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HODGE IDEALS FOR Q-DIVISORS: BIRATIONAL APPROACH
MIRCEA MUSTATA AND MIHNEA POPA

ABSTRACT. We develop the theory of Hodge ideals for Q-divisors by means of log
resolutions, extending our previous work on reduced hypersurfaces. We prove local
(non-)triviality criteria and a global vanishing theorem, as well as other analogues
of standard results from the theory of multiplier ideals, and we derive a new local
vanishing theorem. The connection with the V-filtration is analyzed in a sequel.
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2 M. MUSTATA AND M. POPA
A. INTRODUCTION

In this paper we continue the study of Hodge ideals initiated in [MP16], [MP18a],
by considering an analogous theory for arbitrary Q-divisors. The emphasis here is on a
birational definition and study of Hodge ideals, while the companion paper [MP18b]
is devoted to a study based on their connection with the V-filtration, inspired by
[Sail6]. Both approaches turn out to provide crucial information towards a complete
understanding of these objects.

Let X be a smooth complex variety. If D is reduced divisor on X, the Hodge ideals
I (D), with k > 0, are defined in terms of the Hodge filtration on the Zx-module
Ox (xD) of functions with poles of arbitrary order along D. Indeed, this Zx-module
underlies a mixed Hodge module on X, and therefore comes with a Hodge filtration
FoOx (D), which satisfies

Fr.Ox(xD) = I;(D) ® Ox ((k+1)D), for all k> 0.
See [MP16] for details, and for an extensive study of the ideals I} (D).

Our goal here is to provide a similar construction and study in the general case. A
natural device for dealing with the fact that fractional divisors are not directly related
to Hodge theory is to use new objects derived from covering constructions. Let D
be an arbitrary effective Q-divisor on X. Locally, we can write D = aH, for some
a € Qs and H = div(h), the divisor of a nonzero regular function; we also denote
by Z the support of D. A well-known construction associates to this data a twisted
version of the localization Z-module above, namely

M(h™) := Ox(xZ)h™?,

that is the rank 1 free Ox(xZ)-module with generator the symbol h~%, on which a
derivation D of Ox acts by

D(wh™) = <D(w) - aw@> he,

It turns out that this Zx-module can be endowed with a natural filtration FyM(h™%),
with £ > 0, which makes it a filtered direct summand of a Z-module underlying a
mixed Hodge module on X; see §2. This plays a role analogous to the Hodge filtration,
and just as in the reduced case one can show that FyM(h™%) C Ox(kZ)h™*. This
is done in §3 and §4, by first analyzing the case when Z is a smooth divisor (in this
case, if [D] = Z, then the inclusion is in fact an equality). It is therefore natural to
define the k-th Hodge ideal of D by the formula

FM(h™%) = I(D) ®py, Ox(kKZ)h™.

Similarly to [MP16], one of our main goals here is to study Hodge ideals of Q-
divisors by means of log resolutions. To this end, let f: Y — X be a log resolution
of the pair (X, D) that is an isomorphism over U = X \ Z, and denote g = ho f.
There is a filtered isomorphism

(M(h™),F) ~ f(M(g™®), F).
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Denoting G = f*D and E = Supp(G), so that E is a simple normal crossing divisor,
it turns out that there exists a complex on Y:

Co-a(=[G1) : 0= Oy (=[G]) ®ay Dy = Oy (~[G]) @ay Qy (log E) @y, Dy

— ... = Oy (—[G]) ®¢, wy(E) ®g, Dy — 0,

which is placed in degrees —n, ..., 0, whose differential is described in §6. This com-
plex has a natural filtration given, for k£ > 0, by subcomplexes

Fk_nC’;,a(—(G-D =0— Oy(—[G]) ® Ff_nPy —

— ﬁy(— [G~|) & Q%/(logE) ® Fk_n+19y — e = ﬁy(—(G—‘) ®wy(E) QR F,9v — 0.

Extending [MP16, Proposition 3.1], we show in Proposition 6.1 and Proposition 7.1
that there is a filtered quasi-isomorphism

(C;*a (_ (G—| )7 F) = (MT(g_a)7 F)7
where M,.(¢~%) is the filtered right Zy-module associated to M(g~%). Thus one
can use (C’;,a(— [G]), F) as a concrete representative for computing the filtered 2-
module pushforward of (M, (g~%), F), hence for computing the ideals Ix(D). More
precisely, we have
R foFyn(C-o(—[G)) ®gy Py x) = h™wx(kZ) ®gy Ik(D).
See Theorem 8.1 for a complete picture regarding this push-forward operation.

This fact, together with special properties of the filtration on Z-modules underlying
mixed Hodge modules, leads to our main results on Hodge ideals, which are collected
in the following:

Theorem A. In the set-up above, the Hodge ideals It(D) satisfy:

(i) In(D) is the multiplier ideal I((l - e)D), so in particular In(D) = Ox if and only
if the pair (X, D) is log canonical; see §9.

(ii) If Z has simple normal crossings, then
I(D) = I(Z2) ® Ox (Z — [D]),

while I(Z) can be computed explicitly as in [MP16, Proposition 8.2]; see §7. In
particular, if Z is smooth, then Iy (D) = Ox(Z — [D]) for all k; cf. also Corollary
11.12.

(iii) The Hodge filtration is generated at level n — 1, where n = dim X, i.e.
F,Zx - (I(D) @ Ox (kZ)h™*) = Ij4(D) @ Ox ((k +0)Z)h™*
forallk>n—1 and £ > 0; see §10.

(iv) There are non-triviality criteria for I(D) at a point x € D in terms of the
multiplicity of D at x; see §11.

(v) If X is projective, I}.(D) satisfy a vanishing theorem analogous to Nadel Vanishing
for multiplier ideals; see §12.
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(vi) If Y is a smooth divisor in X such that Z|y is reduced, then Ii(D) satisfy
I(Dly) C Ix(D) - Oy,
with equality when Y is general; see §13 for a more general statement.

(vii) If X — T is a smooth family with a section s: T — X, and D is a relative
divisor on X that satisfies a suitable condition (see §14 for the precise statement)
then

{teT | I(Dy) & mg(t)}
s an open subset of T, for each q > 1.

(viii) If D1 and Do are Q-divisors with supports Zy and Zs, such that Zy + Z is also
reduced, then the subadditivity property

Ii(Dy + Do) C Ii(Dy) - T(Dy)

holds; see §15 for a more general statement.

For comparison, the list of properties of Hodge ideals in the case when D is reduced
is summarized in [Pop18, §4]. While much of the story carries over to the setting of
Q-divisors — besides of course the connection with the classical Hodge theory of the
complement U = X ~ D, which only makes sense in the reduced case — there are a
few significant points where the picture becomes more intricate. For instance, the
bounds for the generation level of the Hodge filtration can become worse. Moreover,
we do not know whether the inclusions I (D) C I;_1 (D) continue to hold for arbitrary
Q-divisors. New phenomena appear as well: unlike in the case of multiplier ideals,
for rational numbers a1 < o9, usually the ideals Iy(a1Z) and Ip(aeZ) cannot be
compared for k > 1; see for instance Example 10.5.

It turns out however that most of these issues disappear if one works modulo the
ideal of the hypersurface, at least for rational multiples of a reduced divisor. This,
as well as other basic facts, is addressed in the sequel [MP18b], which studies Hodge
ideals from a somewhat different point of view, namely by comparing them to the
(microlocal) V-filtration induced on @x by h. This is inspired by the work of Saito
[Sail6] in the reduced case. In the statement below we summarize some of these
properties, which complement the results in Theorem A, but which we do not know
how to obtain with the methods of this paper.

Theorem B. [MP18b] Let D = aZ, where Z is a reduced divisor and o € Qxg.
Then the following hold:

(1) 1(D) + Ox(~2) C I 1(D) + Ox(~Z) for all k.

(2) If « € (0,1], then Iy(D) = Ox <= k < az — «, where ayz is the negative of
the largest root of the reduced Bernstein-Sato polynomial of Z.

(3) If I,_1(D) = Ox (we say that (X, D) is (k—1)-log canonical), then Ij11(D) C
Ix(D).

(4) Fixing k, there exists a finite set of rational numbers 0 = cp < ¢1 < -+ < ¢5 <
cs+1 = 1 such that for each 0 <i < s and each o € (¢;,¢i41] we have

In(aZ) - Oz = Ix(ciy1Z) - Oz = constant
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and such that
[k(ci+1Z) . ﬁz g_ [k(CZZ) . ﬁz.

Going back to the description of Hodge ideals by means of log resolutions, the
strictness of the Hodge filtration for the push-forwards of (summands of ) mixed Hodge
modules leads to the following local Nakano-type vanishing result for Q-divisors:

Corollary C. Let D be an effective Q-divisor on a smooth variety X of dimension
n, and let f:' Y — X be a log resolution of (X, D) that is an isomorphism over
X N\ Supp(D). If E = (f*D)yeq, then

Rf (QF (log E) ®gy Oy (—[f*D1)) =0 for p+q>n.

Note that for p = n this is the local vanishing for multiplier ideals [Laz04, Theorem
9.4.1], since E — [f*D] = —[(1 — €)f*D] for 0 < € < 1. In general, the statement
extends the case of reduced D in [Sai07, Corollary 3] (cf. also [Sail6, §A.5]). Unlike
[MP16, Theorem 32.1] regarding that case, at the moment we are unable to prove
this corollary via more elementary methods.

A different series of applications, given in [MP18b], uses the results proved in this
paper together with the relationship between Hodge ideals of Q-divisors and the V-
filtration, in order to describe the behavior of the invariant az described in Theorem
B (called the minimal exponent of Z). For instance, the triviality criterion proved here
as Proposition 11.2 leads to a lower bound [MP18b, Corollary D] for az in terms of
invariants on a log resolution, addressing a question of Lichtin and Kollar. Moreover,
the results in Theorem A (vi) and (vii), and Corollary 11.11, lead to effective bounds
and to restriction and semicontinuity statements for az, in analogy with well-known
properties of log canonical thresholds; for details see [MP18b, §6].

B. HODGE IDEALS VIA LOG RESOLUTIONS, AND FIRST PROPERTIES

Let X be a smooth complex algebraic variety. Given an effective Q-divisor D on
X, our goal is to attach to D ideal sheaves Iy(D) for k > 0; when D is a reduced
divisor, these will coincide with the Hodge ideals in [MP16].

1. A brief review of Hodge modules. A key ingredient for the definition of our
invariants is Saito’s theory of mixed Hodge modules. In what follows, we give a brief
presentation of the relevant objects, and recall a few facts that we will need. For
details, we refer to [Sa90].

Given a smooth n-dimensional complex algebraic variety X, we denote by Zx
the sheaf of differential operators on X. This carries the increasing filtration FqZx
by order of differential operators. A left or right Z-module is a left, respectively
right, Zx-module, which is quasi-coherent as an ¢'x-module. There is an equivalence
between the categories of left and right Z-modules, which at the level of &x-modules
is given by

Mo N =M@, wx and N — Homg, (wx,N).
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For example, this equivalence maps the left Z-module Ox to the right Z-module wx.
For a thorough introduction to the theory of Z-modules, we refer to [HTT08].

A filtered left (or right) 2-module is a Z-module M, together with an increasing
filtration F' = F, M that is compatible with the order filtration on Zx and which
is good, in a sense to be defined momentarily. A morphism of filtered Z-modules is
required to be compatible with the filtrations. The equivalence between left and right
Z-modules extends to the categories of filtered modules, with the convention that

Fp—n(M ®ﬁx wX) = FpM ®6’X wx.

A filtration FeM on a coherent Z-module M is good if the corresponding graded
object gri’' M := @D, FiM/Fj,_1M is locally finitely generated over grf 2. We note
that every coherent Z-module admits a good filtration, but this is far from being
unique.

We now come to the key objects in Saito’s theory, the mized Hodge modules from
[Sa90]. Such an object is given by the data M = (M, F, P, p, W), where:

i) (M, F) is a filtered Z-module, with M a holonomic left (or right) Z-module,
with regular singularities; F' is the Hodge filtration of M.
ii) P is a perverse sheaf of Q-vector spaces on X.
iii) ¢ is an isomorphism between Pc = P ®q C and DR(M), i.e. the perverse
sheaf corresponding to M via the Riemann-Hilbert correspondence.
iv) W is a finite, increasing filtration on (M, F, P, @), the weight filtration of the
mixed Hodge module.

For a such an object to be a mixed Hodge module, it has to satisfy a complicated
set of conditions of an inductive nature, which we do not discuss here. The main
reference for the basic definitions and results of this theory is [Sa90]; see also [Sail7]
for an introduction.

Given a mixed Hodge module (M, F, P, ¢, W), we say that the filtered Z-module
(M, F) is a Hodge 2-module (or that it underlies a mixed Hodge module). In fact,
this is the only piece of information that we will be concerned with in this article. The
basic example of a mixed Hodge module is Qg [n], the trivial one. In this case, the
filtered Z-module is the structure sheaf &'y, with the filtration such that grg Cx =0
for all p # 0. The corresponding perverse sheaf is Qx[n] and the weight filtration is
such that grgvﬁx =0 for p # n.

The mixed Hodge modules on X form an Abelian category, denoted MHM/(X).
Morphisms in this category are strict with respect to both the Hodge and the weight
filtration. The corresponding bounded derived category is denoted D? (MHM(X ))

Mixed Hodge modules satisfy Grothendieck’s 6 operations formalism. The relevant
fact for us is that to every morphism f: X — Y of smooth complex algebraic varieties
we have a corresponding push-forward functor f: D*(MHM(X)) — D?(MHM(Y))
(this is denoted by f, in [Sa90]). Moreover, if g: Y — Z is another such morphism,
we have a functorial isomorphism (go f)y ~ g4 o fi.
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Regarding the push-forward functor for mixed Hodge modules, we note that on the
level of Z-modules, it coincides with the usual Z-module push-forward. Moreover, if
f: X — Y is proper and if we denote by FM(Zx) the category of filtered Z-modules
on X (here it is convenient to work with right Z-modules), then Saito defined in
[Sai88] a functor

f+: DY(FM(2x)) — D*(FM(%y)).
This is compatible with the usual direct image functor for right Z-modules and it
is used to define the push-forward between the derived categories of mixed Hodge
modules at the level of filtered complexes. With a slight abuse of notation, if (M, F)
underlies a mixed Hodge module M on X and if f: X — Y is an arbitrary morphism,
then we write fi (M, F') for the object in Db(FM(.@y)) underlying fy M.

An important feature of the push-forward of Hodge Z-modules with respect to
proper morphisms is strictness. This says that if f: X — Y is proper and (M, F)
underlies a mixed Hodge module on X, then f,(M,F) is strict as an object in
D’(FM(%y)) (and moreover, each H'f, (M, F) underlies a Hodge Zy-module). This
means that the natural mapping

. L , L
(1.1) R [ (FrM ®gy Pxsy)) — R fou(M Qg Dxy)

is injective for every i, k € Z. Taking FyH'f, (M, F) to be the image of this map, we
get the filtration on H' f (M, F).

The push-forward with respect to open embeddings is more subtle. For example,
suppose that Z is an effective divisor on the smooth variety X and j: U = X\ Z — X
is the corresponding open immersion. Recall that Ox (xZ) is the push-forward j,Oy;
on a suitable affine open neighborhood V' of a given point in X, this is given by
localizing Ox (V) at an equation defining Z NV in V. Ox(xZ) has a natural left
Z-module structure induced by the canonical Z-module structure on Ox. In fact,
as such we have Ox(xZ) ~ j; Oy (in general, for a Zy-module M, the Z-module
push-forward j; M agrees with j, M, with the induced Zx-module structure). We
thus see that Ox (xZ) carries a canonical filtration such that the corresponding filtered
Z-module underlies j Qg [n]. This filtration is the one that leads to the Hodge ideals
studied in [MP16].

2. Filtered Z-modules associated to Q-divisors. Let X be a smooth complex
algebraic variety, with dim(X) = n. The ideals we associate to effective Q-divisors
on X arise from certain Hodge Z-modules. The Z-modules themselves have been
extensively studied: these are the Z-modules attached to rational powers of functions
on X. We proceed to recall their definition.

Consider a nonzero h € Ox(X) and g € Q. We denote by Z the reduced divisor
on X with the same support as H = div(h) and let j: U = X \ Supp(Z) — X be
the inclusion map. We consider the left Zx-module M(h?), which is a rank 1 free
Ox (*Z)-module with generator the symbol h?, on which a derivation D of €x acts
by

D(wh?) = <D(w) + wﬂ’#(h)> ho.
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We will denote the corresponding right Zx-module by M,.(h?). This can be described
as hPwx (*Z), an Ox-module isomorphic to wx (*Z), and such that if z1,...,z, are
local coordinates, then

ow
8:Ei

o
8:Ei

(WPwdzy - - dun)d; = —hP ( +w§ . > doy - dz,

for every ¢ with 1 <¢ < n.
Remark 2.1. When § € Z, we have a canonical isomorphism of left Zx-modules
(2.1) M(BP) ~ Ox(xZ), wh? = w-hP,

where on the localization Ox(xZ) we consider the natural Zx-module structure in-
duced from Ox. Note that Ox(xZ) is also the Z-module push-forward j 0.

Remark 2.2. For every positive integer m, we have a canonical isomorphism of left
PDx-modules

M(BP) = M((B™)P™), wh? — w(h™)P/™.

Remark 2.3. We can define, more generally, left Z-modules ./\/l(hf1 ---hfr), for
nonzero regular functions hq,...,h, € Ox(X) and rational numbers 5y,..., 5. If ¢;
are positive integers such that §;/¢; = § for all ¢ and if h = []; hfi, then we have an
isomorphism of left Zx-modules

M By ~ M(BP).
Remark 2.4. If r is an integer, then we have an isomorphism of left Zx-modules

MY = M(WHP), wh? — (wh™ )R P,

Let now D be an effective Q-divisor on X. We denote by Z the reduced divisor
with the same support as D. As above, we put U = X \ Z and let j: U — X be the
inclusion map. We first assume that we can write D = « - div(h) for some nonzero
h e Ox(X) and a € Q¢ (this is of course always the case locally). To this data we
can associate the Zx-module M(h™%); later it will be more convenient to consider
equivalently (according to Remark 2.4) the Zy-module M(h'~%). This depends on
the choice of h; however, if we replace h by ™ and «a by a/m, for some positive
integer m, the Z-module does not change (see Remark 2.2). In particular, we may
always assume that o = 1/¢, for a positive integer /.

Remark 2.5. Suppose that D’ is a Q-divisor with the same support as D and such
that D—D’ = div(u), for some u € Ox(X). Suppose that we can write D’ = %-div(})
for some W' € Ox(X) and some positive integer ¢. In this case we can also write
D = 7 - div(h), where h = u‘h’, and we have an isomorphism of Zx-modules

(2.2) M(h—l/f) —>M(h’_1/€), gh~ /" _)gu—1h/—l/é.
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Our first goal is to show that M(h™?) is canonically a filtered Zx-module. Let
£ be a positive integer such that fa € Z. Consider the finite étale map p: V — U,
where V' = Spec 0y [y]/(y* — h™%@). Note that this fits in a Cartesian diagram

V— W
23 P s
U % X,
in which
W = Spec Ox|[z]/(z* — h'®),
such that the map V — W pulls z back to y~! = y*~hte,

Lemma 2.6. We have an isomorphism of left Yx-modules
-1

(2.4) J+P+ Oy =~ EB M(h™?),
i=0

with the convention that the first summand is Ox (xZ).

Proof. Since p is finite étale, it follows that we have a canonical isomorphism 7: p* %y ~
Dy, and for every Zy-module M we have py M =~ p, M, with the action of Zy in-
duced via the isomorphism 7.

By mapping gy’ to gh~'®, where g is a section of &y and 0 < i < £ — 1, we obtain
an isomorphism of &'x-modules as in (2.4). In order to see that this is an isomorphism
of Zx-modules, consider a local derivation D of Ox and note that since y* = h=%®,
by identifying D with its pull-back to V' we have

. ) D(h
D(y') =iy D(y) = —iayl—}(l )
which via our map corresponds to D(h~*®). This implies the assertion. O

It follows from the lemma that the right-hand side of (2.4) is the Z-module corre-
sponding to the mixed Hodge module push-forward (j o p)+Q5[n]. In particular, it
carries a canonical structure of filtered Z-module.

Remark 2.7. Let’s see what happens if we replace £ by a multiple mf. Let py: V; — U
and pye: Vine — U be the corresponding étale covers. Note that

Vine = Spec Oy [y]/(y™™ — h=0m)

decomposes as a disjoint union of m copies of V;, and thus we have an isomorphism
of filtered Zx-modules (and a corresponding isomorphism of mixed Hodge modules)

(2.5) G+ (Pme) 4 Ov,y = (4 ()1 Ov;) ™

If n is a primitive root of 1 of order ¢m, and if on each side of (2.5) we consider the
decompositions (2.4), then the isomorphism maps

—1 is 7, —cl —d
h [1e% — (nzsh ca.h a)OSSSm_l’

where we write i = lc+d, with0 <c<m-—-1land 0<d </ —1.
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We can interpret the isomorphism in (2.4) in terms of a suitable pg-action, where
e is the group of ¢-th roots of 1 in C*. Note that we have a natural action of puy
on W such that via the corresponding action on @y, an element \ € y, maps 2* to
Nzt If we let pp act trivially on X, then ¢ is an equivariant morphism (in fact, ¢
is the quotient morphism with respect to the jy-action). It is clear that ¢~1(Z) is
fixed by the pg-action and we have an induced j-action on W N ¢~ 1(Z) = V. This
in turn induces a pg-action on j;py Oy and the isomorphism in (2.4) corresponds to
the isotypic decomposition of j,p, Oy, such that every A € py acts on M(h™*®) by
multiplication with A 7.

Lemma 2.8. The filtration on j+p+ Oy is preserved by the pg-action. Therefore we
have an induced filtration on each M(h™'*) such that (2.4) is an isomorphism of
filtered Z-modules.

Proof. One way to see this is by using a suitable equivariant resolution of W. Let
W' be the disjoint union of the irreducible components of W and ¢: W/ — W
the canonical morphism. It is clear that the pg-action on W induces an action on
W' such that ¢’ is equivariant. Since V is contained in the smooth locus of W,
it has an open immersion into W’. We use equivariant resolution of singularities
to construct a pg-equivariant morphism ¢: Y — W’ that is an isomorphism over
V and such that (q o ¢’ o ¢)*(Z) is a divisor with simple normal crossings. Let
g =qoq op. If E is the reduced, effective divisor supported on g~!(Z), then we have
an isomorphism of filtered Z-modules (induced by a corresponding isomorphism of
mixed Hodge modules)

(2.6) J+p+Ov ~ g1j1Ov ~ gy Oy («E),

where j: Y ~ Supp(F) — Y is the inclusion map.

We can deduce the assertion in the lemma from an explicit computation of the
filtration on jyp4 Oy via the isomorphism (2.6), as follows. First, since we deal with
2-module push-forward, it is more convenient to work with right Z-modules. We will
thus compute g wy (xE), where wy (xF) is the filtered right Z-module corresponding
to Oy (xE).

Since E is a simple normal crossing divisor, wy (*E) has a resolution by a complex
C* of filtered right Zy-modules

0—C"—...—C"—o,
where C* = Q’;"(log E) ®¢, Py, with the filtration given by
Fk_nC’i = Q%j'"(log E) R oy Fy Dy

For a description of the maps in this complex, see the beginning of §6 below; a proof
of the fact that it resolves wy (*F) is given in [MP16, Proposition 3.1]. We can thus
compute Fjg wy (*E) as the image of the injective map

RYg, (Fi(C* @9y Zy—x)) = R°9.(C* ®gy Dy—x) = grwy (xE).
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Since g is equivariant and the action of py on Y induces an action on E (in fact,
it fixes E), the above description implies that each Fjg;wy (xE) is preserved by the
Le-action. ]

Remark 2.9. We note that the filtration on j;py &y induces the canonical filtration
on the first summand Ox (xZ). Indeed, on U we have a morphism of mixed Hodge
modules Q¥ [n] — p+Q#f[n]. Applying j; and only considering the underlying filtered
Z-modules, we obtain a morphism j; 0y — jipy Oy, which is an isomorphism onto
the first summand.

Definition 2.10. Given o > 0, choose ¢ > 2 such that fa € Z. In this case M(h™%)
appears as the second summand in the decomposition (2.4). We define the filtration

FeM(h™) for k>0

to be the filtration induced from the canonical filtration on j.py Oy . 1t is straightfor-
ward to see, using the discussion in Remark 2.7 that this filtration does not change if
we replace ¢ by a multiple; therefore it is independent of £. Moreover, we note that if
« is an integer, using the same Remark 2.7, the isomorphism M(h™%) ~ Ox(xZ) is
an isomorphism of filtered Z-modules.

In this definition, a priori different covers have to be considered for each of the
summands M (h™'*). However, we have:

Lemma 2.11. With the filtration defined above, the isomorphism (2.4) is an isomor-
phism of filtered 2-modules.

Proof. By Lemma 2.8, we only need to show that for every ¢ with 0 <i < ¢ — 1, the
filtration induced on M(h~%) by that on j,py Oy coincides with the one given in
the above definition. For i = 0 this follows from Remark 2.9. If ¢ > 0, consider the
cover used to define the filtration on M (h™**), namely

p': V' = SpecOylyl/(y* — hi®*) — U.

Note that we have a finite morphism ¢: V' — V' of varieties over U, that pulls-
back y to y*. We have a canonical morphism of mixed Hodge modules Q‘If, n] —
¢+Q€I [n]. Applying jip/, and passing to the underlying filtered Z-modules, we
obtain a morphism of filtered Z-modules j,p, Oy — jipi Oy that is the identity on
the summand M (h~%). This proves our claim. O

Remark 2.12. It is clear from definition that for every a > 0 and every positive
integer m, the isomorphism

M(h™) — M((hm)_o‘/m), gh™ — g(hm)_o‘/m
is an isomorphism of filtered Z-modules.

Remark 2.13. In the setting of Remark 2.5, the isomorphism (2.2) is an isomorphism
of filtered Zx-modules. This is clear if £ = 1, hence we assume £ > 2. Let p: V = U
and p’: V' — U be the canonical projections, where

V =Spec 0ylyl/(y* —h) and V' =SpecOylyl/(y" —I).
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We have an isomorphism ¢: V' — V of schemes over U, where ¢*(y) = uy. This
induces an isomorphism of filtered Zx-modules
J+ps Oy = jip'y Oy,

which via the identifications given by Lemma 2.6 is the direct sum
-1 {—1
P ME) =~ P M "
i=0 i=0

of the isomorphisms (2.2). For ¢ = 1, we obtain our assertion.

A special case of the above remark implies that for every o > 0 the isomorphism
M) = M"Y, gh™ — (gh)h~>"*
is an isomorphism of filtered Z-modules. We use this to put a structure of filtered -
module on M (h?) for every 3 € Q, such that for every r € Z, we have an isomorphism
of filtered Z-modules
M(BP) = M), gh® — (gh™)h"".
For example, we have have an isomorphism of filtered Z-modules M(h°) ~ Ox (*2).

Remark 2.14. Suppose that h,h € Ox(X) are nonzero, and a,a € Qo are such
that we have the equality of Q-divisors

a-div(h) = a-div(h).
Let ¢ be a positive integer such that lo, f& € Z. In this case there is g € 0% (X) such
that h'“ = gh’®. Suppose now that there exists G € @x(X) such that G* = g. (For
example, this holds after pulling-back to the étale cover Spec Ox[z]/(z* — g).) In this
case we have an isomorphism of filtered Zx-modules

®: M(h™*) — M(h™%)

given by

d(wh™®) = wGh™
Indeed, this follows from the definition of the filtrations and the isomorphism of
schemes over U

p: Specylyl/(y" — h™"*) — SpecOuly]/(y* — h™")
that pulls-back y to G~1y.
Remark 2.15. It is clear that the filtration on M(h™%) is compatible with restriction
to open subsets. More generally, it is compatible with smooth pullback, as follows.

Suppose that h € Ox(X) is nonzero and a € Q. If ¢: Y — X is a smooth morphism
and g = h o ¢, then there is an isomorphism of Zy-modules

M(g™®) = " M(h™7),
such that for every k we have

FyM(g™%) ~ " FpM(h™).
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Indeed, choose £ > 2 such that fa € Z and consider the Cartesian diagram
Yy sy

N

P v u— X,

where j and p are as in Lemma 2.6 and jy and py are the corresponding morphisms
for Y and g. Note that we have a base-change theorem that gives

(2.7) ©'jp+ Qi [n] ~ (Gy)+ (py)+' Qi [n]

(see [Sa90, (4.4.3)]). Moreover, since ¢ is smooth, if d = dim(Y") — dim(X), then for
every filtered Z-module (M, F') underlying a mixed Hodge module M, the filtered
Z-module underlying ¢'M is (¢* M, F)[d], where Fi(¢* M) = ¢*(FxM) (see [Sais8,
3.5]). This also applies to v; in particular, we have ¥'Q¥[n] ~ Q‘f/fy [n + 2d]. By
decomposing both sides of (2.7) with respect to the py-action, we obtain our assertion.

3. The case of smooth divisors. Our goal now is to describe the filtrations
introduced in the previous section when Z is a smooth divisor. We will then use this
to define Hodge ideals for arbitrary Q-divisors. The key result in the smooth case is
the following:

Lemma 3.1. Let
1:Y = Spec C[t]| — X = Spec Clz]
be the map given by *(x) = t*. If Z is the divisor on Y defined by t, then we have
an isomorphism of filtered Px-modules
-1

1 Oy (+2) ~ PM;,

where M ~ Dx[Dx (Opx — %) and FiM; is generated over Ox by the classes of
1,04,...,0%. Moreover, if we consider on'Y the pg-action such that every \ € pug
maps t to At, then M; is the component of 1 Oy (xZ) on which every X € p; acts by
multiplication with N .

Proof. As usual, it is easier to do the computation for the filtered right Z-module
wy (¥Z) corresponding to Oy (xZ). Note that this is filtered quasi-isomorphic to the
complex

A 0 — @y ﬂ)o.)y(Z) ®ﬁy @y — 0,
placed in degrees —1 and 0, where w(l) = % ® tdy; see e.g. [MP16, Proposition
3.1]. Since 9 is finite, the functor 1, is exact on quasi-coherent Oy -modules, hence
Yiwy (xZ) is computed by the 0-th cohomology of the complex

B* = . (A* @gy Pv-x),

with the obvious induced filtration. The definition of w immediately implies that

w® lg, . is injective. Note that % = L& and ¢0, = (z0,.
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In order to describe the complex B®, note that any element of B~! can be uniquely
written as Zﬁ;é t) Pj, with P; € Zx. Similarly, any element in BY can be uniquely
written as Zﬁ;é t %Qj, with Q; € Zx. Moreover, if 7 is the differential in B®, then

/—1 /-1 .
, dx J
t! P; — ) — A < P.7
T jEZO ; jgzo . (05 + €) ’

where we use the fact that t0,t/ = titd, + jt/. In other words, we have have an
eigenspace decomposition

-1
B® ~ @ B3,
j=0
where B? is identified with the complex
0—=>9x —> 9x — 0,

with the differential mapping P to (20, + %)P. It follows that B*® is filtered quasi-
isomorphic to

{—1 .
P 2x/ (. +7)2x.
j=0

where the filtration on the j-th component is such that
Fis (@X/(xam + %)%)

is the Ox-submodule generated by the classes of 1,0,,...,0%. Moreover, every A € iy
acts on the j* factor in the above decomposition by multiplication with .

The assertion in the lemma now follows immediately from the explicit description
of the equivalence between the categories of left and right Z-modules on X = Al
Indeed, recall that if 7 is the C-linear endomorphism of the Weyl algebra I'(A!, Z51)
such that 7(PQ) = 7(Q)-7(P) for all P and @, and such that 7(¢) = t and 7(9;) = —0,
then the left Z-module N corresponding to a right Z-module M is isomorphic to
M itself, with scalar multiplication given via the map 7. Moreover, for filtered Z-
modules, via this isomorphism Fj, N corresponds to Fj,_1 M. In particular, we see that
if M = 9x/P - Px, then N ~ Zx/Px - 7(P), and we obtain the statement. O

In what follows, we denote by [a] the smallest integer that is > «. For a Q-divisor
D=>3"_,a;D;, weput [D] =>""_,[a;]D;.

Corollary 3.2. If h € Ox(X) is nonzero and such that the support Z of div(h) is
smooth (possibly disconnected), then for every a € Qg the filtration on M(h™%) is
given by

FM(h™) = 0x((k+1)Z — [D))h™ if k>0,

where D = « - div(h), and FM(h™) =0 if k < 0.
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Proof. We first reduce to the case when Z = div(h). We can check the assertion in
the proposition locally, hence we may assume that Z = div(g), for some g € Ox(X),
and h = ug™, for some u € O%(X). Furthermore, by Remark 2.15, it is enough to
prove the assertion after passing to a surjective étale cover, hence we may assume
that v = o™ for some v € 0% (X). After replacing g by vg, we may thus assume
that h = ¢g™. In this case we have an isomorphism of filtered Z-modules M(h™%) ~
M(g~™), hence we may and will assume that div(h) = Z.

We consider the smallest positive integer £ such that m := o € Z. If £ = 1, then
the assertion follows from the formula for the filtration on Ox (xZ) when Z is smooth;
see [MP16, Proposition 8.2]. Therefore from now on we assume ¢ > 1.

The morphism h: X — A! is smooth over some open neighborhood of 0. Using
Remark 2.15, we see that in order to prove the corollary, we may assume that X = Al
and h = z, the standard coordinate on A'. Consider the Cartesian diagram

v w

where
jo: V =SpecClz,z 1, y]/(y* —2™™) = W = Spec C[z, 2]/ (2* — 2™), ji(z) =y .
Let o: W = Spec C[t] — W be the normalization, given by
o (z) =t' and ¢*(z) =t™.
(Here we use that ¢ and m are relatively prime.) Note that ¢ is an isomorphism

over V', hence we have an open embedding ¢: V <— W, with complement the smooth
divisor T' defined by t (in fact, if a and b are integers such that am + b¢ = 1, then
() = y~?2?). We thus have

J4p+Ov = P11 Oy = oy O (+T),

where ¢ = go . We apply Lemma 3.1 for ¢. Note that ¢ is a ug-equivariant
morphism if we let each A € py act on ¢ by multiplication with A\*. By considering
the behavior with respect to the ug-action, we see that in the decomposition given by
the lemma, we have M; ~ M(z~%) if and only if ja = —1 (mod /), that is, j = —m
(mod ?).

Suppose first that o < 1, in which case the condition for j is that j = ¢ —m. As a
reality check, note that we indeed have an isomorphism

{—m

Dx | Dx (Opx — T) ~ M(z™?)

that maps the class of 1 to 7. The formula for the filtration on M(h%) now follows
from Lemma 3.1. When a > 1, we put m = [«] — 1, and use the fact from Remark
2.4, namely that we have an isomorphism of filtered modules

M(@™) = M(z™F"),  gz™® = (gzT™)a T,
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to reduce the assertion to the case a € (0,1). This completes the proof of the
corollary. 0O

4. Definition of Hodge ideals for Q-divisors. In general, we obtain an upper
bound for the terms in the filtration on M(h™%) by restricting to the open subset
where the support of div(h) is smooth, as follows.

Proposition 4.1. Given a nonzero h € Ox(X) and a positive rational number «,
for every k > 0 we have

FM(h™) C 0x((k+1)Z — [D])h™,
where D = « - div(h) and Z = Supp(D), while FxM(h=%) =0 for k < 0.

Proof. Let ¢: Xo — X be an open immersion such that the codimension of its im-
age in X is > 2 and Z|x, is smooth (though possibly disconnected). Note that
our constructions are compatible with restrictions to open subsets. Moreover, since
M(h™?) is clearly torsion-free, it follows that Fy, := FM(h™%) is torsion free, hence
the canonical map Fj, — iy (Fk| Xo) is injective. Therefore it is enough to prove the
assertion on X, hence we may assume that Z is smooth. However, in this case the
assertion follows from Corollary 3.2. d

We can now define the Hodge ideals for Q-divisors. Let X be a smooth complex
algebraic variety and Z a reduced effective divisor on X. Given an effective Q-divisor
D with Supp(D) = Z, we define coherent ideals sheaves I;(D) in Ox as follows.
Suppose first that there is a nonzero h € Ox(X), with H = div(h), and a positive
rational number « such that D = aH. It turns out to be more convenient to work with
the Zx-module M(h?), where 8 = 1 — a. Recall that we have a filtered isomorphism

M(h™%) = M(BP), wh™® = (wh™HhP,
and therefore, if k£ > 0, it follows from Proposition 4.1 that there is a unique coherent
ideal It(D) such that
EM(WP) = 1Iy(D) @y Ox (kZ + H)RP

(note that we always have [D]| > Z). The definition is independent of the choice of
«a and h: indeed, using Remark 2.15, it is enough to check this after the pullback
by a suitable étale surjective map, hence we deduce the independence assertion using
Remark 2.14. This implies that the general case of the definition follows by covering
X with suitable affine open subsets such that D can be written as above in each of
them. Note that when D = Z we have 8 = 0, and so the ideals I (D) are the Hodge
ideals studied in [MP16].

Remark 4.2. From the definition and the filtration property, it follows that we
always have the inclusion

Ox(—=Z) - I_1(D) C Ip(D) for k>1.
We note that for the reduced divisor Z, we have the more subtle inclusions
Ii(Z)C Iy_1(Z) for k>1
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(see [MP16, Proposition 13.1]). We do not know however whether this holds for
arbitrary Q-divisors D, and in fact we suspect that this is not the case. (Note that
it does hold when D has simple normal crossings support by Proposition 7.1. It is
also shown to hold when D has an isolated weighted homogeneous singularity in the
upcoming [Zhal8].) However, when D = «aZ these inclusions do hold modulo the
ideal Ox(—Z%), see [MP18b, Corollary B]. More precisely, we have

In(aZ)+ Ox(—Z) C Iy_1(aZ) + Ox(—Z%) for k>1.
This implies in particular that if Iy(aZ) = Ox for some k > 1, then I}_1(aZ) = Ox.
Remark 4.3. According to Proposition 4.1, we also have ideals I} (D) given by
FeM(h™) = Il(D) ®g, Ox((k+1)Z — [D])h™°,

which are related to I(D) by the formula

It(D) = It(D) ®o, Ox(Z — [D]).

The following periodicity property often allows us to reduce our study to the case

[D] =Z.
Lemma 4.4. If D' is an integral divisor with Supp(D’) C Supp(D), then

I,(D+ D) = Ix(D) ®g, Ox(—D'").

In particular
I(D) = I(B) ® Ox(Z — [D]),
with B =D + Z — [ D] satisfying [B] = Z.

Proof. Using the notation in Remark 4.3, the equivalent statement
I,(D + D') = I(D)
follows from the definition and Remark 2.13. O

Remark 4.5. Note that I(D) C 0x(Z —[D]) for all k, and so if [ D] # Z, then one
can never have I (D) = Ox. It is however still interesting to ask whether I}(B) = Ox.

5. A global setting for the study of Hodge ideals. We now consider a setting
in which we can define global filtered Zx-modules that are locally isomorphic to the
(./\/l(h_“), F ) discussed in the previous sections.

Let X be a smooth variety and D = %H a Q-divisor, where H is an integral divisor
and / is a positive integer. The extra assumption we make here is that there is a line
bundle M such that

Ox(H) ~ M®*
We denote by U the complement of Z = Supp(H) and by j the inclusion U — X.

Let s € T'(X, M®*) be a section whose zero locus is H. Since s does not vanish on
U, we may consider the section s~! € F(U, (M_1)®Z). Let p: V. — U be the étale
cyclic cover corresponding to s~', hence

V ~Spec(Oy e Ma...0 M),
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We consider the filtered Zy-module M = jip; Oy, that underlies a mixed Hodge
module. The py-action on V, where A € py acts on M®* by multiplication with A\,
induces an eigenspace decomposition

-1
M =P M,
1=0

where A\ € py acts on M; by multiplication with A~*. We consider on each M, the
induced filtration.

Note that if X is an open subset of X such that we have a trivialization M|x, ~
Ox,, and if via the corresponding trivialization of M®¢|x,, the restriction s|y, cor-
responds to hg € Ox(Xp), then we have isomorphisms of filtered Zx,-modules

M~ M(hg"*) for 0<i<li—1.
We also see that the filtration on M is the direct sum filtration, since this holds
locally. Moreover, we have isomorphisms of 0’x,-modules
Milx, = Ox(xZ)|x,,
which glue to isomorphisms of &'x-modules
M; =~ M® @4, Ox(xZ) = j.j*M®.

Via these isomorphisms, it follows from the definition of Hodge ideals (see also Remark
4.3) that we have

FMi ~ M® g, I (i)l H) ®g, Ox (k+1)Z — [if¢- H]) ~
~ M®(~H)®gy I (i/0- H) ®¢, Ox (kZ + H).

6. A complex associated to simple normal crossing divisors. We now discuss
a complex that, as we will see later, gives a filtered resolution of M,.(h~%) by filtered
induced Zx-modules in the case when h defines a simple normal crossing divisor.

Let X be a smooth, n-dimensional, complex variety, h € Ox(X) nonzero, and
a a nonzero rational number (we allow a to be either positive or negative). Let
D = « - div(h). We denote by Z the support of D, and assume that it has simple
normal crossings.

Associated to Z we have the following complex of right Zx-modules:
C*: 00— Px — Qk(log Z) ®py Zx — -+ — Vi (log Z) @g, Dx — 0,

placed in degrees —n,...,0. We denote by D;: C* — O™t its differentials. If
T1,...,Ty are local coordinates on X, then

Diln®@P)=dn® P+ Y (dv; A1) ® Oy, P.
i=1
In fact C*® is a filtered complex, where

F, nC' = Q™ (log Z) @0y FpyiPx.
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This filtered complex is quasi-isomorphic to the filtered right Zx-module wx (x2)
corresponding to the filtered left Zx-module Ox(xZ) (see [MP16, Proposition 3.1],
and [Sa90, Proposition 3.11(ii)] for a more general statement).

Given h and a as above, we also consider the filtered complex C7_, consisting of

the same sheaves, but with differential C}ira — Cf;[i given by

D; — ((ov- dlog(h) Ae) @15, ).!
It is easy to see that this is indeed a filtered complex.

Suppose now that we also have an effective divisor T' supported on Z. It is not
hard to check that the formula for the map

Ch-o — CtL
induces also a map
Cl_o(~=T) = Ox(~T) @g, Q" (log Z) @0y, Dx
= O L(=T) == Ox(~T) ®o, Q7" (log Z) ®oy Dx.
This is due to the fact that if locally 7' = div(u) and 7 is a local section of Q5" (log Z),
then we can write d(un) = ud(n)+wu-dlog(u)An. We thus obtain a filtered subcomplex

Cr_o(=T) of Cp_,. We emphasize that this is not obtained by tensoring Cp_, with
Ox(-T).

Proposition 6.1. If no coefficient of D —T lies in Z, then the complex Cy_,(=T)
is filtered quasi-isomorphic to (h_o‘wx(*Z),G.), where
Gr_nh “wx(xZ) =0 if k<D0,
G_nh™ “wx(xZ) =h"wx(Z—-T) and
Gr_nh wx(xZ2) = G_p,h™ “wx(xZ) - Fx9x if k> 0.

Proof. 1t is immediate to check that the differential induced on grg Cp_o(—T) does
become equal to the differential D; twisted with the identity on &x(—T"), and therefore
for every p we have
grgC,'ra(—T) =O0x(—T) ®py grgC'.
In particular, we have
HinC’;L,a(—T) =0 forevery pe€ZandicZ- {0},

by the result in [MP16] quoted above. Consider now the morphism of right Zx-
modules
p: C)_o(-T) =wx(Z —T) @0y Ix — h wx(*2)
given by
p(w@n® Q) = (h~"wn)Q.
We first check that this morphism is surjective. We do this locally, hence we may
assume that we have a system of coordinates z1,...,z, on X such that Ox(—Z2) is

Hn related settings, for instance involving the de Rham complex of M (h™%), this type of complex
can already be found in the literature; see for instance [Bjo93, §6.3.11].
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generated by zi---x, and Ox(—T) by z|"- 2", We also write h = uz{t - xlr,
where u is an everywhere nonvanishing function, and define «; = aa; and v; = o; — 3;
for all 7. Note for later use that

s d y
a - dlog(h) = %du+ Zai ; .
i=1 :

The surjectivity of ¢ follows from the fact that
(6.1) Im(p) = (h_aa;fl ceabry) - Dx = h%x (x2),
where
n=dlog(x1) A ... ANdlog(z,) ANdzrs1 A ... Adxy,

and the second equality in (6.1) is a consequence of the fact that —y; — 1 & Z>¢ for
all ¢, by assumption.

In order to complete the proof of the proposition it is enough to show that, for
every k > 0, the following sequence is exact:

Ox(~T) @ QY (log Z) @ Fy_1 Dx 2 Ox(~T) @ wx(Z2) ® FeZx 25

s Gronh™Cwx (xZ) — 0

where ¢y, is the restriction of ¢ to the (k — n)-th level of the filtration and vy is the
restriction of the differential of C}_,(~T). The surjectivity of ¢, is an immediate
consequence of the surjectivity of ¢ and the definition of the filtration on h*wx (xZ).

Keeping the above notation for the local coordinates on X, it follows from the
definition of vy, that

T . T 8 i
Im(yy) = H%ﬁj QN (Z (2i0; —vi — % : aj ) - Fee1Zx+

j=1 =1

n
ou «
0i————) - Fr19
+'Z (2 oz, u) k—1 X)
i=r+1

and it is straightforward to see that this is contained in Ker(ypy). We now prove
by induction on k that if gpk(a;?l---xgr ®n® P) = 0 for some P € F;Px, then
:Efl 2" ®@n® P € Im(y). Note that the case k = 0 is trivial. Let’s write P =
Zuﬂ) Cup0"2’, where u and v vary over 7z, After subtracting suitable terms from
P, we may assume that whenever ¢, , # 0, we have u; = 0 for « > r. Furthermore,
note that if u;,v; > 0 for some i < r, then we can write

9 ,
9"z" = (0; —vi — 8_u S
s u

)A+ B,

with both A and B of order < k — 1. Therefore we may also assume that whenever
Cup 7# 0 and |u| := ), u; = k, we have

(6.2) wv; =0 for 1<i<n.
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Since

(h_azngl o 2Prp)d e’ = (non-zero constant?) - (h_azngl ceaPrp)avTy,

and since (6.2) implies that for every (u,v) and (v/,v") with |u| = k and ¢y 4, ¢y »r 7# 0
we have zV™" £ V=" we conclude that in fact P € Fj,_;%x, hence we are done by
induction. d

7. The Hodge ideals of simple normal crossing divisors. In this section we
show that the Hodge ideals of divisors with simple normal crossing support essentially
depend only on the support of the divisor, and therefore can be computed as in
[MP16, §8].

Proposition 7.1. Let X be a smooth variety, and D an effective divisor on X with
simple normal crossing support Z. Then for all k we have

I(D) = I(Z) ®¢y Ox(Z — | D]).

Proof. Equivalently, we need to show that Ij (D) = I;(Z) for all k. The assertion
is local, hence we may assume that we have coordinates xi,...,x, on X such that
Z = Hi{+ -+ H,, where H; is defined by x; = 0. The morphism X — C" given by
(x1,...,x,) is smooth, hence using Remark 2.15 we see that it is enough to prove the
proposition when X = Spec Clzy,...,z,] and D = > | a;H;, where H; = div(z;)
and «; > 0. Let £ be the smallest positive integer such that all a; := fa; are integers.
The assertion to be proved is trivial when £ = 1, hence from now on we assume ¢ > 2.
Consider the Cartesian diagram

jo
W
g

QT<

1 X,
where
jo: V. =8pec Clat, ... ay oyl /(y" —ay™ -y )
— W = Spec Clz1, ..., 2, 2]/ (25 — 28 - 297),
with ji(z) = y~'. We will make use of some standard facts about cyclic covers with
respect to simple normal crossing divisors, exploiting the toric variety structure on
the normalization of W. For basic facts regarding toric varieties, we refer to [Ful93].

Let N be the lattice Z™ and M its dual. We also consider the lattice
N' ={(v1,...,0p41) € Z" | ayv1 4 - + apvp = lopg1}
and its dual
M =27 (ay, ... a,, ).
Note that we have an injective lattice map N’ — N, with finite cokernel, induced
by the projection onto the first n components, and the dual map M — M’ is again

injective, with finite cokernel. In fact, we have an isomorphism M'/M ~ Z/{Z that
maps the class of (u1,...,ups+1) € M’ to the class of u,41 in Z/lZ.

2Here we use again the fact that —y; — 1 & Z>( for all <.
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We thus have an isomorphism N{, ~ Ng = R". The strongly convex cone o = RY,
in Ng = R" gives the toric variety X = C". As a cone in Nﬁ, o gives an affine toric
variety W, and the lattice map N’ — N corresponds to a toric map ): W — X.
Note that we have a morphism of &(X)-algebras 6(W) — € (W) that maps z; to the
element of C[oV N M'] corresponding to the class of the i-th element of the standard
basis of Z", and z to the class of (0,...,0,1). It is easy to check that if we denote by
|7] the largest integer <+, then

(7.1) oW)= @ OX)ayP) .. gy lionld,
0<y<e—1

and consequently to deduce that &(W) is integral over &(W). As the coordinate ring
of a toric variety, & (W) is normal, hence it is the integral closure of &'(W) in its field
of fractions. Moreover, since W is a toric variety, we may choose a toric resolution of
singularities Y — /VIV/, and let f: Y — X be the composition. Since the map Y — W
is an isomorphism over the complement of g~ (3" H;), it follows that there is an open
embedding ¢: V < Y such that fo. = jop. The support Ey of Y \ ¢(V) is the sum
of all prime toric divisors on Y.

The action of the torus Ty, = Spec C[M'] on W induces an action of the finite
group Spec C[M’/M] ~ Spec C|Z/¢Z] = 1y on W. This is the action induced on the
normalization W by the pg-action on W that we discussed in §2. In particular, the
toric resolution Y — W is automatically equivariant. Note that in the decomposition
(7.1), an element A € py acts on the summand corresponding to j by multiplication
with .

The equality f ot = j o p implies that we have an isomorphism of filtered Zx-
modules

J+P+O0v = f114 Oy = fL Oy (xEy).

As usual, in order to compute the push-forward of Oy (xEy ), it is more convenient to
work with right Z-modules. Recall that there is a complex of right Zy-modules

A* =A% : 0— Dy — Q%/(logEy) ®oy Dy — - > wy(By) ®g, Py — 0

located in degrees —n, ..., 0, that is filtered quasi-isomorphic to wy (xEy ); see the be-
ginning of §6. Since Y is a toric variety, we have a canonical isomorphism Q%,(log Ey) ~
M’ @7 Oy (see [Ful93, Section 4.3]). We will also consider the corresponding complex
on X:

AE(: 0—9x — MRz Dx — - — N"M Qg 9x — 0.
It follows from the definition that, forgetting about the filtration, we have

frwy (xBy) = Rf(A® ®g, Dy _x).

Note that 9y _x = f*Px as Oy-modules, hence the projection formula implies

Rf (A" ®gy Dyx) = NPM' @7 R'f.0y @6, Dx =0
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for ¢ > 0, since f is the composition of a finite map with a toric resolution. Therefore
f+wy (xEy ) is represented by the complex B®, where

BPTT — /\pM/ Xz ¢*ﬁ’V[7 ®0’X .@X.

In order to describe the differential of this complex, it is convenient to use the iso-
morphism Mq ~ Mé and the decomposition (7.1). With a little care, it follows from
the definitions that if we put

BY™" = NPMq @q Ox -ay I i g gy,

then B® decomposes as the direct sum of the subcomplexes B, for 0 < j < ¢ —

1. Furthermore, if we identify each B;’ ~" in the obvious way with A% ", then the
differential

5%;”: NP Mq ®q Zx — /\p+1MQ ®qQ Ix
is given by
0" = 00"+ (wj A —) @ Tdg,,
where 64, is the differential on A% and
w; = (U)j,l, PN ,wjm), with Wji = jOéZ' — L]OéZJ

It follows from Proposition 6.1 that we have a morphism

B;-] — M (2™
that induces a quasi-isomorphism

BS — ./\/lr(:vlluj’1 ™)
(see also Remark 2.3).

We now bring the filtrations into the picture. It follows from Saito’s strictness
results (see the discussion in §1; cf. also [MP16, §4, §6]) that

Fyfrwy (*By) = Im(Rf.Fi(A® @9y Dyx) = Rf(A® @9y Dyx)).
Arguing as above, we deduce that
Fy frwy (+By) = Im(foFp(A® @gy Dy—x) = [(A° @9y Dyx)).

In other words, (fiwy (xFEy), F') is represented by the filtered complex B®, and using
Proposition 6.1, we conclude that

~

-1
f+WY(*Ey) = Mr($11”j'1 - $gj,n),
J

Il
o

where the filtration on M, (z,”" ---2,”") is given by
Foog M (z)7" o zy™) = 27" " wx (Z)  and

F;,C_n/\/lr(xlluj’1 _ xﬁ”) = F_n./\/lr(:z:;"j’1 e :L":f”) -FL9x for k>1.
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By comparing the py-actions, we conclude that the summand M, (z]7** -- -z, ")
on which an element A € 1y acts by multiplication with A~! corresponds to j = £ — 1.
Therefore the filtration on M(z] ' -- -z, *") is given by

F_oo My (27 -z, %) = (2] ™ ---:E;O‘"):E{aﬂ zlenloy(Z)  and

Feo My (27 oz, 0) = Fo, My (27 - 2)%) - FyDx for k> 1.

n
It is now a straightforward computation to see that I} (D) is the ideal generated by
the monomials [[;; z;", where 0 < ¢; < k for all 4 and > ,¢; = (n — 1)k. This

i
coincides with Ix(Z) according to [MP16, Proposition 8.2], completing the proof of
the proposition. O

8. Computation in terms of a log resolution. We use the results of the previous
two sections in order to describe Hodge ideals of Q-divisors in terms of log resolutions.
Let X be a smooth variety, h € Ox(X) a nonzero function, H = div(h), and a € Q.
We are interested in computing I(D), where D = aH. As always, let Z = Supp(D)
and f=1—qa.

Let f: Y — X be a log resolution of the pair (X, D) that is an isomorphism over
U=X-\Z, and denote g = ho f € Oy(Y). We fix a positive integer ¢ such that
Lo € 7. As usual, we consider

p: V =Specylyl/(y* —h ") — U

and the inclusion j: U < X. By assumption, we also have an open immersion
t: U = Y such that f o. = j. By considering the decompositions of

J+p+0v =~ f1i4py Oy
into isotypical components, we conclude that we have a filtered isomorphism
(8.1) M(h™%) = fLM(g™).
We now denote G = f*D, and consider on Y the complex introduced in §6:
Cy-a(=[G1): 0= Oy (=[G]) ®ay Dy = Oy (~[G]) @oy Oy (log B) @y Dy
— - = Oy (—[G]) ®g, wy(E) @, Dy — 0,

where ' = (f*D)yeq. This is placed in degrees —n,...,0, and if x1,...,x, are local
coordinates on Y, then its differential is given by

nRE — dn®Q+Z(dmi/\n)®(%Q— (a-dlog(g) /\77) ® Q.
i=1
Theorem 8.1. With the above notation, the following hold:
i) For every p # 0 and every k € Z, we have
Rpf* (Cgfa (_ |>G-‘ ) ®@Y @Y—%X) = 0

and
RPf.Fy,(Cy-a(—[G]) ®ay Pv—x) = 0.
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i1) For every k € Z, the natural inclusion induces an injective map
RUf.Fy, (C;,a(—[(ﬂ) Ry Dy—x) Rf, (C;,a(—[(ﬂ) Qay Dy—x).
ii1) We have a canonical isomorphism
ROL(Co (= [G]) @y Prox) = Mu(h™)
that induces for every k € Z an isomorphism
R fiFyn(Co-a(=[G) ®ay Pyx) = h™wx ((k+1)Z — [D]) ®y [(D) =
~ hﬁwX(k:Z + H) ®gy Ix(D).

Proof. 1t follows from Lemma 2.8, and from the definition of its filtration, that
M, (g7%) is a direct summand of a right Hodge Z-module on Y. By Saito’s strictness
of the filtration of (push-forwards of) such Z-modules, it follows that for all k,p € Z
the canonical map

L L
RPf By (M (g™%) @y Dyx) = R fu(Mr(g™%) @y Dy—x)

is injective, and its image is equal to

L
FyRP fo (M, (97%) @2y Py sx)
(see the discussion in §1).

On the other hand, note that if write G = «-div(g) = >, a; E;, then —[a;| + o &
Z g for all ;. We may thus apply Proposition 6.1 for the divisor G, with T' = [G].
Using Proposition 7.1 as well, we see that C?_, (—[G1]) is filtered quasi-isomorphic to

M, (g7%), hence
L
RPf(Co-a(=[G]) ®gy Py—x) = RPfe(M(g7%) ®gy Py—x) and

L
RPf.Fy (Co-oa (= [G) ®gy Dyx) = RPfF (Mo (97%) @y Py x)-
Finally, by the definition of push-forward for right Z-modules we have

L
RPf(My(97%) @y Py—x) ~ HP fL M, (g™°),

and by (8.1) this is 0 if p # 0, and is canonically isomorphic to M, (h™%) if p = 0.
The assertions in the proposition follow by combining all these facts. O

Remark 8.2 (Local vanishing). The statement in Theorem 8.1 i) is a generalization
of the Local Vanishing theorem for multiplier ideals [Laz04, Theorem 9.4.1], in view
of the calculation in Proposition 9.1 below.

As a consequence of the vanishing statements in Theorem 8.1(i), provided by strict-
ness, we deduce the following local Nakano-type vanishing result, first obtained by
Saito [Sai07, Corollary 3] when D is reduced; cf. Corollary C in the Introduction and
the discussion following it.
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Corollary 8.3. Let D be an effective Q-divisor on the smooth variety X and f: Y —
X a log resolution of (X, D) that is an isomorphism over X ~ Supp(D). If E =
(f*D)yeq, then

Rif (Oy (—[[*D]) ®@ay, Q) (log E)) =0 for p+q>n=dim(X).
Proof. We argue by descending induction on p, the case p > n being trivial. Suppose
now that p < n and g > n — p. After possibly replacing X by suitable open subsets,
we may assume that D = « - div(h). We may thus apply Theorem 8.1 to deduce that
if
C* = F_ (Cy-a(=1*D1) @5y Dyx ) Ip — 1,
then
(8.2) RIf.C*=0 for j>n—p.
Note that by definition, we have
C' = Oy (~[f*D]) ®p, BT (log E) ®¢y f*FPx for 0<i<n—p.

Consider the spectral sequence

EY = RIf,C* = R f,C°.
It follows from (8.2) that E%? = 0. Now by the projection formula we have
(8.3) EY) = R f.(Oy(—[f*D] ®g, B (log E)) ®¢y FiPx.

In particular, it follows from the inductive hypothesis that for every r > 1 we have

EI’q_TH = 0, hence EP™ = 0 as well. On the other hand, we clearly have

Eynatrl 0, since this is a first-quadrant spectral sequence. We thus conclude that

E% = ngl forall r>1,
hence B! = E%:? = 0. Using (8.3) again, we conclude that
R1f.(Oy (=[f*D]) ®g, O (log E)) = 0.
O

9. The ideal Ij(D) and log canonical pairs. We now use Theorem 8.1 in order
to relate Ip(D) to multiplier ideals. Recall that for a Q-divisor B, one denotes by
Z(B) the associated multiplier ideal; see [Laz04, Ch.9] for the definition and basic
properties.

Proposition 9.1. If f: Y — X is a log resolution of (X, D) that is an isomorphism
over X \ D, and E = (f*D)yeq, then

Iy(D) ~ f.0y (Ky;x + E—[f*D]) =Z((1 —¢)D)
for0 <e< 1.
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Proof. The first equality follows from Theorem 8.1, together with the fact that the
term F_,C?_, (—=[f*D]) consists of

wy (E — [f*D])
placed in degree 0. The second equality then follows from the definition of multiplier
ideals and the fact that if A is an effective divisor with support E, then

E—-JAl=—[(1-¢eA] for 0<ex]1.
O
As in [MP16] in the case of reduced divisors, we obtain therefore that for every
Q-divisor D we have that Iy(D) = Ox if and only if the pair (X, D) is log canonical,
which leads to the following:
Definition 9.2. The pair (X, D) is k-log canonical if
Iy(D)=---=1,(D) = 0x.*
Note however that by Remark 4.3, the triviality of any I(D) is possible only if

[D] = Z; in general it is more suitable to focus on the triviality of the ideals I} (D).
We therefore introduce also:

Definition 9.3. The pair (X, D) is reduced k-log canonical if
Ip(D) = -+ = It(D) = Ox,
or equivalently

I(D) = --- = (D) = 6x(Z — [D]).

Example 9.4. Let Z have an ordinary singularity, i.e. an isolated singular point
whose projectivized tangent cone is smooth, of multiplicity m. If D = «aZ with
0 < a<1, then

(X, D) is k—log canonical <= k < [% —al.

See Corollary 11.8 and Remark 11.9.

C. LOCAL STUDY AND GLOBAL VANISHING THEOREM

10. Generation level of the Hodge filtration, and examples. As above, we
consider a divisor D = aH, with H = div(h) for some nonzero h € Ox(X) and
a € Qsg. We denote by Z the support of D, and 8 = 1 — «. By construction, the
filtration on M(h?) is compatible with the order filtration on Zy. This means that
for every k,¢ > 0 we have

(10.1)  EZx - (I(D) ® Ox(kZ + H)h) C Li1o(D) @ Ox((k + 0)Z + H)LP,
or equivalently for every k£ > 0 we have
(10.2)  Fi9x - (I(D) ® Ox(kZ + H)h’) C I 11(D) ® Ox((k +1)Z + H)h.

3We note that by the results in [MP18b, §5], at least in the case of divisors of the form D = aZ,
with a € Qxo, this condition is equivalent simply to I (D) = Ox (cf. Remark 4.2).
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By working locally, we may assume that we also have an equation g for Z. With this
notation, condition (10.2) is equivalent to the following two conditions:

(10.3) 9 1x(D) € i1 (D)

and for every derivation @ of Ox and every w € I(D), we have
h

(10.4) 9-Qw) — k- Qg) —ogw- T ¢ 1 ()

We now turn to the problem of describing the generation level of the filtration on
M(hP). Recall that one says that the filtration is generated at level k if

E,Dx - FuM(hP) = F yM(hP) for all >0,

or in other words if equality is satisfied in (10.1). This is of course equivalent to
having
F\Px - E,M(hP) = E, yM(RP) for all p > k.

Suppose now that we are in the setting of Theorem 8.1.
Theorem 10.1. The filtration on M(hP) is generated at level k if and only if
Rif () Ylog E) ®¢g, Oy(—[f*D])) =0 for q>k.
In particular, the filtration is always generated at level n — 1.
Proof. The proof follows almost verbatim that of [MP16, Theorem 17.1]. It is more

convenient to work equivalently with M(h™%), and in fact with the associated right
Px-module M, (h=%). It is enough to show that

(10.5) F oM (h™%) - 19x = F—_pni1i M (h™%)
if and only if
RF(£.97 Ylog E) @4y, Oy(~[f*D])) = 0.

The inclusion “C” in (10.5) always holds of course by the definition of a filtration,
hence the issue is the reverse inclusion.

With the notation in §6, for every p let
C, = Fp(C’;,a(—[f*D]) Qoy Dy—x)s
where g = ho f. Consider the morphism of complexes
Dp: Ch_p @p-10y f T PIDx — Chyi_y

induced by right multiplication, and let T* = Ker(®;). Using Theorem 8.1, we see
that (10.5) holds if and only if the morphism

(10.6) R f.Ch_, ®0y F1Px — R f.Chi,
induced by ®; is surjective.

For every m > 0, let R, be the kernel of the morphism induced by right multipli-
cation

Fn9x ®@py F19x — Frp19x.
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Note that this is a surjective morphism of locally free &'x-modules, hence R,, is a
locally free Ox-module and for every p we have

7 = Oy(=[f"D1) @0y " (log B) @510 [~ Ricep
Consider the first-quadrant hypercohomology spectral sequence
EPY = RIFTP" = RPTITET®.
The projection formula gives
RIfTP™" =~ R1f.(Oy (—[f*D]) ®ay O (log E)) @oy Rktpn,

and this vanishes for p + ¢ > n by Corollary 8.3. We thus deduce from the spectral
sequence that R f,T* = 0 for all j > 0.

We first consider the case when k > n and show that (10.5) always holds. Indeed,
in this case ®y is surjective. It follows from the projection formula and the long exact
sequence in cohomology that we have an exact sequence

R f.Cr_, @0y F19x — R f.Ch1_, — R'£.T".

We have seen that R!f, T® = 0, hence the morphism in (10.6) is surjective.
Suppose now that 0 < k < n. Let B®* — Cy,,_, be the subcomplex given by

BP = C,’;H_n for all p # —k — 1 and B~*~! = 0. Note that we have a short exact
sequence of complexes
(10.7) 0— B*— Cpyy_p, — Cil [k +1] — 0.

It is clear that ®; factors as

q>/' [ ] [ ]
Cr_p @10y, [T FIDx —5 B — Chyi_,.

Moreover, ®} is surjective and Ker(®}) = T°. As before, since RYf.T* = 0, we
conclude that morphism induced by @} :

R f.Cr_, ®py F1Px — R'f.B*
is surjective. This implies that (10.6) is surjective if and only if the morphism
(10.8) RUf.B* — R f.Cp. 1,
is surjective. The exact sequence (10.7) induces an exact sequence

R°f.B* = R f.Ch . _, — RM' 1.0 F ! — R f.B°.

We have seen that R2 f+T* =0, and we also have
le* (C]:_n R -105 f_lFlgx) =0.

This follows as above, using the projection formula, the hypercohomology spectral
sequence, and Corollary 8.3. We deduce from the long exact sequence associated to

0—T*— Cp_, @10y, ['F19x — B* — 0
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that R' f,B* = 0. Putting all of this together, we conclude that (10.6) is surjective if
and only if RF+1 f+C fl__ln = 0. Since by definition we have
RMULC, = R0y (-[£7D]) @4, Q3 Hlog E)),

this completes the proof of the first assertion in the proposition. The second assertion
follows from the first, since all fibers of f have dimension < n. g

Example 10.2 (Nodal curves). If X is a smooth surface and Z is a reduced curve on
X, defined by h € 0(X), such that Z has a node at x € X and no other singularities,
then the filtration on M(h?) is generated at level 0. Indeed, let f: Y — X be the
blow-up of X at x, with exceptional divisor F'. This is a log resolution of (X, Z),
hence our assertion follows if we show that

(10.9) R'f.(Qy (log E) ®¢y Oy (—[af*Z])) =0,

where E = Z + F. Note that zZ = Z + 2F and we may assume that 0 < a < 1.
If L < o <1, then [af*Z] = f*Z and (10.9) follows from [MP16, Theorem B]
using the projection formula. On the other hand, if 0 < o < %, then [af*Z| = F
and the vanishing follows from the fact that the pair (X, Z) is log canonical, using
[GKKP11, Theorem 14.1] (though, in this case, one could also check this directly).

Once we know that the filtration on M(h?) is generated at level 0, it is straight-
forward to check that

I(aZ)=mk, forall 0<a<1andk >0,

where m, is the ideal defining x in X.

Unlike in the case when D is a reduced integral divisor, when the filtration Fy Ox (D)
is generated at level n — 2 by [MP16, Theorem B], in general it is not possible to im-
prove the bound given by Proposition 10.1.

Example 10.3 (Optimal generation level). It can happen that on a surface X
the filtration on M(h®) is not generated at level 0. Suppose, for example, that
X =A?and Z = Ly + Ly + L3, where L1, Lo, and L3 are 3 lines passing through the
origin. If f: Y — X is the blow-up of the origin and F = (f*Z);cq, then we write
E =F + Gy + Gy + G3, where F' is the exceptional divisor and the G; are the strict
transforms of the L;. Let D = aZ with 0 < a < 1, so that [f*D] = E. If

H'(Y,Qy(log E) ®g, Oy(—[f*D])) = H'(Y,Qy (log E) ®¢, Oy (—E))

were zero, then it would follow from the standard exact sequence

3
0— Qy(logE) Koy ﬁy(—E) —Qy = Q& @Qgi — 0
i=1
that the map
3

HO(Y,Qy) — H(F,Qr) © @ H(Gi, )
=1
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is surjective. In particular, we would deduce that the map

3
H(X,0x) » @ HUL;, Q1)
i=1
is surjective. It is an easy exercise to see that this is not the case. Note that the non-
vanishing of H'(Y,Qy (log E) ®¢, Oy(—E)) is not inconsistent with the Steenbrink-
type vanishing in [GKKP11, Theorem 14.1], since the pair (X, Z) is not log-canonical.

Example 10.4 (Quasi-homogeneous isolated singularities). For the class of
quasi-homogeneous isolated singularities (such as those in the examples above), the
generation level for the filtration on M (h?) can be detected by the Bernstein-Sato
polynomial. Before formulating this more precisely, we recall some definitions. Sup-
pose that Z is a hypersurface in X defined by h € Ox(X). The Bernstein-Sato
polynomial of Z is the non-zero monic polynomial by, € Cls| of smallest degree such
that we locally have a relation of the form

bn(s)h® = P(s) e h*T1

for some nonzero P € Px|[s]. If Z is non-empty, it is known that (s + 1) divides
by; moreover, all the roots of by are negative rational numbers. In this case, one
defines oy, = —A, where A is the largest root of the reduced Bernstein-Sato polynomial
br, = bp(s)/(s + 1). Note that by, has degree 0 if and only if Z is smooth, and in this
case one makes the convention that a; = oo.

The statement is that if Z = div(h) is reduced and has a unique singular point at
x, which is a quasi-homogeneous singularity, and D = aZ, then the generation level
ko of the filtration on M(h?) (i.e. the smallest k such that the filtration is generated
at level k) is

k‘(): L’I’L—ah—aj.
This was proved by Saito [Sai09, Theorem 0.7] when D is reduced, i.e. for a« = 1, and
was extended to the general case by Zhang [Zhal8].*

Note that for such singularities there is an explicit formula for ay; see e.g. [Sai09,
§4.1]. Just as an illustration, for h = zy(z+y), which describes the previous example,
we have a, = 2/3, and so for @ small (more precisely 0 < a < 1/3) we recover the
fact that the generation level is equal to 1.

Example 10.5 (Incomensurability of higher Hodge ideals). Suppose that X is
a smooth surface and Z = Y| D; is a reduced effective divisor on X. Let f: Y — X
be a log resolution of (X, Z) that is an isomorphism over X\ Z, and put E = (f*Z);eq-
Let D =3%""_,(1—a;)D; be a divisor with 0 < a; < 1 for all 4, so that [f*D] = f*Z.
In this case we have

R'f.(Oy(~[f*D]) ® Q5 (log E)) =0
by the projection formula and [MP16, Theorem B], and so the filtration is generated

at level 0. It follows from the discussion at the beginning of the section (see (10.3)

4Moreover, based on calculations of Saito, Zhang shows in loc. cit. that all Hodge ideals of
Q-divisors associated to such singularities can be computed explicitly.
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and (10.4)) that if g is a local equation of Z, and D = aZ, with a < 1 and close to
1, then I;,1(D) is generated by g - I(D) and

{h-Qw) — (a+k)w-Q(h) | we Ix(D),Q € Derc(Ox)} .

For example, if X = C? and Z is the cusp defined by 22 + y3, then for D = aZ
with a <1 and close to 1 we have

Iy(D) = (z,y), (D) = (2%, 2y,y°), and
IZ(D) = (333733292755937?44 - (204 + 1)‘T2y)

Note in particular that if D1 = a1 Z and Dy = a7, with a1 < ag both close to 1,
then there is no inclusion between the ideals I3(D;) and I3(Ds). This is in contrast
with the picture for multiplier ideals, where for any Q-divisors Dy < Ds one has
In(D2) C Ip(D1); see [Laz04, Proposition 9.2.32(i)]. It is not hard to check however
that

I(Dy) = I)(D3) mod z? + 3,

and that this is part of a general phenomenon where the picture is well behaved
after modding out by a defining equation for the hypersurface; this follows from the
connection with the V-filtration, see [MP18b, Corollary BJ.

Remark 10.6. If the filtration is generated at level k, then I}, 1(D) is generated by
the terms appearing on the left hand side of conditions (10.3) and (10.4). A simple
calculation shows then that in this case, for every j > 1 and every x € X, we have

mult, Ij4 (D) > mult, 41 (D) + mult, Z — 1.
In particular, we have
mult, 4 ;(D) > mult, I, (D) + j - (mult, Z — 1).

Since the filtration is always generated at level n — 1 by Proposition 10.1, we obtain
the following consequence.

Corollary 10.7. If D is an effective Q-divisor on the smooth variety X, with support
Z, and if Z is singular at some x € X, then I;(D), # Ox 5 for all j > n. In fact, if
m = mult,Z, then

mult,[;(D) > (j —n+1)(m —1) forall j>n.
11. Non-triviality criteria. The following is the analogue of [MP16, Theorem 18.1]
in the setting of Q-divisors. Let D be an effective Q-divisor on the smooth variety X,

with Z = Supp(D), and let ¢: X7 — X be a projective morphism with X; smooth,
such that ¢ is an isomorphism over X \ Z. We denote

Z1 = (¢ Z)rea and Ty, /x = Coker(Tx, — ¢*Tx).
Theorem 11.1. With the above notation, the following hold:
i) We have an inclusion

s (Ik(9" D) @0y, Ox,(Kx,yx + k(Zy — ¢ Z))) € In(D).
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i) If J is a coherent ideal on X such that J-Tx jx =0, then
JE - I5(D) € 9o (19" D) @0, Ox,(Kx,yx + k(21 — 9" 2))).

Proof. We may assume that D = « - div(h), for some a € Q=g and some nonzero
h € Ox(X). Let ¢: Y — X7 be a log resolution of (X1, ¢*D) that is an isomorphism
over X1\ ¢~ 1(Z). We put
f=¢oy and FE = (f"Z)ieq.
With the notation in §6, consider the filtered complex C*® = C’;,a(— [f*D]), where
g = ho f. We have an inclusion of complexes
A*=C"* Ry -@Y—>X1 — B*=C" Ry Dy _x.
Note that this is an injection due to the fact that Oy (—[f*D]) and Qf (log E) are
locally free sheaves of Oy-modules, while all the maps F,%y_,x, — F,%y_x are
generically injective morphisms of locally free &y-modules. Consider, for any integer
k, the short exact sequence of complexes
0 — F_,A* — F,_,B* — M, — 0.

Applying R f, and taking the corresponding long exact sequence, we obtain a short
exact sequence
RV f.Fy_,A* - RV f.F},_,B®* — RVf.M*.
If 6 =1-— a, it follows from Theorem 8.1 that
Rf.F_nB* = R°f.F},_,B®* ~ W’ Ox(Kx + kZ + H) @, I}(D)
and
Rg. F_pA® = R°g, Fy_nA® ~ WP Ox, (Kx, + kZ1 + ¢"H) Ry, In(¢" D).
Therefore, after tensoring by &x(—H), the map ¢ induces a map
(11.1) P (Ik((p*D) ® ﬁxl (KX1 + k’Zl)) — Ik(D) Koy Ox (KX + k‘Z)

Finally, the map ¢ is compatible with restriction to open subsets of X. By restricting
to an open subset Xg in the complement of Z, such that f is an isomorphism over X,
we see that the map in (11.1) is the identity on wx,. We thus deduce the assertion in
i) by tensoring (11.1) with &x (— Kx — kZ). Furthermore, we see that the assertion
in i1) follows if we show that Jk . ROf.M*® = 0. Since

MP = Oy (=[f*D]) @g, Oy (l0g E) ©ay ¥* (0" FripPx | Frrp?x:);
it is enough to show that under our assumption we have
O F;9x - J C F;Px, forall j>0.
This is proved in [MP16, Lemma 18.6]. O
We first use Theorem 11.1 in order to give a triviality criterion for Hodge ideals in
terms of invariants of a fixed resolution of singularities. We use this in turn in order

to bound the largest root of the reduced Bernstein-Sato polynomial (i.e. &y, defined
in Example 10.4) in terms of such invariants, in [MP18b, Corollary D].
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Proposition 11.2. Let Z be a reduced divisor on the smooth variety X, and let
D = oZ, with a € Qso. Let f: Y — X be a log resolution of (X,Z) that is an
isomorphism over X ~\ Z and such that the strict transform Z of Z is smooth. We
define integers a; and b; by the expressions

m m
FZ=2+) aF; and Kyx=>» bF,
i=1 =1
where Fy, ..., Fy, are the prime exceptional divisors. If

(11.2) bit1

>k+a for 1<i<m,

Qa;

then Iy(D) = Ox ((1 — [&])Z). In particular, if 0 < oo < 1, then Iy(D) = Ox.

Proof. It D' = o/'Z, where o/ = o+ 1 — [a], then it follows from Lemma 4.4 that
I(D) = I;(D") @ Ox ((1 — [«])Z). Since the inequalities (11.2) clearly also hold if
we replace a by o, it follows that it is enough to treat the case 0 < o < 1.

First, note that since f*D has simple normal crossings, by Proposition 7.1 we have

Ii(f*D) = I(E) ® Oy (Y _(1 - [aa; ) F),
i=1
where E = (f*Z)yed = Z—FZ?;I F;. We apply Theorem 11.1 i) to obtain the inclusion
(11.3) fo(In(B) ® Oy (F)) < Ix(D),
where
F = Z (bZ +k+1—ka; — (an)FZ
i=1

On the other hand, since E = Z + > o, F; has simple normal crossings and 7 is
smooth, it follows from the description of Hodge ideals of simple normal crossing
divisors in [MP16, Proposition 8.2] that we have

Oy(~k- Y F) C Iy(E).
i=1
Note that the inequalities in (11.2) imply b; + 1 > ka; + [aa;]| for all i, hence the
divisor F — k- > " | F; is effective We thus deduce using (11.3) that we have
ﬁX = f*ﬁy — Ik(D)
O

Remark 11.3. More generally, suppose that we write Z = 25:1 Zj, and consider
an effective Q-divisor D = Z;zl a; Zj supported on Z. For simplicity, let us assume
that 0 < o;j <1 for all 5. If f is a log resolution as in Proposition 11.2, and we write

f7Zj=2Zj+) dF
i=1
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for all j (so that a; =37%_, al), then the same proof gives I(D) = Oy if
b; +1> ka; + Zozjaj for all 4.

)
1=1

We now turn our attention to non-triviality criteria for the Hodge ideals I} (D) in
terms of the multiplicity of D, and of its support Z, along a given subvariety.

Corollary 11.4. Let D be an effective Q-divisor on the smooth variety X, and let Z
be the support of D. If W is an irreducible closed subset of X of codimension r such
that multyy Z = a and multyy D = b, and if q is a non-negative integer such that

b+ka>q+r+2k—-1,
then I.(D) C II(;), the g-th symbolic power of Iy . In particular, if

q+r+2k—1

ltw D >
multy k‘—l—l s

then Ij(D) C 11V

Proof. After possibly restricting to a suitable open subset of X meeting W, we may
assume that W is smooth. The first assertion in the corollary follows by applying
Theorem 11.1(ii) to the blow-up ¢: X; — X along W. Note that we may take
J = Iy by [MP16, Example 18.7], while I(¢*D) C Ox,(Z1 — [¢*D]). The last
assertion follows thanks to the fact that by assumption we have a > b. O

Remark 11.5. An interesting consequence of the above corollary is that if Z is a
reduced divisor on the smooth, n-dimensional variety X, k is a positive integer, and
x € X is a point such that

mult, Z > 2+ %,

then I(D) is non-trivial at x for every effective Q-divisor D with support Z (no
matter how small the coefficients).

Example 11.6 (Ordinary singularities, I). Let X be a smooth variety of dimen-
sion n, and Z a reduced divisor with an ordinary singularity at x € X (recall that
this means that the projectivized tangent cone of Z at x is smooth), for instance a
cone over a smooth hypersurface. If D = aZ, with « a rational number satisfying
0 < a<1, then

n
It, 7 < —— I.(D), = Ox .
mu _k‘—l—oz:> k( ) X,

Note that the converse of this statement will be proved in Corollary 11.8 below.

Indeed, the assumption implies that after possibly replacing X by an open neigh-
borhood oix, the blow-up f: Y — X of X at x gives a log resolution of (X, Z). Let

E = F + Z, where F is the exceptional divisor of f and Z is the strict transform of
Z. If m = mult, 7, then we deduce from Theorem 11.1 that

fe(In(¢" D) ®g, Oy (Ky/x + k(E - f*Z)))
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= [ (Is(¢*D) ®g, Oy((n—1+k—km)F)) C Ix(D).
Now since ¢* D is supported on the simple normal crossings divisor E, by Proposition
7.1 we have

I(¢* D) = It(E) @5y, Oy ((1 — [am])F),
where we use the fact that [a] = 1. Moreover, by [MP16, Proposition 8.2] we have
Ik(E) = (6 (~Z) + Oy (~F))" 2 Oy (~kF).
Now by assumption
n—km — [am] >0,
hence we deduce Iy(D) = Ox.

Example 11.7 (Ordinary singularities, IT). With considerable extra work, one
can say more in the ordinary case. We keep the notation of the previous example,
and assume that x is a singular point of Z, hence m > 2. If k is a positive integer
such that

(k—1)m+[am] <n and k<n-—2,
then we have

[k(D) — ml;m—l— [am]|—n

in a neighborhood of z, where m, is the ideal defining = (with the convention that
m} = Oy if j <0). The argument is similar to that in [MP16, Proposition 20.7], so
we omit it.

In what follows we make use of some general properties of Hodge ideals that will
be proved in Ch.D, namely the Restriction and Semicontinuity Theorems.

Corollary 11.8. If X is a smooth n-dimensional variety, Z is a reduced divisor with
an ordinary singularity of multiplicity m > 2 at x € X, and D = aZ with 0 < a < 1,
then

Ik(D)x = ﬁX@ <~ m< k;—i—a'
Proof. The “if” part follows directly from Example 11.6. For the converse, we need
to show that if m; is the ideal defining x and m > 25, then I (D) C m,. We may
assume that Z is defined in X by h € Ox(X). Let r > 0 be such that n +r =
mk + [ma] — 1 and consider the divisor Z' in X x C" defined by h+ yi* + -+ -+ y/,
where 91, ..., y, are the coordinates on C". It is easy to check that Z’ is reduced and
has an ordinary singularity at (z,0). By the Restriction Theorem (see Theorem 13.1
and Remark 13.4 below), we have Iy(aZ) C Iy(aZ') - Ox, where we consider X
embedded in X x C" as X x {0}. After replacing X and Z by X’ and Z’, we may
thus assume that n = mk+ [ma] — 1. If kK < n— 2, then we may apply Example 11.7
to conclude that I(D) C m,. Otherwise we have
kE>n—1=mk+ [mal] —2,

which easily implies m = 2, £k = 1, and a < %, hence n = 2. Since Z has an
ordinary singularity at x, it follows that it must be a node, and in this case we have
Ii(aZ) = m, by Example 10.2. O
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Remark 11.9. One can give an alternative argument, arguing as follows. Suppose
that Z is a reduced divisor in X, defined by h € Ox(X). It is shown in [MP18b,
Corollary C] that for 0 < a < 1, we have Iy(aZ) = Ox if and only if k < aj, — . If
Z has an ordinary singularity at x € X, of multiplicity m > 2, then after replacing X
by a suitable neighborhood of x, we have aj; = 7= (see [Sail6, §2.5]), and we recover

the assertion in Corollary 11.8.

Question 11.10. Is it true that if X is a smooth n-dimensional variety, Z is a reduced
divisor on X, D is an effective Q-divisor with support Z, and for a point = € Zg,,
we have

k-mult,Z + mult, D > n,

then I (D) C my,?

This would be a natural improvement of Corollary 11.4, and it does hold when D
is reduced by [MP16, Corollary 21.3]. We may of course assume that [D] = Z, since
otherwise the inclusion is trivial (see Remark 4.3). At the moment we have:

Corollary 11.11. Question 11.10 has a positive answer if D is of the form D = aZ.

Proof. We may assume that o < 1 and, arguing as in the proof of [MP16, Theorem EJ,
we construct a reduced divisor F' on X x U, for a smooth variety U, such that for
t € U general the divisor F} = F| xx{t} 18 reduced, with an ordinary singularity at
(z,t) of multiplicity m = mult, Z, and for some ¢y € U, the isomorphism X ~ X x{to}
maps D to Fy,. In this case Corollary 11.8 implies that I;(F}) vanishes at (z,t) for
t € U general, and the Semicontinuity Theorem (see Theorem 14.1 below) implies
that Ij(F},) vanishes at (z, o). O

This allows us in particular to provide an analogue of [MP16, Theorem A]:
Corollary 11.12. If D is of the form D = aZ, then
Z is smooth <= I;(D)= Ox(Z —[D]) for all k.

Proof. Tt suffices to assume 0 < o < 1, in which case the condition becomes I, (D) =
Ox for all k. By Corollary 11.11 however, if mult,Z > 2, then I(D) C m, for all
k>3 —a. O

12. Vanishing theorem. As usual, we consider an effective Q-divisor D with
support Z, on the smooth variety X. In this section we assume that X is projective,
and prove a vanishing theorem for Hodge ideals, extending [MP16, Theorem F| as
well as Nadel Vanishing for Q-divisors.

We start by choosing a positive integer ¢ such that £D is an integral divisor, and
further assume that there exists a line bundle M on X such that

(12.1) M®t ~ Ox (D),

so that the setting of §5 applies. We note that this can always be achieved after
passing to a finite flat cover of X.
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Theorem 12.1. Let X be a smooth projective variety of dimension n and D an
effective Q-divisor on X such that (12.1) is satisfied. Let L be a line bundle on X
such that L+ Z — D is ample. For some k > 0, assume that the pair (X, D) is reduced
(k — 1)-log-canonical, i.e. Io(D) = --- = I_1(D) = Ox(Z — [D]).° Then we have:

(1) If k <n, and L(pZ — [D]) is ample for all2 < p < k+ 1, then
H'(X,wx @ L((k+1)Z) ® I;(D)) = 0
for all i > 2. Moreover,
H' (X, wx ® L((k +1)Z) ® I;(D)) = 0
holds if HY (X, Q%7 @ L((k —j +2)Z — [D])) =0 for all 1 < j < k.
(2) If k > n+ 1, then Z must be smooth by Corollary 10.7, and so Ix(D) =

Ox(Z — [D]) by Corollary 3.2. In this case, if L is a line bundle such that
L((k+1)Z — [D]) is ample, then

H (X,wx ® L((k+1)Z) ® I;(D)) =0 for all i > 0.

(8) If U = X \ Z is affine (e.g. if D or Z are ample), then (1) and (2) also hold
with L = M(—Z2), assuming that M (pZ — [D)) is ample for 1 <p < k.5

Proof. We use the notation in §5 and Remark 4.3. In particular, we consider the
filtered left Zx-module

M1 =M ®p, Ox(xZ),
which we know is a direct summand in a filtered Z-module underlying a mixed Hodge
module on X. Its filtration satisfies
FpMy =~ M(=2)® Ox((k+2)Z - [D]) ® I (D).
Note also that since L + Z — D is ample, there exists an ample line bundle A on X
such that L ~ M(—-Z) ® A.

Let’s prove (1), i.e. consider the case k < n. The statement is equivalent to the
vanishing of the cohomology groups

H'(X,wx ® L((k+2)Z — [D]) ® [;(D)) =0
Since I},_,(D) = Ox, we have a short exact sequence
0 —wx®@L(k+1)Z —[D]) — wx @ L((k+2)Z — [D]) ® I(D) —
—>wX®A®gr£M1 — 0.

By taking the corresponding long exact sequence in cohomology and using Kodaira
vanishing, we see that the vanishing we are aiming for is equivalent to the same
statement for

Hi(X,wX ®A®gr£./\/ll).

Recall from Definition 9.3 that equivalently this means I4(D) = --- = I, (D) = Ox. By
convention the condition is vacuous when k = 0.

6When k > 1, the condition of U being affine is in fact implied by the positivity condition, since
D + Z — [D] is then an ample divisor with support Z.
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We now consider the complex
C* = (gf, ;. DR(M1) @ A)[~k].

Given the hypothesis on the ideals I;,(D), this can be identified with a complex of the
form

Qv *®L(2Z - [D]) — Qv "' @ L 0732 — [D]) — -+
= '@ L 0((k+1)Z - [D]) — wx ® A® grf M|
placed in degrees 0 up to k. Saito’s Vanishing theorem [Sa90, §2.g] gives
(12.2) H/(X,C*)=0 forall j>k+1.
We use the spectral sequence
EM = H1(X,CP) = HPTI(X,C*).

The vanishing statements we are interested in are for the terms Ef  with i > 1. We
will in fact show that

(12.3) EF =ENM, forall r>1.

This implies that
k7 i k7 ) —_—
EM = EF =0,
where the vanishing follows from (12.2) since ¢ > 1, and this gives our conclusion.

We are thus left with proving (12.3). Now on one hand we always have ERrirtl

0 because C**™ = 0. On the other hand, we will show that under our hypothesis we
have Ef =1 — 0 from which we infer that EF "1 = 0 as well, allowing us
to conclude. To this end, note first that if » > k this vanishing is clear, since the
complex C*® starts in degree 0. If k£ = r, we have

E?,i+k—1 _ ];[z'Jrlc—l(X7 Q}_k X L(2Z - [DD)

If 4 > 2 this is 0 by Nakano vanishing, while if ¢ = 1 it is 0 because of our hypothesis.
Finally, if £ > r + 1, we have

By g Y(X QYT @ L@ O4((k —r+2)Z — [DY)),
which sits in an exact sequence
H* X, Q%" @ L((k—r+2)Z — [D])) — By "7 —
— H (X, Q%" @ L((k —r+1)Z — [DY)).
We again have two cases:

(1) If i > 2, we deduce that Ef""""~1 = 0 by Nakano vanishing.
(2) If i = 1, using Nakano vanishing we obtain a surjective morphism

H' (X, Q%" @ L((k —r+2)Z — [D])) — E{ "7

and if the extra hypothesis on the term on the left holds, then we draw the
same conclusion as in (1).
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The same argument proves (3), once we replace Saito Vanishing (12.2) by the
vanishing
H'(X, gry, DR(M;)) =0
for all # > 0 and all k£, which in turn is implied by the same statement for the
Px-module M underlying a Hodge Z-module, in which M is a direct summand.
Furthermore, this is implied by the vanishing of the perverse sheaf cohomology

H'(X,DR(M)) =0 forall i>0.

Indeed, by the strictness property for direct images (see e.g. [MP16, Example 4.2]),
for (M, F') we have the decomposition

H'(X,DR(M)) ~ (HH' (X, g, DR(M)).
q€Z
Recall now from §5 that M ~ j, N, where A underlies a Hodge Z-module on U, and
j: U < X is the inclusion. Denoting P = DR(M), we then have P ~ j,j*P, and so
it suffices to show that

H'(U,j*P)=0 forall i>0.

But this is a consequence of Artin vanishing (see e.g. [Dim04, Corollary 5.2.18]), since
U is affine.

Finally, the assertion in (2) follows from Kodaira vanishing, using the long exact
sequence in cohomology associated to the short exact sequence

0 = wx®L((k+1)Z—[D]) = wx®L((k+2)Z—[D]) = wz@L((k+1)Z—[D1)|z — 0.
O

Remark 12.2. We expect the statement of the theorem to hold even without assum-
ing the existence of M (i.e. of an ¢-th root of the line bundle &x (¢D)). This is known
for k = 0, when the statement follows from Nadel Vanishing, see [Laz04, Theorem
9.4.8]. However, at the moment we do not know how to show this for & > 1.

Remark 12.3 (Toric varieties). As in [MP16, Corollary 25.1], when X is a toric
variety the Nakano-type vanishing requirement in Theorem 12.1(1) is automatically
satisfied thanks to the Bott-Danilov-Steenbrink vanishing theorem. A stronger result
in this setting is proved in [Dut18].

Remark 12.4 (Projective space, abelian varieties). Asin [MP16, Theorem 25.3
and 28.2], appropriate statements on P™ and abelian varieties work without the extra
assumptions of reduced log canonicity and Nakano-type vanishing in Theorem 12.1.
More precisely, keeping the notation at the beginning of the section, we have:

Variant 12.5. Let D be an effective Q-divisor on P™ which is numerically equivalent
to a hypersurface of degree d > 1. If { > d —n — 1, then

H'(P", 0pn(0) ® Opn(kZ) ® I;(D)) =0 for all i> 0.

Note that the positivity condition in Theorem 12.1 is satisfied, since for every
effective Q-divisor D # 0 in P™ we have deg[D] < deg D + deg Z.
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Variant 12.6. If X is an abelian variety and D is an ample Q-divisor on X, then
HY(X,M(kZ)® (D) @ a) =0

for all i > 0 and a € Pic®(X).

Note that on an abelian variety every effective Q-divisor is nef, and the ampleness
of D is equivalent to that of any divisor whose support is equal to that of D.

The proofs are completely similar to those in loc. cit., replacing Ox (xD) in the
reduced case by M in the proof above, and noting that since M, is a filtered direct
summand in jip+ Oy as in §5, the vanishing properties we use continue to hold.

D. RESTRICTION, SUBADDITIVITY, AND SEMICONTINUITY THEOREMS

In this part of the paper we provide Q-divisor analogues of the results in [MP18a].
This extends well-known statements in the setting of multiplier ideals; further discus-
sion and references regarding these can be found in loc. cit.

13. Restriction theorem. We begin with the Q-divisor version of the Restriction
Theorem:

Theorem 13.1. Let D be an effective Q-divisor, with support Z, on the smooth
variety X, and let Y be a smooth irreducible divisor on X such thatY € Z. If we
denote Dy = Dy, Zy = Z|y, and Z{, = (Zy )red, then for every k > 0 we have

(13.1) Oy (—k(Zy — Zy)) - I(Dy) C I(D) - Oy.
In particular, if Zy is reduced, then for every k > 0 we have
(13.2) In(Dy) C I(D) - Oy.

Moreover, if Y is sufficiently general (e.g. a general member of a basepoint-free linear
system), then we have equality in (15.2).

Remark 13.2. Note that when D is a reduced divisor we have Dy = Zy, and
Dy — Z;, is an integral divisor with support in Zi,. Therefore Lemma 4.4 gives

I(Dy) = Ox(— (Dy — Zy)) - I(Zy),

hence the statement in the theorem coincides with that of [MP18a, Theorem A].

Proof of Theorem 13.1. The argument follows the proof of [MP18a, Theorem A], with
a simplification observed in [Sail6], hence we only give the outline of the proof.
Since the statement is local, we may assume that D = « - div(h) for some nonzero
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h € Ox(X). Consider the following commutative diagram with Cartesian squares:

W v
bk
Uy = U
bl

Yy — X,
where p and j are as in diagram (2.3), while 7 is the inclusion of Y in X. Note that
if n = dim(X), we have a canonical base-change isomorphism

i'(jop) Q] ~ (7' o p') 4" Q1]

proved in [Sa90, 4.4.3]. We also have a canonical isomorphism

//!
i Qff[n] = (Qff, [n — 1)(=1)[~1]
(see for instance [Sai88, §3.5]). Here we use the Tate twist notation, which for a mixed
Hodge module M = (M, Fe M, K) is given by
M(k) = (M, Fe_ M, K ®q Q(k)).
We obtain, in particular, an isomorphism of filtered right Zx-modules

(HY' M, (h), F) = (M, (h]3%), Fot1).

Recall now that if (Vo M)aeq is the V-filtration on M = M, (h™%) corresponding

to the smooth hypersurface Y C X, then there is a canonical morphism
o:grg M — gr/ M ®ey Ox(Y)
such that
HYi' M ~ coker (o),

with the Hodge filtration on the right-hand side induced by the Hodge filtration on
M. We refer to [MP18a, §2] for details.

One defines a morphism
F.V_4M
FVe M

that maps the class of u € Fi,V_{ M = F;, MNV_1 M to the class of u in FxM®g, Oy.
After tensoring n with Ox(Y'), the resulting morphism vanishes on the image of the
restriction of o to Fkgrg M, hence we obtain an induced morphism

(13.3) Fia M, (h|3®) = FHY M ~ Fyeoker(o0) — FLM ®4, Oy (Y).

Applying this with k replaced by k& — n, it follows from the definition of Hodge ideals
and the formula for the equivalence between left and right Z-modules that we have
a morphism

Ik(Dy) Koy Wy (k‘Zg/ + le(h|y)) — Ik(D) Ry Wx (k‘Z + le(h)) Ry ﬁy(Y)

n: Frer/\ M = — FiM ®¢y Oy
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By tensoring this with w{,l( — kZy — div(h|y)) and composing with the canonical
map I;,(D) ®p, Oy — I(D) - Oy, we obtain a canonical morphism

p: ﬁy( — k’(Zy — Zg;)) &® Ik(Dy) — Ik(D) - Oy .

Note that all constructions are compatible with restrictions to open subsets and when
restricting to Z = X ~ U, the above morphism can be identified with the identity
map on Oy. Therefore the morphism ¢ is compatible with the two inclusions in Oy,
and we deduce the inclusion in (13.1).

Suppose now that Y is general, so that Zy = Zj, and Y is non-characteristic with
respect to M. For example, this condition holds if Y is transversal to the strata in
a Whitney stratification of Z (see [DMST06, §2]); in particular, it holds if Y is a
general member of a basepoint-free linear system. We may assume that Y is defined
by a global equation t € Ox(X). In this case, it follows from [Sai88, Lemme 3.5.6]
that gry M = 0 and gr’¥y M = M ®4, Oy. It is now straightforward to check that
the morphism (13.3) is an isomorphism, hence ¢ is an isomorphism, and we thus have
equality in (13.2). O

We deduce the following analogue of inversion of adjunction:

Corollary 13.3. With the notation of Theorem 13.1, if Zy is reduced and I,(Dy ), =
Oy, for some x €Y, then Iy(D), = Ox ;.

Remark 13.4. If D is an effective Q-divisor, with support Z, on the smooth variety
X, and Y is a smooth subvariety of X such that Y ¢ Z and Z|y is reduced, then for
every k > 0 we have

In(D|y) C Ix(D) - Oy.
This follows by writing Y locally as a transverse intersection of r smooth divisors on
X and applying repeatedly the inclusion (13.2).

Remark 13.5. With the notation in Theorem 13.1, let Y7, ..., Y, be general elements
in a basepoint-free linear system on X, where r <n =dim(X). W =Y1n---NY,,
then for every k > 0 we have

L(D|w) = In(D) - Gy

Indeed, if W; =Y1N---NY;, and if (Sg)g are the strata of a Whitney stratification of
Z, then it follows by induction on i that we have a Whitney stratification of Z|y, with
strata (Sg N W;)z. Moreover, Y11 is transversal to each such stratum. We may thus
apply the theorem to each divisor D|y, and smooth hypersurface Y;11 N W; C W, to
conclude that

I(D|w) = In(D) - Oy

14. Semicontinuity theorem. The same argument as in [MP18a, §5], based on the
Restriction Theorem (in this case Theorem 13.1 above), gives the following semicon-
tinuity statement. The set-up is as follows: let f: X — T be a smooth morphism of
relative dimension n between arbitrary varieties X and T, and s: 7" — X a morphism
such that fos =idy. Let D be an effective Q-Cartier Q-divisor on X, relative over
T (that is, we can write D locally as aH, for an effective divisor H and a positive
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rational number «, with H flat over T'). We assume that we have an effective divisor
Z on X, relative over T', with Supp(Z) = Supp(D), and such that for every t € T,
the restriction Z; to the fiber X; = f~1(t) is reduced. For every x € X, we denote by
m, the ideal defining = in Xy (,).

Theorem 14.1. With the above notation, for every q > 1, the set

1s open in T.

15. Subadditivity theorem. The calculation for I in Example 10.5 shows that
the inclusion

I;;(D1 + Do) C Ii(Dn)
cannot hold for arbitrary Q-divisors D7 and Dy. However, with an appropriate as-
sumption on the support, we have the following stronger subadditivity statement:

Theorem 15.1. If Dy and D- are effective Q-divisors on the smooth variety X,
whose supports Z1 and Zy satisfy the property that Z1 + Zsy is reduced, then for every
k > 0 we have
I(D1+ D2) € ) Li(Dy) - Ij(Da) - Ox(—jZ1 — iZ2) C Ii(D1) - In(D2).
i+j=k
Note first that, for every ¢ and j, the inclusion
FM(h™) € i M(h™)
implies the inclusion
(15.1) Ox(=jZ) - I;(D) C Ii+;(D).
This gives the second inclusion in the statement above. To prove the first inclusion,

as in the proof of [MP18a, Theorem B] it is enough to show the following:”

Proposition 15.2. Let X1 and Xo be smooth varieties and let D; be effective Q-
divisors on X;, with support Z;, for i = 1,2. If B; = p;D;, where p;: X1 x Xo — X;
are the canonical projections, then for every k > 0 we have

I(Bi+ Ba) = ) (L(D)Ox,(=521) - Oxyxxs) - (Ij(D2)Ox, (=i 25) - Ox,xx3).
it+j=k

Proof. By Remark 2.2, we can assume that there exist regular functions h; on X3
and hy on Xy, together with a € Qs, such that [;(D;) and I;(D;) are defined by
M, (k1) and M,.(h;*), respectively. The statement follows precisely as in [MP18a,
Proposition 4.1], as long as we show that there is a canonical isomorphism of filtered
2-modules

(MT((pThl 'p§h2)_a)’F) = (Mr(hl_a) X MT(hga)vF)’

7Indeed, the Restriction Theorem applies in the form given in Remark 13.4 for the diagonal
embedding X — X Xx X, since we are assuming that Z, + Z is reduced.
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where the filtration on the right hand side is the exterior product of the filtrations
on the two factors. But this is a consequence of the canonical isomorphism of mixed
Hodge modules

]*p*QXI;l x Vo [nl + n2] = jl*pl*QI\j& [nl] X j2*p2*Q52[n2],

with the obvious notation as in (2.3) for ¢ = 1,2, together with Lemma 2.8. O
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