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ASSOCIATED FORM MORPHISM

MAKSYM FEDORCHUK AND ALEXANDER ISAEV

Abstract. We study the geometry of the morphism that sends a smooth hyper-

surface of degree d+ 1 in P
n−1 to its associated hypersurface of degree n(d − 1)

in the dual space
(

P
n−1

)

∨

.

Contents

1. Introduction 1
2. Associated form of a balanced complete intersection 3
3. Preliminaries on dualities 4
4. The gradient morphism ∇ 7
5. The morphism AGr 12
References 17

1. Introduction

One of the first applications of Geometric Invariant Theory is a construction of
the moduli space of smooth degree m hypersurfaces in a fixed projective space Pn−1

[15]. This moduli space is an affine GIT quotient

Um,n :=
(
PH0

(
P
n−1,O(m)

)
\∆

)
//PGL(n),

where ∆ is the discriminant divisor parameterizing singular hypersurfaces. The GIT
construction produces a natural compactification

Um,n ⊂ Vm,n :=
(
PH0

(
P
n−1,O(m)

))ss
//PGL(n),

given by a categorical quotient of the locus of GIT semistable hypersurfaces. We
call Vm,n the GIT compactification of Um,n.

The subject of this paper is a certain rational map Vm,n 99K Vn(m−2),n, where
n ≥ 2, m ≥ 3 and where we exclude the (trivial) case (n,m) = (2, 3). While this
map has a purely algebraic construction, which we shall recall soon, it has several
surprising geometric properties that we establish in this paper. In particular, this
rational map restricts to a locally closed immersion Ā : Um,n → Vn(m−2),n, and often
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2 MAKSYM FEDORCHUK AND ALEXANDER ISAEV

contracts the discriminant divisor in Vm,n. Consequently, the closure of the image of
Ā in Vn(m−2),n is a compactification of the GIT moduli space Um,n that is different
from the GIT compactification Vm,n.

To define Ā, we consider the associated form morphism defined on the space of
smooth homogeneous forms f ∈ C[x1, . . . , xn] of fixed degree m ≥ 3. Given such an
f , its associated form A(f) is a degree n(m − 2) homogeneous form in the graded
dual polynomial ring C[z1, . . . , zn]. In our recent paper [10], we proved that the
associated form A(f) is always polystable in the sense of GIT. Consequently, we
obtain a morphism Ā from Um,n to Vn(m−2),n sending the image of f in Um,n to the
image of A(f) in Vn(m−2),n.

Our first result is that the morphism Ā is an isomorphism onto its image, a locally
closed subvariety in the target.

Theorem 1.1. The morphism

Ā : Um,n → Vn(m−2),n

is a locally closed immersion.

In the process of establishing Theorem 1.1, we generalize results of [2] to the
case of an arbitrary number of variables, and, in particular, prove that the auxiliary
gradient morphism sending a semistable form to the span of its partial derivatives
gives rise to a closed immersion on the level of quotients (see Theorem 2.1).

Our second main result is Theorem 2.2, which describes the rational map
Ā : Vm,n 99K Vn(m−2),n in codimension one. Namely, we study how Ā extends to
the generic point of the discriminant divisor in the GIT compactification (see Corol-
lary 5.8), and prove that for n = 2, 3 and m ≥ 4, as well as for n ≥ 4, m ≫ 0, the
morphism Ā contracts the discriminant divisor to a lower-dimensional subvariety in
the target (see Corollary 5.9). In the process, we prove that the image of Ā contains
the orbit of the Fermat hypersurface in its closure and as a result obtain a new proof
of the generic smoothness of associated forms (see Corollary 5.10).

1.1. Notation and conventions. Let S := SymV ≃ C[x1, . . . , xn] be a symmetric
algebra of an n-dimensional vector space V , with its standard grading. Let D :=
SymV ∨ ≃ C[z1, . . . , zn] be the graded dual of S, with the structure of the S-module
given by the polar pairing S ×D → D, which is defined by

(1.1) g(x1, . . . , xn) ◦ F (z1, . . . , zn) := g(∂/∂z1, . . . , ∂/∂z1)F (z1, . . . , zn).

A homogeneous polynomial f ∈ Sm is called a direct sum if, after a linear change
of variables, it can be written as the sum of two non-zero polynomials in disjoint
sets of variables:

f = f1(x1, . . . , xa) + f2(xa+1, . . . , xn).

We will use the recognition criteria for direct sums established in [8], and so we keep
the pertinent terminology of that paper. We will say that f ∈ Sm is a k-partial
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Fermat form for some k ≤ n, if, after a linear change of variables, it can be written
as follows:

f = xm1 + · · ·+ xmk + g(xk+1, . . . , xn).

Clearly, any n-partial Fermat form is linearly equivalent to the standard Fermat
form. Furthermore, all k-partial Fermat forms are direct sums. We denote by DSm

the locus of direct sums in Sm.

2. Associated form of a balanced complete intersection

Fix d ≥ 2. In what follows the trivial case (n, d) = (2, 2) will be excluded. A
length n regular sequence g1, . . . , gn of elements of Sd will be called a balanced
complete intersection of type (d)n. It defines a graded Gorenstein Artin C-algebra

A(g1, . . . , gn) := S/(g1, . . . , gn),

whose socle lies in degree n(d − 1). In [2] an element A(g1, . . . , gn) ∈ Dn(d−1),
called the associated form of g1, . . . , gn, was introduced. The form A(g1, . . . , gn) is
a homogeneous Macaulay inverse system, or a dual socle generator, of the algebra
A(g1, . . . , gn). It follows that [A(g1, . . . , gn)] ∈ PDn(d−1) depends only on the linear
span 〈g1, . . . , gn〉, which we regard as a point in Grass(n, Sd).

Recall that g1, . . . , gn is a regular sequence in Sd if and only if 〈g1, . . . , gn〉 does
not in lie in the resultant divisor Res ⊂ Grass(n, Sd). Setting Grass(n, Sd)Res :=
Grass(n, Sd) \Res, we obtain a morphism

A : Grass(n, Sd)Res → PDn(d−1).

Given f ∈ Sd+1, the partial derivatives ∂f/∂x1, . . . , ∂f/∂xn form a regular sequence
if and only if f is non-degenerate. For a non-degenerate f ∈ Sd+1, in [1, 3] the
associated form of f was defined to be

A(f) := A(∂f/∂x1, . . . , ∂f/∂xn) ∈ Dn(d−1).

Summarizing, we obtain a commutative diagram

P(Sd+1)∆

∇
((P

PP
PP

PP
PP

PP
P

A
// P(Dn(d−1))

Grass(n, Sd)Res,

A

66♠♠♠♠♠♠♠♠♠♠♠♠

where P(Sd+1)∆ denotes the complement to the discriminant divisor in P(Sd+1) and
∇ is the morphism sending a form into the linear span of its first partial derivatives.
The above diagram is equivariant with respect to the standard SL(n)-actions on S
and D. By [2], the morphism A is a locally closed immersion, and it was proved
in [10] that A sends polystable orbits to polystable orbits. Passing to the GIT



4 MAKSYM FEDORCHUK AND ALEXANDER ISAEV

quotients, we thus obtain a commutative diagram

(2.1)

P(Sd+1)∆//SL(n)

∇̃ **❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

Ā
// P(Dn(d−1))

ss//SL(n)

Grass(n, Sd)Res//SL(n),

Ā

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

where ∇̃ := ∇//SL(n) is a finite injective morphism (see [9]) and Ā := A//SL(n) is
a locally closed immersion. The main focus of this paper is the geometry of diagram
(2.1).

Noting that by [9] the map ∇ extends to a morphism from P(Sd+1)
ss to

Grass(n, Sd)
ss and thus induces a map ∇ of the corresponding GIT quotients, we

will now state our two main results as follows:

Theorem 2.1. The morphism ∇ : P(Sd+1)
ss//SL(n) → Grass(n, Sd)

ss//SL(n) is a
closed immersion.

Theorem 2.2. The rational map

Ā : P(Sd+1)
ss//SL(n) 99K P(Dn(d−1))

ss//SL(n)

extends to the generic point of the discriminant divisor ∆//SL(n) in the GIT com-
pactification and contracts the discriminant divisor to a lower-dimensional variety
for all sufficiently large d as described in Corollaries 5.8 and 5.9.

3. Preliminaries on dualities

In this section we collect results on Macaulay inverse systems of graded Gorenstein
Artin C-algebras. We also recall the duality between the Hilbert points of such
algebras and the gradient points of their inverse systems.

Recall that we regard S = C[x1, . . . , xn] as a ring of polynomial differential oper-
ators on the graded dual ring D := C[z1, . . . , zn] via polar pairing (1.1). For every
positive m, the restricted pairing

Sm ×Dm → C

is perfect and so defines an isomorphism

(3.1) Dm ≃ S∨
m,

where, as usual, V ∨ stands for the dual of a vector space V .
Given W ⊂ D, we define

W⊥ := {f ∈ S | f ◦ g = 0, for all g ∈ W} ⊂ S.

Similarly given U ⊂ S, we define

U⊥ := {g ∈ D | f ◦ g = 0, for all f ∈ U} ⊂ D.
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Claim 3.1. Isomorphism (3.1) sends an element ω ∈ S∨
m to the element

Dω :=
∑

i1+···+in=m

ω
(
xi11 · · · xinn

)

i1! · · · in!
zi11 · · · zinn ∈ Dm.

Conversely, an element g ∈ Dm is mapped by isomorphism (3.1) to the projection

Sm ։ Sm/(g⊥)m ≃ C,

where the isomorphism with C is chosen so that 1 ∈ C pairs to 1 with g.

Proof. One observes that f ◦Dω = ω(f) for every f ∈ Sm, and the first part of the
claim follows. The second part is immediate from definitions. �

Corollary 3.2. Given ω ∈ S∨
m, for every (a1, . . . , an) ∈ C

n we have

(3.2) Dω(a1, . . . , an) = ω
(
(a1x1 + · · · + anxn)

m/m!
)
.

Proof.

ω
(
(a1x1 + · · ·+ anxn)

m/m!
)
=

(a1x1 + · · ·+ anxn)
m

m!
◦Dω

=
(a1∂/∂z1 + · · ·+ an∂/∂zn)

m

m!
Dω = Dω(a1, . . . , an),

where the last equality is easily checked, say on monomials. �

Remark 3.3. It follows from Corollary 3.2 that all forms in a subset W ⊂ Dm vanish
at a given point (a1, . . . , an) ∈ C

n if and only if (a1x1 + · · ·+ anxn)
m ∈ W⊥.

Notice that the maps
[
〈Dω〉 ⊂ Dm

]
7→

[
(D⊥

ω )m ⊂ Sm

]
=

[
ker(ω) ⊂ Sm

]

define isomorphisms

Grass(1,Dm) ≃ Grass (dimC Sm − 1, Sm) .

More generally, for any 1 ≤ m ≤
(
m+n−1
n−1

)
− 1 the correspondence

[
W ⊂ Dm

]
7→

[
(W⊥)m ⊂ Sm

]

yields an isomorphism

(3.3) Grass(k,Dm) ≃ Grass (dimC Sm − k, Sm) .

Let I ⊂ S be a Gorenstein ideal and ν the socle degree of the algebra A = S/I.
Recall that a (homogeneous) Macaulay inverse system of A is an element fA ∈ Dν

such that

f⊥
A = I

(see [11, Lemma 2.12] or [6, Exercise 21.7]). As (f⊥
A
)ν = Iν , we see that all Macaulay

inverse systems are mutually proportional and 〈fA〉 =
(
(Iν)

⊥
)
ν
. Clearly, the line

〈fA〉 ∈ Grass(1,Dν) maps to the νth Hilbert point Hν ∈ Grass(dimC Sν − 1, Sν) of
A under isomorphism (3.3) with k = 1.
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Remark 3.4. Papers [3, 4], for any ω ∈ S∨
ν with kerω = Iν , introduced the associated

form of A as the element of Dν given by the right-hand side of formula (3.2) with
m = ν (up to the factor ν!). By Corollary 3.2, under isomorphism (3.3) with
k = 1 the span of every associated form in Dν also maps to the νth Hilbert point
Hν ∈ Grass(dimC Sν − 1, Sν) of A. In particular, for the algebra A any associated
form is simply one of its Macaulay inverse systems, and equation (3.2) with m = ν
and kerω = Iν is an explicit formula for a Macaulay inverse system of A (see [12]
for more details).

3.1. Gradient points. Given a polynomial F ∈ Dm, we define the pth gradient
point of F to be the linear span of all pth partial derivatives of F in Dm−p. We

denote the pth gradient point by ∇p(F ). Note that

∇p(F ) = {g ◦ F | g ∈ Sp}

is simply the (m−p)th graded piece of the principal S-module SF . The 1st gradient
point ∇F := 〈∂F/∂z1, . . . , ∂F/∂zn〉 will be called simply the gradient point of F .

Proposition 3.5 (Duality between gradient and Hilbert points). The pth gradient
point of a Macaulay inverse system fA ∈ Dν maps to the (ν − p)th Hilbert point
Hν−p of A under isomorphism (3.3).

Proof. Let G be the pth gradient point of fA, that is

G :=

〈
∂p

∂zi11 · · · ∂zinn
fA | i1 + · · · + in = p

〉
.

We need to verify that Iν−p = (G⊥)ν−p. We have

(G⊥)ν−p =

{
f ∈ Sν−p | f ◦

∂p

∂zi11 · · · ∂zinn
fA = 0 for all i1 + · · · + in = p

}

=
{
f ∈ Sν−p | fx

i1
1 · · · xinn ◦ fA = 0 for all degree p monomials

}

=
{
f ∈ Sν−p | x

i1
1 · · · xinn f ∈ f⊥

A for all degree p monomials
}

=
{
f ∈ Sν−p | x

i1
1 · · · xinn f ∈ Iν for all degree p monomials

}

= Iν−p,

where the last equality comes from the fact that I is Gorenstein. �

As a corollary of the above duality result, we recall in Proposition 3.6 below a gen-
eralization of [1, Lemma 4.4]. Although this statement is well-known (it appears, for
example, in [5, Proposition 4.1, p. 174]), we provide a short proof for completeness.
We first recall that a non-zero homogeneous form f in n variables has multiplicity
ℓ+ 1 at a point p ∈ P

n−1 if and only if all partial derivatives of f of order ℓ (hence
of all orders ≤ ℓ) vanish at p, and some partial derivative of f of order ℓ + 1 does
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not vanish at p. We define the Veronese cone Cm to be the variety of all degree m
powers of linear forms in Sm:

Cm :=
{
Lm | L ∈ S1

}
⊂ Sm.

Proposition 3.6. Let I ⊂ S be a Gorenstein ideal and ν the socle degree of the
algebra A = S/I. Then a Macaulay inverse system fA of A has a point of multi-
plicity ℓ+1 if and only if there exists a non-zero L ∈ S1 such that Lν−ℓ ∈ Iν−ℓ, and
Lν−ℓ−1 6∈ Iν−ℓ−1. In particular, fA has no points of multiplicity ℓ + 1 or higher if
and only if

Iν−ℓ ∩ Cν−ℓ = (0).

Proof. By Proposition 3.5, the ℓth gradient point of fA is dual to the (ν−ℓ)th Hilbert
point of A

Hν−ℓ : Sν−ℓ ։ Aν−ℓ.

We conclude by Remark 3.3 that all partial derivatives of fA of order ℓ vanish at
(a1, . . . , an) if and only if

(a1x1 + · · ·+ anxn)
ν−ℓ ∈ kerHν−ℓ = Iν−ℓ.

It follows that L = a1x1 + · · · + anxn satisfies Lν−ℓ ∈ Iν−ℓ and Lν−ℓ−1 6∈ Iν−ℓ−1 if
and only if fA has multiplicity exactly ℓ+ 1 at the point (a1, . . . , an). �

4. The gradient morphism ∇

In this section, we prove Theorem 2.1. Recall that we have the commutative
diagram

P
(
Sd+1)

ss

π0

��

∇
// Grass

(
n, Sd

)ss

π1

��

P
(
Sd+1)

ss//SL(n)
∇

// Grass
(
n, Sd

)ss
//SL(n).

Let DS
ss
d+1 := P(DSd+1)

ss be the locus of semistable direct sums in P
(
Sd+1)

ss. By

[8, Section 3], the set DS
ss
d+1 is precisely the closed locus in P

(
Sd+1)

ss where ∇ has
positive fiber dimension.

Suppose f ∈ Sd+1 is a semistable form. Then, after a linear change of variables,
we have a maximally fine direct sum decomposition

(4.1) f =

k∑

i=1

fi(x
i),

where Vi = 〈xi〉 are such that V = ⊕k
i=1Vi, and where each fi is not a direct sum in

SymVi. Set ni := dimC Vi. We define the canonical torus Θ(f) ⊂ SL(n) associated
to f as the connected component of the identity of the subgroup

{g ∈ SL(n) | Vi is an eigenspace of g, for every i = 1, . . . , k} ⊂ SL(n).
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Clearly, Θ(f) ≃ (C∗)k−1, and since

∇([f ]) = ∇([f1])⊕ · · · ⊕ ∇([fk]), where ∇([fi]) ∈ Grass(ni,Sym
d Vi),

we also have Θ(f) ⊂ Stab(∇([f ])), where Stab denotes the stabilizer under the
SL(n)-action.

From the definition of Θ(f), it is clear that Θ(f) · [f ] ⊂ ∇−1(∇([f ])), and in fact
[8, Corollary 3.12] gives a set-theoretic equality ∇−1(∇([f ])) = Θ(f) · [f ]. We will
now obtain a stronger result:

Lemma 4.1. One has ∇−1(∇([f ])) = Θ(f) · [f ] scheme-theoretically, or, equiva-
lently,

ker(d∇[f ]) = T[f ](Θ(f) · [f ]),

where T[f ] denotes the tangent space at [f ].

Proof. Under the standard identification of T[f ]P(Sd+1) with Sd+1/〈f〉, the sub-
space T[f ](Θ(f) · [f ]) is identified with 〈f1, . . . , fk〉/〈f〉. It now suffices to show
that every g ∈ Sd+1 that satisfies ∇[g] ⊂ ∇[f ] must lie in 〈f1, . . . , fk〉, where
∇[g] := 〈∂g/∂x1, . . . , ∂g/∂xn〉 ⊂ Sd. This is precisely the statement of [8, Corollary
3.12]. �

We note an immediate consequence:

Corollary 4.2. If f ∈ Sss
d+1 is not a direct sum, then ∇ is unramified at [f ].

Further, since ∇ is equivariant with respect to the SL(n)-action, we have the
inclusion Stab([f ]) ⊂ Stab(∇([f ])). As the following result shows, the difference
between Stab([f ]) and Stab(∇([f ])) is controlled by the torus Θ(f).

Corollary 4.3. The subgroup Stab(∇([f ])) is generated by Θ(f) and Stab([f ]).

Proof. Suppose σ ∈ Stab(∇([f ])). Then ∇(σ · [f ]) = ∇([f ]) implies by Lemma 4.1
that σ · [f ] = τ · [f ] for some τ ∈ Θ(f). Consequently, τ−1 ◦ σ ∈ Stab([f ]) as
desired. �

Next, we obtain the following generalization of [2, Proposition 6.3], whose proof
we follow almost verbatim.

Proposition 4.4. The morphism ∇ is a closed immersion along the open locus
U := P(Sd+1)

ss \DS
ss
d+1 of all elements that are not direct sums.

Proof. Since for every [f ] ∈ U we have that∇ is unramified at [f ] and∇−1(∇([f ])) =
[f ], it suffices to show that ∇ is a finite morphism when restricted to U . Since, by
[9], the induced morphism on the GIT quotients is finite, by [13, p. 89, Lemme]
it suffices to verify that ∇ is quasi-finite and that ∇ sends closed orbits to closed
orbits. The former has already been established, and the latter is proved below in
Proposition 4.5. �

Proposition 4.5. Suppose f ∈ Sss
d+1 is polystable and not a direct sum. Then the

image ∇([f ]) ∈ Grass(n, Sd)
ss is polystable.
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The above result is a generalization of [9, Theorem 1.1], whose method of proof
we follow; we also keep the notation of loc.cit., especially as it relates to monomial
orderings. We begin with a preliminary observation.

Lemma 4.6. Suppose f ∈ Sd+1 is such that there exists a non-trivial one-parameter
subgroup λ of SL(n) acting diagonally on x1, . . . , xn with weights λ1, . . . , λn and
satisfying

wλ(inλ(∂f/∂xi)) = dλi.

Then f is a direct sum.

Proof. We can assume that

λ1 ≤ · · · ≤ λa < λa+1 = · · · = λn

for some 1 ≤ a < n. Then the fact that

wλ(inλ(∂f/∂xi)) = dλi = dλn,

for all i = a+ 1, . . . , n, implies

∂f/∂xa+1, . . . , ∂f/∂xn ∈ C[xa+1, . . . , xn].

Consequently, f = g1(x1, . . . , xa) + g2(xa+1, . . . , xn) is a direct sum. �

Proof of Proposition 4.5. Since f is polystable, by [9, Theorem 1.1] it follows that
∇([f ]) is semistable. Suppose ∇([f ]) is not polystable. Then there exists a one-
parameter subgroup λ acting on the coordinates x1, . . . , xn with the weights λ1, . . . , λn

such that the limit of ∇([f ]) under λ exists and does not lie in the orbit of ∇([f ]).
In particular, the limit of [f ] under λ does not exist.

Then by [9, Lemma 3.5], there is an upper triangular unipotent coordinate change

x1 7→ x1 + c12x2 + · · ·+ c1nxn,

x2 7→ x2 + · · · + c2nxn,

...

xn 7→ xn

such that for the transformed form

h(x1, . . . , xn) := f(x1 + c12x2 + · · ·+ c1nxn, x2 + · · ·+ c2nxn, . . . , xn)

the initial monomials
inλ(∂h/∂x1), . . . , inλ(∂h/∂xn)

are distinct. Now, setting

µi := wλ(inλ(∂h/∂xi)),

by [9, Lemma 3.2] we have
µ1 + · · · + µn = 0.

It follows that with the respect to the one-parameter subgroup λ′ acting on xi with
the weight dλi − µi, all monomials of h have non-negative weights (cf. [9, the proof
of Lemma 3.6]). Write h = h0 + h1, where all monomials of h0 have zero λ′-weights
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and all monomials of h1 have positive λ′-weights. Then h0 ∈ SL(n) · h = SL(n) · h,
by the polystability assumption on f . Furthermore, h0 is stabilized by λ′.

If λ′ is a trivial one-parameter subgroup, then µi = dλi for all i = 1, . . . , n, and
by Lemma 4.6 the form h is a direct sum, which is a contradiction.

Suppose now that λ′ is a non-trivial one-parameter subgroup. Clearly, we have

wλ(inλ(∂h0/∂xi) ≥ wλ(inλ(∂h/∂xi),

since the state of h0 is a subset of the state of h. If one of the inequalities above is
strict, then ∇([h0]) is destabilized by λ, contradicting the semistability of ∇([h0])
established in [9, Theorem 1.1]. Thus

wλ(inλ(∂h0/∂xi)) = wλ(inλ(∂h/∂xi)) = µi.

Moreover, since h0 is λ′-invariant, we have that ∂h0/∂xi is homogeneous of degree
−wλ′(xi) = µi−dλi with respect to λ′. Let µ be the one-parameter subgroup acting
on x1, . . . , xn with the weights µ1, . . . , µn. It follows that

wµ(inµ(∂h0/∂xi)) = dwλ(inλ(∂h0/∂xi) + wλ′(inλ′(∂h0/∂xi) = dµi − µi + dλi.

Then the one-parameter subgroup λ+µ acting on x1, . . . , xn with the weights λ1 +
µ1, . . . , λn + µn satisfies

wλ+µ(inλ+µ(∂h0/∂xi)) = wλ(inλ(∂h0/∂xi)) + wµ(inµ(∂h0/∂xi)) =
dµi − µi + dλi + µi = d(µi + λi).

Applying Lemma 4.6, we conclude that either h0 is a direct sum, or

λi + µi = 0 for all i = 1, . . . , n.

In the latter case, it follows that λ is proportional to λ′ = dλ−µ. Since the limit of
h under λ′ exists and is equal to h0, the limit under λ of h must exist and be equal
to h0 as well. Observing that the inverse of an upper-triangular matrix with 1’s on
the diagonal has the same form, we see that the limit of

f(x1, . . . , xn) = h(x1 + c′12x2 + · · · + c′1nxn, x2 + · · ·+ c′2nxn, . . . , xn)

under λ also exists. This contradiction concludes the proof. �

Corollary 4.7. The morphism ∇ : P(Sd+1)
ss → Grass(n, Sd)

ss preserves polystabil-
ity.

Proof. Suppose f = f1 + · · ·+ fk is the maximally fine direct sum decomposition of
a polystable form f , where fi ∈ Symd+1 Vi, and where V = ⊕k

i=1Vi. Then each fi
is polystable and not a direct sum in Symd+1 Vi. Hence ∇([fi]) is polystable with
respect to the SL(Vi)-action.

Since Θ(f) ⊂ Stab(∇([f ])) is a reductive subgroup, to prove that ∇([f ]) is
polystable, it suffices to verify that ∇([f ]) is polystable with respect to the cen-
tralizer CSL(n)(Θ(f)) of Stab(Θ(f)) in SL(n), see [14, Corollaire 1 and Remarque
1]. We have

CSL(n)(Θ(f)) = (GL(V1)× · · · ×GL(Vk)) ∩ SL(n).
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Arguing as on [9, p. 456], we see that every one-parameter subgroup λ of CSL(n)(Θ(f))
can be renormalized to a one-parameter subgroup of SL(V1)× · · · × SL(Vk) without
changing its action on ∇([f ]). Since ∇([fi]) is polystable with respect to SL(Vi), it
follows that

∇([f ]) = ∇([f1])⊕ · · · ⊕ ∇([fk])

is polystable with respect to the action of λ thus proving the claim. �

Proof of Theorem 2.1. Suppose that f is polystable, consider its maximally fine di-
rect sum decomposition and the canonical torus Θ(f) in Stab(∇([f ])) as constructed
above. In what follows, we will write X to denote P(Sd+1)

ss and Y to denote
Grass(n, Sd)

ss. Set p := π0([f ]) ∈ X//SL(n).
We will prove that ∇ is unramified at p. Let N[f ] be the normal space to the

SL(n)-orbit of [f ] in X at the point [f ], and N∇([f ]) the normal space to the SL(n)-
orbit of ∇([f ]) in Y at the point ∇([f ]). We have a natural map

ι : N[f ] → N∇([f ])

induced by the differential of ∇. The map ι is injective by Lemma 4.1.
Since both [f ] and ∇([f ]) have closed orbits in X and Y , respectively (see Corol-

lary 4.7), to verify that ∇ is unramified at p, it suffices, by Luna’s étale slice theorem,
to prove that the morphism

(4.2) s(f) : N[f ]//Stab([f ]) → N∇([f ])//Stab(∇([f ])

is unramified.
As ∇ is not necessarily stabilizer-preserving at [f ] (i.e., Stab([f ]) may not be

equal to Stab(∇([f ]))), we cannot directly appeal to the injectivity of ι. Instead,
consider the Θ(f)-orbit, say F , of [f ] in X. Let NF/X be the Θ(f)-invariant normal

bundle of F in X. Since by Lemma 4.1 we have ∇−1(∇([f ])) = F , there is a natural
Θ(f)-equivariant map J : NF/X → N∇([f ]). We now make a key observation that

for the induced map J̃ : NF/X//Θ(f) → N∇([f ]) one has

J̃(NF/X//Θ(f)) = ι
(
N[f ]

)
.

Since ∇ is finite by [9, Proposition 2.1], the morphism s(f) from Equation (4.2)
is quasi-finite. Applying Lemma 4.8 (proved below), with SpecA = N[f ], SpecB =
N∇([f ]), T = Θ(f), H = Stab([f ]), G = Stab(∇([f ])), as well as Corollary 4.3, we
obtain that s(f) is in fact a closed immersion, and so is unramified. Note that
here the group G is reductive by Matsushima’s criterion. This proves that ∇ is
unramified at p.

We now note that ∇ is injective. Indeed, this follows as in the proof of [9, Part
(2) of Proposition 2.1] from Corollary 4.7 and the finiteness of ∇. We then conclude
that ∇ is a closed immersion. �

Lemma 4.8 (GIT lemma). Suppose G is a reductive group. Suppose T ⊂ G is
a connected reductive subgroup, and H ⊂ G is a reductive subgroup such that G
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is generated by T and H. Suppose we have a G-equivariant closed immersion of
normal affine schemes admitting an action of G

SpecA →֒ SpecB.

such that SpecAH → SpecBG is quasi-finite. Then SpecAG ≃ SpecAH and, con-
sequently, SpecAH → SpecBG is a closed immersion.

Proof. We have the following commutative diagram

SpecAH

�� ++❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

� � // SpecBH

��

(SpecAH)//T ≃ SpecAG � � // (SpecBH)//T ≃ SpecBG.

Since the diagonal arrow is quasi-finite by assumption, and the bottom arrow is
a closed immersion, we conclude that the GIT quotient SpecAH → (SpecAH)//T
is quasi-finite as well. Since this is a good quotient by a connected group, the
morphism SpecAH → (SpecAH)//T ≃ SpecAG must be an isomorphism. �

Corollary 4.9 (Theorem 1.1). The morphism

Ā : P(Sd+1)∆//SL(n) → P(Dn(d−1))
ss//SL(n)

is a locally closed immersion.

5. The morphism AGr

In this section, we prove Theorem 2.2. In fact, we study in detail the rational
map Ā : (PSd+1)

ss//SL(n) 99K P(Dn(d−1))
ss//SL(n) in codimension one.

As in Section 2, fix d ≥ 2. As always, we assume that n ≥ 2 and disregard the
trivial case (n, d) = (2, 2). Given U ∈ Grass(n, Sd), we take IU to be the ideal in S
generated by the elements in U . Consider the following locus in Grass(n, Sd):

Wn,d = {U ∈ Grass(n, Sd) | dimC(S/IU )n(d−1)−1 = n}.

Since dimC(S/IU )n(d−1)−1 is an upper semi-continuous function on Grass(n, Sd) and
for every U ∈ Grass(n, Sd) one has dimC(S/IU )n(d−1)−1 ≥ n, we conclude that Wn,d

is an open subset of Grass(n, Sd). Moreover, since for U ∈ Grass(n, Sd)Res the ideal
IU is Gorenstein of socle degree n(d− 1), we have Grass(n, Sd)Res ⊂ Wn,d.

Applying polar pairing, we obtain a morphism

AGr : Wn,d → Grass(n,Dn(d−1)−1),

AGr(U) =
[
(IU )

⊥
n(d−1)−1 ⊂ Dn(d−1)−1

]
.

From the duality between Hilbert and gradient points it follows that

∇(A(U)) = AGr(U) for every U ∈ Grass(n, Sd)Res.
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We conclude that we have the commutative diagram:

P(Sd+1)
ss//SL(n) P(Dn(d−1))

ss//SL(n)

P(Sd+1)
ss

π0

OO

∇

��

P(Sd+1)∆? _oo
A

//

∇

��

P(Dn(d−1))
ss

∇

��

π2

OO

Grass(n, Sd)
ss

π1

��

Grass(n, Sd)Res
? _oo

_�

��

A

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

// Grass(n,Dn(d−1)−1)
ss

π3

��

Grass(n, Sd)
ss//SL(n) Wn,d

AGr

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
Grass(n,Dn(d−1)−1)

ss//SL(n).

Proposition 5.1. Suppose U ∈ Grass(n, Sd) is such that

V(IU ) = {p1, . . . , pk}

is scheme-theoretically a set of k distinct points in general linear position in P
n−1.

Then U ∈ Wn,d.

Remark 5.2. A set {p1, . . . , pk} points in P
n−1 is in general linear position if and

only if k ≤ n, and, up to the PGL(n)-action,

pi = {x1 = · · · = x̂i = · · · = xn = 0}, i = 1, . . . , k,

in the homogeneous coordinates [x1 : · · · : xn] on P
n−1.

Proof of Proposition 5.1. Since depth(IU ) = n − 1, we can choose degree d gen-
erators g1, . . . , gn of IU such that g1, . . . , gn−1 form a regular sequence. Then
Γ := V(g1, . . . , gn−1) is a finite-dimensional subscheme of Pn−1. By Bézout’s theo-
rem, Γ is a set of dn−1 points, counted with multiplicities.

Set R := S/(g1, . . . , gn−1). Consider the Koszul complex K• := K•(g1, . . . , gn).
We have

H0(K•) = S/(g1, . . . , gn) = S/IU .

Since g1, . . . , gn−1 is a regular sequence, we also have

Hi(K•) = 0 for all i > 0

and

H1(K•) =
(
((g1, . . . , gn−1) :S(g1, . . . , gn))/(g1, . . . , gn−1)

)
(−d) ≃ AnnR(gn)(−d).

To establish the identity

codim
(
(IU )n(d−1)−1, Sn(d−1)−1

)
= n

it suffices to prove

H1(K•)n(d−1)−1 = 0.

Indeed, in this case the graded degree n(d− 1)− 1 part of the Koszul complex will
be an exact complex of vector spaces and so the dimension of (S/IU )n(d−1)−1 will
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coincide with that in the situation when g1, . . . , gn is a regular sequence, that is,
with n.

As we have already observed, we have

H1(K•)n(d−1)−1 = AnnR(gn)n(d−1)−1(−d) = AnnR(gn)n(d−1)−1−d.

Hence it suffices to prove that AnnR(gn)n(d−1)−1−d = 0. Write Γ = Γ′ ∪ Γ′′, where
Γ′ 6= ∅ and Γ′′ := {p1, . . . , pk}. Since gn vanishes on all of Γ′′ but does not vanish
at any point of Γ′, every element of AnnR(gn)n(d−1)−1−d comes from a degree n(d−
1)− 1− d form that vanishes on all of Γ′. We apply the Cayley-Bacharach Theorem
[7, Theorem CB6], which implies the following statement:

Claim 5.3. Set s := d(n−1)− (n−1)−1 = n(d−1)−d. If r ≤ s is a non-negative
integer, then the dimension of the family of projective hypersurfaces of degree r
containing Γ′ modulo those containing all of Γ is equal to the failure of Γ′′ to impose
independent conditions on projective hypersurfaces of complementary degree s− r.

In our situation r = s−1, and Γ′′ imposes independent conditions on hyperplanes
by the general linear position assumption. Hence we conclude by Claim 5.3 that
every form of degree n(d−1)−1−d that vanishes on all of Γ′ also vanishes on all of
Γ′′ and therefore, as the ideal (g1, . . . , gn−1) is saturated, maps to 0 in R. We thus
see that AnnR(gn)n(d−1)−1−d = 0. This finishes the proof. �

Motivated by the result above, we consider the following partial stratification
of the resultant divisor Res ⊂ Grass(n, Sd). For 1 ≤ k ≤ n, define Zk to be the
locally closed subset of Grass(n, Sd) consisting of all subspaces U such that V(IU )
is scheme-theoretically a set of k distinct points in general linear position in P

n−1.
Clearly, Z1 is dense in Res, and

Zk ⊃ Zk+1 ∪ · · · ∪ Zn.

We will also set Σk := ∇−1(Zk) ⊂ P(Sd+1). By the Jacobian criterion, Σk is the
locus of hypersurfaces with only k ordinary double points in general linear position
and no other singularities.

Lemma 5.4. For every 1 ≤ k ≤ n, one has that Zk is a non-empty and irreducible
subset of Grass(n, Sd), and Σk is a non-empty and irreducible subset of P(Sd+1)

ss.

Proof. It follows from the Hilbert-Mumford numerical criterion that any hypersur-
face in P

n−1 of degree d + 1 with at worst ordinary double point singularities is
semistable.

Having k singularities at k fixed points p1, . . . , pk (resp., having k fixed base
points p1, . . . , pk) in general linear position is a linear condition on the elements of
P(Sd+1) (resp., the elements of the Stiefel variety over Grass(n, Sd)) and so defines
an irreducible closed subvariety Σ(p1, . . . , pk) in P(Sd+1) (resp., Z(p1, . . . , pk) in
Grass(n, Sd)). The property of having exactly ordinary double points at p1, . . . , pk
(resp., having the base locus being equal to {p1, . . . , pk} scheme-theoretically) is
an open condition in Σ(p1, . . . , pk) in P(Sd+1) (resp., Z(p1, . . . , pk) in Grass(n, Sd))
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and so defines an irreducible subvariety Σ0(p1, . . . , pk) (resp., Z0(p1, . . . , pk)). We
conclude the proof of irreducibility by noting that Σk = PGL(n) · Σ0(p1, . . . , pk)
(resp., Zk = PGL(n) · Z0(p1, . . . , pk)).

Since Σk = ∇−1(Zk), it suffices to check the non-emptiness of Σk. If F ∈ Σn has
ordinary double points at p1, . . . , pn, then by the deformation theory of hypersur-
faces, there exists a deformation of F with ordinary double points at p1, . . . , pk and
no other singularities. Indeed, if G ∈ Sd+1 is a general form vanishing at p1, . . . , pk
and non-vanishing at pk+1, . . . , pn, then F + tG ∈ Σ0(p1, . . . , pk) will have ordinary
double points at p1, . . . , pk and no other singularities for 0 < t ≪ 1.

It remains to prove that Σn is non-empty. Indeed, the following is an element of
Σn:

(d−1)(x1+· · ·+xn)
d+1−(d+1)(x1+· · ·+xn)

d−1(x21+· · ·+x2n)+2(xd+1
1 +· · ·+xd+1

n ).

In fact, a generic linear combination of all degree (d + 1) monomials with the ex-

ception of xd+1
i , for i = 1, . . . , n, and xdi xj, for i, j = 1, . . . , n, i < j, is a form with

precisely n ordinary double point singularities in general linear position. �

By Proposition 5.1, we know that AGr is defined at all points of Z1 ∪ · · · ∪Zn. In
fact, we can explicitly compute AGr(U) for all U ∈ Zn, as well as the orbit closure
of AGr(U) for all U ∈ Zn−1. We need a preliminary fact.

Proposition 5.5. Suppose U ∈ Grass(n, Sd) and p ∈ V(IU ) ⊂ PV ∨. Let L ∈ V ∨

be a non-zero linear form corresponding to p. Then Ln(d−1)−1 ∈ (IU )
⊥

n(d−1)−1.

Proof. Since p ∈ V(IU ), all elements of (IU )n(d−1)−1 vanish at p, and it follows that

F ◦ Ln(d−1)−1 = 0 for all F ∈ (IU )n(d−1)−1 (cf. Remark 3.3). �

Corollary 5.6. Suppose U ∈ Zk is such that

V(IU ) = {p1 := [1 : 0 : · · · : 0], p2 := [0 : 1 : · · · : 0], . . . , pk := [0 : · · · : 1 : · · · : 0]}.

Then

AGr(U) = 〈z
n(d−1)−1
1 , . . . , z

n(d−1)−1
k , gk+1(z1, . . . , zn), . . . , gn(z1, . . . , zn)〉,

for some gk+1, . . . , gn ∈ Dn(d−1)−1. In particular, for U ∈ Zn one has

AGr(U) = 〈z
n(d−1)−1
1 , . . . , zn(d−1)

n 〉 = ∇
([
z
n(d−1)
1 + · · ·+ zn(d−1)

n

])
.

Moreover, for a generic U ∈ Zk, we have AGr(U) ∈ Grass(n,Dn(d−1))Res.

Proof. Since the point pi = V(x1, . . . , x̂i, . . . , xn) ∈ PV ∨ corresponds to the linear

form zi ∈ V ∨, Proposition 5.5 implies that z
n(d−1)−1
i ∈ AGr(U) for every i = 1, . . . , k.

As Zn ⊂ Zk and AGr(U) ∈ Grass(n,Dn(d−1))Res for every U ∈ Zn, it follows that
AGr(U) is also spanned by a regular sequence for a generic U ∈ Zk. The claim
follows. �
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Consider the rational maps

P(Sd+1)
ss//SL(n)

∇ **❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

Ā
//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ P(Dn(d−1))

ss//SL(n)

Grass(n, Sd)
ss//SL(n)

Ā

44✐
✐

✐
✐

✐
✐

✐
✐

of projective GIT quotients.

Theorem 5.7. There is a dense open subset Yk of Zk such that

Ā : Grass(n, Sd)
ss//SL(n) 99K P(Dn(d−1))

ss//SL(n)

is defined on π1(Yk), k = 1, . . . , n. Moreover, for U ∈ Yk the value Ā(π1(U)) is
the image under π2 of a polystable k-partial Fermat form. In particular, for every
U ∈ Zn and for a generic U ∈ Zn−1

Ā(π1(U)) = π2

(
z
n(d−1)
1 + · · · + zn(d−1)

n

)
.

Proof. Recall that Zk is non-empty by Lemma 5.4. Suppose U ∈ Zk is generic, then
by Corollary 5.6 in suitable coordinates we have

AGr(U) = 〈z
n(d−1)−1
1 , . . . , z

n(d−1)−1
k , gk+1(z1, . . . , zn), . . . , gn(z1, . . . , zn)〉,

and AGr(U) /∈ Res. It follows (as in the proof of [10, Proposition 2.7]) that the
closure of the SL(n)-orbit of AGr(U) contains

(5.1) 〈z
n(d−1)−1
1 , . . . , z

n(d−1)−1
k , ḡk+1(zk+1, . . . , zn), . . . , ḡn(zk+1, . . . , zn)〉,

where ḡi := gi(0, . . . , 0, zk+1, . . . , zn) for i = k+1, . . . , n. Then the claim follows for

for k = n− 1 and k = n as in these cases we necessarily have ḡn = z
n(d−1)−1
n .

For k arbitrary, since ∇ is a closed immersion by Theorem 2.1, we conclude
that Ā is defined at π1(U). Let F ∈ P(Dn(d−1))

ss be a polystable element with

π2(F ) = Ā(π1(U)). Then we must have ∇(F ) ∈ SL(n) ·AGr(U), and so ∇(F ) is
linearly equivalent to an element of the form (5.1). It follows at once that

Ā(π1(U)) = π2

(
z
n(d−1)
1 + · · ·+ z

n(d−1)−1
k +G(zk+1, . . . , zn)

)

is the image under π2 of a polystable k-partial Fermat form. �

We will now establish Theorem 2.2 as detailed in the next two corollaries.

Corollary 5.8. The rational map

Ā : (PSd+1)
ss//SL(n) 99K P(Dn(d−1))

ss//SL(n)

is defined at a generic point of π0(Σn−1) and at every point of π0(Σn). For a generic
f ∈ Σn−1 and for every f ∈ Σn, we have

Ā(π0(f)) = π2(z
n(d−1)
1 + · · ·+ zn(d−1)

n ).
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Corollary 5.9. When n = 2, the rational map Ā contracts the discriminant divisor
to a point (corresponding to the orbit of the Fermat form in D2d−4) for all d ≥ 3.
When n = 3, the rational map Ā contracts the discriminant divisor to a lower-
dimensional subvariety if d ≥ 3. More generally, for every n ≥ 4 there exists d0
such that for all d ≥ d0 the map Ā contracts the discriminant divisor to a lower-
dimensional subvariety.

Proof. Notice that Σ1 is dense in the discriminant divisor ∆. Hence, for n = 2 the
statement follows from Corollary 5.8.

When n = 3, Theorem 5.7 implies that Ā(π0(Σ1)) lies in the locus of a 1-partial
Fermat form in D3(d−1). The linear equivalence classes of 1-partial ternary Fermat
forms are in bijection with the linear equivalence classes of binary degree 3(d − 1)
forms. The dimension of this locus is 3d − 6, which for d ≥ 3 is strictly less than
the dimension

(d+3
2

)
− 10 of the discriminant divisor.

If n ≥ 4, by Theorem 5.7 the set Ā(π0(Σ1)) lies in the locus of a 1-partial Fermat
form in Dn(d−1). The linear equivalence classes of 1-partial Fermat forms in n
variables are in bijection with the linear equivalence classes of degree n(d−1) forms

in n−1 variables. The dimension of this locus is
(
n(d−1)+(n−2)

n−2

)
, which for sufficiently

large d is strictly less than the dimension of the discriminant divisor
((d+1)+(n−1)

n−1

)
−

(n2 + 1). �

We conclude the paper with an alternative proof of the main fact of [1] (see
Proposition 4.3 therein).

Corollary 5.10 (Generic smoothness of associated forms). The closure of ImA in
P(Dn(d−1))

ss contains the orbit

SL(n) ·
{
z
n(d−1)
1 + · · ·+ zn(d−1)

n

}

of the Fermat hypersurface. Consequently, A(f) is a smooth form for a generic
smooth f ∈ Sd+1.

Proof. By Corollary 5.8, we have

π2(z
n(d−1)
1 + · · ·+ zn(d−1)

n ) ∈ Im(Ā).

Since the orbit of the Fermat hypersurface is closed in P(Dn(d−1))
ss, it lies in the

closure of ImA. �
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