(V,Mn)),

as required. �

Step C.

Theorem 5.8. Let U ⊆ Y be an affinoid subdomain. Then the natural morphism

ıU (f−1U)Ù⊗ÙU (X)
Hj(X,M)→ Hj(f−1U,M)

is an isomorphism for each j ≥ 0.

Proof. We know from [4, Proposition 7.6] that U is πnL-accessible for sufficiently
large n, so there exists a finite covering of U by πnL-accessible rational subdomains
(Wi) of Y for sufficiently large n.
By Corollary 4.7 and Proposition 4.8, Hj(X,M) is a coadmissible ıU (X)-module,
so that

ıU (f−1U)Ù⊗ÙU (X)
Hj(X,M)

is a coadmissible ıU (f−1U) = ¸�U (f∗L )(U)-module.

We have a natural morphism

Loc
(ıU (f−1U)Ù⊗ÙU (X)

Hj(X,M)
)
→

(
Rjf∗M

)
|U

of sheaves of ¸�U (f∗L )|U -modules, and by Proposition 5.7, this becomes an isomor-
phism after taking sections over any Wi or any finite intersection of Wis.
Considering the corresponding Čech complex therefore forces the map between the
global sections also to be an isomorphism, i.e.

ıU (f−1U)Ù⊗ÙU (X)
Hj(X,M) ∼= Hj(f−1U,M).

�

This concludes the proof of Theorem 3.19.

6. Generalizations, examples, applications

6.1. Generalizations. We can now state various generalizations of Theorem 3.19,
considering glueing and passing to coadmissible enlargements.

Lemma 6.1. Let f : X → Y be a proper morphism of rigid analytic K-varieties,
and assume Y is affinoid. Let L be a Lie algebroid on X which is a free OX -
module.

Then U̇ (L ) is a global Fréchet–Stein sheaf on X, and f∗U̇ (L ) is a global Fréchet–
Stein sheaf on Y .
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If M is a coadmissible U̇ (L )-module, then Rjf∗M is a coadmissible f∗U̇ (L )-
module for each j ≥ 0.

Proof. Write f = hg for the Stein factorization. Then the same argument as in
Lemma 3.20 shows that g∗L is a Lie algebroid, and by Lemma 3.22, the morphism
¸�U (g∗L ) → g∗U̇ (L ) becomes an isomorphism under restriction to each h−1Yi.

Thus g∗U̇ (L ) ∼= ¸�U (g∗L ) is a global Fréchet–Stein sheaf by Proposition 3.10, and

hence so is f∗U̇ (L ) by Lemma 3.15.

By definition of properness, there exists an affinoid covering (Yi) of Y such that
for Xi = f−1Yi, the morphism f |Xi : Xi → Yi is elementary proper. Since Y is
affinoid, we can assume that the covering is finite, and the definition of properness
now produces a finite covering (Uij) of X by affinoid subspaces (which is admis-
sible by G-topology axioms). Choosing a Lie lattice in g∗L (Y ) = L (X), we can

repeat the construction of Un as in subsection 3.4 to verify that U̇ (L ) is a global
Fréchet–Stein sheaf on X .

Now by Theorem 3.19 and Lemma 3.15, if M is a coadmissible U̇ (L )-module,

then Rjf∗M|Yi is a coadmissible f∗U̇ (L )|Yi -module for each i and every j ≥ 0,
and thus Rjf∗M is coadmissible. �

Lemma 6.2. Let f : X → Y be a proper morphism of rigid analytic K-varieties.
Let L be a Lie algebroid on X, and suppose there exists an affinoid covering (Yi)
of Y such that the restriction of L to Xi = f−1Yi is free for each i.

Then f∗U̇ (L ) is a full Fréchet–Stein sheaf on Y .

If M is a coadmissible U̇ (L )-module, then Rjf∗M is a coadmissible f∗U̇ (L )-
module for each j ≥ 0.

Proof. Without loss of generality, we can assume Y to be affinoid, and it remains to
show that f∗U̇ (L ) is a global Fréchet–Stein sheaf in that case. Write g : X → Z
for the first map in the Stein factorization of f = hg. As before, g∗L is a locally
free OZ-module, and the induced anchor map from L makes it a Lie algebroid on
Z. The morphism ¸�U (g∗L )→ g∗U̇ (L ) becomes an isomorphism under restriction

to each h−1Yi by the above, so again g∗U̇ (L ) ∼= ¸�U (g∗L ) is a global Fréchet–Stein

sheaf on Z. Thus f∗U̇ (L ) is a global Fréchet–Stein sheaf on Y by Proposition
3.10.
For the coadmissibility result, it is again sufficient to restrict to each Yi, reducing
the claim to Lemma 6.1. �

This proves Theorem 1.2.(i) from the introduction.

We can now state a more general Proper Mapping Theorem. For this, let f : X → Y
be a proper morphism of rigid analytic K-varieties. Let L be a Lie algebroid on
X , and suppose there exists an affinoid covering (Yi) of Y such that the restriction

of L to Xi = f−1Yi is free for each i. Note in particular that U̇ (L )|Xi is a global

Fréchet–Stein sheaf for each i by Lemma 6.1, and f∗U̇ (L ) is a full Fréchet–Stein
sheaf on Y by Lemma 6.2.
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Proposition 6.3. Let U be a sheaf of K-algebras on X with a morphism of sheaves

of algebras θ : U̇ (L ) → U such that U |Xi is a coadmissible enlargement of

the global Fréchet–Stein sheaf U̇ (L )|Xi for each i (in particular, this makes U

a Fréchet–Stein sheaf on X).

Then f∗U |Yi is a coadmissible enlargement of f∗U̇ (L )|Yi , and in particular a global
Fréchet–Stein sheaf on Yi for each i. Thus f∗U is a Fréchet–Stein sheaf on Y .
If M is a coadmissible U -module then Rjf∗M is a coadmissible f∗U -module for
every j ≥ 0.

Proof. Note that f∗U̇ (L )|Yi is a global Fréchet–Stein sheaf by Lemma 6.2, and

f∗U |Yi is a coadmissible f∗U̇ (L )|Yi -module. As f∗U |Yi can easily be checked to
have continuous multiplication by passing to affinoid coverings of Xi, this shows
that f∗U |Yi is a coadmissible enlargement of f∗U̇ (L )|Yi by Proposition 3.14. Thus
f∗U |Yi is a global Fréchet–Stein sheaf.

IfM is a coadmissible U -module, it is in particular a coadmissible U̇ (L )-module,
by Proposition 3.14 applied to each restrictionM|Xi . Applying Lemma 6.2 shows

that Rjf∗M is a coadmissible f∗U̇ (L )-module. So Rjf∗M|Yi is coadmissible over

the global Fréchet–Stein sheaf f∗U̇ (L )|Yi , and thus coadmissible over f∗U |Yi by
Proposition 3.14. Therefore Rjf∗M is a coadmissible f∗U -module. �

Lemma 6.4. Let

X1
f1

// X2
f2

// Y

be two proper morphisms, and assume that Y is affinoid. Let L be a Lie algebroid
on X1 which is free as an OX1

-module. Note that by applying Lemma 6.1 to f2f1,

we know that U̇ (L ) is a global Fréchet–Stein sheaf on X1. Let U be a coadmissible

enlargement of U̇ (L ).

Then f1∗U̇ (L ) is a global Fréchet–Stein sheaf on X2, and f1∗U is a coadmissible

enlargement of f1∗U̇ (L ).
IfM is a coadmissible U -module, then Rjf1∗M is a coadmissible f1∗U -module for
each j ≥ 0.

Proof. Let g : X1 → Z be the first map in the Stein factorization of f1. Then g∗L
is a Lie algebroid on Z which is free as an OZ-module, so by Lemma 6.1 applied to
the proper morphism f2h, ¸�U (g∗L ) is a global Fréchet–Stein sheaf on Z. As before

g∗U̇ (L ) ∼= ¸�U (g∗L ), so Proposition 3.10 proves that f1∗U̇ (L ) ∼= h∗
¸�U (g∗L ) is a

global Fréchet–Stein sheaf on X2.
By Lemma 6.2, f1∗U is a coadmissible f1∗U̇ (L )-module. As before, this makes

f1∗U a coadmissible enlargement of f1∗U̇ (L ).
The coadmissibility argument is now the same as in Proposition 6.3. �

As a corollary to Proposition 6.3, we can consider Lie algebroids L which are not
themselves free, but admit an epimorphism L ′ → L for some free Lie algebroid L ′.
The reason why we spell this out explicitly is given by the geometric interpretation
later.

Corollary 6.5. Let f : X → Y be a proper morphism of rigid analytic K-varieties,
and let L be a Lie algebroid on X such that there is an epimorphism L ′ → L for
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some free Lie algebroid L ′.

Then f∗U̇ (L ) is a Fréchet–Stein sheaf, and ifM is a coadmissible U̇ (L )-module,

then Rjf∗M is a coadmissible f∗U̇ (L )-module for each j ≥ 0.

This proves Theorem 1.2.(ii) from the introduction.

We now consider one particular instance of this corollary.
Suppose that f : X → Y is elementary proper, and write f = hg for the Stein
factorization as usual. Let (ρ,L ) be a Lie algebroid on X with the property that
g∗L is free, i.e. L := L (X) is a free OX(X)-module.

Lemma 6.6. The OX-module g∗g∗L given by U 7→ OX(U) ⊗OX(X) L (X) is a
Lie algebroid on X and is free as an OX-module.

Proof. As L is a free OX(X)-module, finitely generated by Kiehl’s Proper Mapping
Theorem, g∗g∗L is a free coherent OX -module. Write ι : g∗g∗L → L for the
natural morphism.
The Lie bracket on L allows us to define a Lie bracket on g∗g∗L , given by

[a⊗ x, b ⊗ y] := ab⊗ [x, y]L + ρι(a⊗ x)(b)⊗ y − ρι(b ⊗ y)(a)⊗ x

for a, b ∈ OX(U), x, y ∈ L, U an admissible open subspace of X . Note that this is
well-defined, as ρ satisfies the anchor map property.
This turns g∗g∗L into a sheaf of K-Lie algebras such that ι is a morphism of
sheaves of Lie algebras. The composition ρι is then also a morphism of sheaves of
Lie algebras, satisfying the axiom of an anchor map by construction. �

Thus we can apply Corollary 6.5 as soon as the natural morphism g∗g∗L → L

is an epimorphism. By definition of g∗g∗L , this is equivalent to requiring L to be
generated by global sections.

Corollary 6.7. Let f : X → Y be an elementary proper morphism of rigid analytic
K-varieties, and let L be a Lie algebroid on X such that L (X) is a free OX(X)-
module and L is generated by global sections.

Then f∗U̇ (L ) is a global Fréchet–Stein sheaf on Y . IfM is a coadmissible U̇ (L )-

module, then Rjf∗M is a coadmissible f∗U̇ (L )-module for each j ≥ 0.

Corollary 6.8. Let X be a proper rigid analytic K-variety, and let L be a Lie alge-

broid on X which is generated by global sections. Then U̇ (L )(X) is a Fréchet–Stein

algebra, and ifM is a coadmissible U̇ (L )-module then Hj(X,M) is a coadmissible

U̇ (L )(X)-module for each j ≥ 0.

Proof. By Kiehl’s Proper Mapping Theorem, L (X) is a finite-dimensional K-vector
space, and L ′ := OX⊗K (L (X)) is a free Lie algebroid on X by the same argument
as above. Thus the result follows from Corollary 6.5. �

Setting L = TX yields Corollary 1.3 from the introduction.
More generally, Proposition 6.3 gives directly the following.

Corollary 6.9. Let f : X → Y be a proper morphism with Stein factorization
f = hg, and let L be a Lie algebroid on X such that the following holds:

(i) g∗L is locally free.
(ii) The natural morphism g∗g∗L → L is an epimorphism of sheaves on Xrig.
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Then f∗U̇ (L )|U is a global Fréchet–Stein sheaf for any admissible open affinoid
subspace U of Y such that L (f−1U) is a free OX(f−1U)-module. In particular,

f∗U̇ (L ) is a Fréchet–Stein sheaf on Y .

If M is a coadmissible U̇ (L )-module then Rjf∗M is a coadmissible f∗U̇ (L )-
module for each j ≥ 0.

We will discuss a number of examples after giving a more geometric motivation
for the conditions we have imposed in our results.

6.2. Geometric interpretation and examples. Let E be a locally free OX -
module of finite rank on a rigid analytic K-variety X . Note that we can associate
to E a rigid analytic K-variety V (E) with a projection morphism ρ : V (E) → X ,
completely analogous to the construction of vector bundles in algebraic geometry.
We sketch the construction below, as it is rarely discussed in this context and the
reader might find the relation to our definition of U̇ (L ) illuminating.

Suppose that X = SpA is affinoid, and E is free of rank m. Fix an affine for-
mal model A of A and free generators e1, . . . , em ∈ E(X). We can now identify
S = SymA E(X) with the polynomial algebra A[x1, . . . , xm]. Via this identifica-
tion, we can equip S with an algebra norm corresponding to the gauge norm on
A[x] with unit ball A[πnx], and we denote the corresponding Banach completion
by Sn, which is naturally isomorphic to A〈πnx〉.
We denote by V (E) the space obtained by glueing SpSn, i.e. V (E) = lim

−→
SpSn.

By construction, V (E) is isomorphic to X × A
m,an
K , and the natural morphisms

A → Sn give rise to a projection morphism ρ : V (E) → A, corresponding to the
natural projection onto the first factor.
A standard argument ensures that up to isomorphism, this construction is inde-
pendent of the choices made. Moreover, we can glue this construction to obtain
a vector bundle V (E) for any locally free OX -module E of finite rank on a rigid
analytic K-variety X , giving rise to a contravariant functor V .

We will now interpret the conditions imposed in our previous results as certain
properness conditions on the level of vector bundles.

Let f : X → Y = SpA be an elementary proper morphism such that A = OX(X),
and let L be a Lie algebroid on X which is a free OX -module of rank m. In this
case the rigid analytic vector bundles

V (L ) ∼= X × A
m,an, V (f∗L ) ∼= Y × A

m,an

are trivial, and there is a natural morphism V (L )→ V (f∗L ), which is proper by
[12, Lemma 9.6.2/1].
Our Theorem 3.19 can thus be viewed as a noncommutative version of Kiehl’s The-
orem 1.1 on trivial vector bundles.

The next result extends this interpretation to the case of Corollary 6.9.

Proposition 6.10. Let f : X → Y be a proper morphism of rigid analytic K-
varieties with Stein factorization

X
g

// Z
h

// Y,
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and let L be a Lie algebroid on X such that the following holds:

(i) g∗L is locally free.
(ii) The natural morphism g∗g∗L → L is an epimorphism of sheaves on Xrig.

Then there is a natural morphism

V (L )→ V (g∗g∗L ),

which is a closed immersion, and and a proper morphism

V (g∗g∗L )→ V (g∗L )

of rigid analytic K-varieties.
In particular, their composition V (L )→ V (g∗L ) is proper.

Proof. The natural map µ : L ′ := g∗g∗L → L induces a morphism of rigid ana-
lytic K-varieties V (µ) : V (L )→ V (L ′) by functoriality.

We show that this is a closed immersion. Restricting to an admissible affinoid cov-
ering (Ui) of X on which both L ′ and L are free, the morphism θi : SymL ′(Ui)→
SymL (Ui) is a surjection for each i by assumption.
Choosing a residue norm on OX(Ui) with unit ball Bi and a free generating set
e1, . . . , em of L ′(Ui), endow S = SymL ′(Ui) with the norm with unit ball the
Bi-subalgebra generated by the ej , and endow SymL (Ui) with the corresponding
quotient norm via θi. In particular, θi is strict with respect to these choices of norm
by construction.
The completion of SymL ′(Ui) is the affinoid algebra S0 constructed above, and by
strictness this surjects onto the completion of SymL (Ui), which is again affinoid,
as it is topologically of finite type over K.
Replacing ej by πnej for varying n, the affinoid spaces SpSn form an admissible
covering of V (L ′|Ui) by affinoid subspaces, and the surjections between affinoid
algebras exhibit V (µ) as a closed immersion. In particular, V (µ) is a proper mor-
phism by [12, Proposition 9.6.2/5].

Choosing an admissible covering (Zi) of Z such that g∗L |Zi is free of rank m
on each i, g∗g∗L |g−1Zi

is also free of rank m, again inducing a proper morphism

g−1Zi × (Am)an //

∼=

��

Zi × (Am)an

∼=

��

V (L ′|g−1Zi
) // V (g∗L |Zi)

These glue to give a proper morphism V (L ′) → V (g∗L ), and the result follows
from the fact that the composition of proper morphisms is proper (see [20, Corollary
3.2]). �

Thus our assumptions can be interpreted as requiring a vector bundle V (g∗L )
on Z together with a proper morphism V (L )→ V (g∗L ).

Our next goal will be to spell out a number of naturally occuring cases in which
Proposition 6.3 applies. We reserve the main application, our discussion of analytic
partial flag varieties, for the next subsection.
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Example 1: Closed immersions. Let Y = SpA be an affinoid K-variety and let
ι : X → Y be a closed immersion of affinoid varieties, i.e. if X = SpB, then the
corresponding morphism of affinoid algebras A → B is a surjection. This map is
proper by [12, Proposition 9.6.2/5] with trivial Stein factorization in the sense that
g = idX is the identity on X and h = ι in our usual notation.
In particular, if L is a Lie algebroid on X , then g∗L = L , g∗g∗L = L , and all
conditions in Corollary 6.9 are trivially satisfied.
Since all conditions in Corollary 6.9 are local, it follows that the same holds true
for arbitrary closed immersions ι.

This is of course not really surprising, as ι is an affinoid morphism, so we could
deduce everything in this case simply from Lemma 3.15 (as is tacitly done in [5]).

Example 2: Projections. Let X = Pn,an be the analytification of projective n-space
over K, and consider the projection to a point

f : Pn,an → SpK.

This is trivially a projective morphism and hence proper, and the Stein factorization
in this case is g = f , h = idSpK .
If L is a Lie algebroid on X , then g∗L = L (X) is a (finite-dimensional) K-vector
space, and

g∗g∗L = OX ⊗K L (X).

Thus our assumptions are satisfied if and only if OX ⊗L (X)→ L is an epimor-
phism, i.e. if and only if L is generated by global sections. This is for example the
case when L = TX is the tangent sheaf of X .

Example 3: Direct products. Let Y be a smooth rigid analytic K-variety and con-
sider the projection f : Pn,an × Y → Y , which is again proper. As in the previous
example, the Stein factorization is trivial. Now X = Pn,an × Y is smooth, so the
tangent sheaf TX is a Lie algebroid on X . By definition of smoothness, Y admits
an admissible covering by affinoid subspaces (Yi) such that TYi is free, and we write
Xi = P

n,an×Yi. Write p1 : X → P
n,an for the projection onto the first factor. Since

TX ∼= OX ⊗p−1

1
OPn,an

p−1
1 TPn,an ⊕OX ⊗f−1OY

f−1TY

as in the algebraic case, TX(Xi) is a free module over OY (Yi) = OX(Xi), and TXi

is again generated by global sections.
Thus f∗ÙDX |Yi is a global Fréchet–Stein sheaf on Yi, f∗ÙDX is a Fréchet–Stein sheaf
on Y , and Rjf∗M is a coadmissible f∗ÙDX -module for each j ≥ 0, whereM is any
coadmissible ÙDX -module.
Moreover, note that f∗TY = OX ⊗f−1OY

f−1TY is a Lie algebroid on X (via the
natural embedding into TX) with the property that f∗TY |Xi = OXi ⊗OY (Yi) TY (Yi)
is a free O-module. As OX(Xi) = OY (Yi), we have f∗f

∗TY ∼= TY , and thus

f∗˝�U (f∗TY ) ∼= ÙDY by Lemma 3.22. Hence we can formulate the following theorem
as a direct consequence of Lemma 6.2.

Theorem 6.11. Let f : X = P
n,an
K × Y → Y be the projection for some smooth

rigid analytic K-variety Y . LetM be a coadmissible ˝�U (f∗TY )-module on X. Then

Rjf∗M is a coadmissible ÙDY -module for each j ≥ 0.
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This allows us to briefly discuss ÙD-module pushforwards, i.e. a functor which
sends ÙDX -modules to ÙDY -modules rather than f∗ÙDX -modules.
Let f : X → Y be an arbitrary projective morphism of smooth rigid analytic
K-varieties, which can be factored as

X
ι

// Pn,an × Y
g

// Y,

where ι is a closed immersion and g is the natural projection. Any coadmissible ÙDX -
moduleM gives rise to a coadmissible ÙDPn,an×Y -module ι+M by [5], and we expect
a well-behaved ÙD-module pushforward to be obtained by applying Rg∗ to a suitable
relative de Rham complex DRg(ι+M), in strict analogy to [15, Proposition 1.5.28].
The above results should then make it straightforward to verify that coadmissibility
is preserved under this pushforward functor, once the correct (derived) categorical
framework has been formulated rigorously.

6.3. Application: Analytic partial flag varieties. Let G be a split reductive
affine algebraic group scheme over K, and let G = G(K) with Lie algebra g. Let
B ≤ G be a Borel subgroup scheme, P ≤ G a parabolic subgroup scheme and let
X = G/P be the partial flag variety. In this section, we will be concerned with
coadmissible ÙD-modules on the analytification X = X

an.
By [16, II.1.8], G/P is projective, and thus X is proper over SpK by [19, Satz
2.16].
More generally, if P1 ≤ P2 are two parabolics, Xi = (G/Pi)

an, then the natural
projection morphism X1 → X2 is proper by [12, Proposition 9.6.2/4] and [19, Satz
2.16].

Let R ≤ G be the unipotent radical of P and L its Levi factor. Write l for the
Lie algebra of L = L(K). Following [6], the natural morphism ξ : G/R → G/P
turns G/R into an L-torsor in the sense of [6, 4.1], where L acts on G/R by right
translations.

Define the enhanced tangent sheaf ‹TG/P := (ξ∗TG/R)L, a Lie algebroid on X (see
[6, Definition 4.2], [3, 4.4]).
Applying the analytification functor, we obtain the Lie algebroid ‹TX . Since the
natural morphism OX ⊗K g → ‹TG/P is an epimorphism by the same argument as
in [3, Proposition 4.8.(a)], it follows from [11, Theorems 6.3/12 and 13] that ‹TX is
generated by global sections.

We now set
Ù‹DX :=

¸�
U

Ä‹TX
ä
,

a coadmissible enlargement of ˇ�U (OX ⊗ g). Applying Corollary 6.8, we obtain the
following.

Corollary 6.12. The global sections
Ù‹DX(X) form a Fréchet–Stein algebra, and if

M is a coadmissible
Ù‹DX-module on X, then RjΓ(X,M) is coadmissible over both

Ù‹DX(X) and Ū(g) for each j ≥ 0.
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Write h for a Cartan subalgebra of g, and let λ ∈ h∗. The centre of the enveloping
algebra U(g) will be denoted by Z(g).
The triangular decomposition g = n−⊕h⊕n induces the Harish-Chandra morphism
θ : Z(g) → U(g) → U(h) = Sym h, which allows us to view λ as a character for
Z(g). We let Kλ denote the corresponding one-dimensional Z(g)-representation,
and set

Uλ := U(g)⊗Z(g) Kλ.

We denote the kernel of the surjection U(g)→ Uλ by mλ.
Now choose an (R,R)-Lie lattice gR inside g, and write Un = U(πngR). This
induces a norm on U(g), and we let Z(g) be equipped with the corresponding
subspace norm. We define

ÙUλ := lim
←−

Ä”UnK
“⊗Z(g)Kλ

ä
,

where the norm on Kλ is given by identification with K.

Lemma 6.13. The K-algebra ÙUλ is naturally isomorphic to the quotient of Ū(g)
by the closure of mλ.

In particular, ÙUλ is a Fréchet–Stein algebra.

Proof. This is Lemma 3.5 applied to the short exact sequence

0→ mλ → U(g)→ Uλ → 0,

together with [24, Proposition 3.7]. �

As in section 6.1, note that πngR determines compatible norms on U(‹TX)(U)
for any admissible open affinoid subspace U ⊂ X , giving rise to completions
‹Dn := Un(‹TX) such that Ù‹DX = lim

←−
‹Dn is a global Fréchet–Stein sheaf on X .

Identifying Z(l) with L-invariant differential operators on G/R (see [6, 4.1]), we
obtain a natural morphism Z(l)→ ‹Dn with central image for each n, and we define
the sheaf of twisted differential operators on X by

ÙDλ

X = lim
←−

(‹Dn“⊗Z(l)Kλ).

Again, Lemma 3.5 shows that the natural morphism Ù‹DX → ÙDλ

X is an epimorphism

which turns ÙDλ

X into a coadmissible enlargement of Ù‹DX , and hence a coadmissible

enlargement of ˇ�U (OX ⊗ g).

Now let P1 ≤ P2 be two parabolic subgroups, and consider the proper morphism
f : X1 → X2, where Xi = (G/Pi)

an.

Corollary 6.14. The pushforward f∗ ˇ�U (OX1
⊗ g) is a global Fréchet–Stein sheaf

on X2, and f∗ÙDλ

X1
is a coadmissible enlargement. In particular, f∗ÙDλ

X1
is a global

Fréchet–Stein sheaf on X2.

If M is a coadmissible ÙDλ

X1
-module, then Rjf∗M is coadmissible over f∗ÙDλ

X1
, and

a fortiori coadmissible over f∗ ˇ�U (OX1
⊗ g) for each j ≥ 0.

Proof. This is the content of Lemma 6.4. �
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Note that in the extreme case P2 = G, we obtain the following generalization of
the first statement in [1, Theorem 6.4.7].

Corollary 6.15. Let P ≤ G be a parabolic subgroup, and let X = (G/P)an. Then

the global sections ÙDλ

X(X) form a Fréchet–Stein algebra, and ifM is a coadmissible

ÙDλ

X-module, then RjΓ(X,M) is coadmissible over both ÙDλ

X(X) and over Ū(g) for
each j ≥ 0.

As the Ū(g)-action factors through ÙUλ, this makes RjΓ(X,M) a coadmissible
ÙUλ-module for each j ≥ 0 by [24, Lemma 3.8].
We thus obtain Corollary 1.4.
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