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Abstract. We present a new and direct proof of Grothendieck’s generic

freeness lemma in its general form. Unlike the previously published proofs, it
does not proceed in a series of reduction steps and is fully constructive, not

using the axiom of choice or even the law of excluded middle. It was found by

unwinding the result of a general topos-theoretic technique.

We prove Grothendieck’s generic freeness lemma in the following form.

Theorem 1. Let A be a reduced ring (commutative, with unit). Let B be an A-
algebra of finite type. Let M be a finitely generated B-module. If f = 0 is the only
element of A such that

(1) the A[f−1]-modules B[f−1] and M [f−1] are free,
(2) the A[f−1]-algebra B[f−1] is of finite presentation and
(3) the B[f−1]-module M [f−1] is finitely presented,

then 1 = 0 in A.

Previously known proofs either only cover the case where A is a Noetherian
integral domain, where one can argue by dévissage (see for instance [5, Lemme 6.9.2],
[7, Thm. 24.1] or [6, Thm. 14.4]), or proceed in a series of intermediate steps,
reducing to that case (see for instance [9] or [10, Tag 051Q]); but in fact, a direct
proof is possible and shorter. The new proof unveils a certain combinatorial aspect to
Grothendieck’s generic freeness lemma, does not require any advanced prerequisites
in commutative algebra and does not use the axiom of choice or the law of excluded
middle. It is purely element-based, not referring to ideals of A, and doesn’t use
Noether normalization.

Grothendieck’s generic freeness lemma is often presented in contrapositive form
or in the following geometric variant:

Theorem 2. Let A be a reduced ring. Let B be an A-algebra of finite type. Let M
be a finitely generated B-module. Then the space Spec(A) contains a dense open U
such that over U ,

(a) B∼ and M∼ are locally free as sheaves of A∼-modules,
(b) B∼ is of finite presentation as a sheaf of A∼-algebras and
(c) M∼ is finitely presented as a sheaf of B∼-modules.

Theorem 2 immediately follows from Theorem 1 by defining U as the union of
all those basic opens D(f) such that (1), (2) and (3) hold. It is clear that (a), (b)
and (c) hold over U , and U is dense for if V is an arbitrary open such that U ∩V = ∅,
the open V is itself empty: Let h ∈ A be such that D(h) ⊆ V . The hypothesis
implies the assumptions of Theorem 1 for the datum (A[h−1], B[h−1],M [h−1]).
Thus 1 = 0 ∈ A[h−1], so h is nilpotent and D(h) = ∅.
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The new proof was found using a general topos-theoretic technique which we
believe to be useful in other situations as well. This technique allows to view reduced
rings and their modules from a different point of view, one from which reduced
rings look like fields. Since Grothendieck’s generic freeness is trivial for fields, this
technique yields a trivial proof for reduced rings. The proof presented here was
obtained by unwinding the topos-theoretic proof, yielding a self-contained argument
without any references to topos theory. We refer readers who want to learn about
this technique to a forthcoming companion paper [2].

Acknowledgments. The proof presented here was prompted by a question by
user HeinrichD on MathOverflow [4] and greatly benefited from discussions with
Martin Brandenburg, who employed the constructive version in a paper of his [3].
We are grateful to Thierry Coquand and Peter Schuster for valuable advice, to
Giuseppe Rosolini for comments regarding the presentation of the paper, and to
Marc Nieper-Wißkirchen for carefully guiding our PhD studies [1] at the University
of Augsburg, where most of the work for this paper was carried out.

1. The proof of the finitely-generated case

The following proposition is just a special instance of Grothendieck’s generic
freeness lemma. Its proof is easier and shorter than the proof of the general case,
which is why we present it here. The general proof will not refer to this one.

Proposition 3. Let A be a reduced ring. Let M be a finitely generated A-module.
If f = 0 is the only element of A such that M [f−1] is a finite free A[f−1]-module,
then 1 = 0 in A.

Proof. We proceed by induction on the length of a given generating family of M .
Let M be generated by (v1, . . . , vm).

We show that the family (v1, . . . , vm) is linearly independent. Let
∑

i aivi = 0.

Over A[a−1i ], the vector vi ∈M [a−1i ] is a linear combination of the other generators.

Thus M [a−1i ] can be generated as an A[a−1i ]-module by fewer than m generators.

The induction hypothesis, applied to this module, yields that 1 = 0 in A[a−1i ].
Since A is reduced, this amounts to ai = 0.

We finish by using the assumption for f = 1. �

We remark that the proof takes a somewhat curious course: Our goal is to
verify 1 = 0, but as an intermediate step we verify that M is free, which after the
fact will be a trivial statement. The general proof in the next section will have a
similar style. This approach is reminiscient of Richman’s uses of trivial rings [8].

2. The proof of the general case

Proof of Theorem 1. Let B be generated by (x1, . . . , xn) as an A-algebra and let M
be generated by (v1, . . . , vm) as a B-module. We endow the sets

I := {(i1, . . . , in) | i1, . . . , in ≥ 0} and

J := {(`, i1, . . . , in) | 1 ≤ ` ≤ m, i1, . . . , in ≥ 0}

with the lexicographic order. The family (wJ )J∈J := (xi1
1 · · ·xin

n v`)(`,i1,...,in)∈J gen-
erates M as an A-module, and we will call a subfamily (wJ )J∈J ′⊆J good if and only
if for all J ∈ J , the vector wJ is a linear combination of the vectors (wJ′)J′∈J ′,J′�J ,
and if (`, i1, . . . , in) 6∈ J ′ implies (`, k1, . . . , kn) 6∈ J ′ for all k1 ≥ i1, . . . , kn ≥ in.
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Figure 1 shows how a good generating family can look like. Similarly, we define
when a subfamily of the canonical generating family (xi1

1 · · ·xin
n )(i1,...,in)∈I of B is

good (which is just the special case m = 1).
We then proceed by induction on the shapes of a given good generating fam-

ily (wJ )J∈J ′ for M and a given good generating family (sI)I∈I′ for B, starting with
the canonical ones. It is reasonably obvious that this induction is well-founded; the
formal statement that it is so is known as Dickson’s Lemma (see, for instance, [11,
Thm. 1.1]).

We show that (wJ)J∈J ′ is a basis of M by verifying linear independence. Thus
let

∑
J aJwJ = 0 in M . We show that all coefficients in this sum are zero, starting

with the largest appearing index J : In the module M [a−1J ] over the localized

ring A[a−1J ], the vector wJ is a linear combination of generators with smaller

index. Removing wJ = xi1
1 · · ·xin

n v` and also all vectors xk1
1 · · ·xkn

n v` where k1 ≥
i1, . . . , kn ≥ in, we obtain a subfamily which is still good for the localized module.
The induction hypothesis, applied to A[a−1J ] and its module M [a−1J ], therefore

implies that A[a−1J ] = 0. Thus aJ = 0 since A is reduced.
Similarly, we show that the given good generating family (sI)I∈I′ is a basis.

Thus M and B are free over A. We fix for any corner J of J ′, as indicated
in Figure 1, a way of expressing wJ =

∑
K aJKwK as a linear combination of

generators with strictly smaller index. Let ŵ(`,i1,...,in) := xi1
1 · · ·xin

n V` in the free B-
module B〈V1, . . . , Vm〉. The canonical map

M̂ := B〈V1, . . . , Vm〉/(ŵJ −
∑

K aJKŵK)J corner of J ′ −→M

is trivially well-defined and surjective. It is also injective, since any element of M̂
can be written as an A-linear combination of the vectors (ŵJ)J∈J ′ by employing
the corner relations a finite number of times. Therefore M is finitely presented as
a B-module.

In a similar vein, a quotient algebra of A[X1, . . . , Xn], where we mod out by a
suitable ideal with as many generators as corners of I ′, is isomorphic to B. Thus B
is finitely presented as an A-algebra.

We finish by using the assumption for f = 1. �

3. Conclusion

Commutative algebra abounds with techniques which allow us to reduce quite
general situations to easier ones. These techniques often yield short and slick proofs;
however, they come at an expense: They are typically nonconstructive in nature,
employing for instance the axiom of choice, and do not argue using only the data at
hand, but using additional auxiliary objects such as maximal ideals. We feel that
once a subject is better understood, it is desirable to have more informative, direct
proofs available which illuminate the proven claims more clearly; similar as to how
bijective proofs are preferred over calculational inductive ones in combinatorics.

Let us consider as a specific example the statement that the existence of a linear
surjection An → Am with n < m between finite free modules over an arbitrary
ring A implies 1 = 0 ∈ A. The standard proof of this fact proceeds by contradiction
and passes to the quotient A/m, where m is a maximal ideal of A, thereby reducing to
the situation that the ring is a field. In contrast, a direct proof such as Richman’s [8]
refers only to objects mentioned in the statement itself and explicitly tells us how
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x0y7v1 x1y7v1 x2y7v1 x3y7v1 x4y7v1 x5y7v1 x6y7v1 x7y7v1

x0y6v1 x1y6v1 x2y6v1 x3y6v1 x4y6v1 x5y6v1 x6y6v1 x7y6v1

x0y5v1 x1y5v1 x2y5v1 x3y5v1 x4y5v1 x5y5v1 x6y5v1 x7y5v1

x0y4v1 x1y4v1 x2y4v1 x3y4v1 x4y4v1 x5y4v1 x6y4v1 x7y4v1

x0y3v1 x1y3v1 x2y3v1 x3y3v1 x4y3v1 x5y3v1 x6y3v1 x7y3v1

x0y2v1 x1y2v1 x2y2v1 x3y2v1 x4y2v1 x5y2v1 x6y2v1 x7y2v1

x0y1v1 x1y1v1 x2y1v1 x3y1v1 x4y1v1 x5y1v1 x6y1v1 x7y1v1

x0y0v1 x1y0v1 x2y0v1 x3y0v1 x4y0v1 x5y0v1 x6y0v1 x7y0v1

Figure 1. A graphical depiction of a good generating family (the non-
hatched cells) in the special case n = 2,m = 1, writing “x” and “y” for x1

and x2. The hatched cells indicate vectors which have already been removed
from the family. The small black squares indicate corners. If the vector
in the red cell will be found to be expressible as a linear combination of
vectors with smaller index (blue cells), it will be removed, along with the
vectors in all cells to the top and to the right of the red cell.

to deduce the equation 1 = 0 from the m equations which express that each basis
vector of Am has a preimage.

In a similar fashion, the new proof of Grothendieck’s generic freeness lemma
explicitly tells us how to deduce 1 = 0 from the given conditional equations expressing
that f = 0 is the only element with properties (1), (2) and (3). The history of
Grothendieck’s generic freeness lemma goes back more than fifty years; we are
slightly surprised that a direct proof was discovered only now.

Direct proofs sometimes generalize to new situations where the reduction tech-
niques employed by more abstract proofs cannot be applied. This is the case for
Grothendieck’s generic freeness lemma, which allows for the following generalization:

Theorem 4. Let (X,OX) be a ringed space (or ringed locale, or ringed topos), such
that for every local section s of OX , if the only open on which s is invertible is the
empty one, then s = 0. Let B be a sheaf of OX-algebras of finite type. Let E be a
sheaf of B-modules of finite type. Then there is a dense open U such that over U ,

(a) B and E are locally free as sheaves of OX-modules,
(b) B is of finite presentation as a sheaf of OX-algebras and
(c) E is finitely presented as a sheaf of B-modules.

Proof. Our proof of Theorem 1 can be easily adapted to this more general setting.
Where that proof concludes aJ = 0 for ring elements aJ by considering the localized
situation A[a−1J ], we now conclude aJ = 0 for local sections aJ of OX by considering
the situation over the restriction to D(aJ). Whereas before this type of argument
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was powered by the reducedness assumption on A, it is not supported by the
assumption on X. We omit further details. �

The spectrum of a ring A is a space of the kind required by Theorem 4 if and only
if A is reduced, thus Theorem 4 indeed generalizes Theorem 2. Further examples
for admissible spaces are given by any topological, smooth or complex manifold;
a corollary of Theorem 4 for these examples is that quotients of vector bundles,
computed in the category of sheaves of modules, are again vector bundles after
restricting to suitable dense opens.

It is hard to say with certainty that a given proof does not generalize to a new
situation; but we do not see how this could be the case for the proofs cited in the
introduction.
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