ASSOCIATED FORM MORPHISM

MAKSYM FEDORCHUK AND ALEXANDER ISAEV

ABSTRACT. We study the geometry of the morphism that sends a smooth hypersurface of degree d + 1 in \mathbb{P}^{n-1} to its associated hypersurface of degree n(d-1) in the dual space $(\mathbb{P}^{n-1})^{\vee}$.

CONTENTS

1.	Introduction	1
2.	Associated form of a balanced complete intersection	3
3.	Preliminaries on dualities	4
4.	The gradient morphism ∇	7
5.	The morphism \mathbf{A}_{Gr}	12
References		17

1. INTRODUCTION

One of the first applications of Geometric Invariant Theory is a construction of the moduli space of smooth degree m hypersurfaces in a fixed projective space \mathbb{P}^{n-1} [15]. This moduli space is an affine GIT quotient

$$U_{m,n} := \left(\mathbb{P}\mathrm{H}^0(\mathbb{P}^{n-1}, \mathcal{O}(m)) \setminus \Delta \right) /\!\!/ \operatorname{PGL}(n),$$

where Δ is the discriminant divisor parameterizing singular hypersurfaces. The GIT construction produces a natural compactification

$$U_{m,n} \subset V_{m,n} := \left(\mathbb{P}\mathrm{H}^0(\mathbb{P}^{n-1}, \mathcal{O}(m)) \right)^{ss} /\!\!/ \mathrm{PGL}(n),$$

given by a categorical quotient of the locus of GIT semistable hypersurfaces. We call $V_{m,n}$ the GIT compactification of $U_{m,n}$.

The subject of this paper is a certain rational map $V_{m,n} \rightarrow V_{n(m-2),n}$, where $n \geq 2, m \geq 3$ and where we exclude the (trivial) case (n,m) = (2,3). While this map has a purely algebraic construction, which we shall recall soon, it has several surprising geometric properties that we establish in this paper. In particular, this rational map restricts to a locally closed immersion $\overline{A}: U_{m,n} \rightarrow V_{n(m-2),n}$, and often

Mathematics Subject Classification: 14L24, 13A50, 13H10.

Keywords: Geometric Invariant Theory, associated forms.

The first author was partially supported by the NSA Young Investigator grant H98230-16-1-0061 and Alfred P. Sloan Research Fellowship.

contracts the discriminant divisor in $V_{m,n}$. Consequently, the closure of the image of \bar{A} in $V_{n(m-2),n}$ is a compactification of the GIT moduli space $U_{m,n}$ that is different from the GIT compactification $V_{m,n}$.

To define A, we consider the associated form morphism defined on the space of smooth homogeneous forms $f \in \mathbb{C}[x_1, \ldots, x_n]$ of fixed degree $m \geq 3$. Given such an f, its associated form A(f) is a degree n(m-2) homogeneous form in the graded dual polynomial ring $\mathbb{C}[z_1, \ldots, z_n]$. In our recent paper [10], we proved that the associated form A(f) is always polystable in the sense of GIT. Consequently, we obtain a morphism \overline{A} from $U_{m,n}$ to $V_{n(m-2),n}$ sending the image of f in $U_{m,n}$ to the image of A(f) in $V_{n(m-2),n}$.

Our first result is that the morphism \overline{A} is an isomorphism onto its image, a locally closed subvariety in the target.

Theorem 1.1. The morphism

$$A\colon U_{m,n}\to V_{n(m-2),n}$$

is a locally closed immersion.

In the process of establishing Theorem 1.1, we generalize results of [2] to the case of an arbitrary number of variables, and, in particular, prove that the auxiliary gradient morphism sending a semistable form to the span of its partial derivatives gives rise to a closed immersion on the level of quotients (see Theorem 2.1).

Our second main result is Theorem 2.2, which describes the rational map $\overline{A}: V_{m,n} \dashrightarrow V_{n(m-2),n}$ in codimension one. Namely, we study how \overline{A} extends to the generic point of the discriminant divisor in the GIT compactification (see Corollary 5.8), and prove that for n = 2, 3 and $m \ge 4$, as well as for $n \ge 4, m \gg 0$, the morphism \overline{A} contracts the discriminant divisor to a lower-dimensional subvariety in the target (see Corollary 5.9). In the process, we prove that the image of \overline{A} contains the orbit of the Fermat hypersurface in its closure and as a result obtain a new proof of the generic smoothness of associated forms (see Corollary 5.10).

1.1. Notation and conventions. Let $S := \text{Sym } V \simeq \mathbb{C}[x_1, \ldots, x_n]$ be a symmetric algebra of an *n*-dimensional vector space V, with its standard grading. Let $\mathcal{D} := \text{Sym } V^{\vee} \simeq \mathbb{C}[z_1, \ldots, z_n]$ be the graded dual of S, with the structure of the S-module given by the *polar pairing* $S \times \mathcal{D} \to \mathcal{D}$, which is defined by

(1.1) $g(x_1,\ldots,x_n) \circ F(z_1,\ldots,z_n) := g(\partial/\partial z_1,\ldots,\partial/\partial z_1)F(z_1,\ldots,z_n).$

A homogeneous polynomial $f \in S_m$ is called a *direct sum* if, after a linear change of variables, it can be written as the sum of two non-zero polynomials in disjoint sets of variables:

$$f = f_1(x_1, \dots, x_a) + f_2(x_{a+1}, \dots, x_n).$$

We will use the recognition criteria for direct sums established in [8], and so we keep the pertinent terminology of that paper. We will say that $f \in S_m$ is a k-partial Fermat form for some $k \leq n$, if, after a linear change of variables, it can be written as follows:

$$f = x_1^m + \dots + x_k^m + g(x_{k+1}, \dots, x_n).$$

Clearly, any *n*-partial Fermat form is linearly equivalent to the standard Fermat form. Furthermore, all *k*-partial Fermat forms are direct sums. We denote by \mathfrak{DS}_m the locus of direct sums in S_m .

2. Associated form of a balanced complete intersection

Fix $d \geq 2$. In what follows the trivial case (n, d) = (2, 2) will be excluded. A length *n* regular sequence g_1, \ldots, g_n of elements of S_d will be called a balanced complete intersection of type $(d)^n$. It defines a graded Gorenstein Artin \mathbb{C} -algebra

$$\mathcal{A}(g_1,\ldots,g_n):=S/(g_1,\ldots,g_n),$$

whose socle lies in degree n(d-1). In [2] an element $\mathbf{A}(g_1, \ldots, g_n) \in \mathcal{D}_{n(d-1)}$, called the associated form of g_1, \ldots, g_n , was introduced. The form $\mathbf{A}(g_1, \ldots, g_n)$ is a homogeneous Macaulay inverse system, or a dual socle generator, of the algebra $\mathcal{A}(g_1, \ldots, g_n)$. It follows that $[\mathbf{A}(g_1, \ldots, g_n)] \in \mathbb{P}\mathcal{D}_{n(d-1)}$ depends only on the linear span $\langle g_1, \ldots, g_n \rangle$, which we regard as a point in $\operatorname{Grass}(n, S_d)$.

Recall that g_1, \ldots, g_n is a regular sequence in S_d if and only if $\langle g_1, \ldots, g_n \rangle$ does not in lie in the resultant divisor $\mathfrak{Res} \subset \operatorname{Grass}(n, S_d)$. Setting $\operatorname{Grass}(n, S_d)_{\operatorname{Res}} := \operatorname{Grass}(n, S_d) \setminus \mathfrak{Res}$, we obtain a morphism

$$\mathbf{A} \colon \operatorname{Grass}(n, S_d)_{\operatorname{Res}} \to \mathbb{P}\mathcal{D}_{n(d-1)}$$

Given $f \in S_{d+1}$, the partial derivatives $\partial f / \partial x_1, \ldots, \partial f / \partial x_n$ form a regular sequence if and only if f is non-degenerate. For a non-degenerate $f \in S_{d+1}$, in [1, 3] the associated form of f was defined to be

$$A(f) := \mathbf{A}(\partial f / \partial x_1, \dots, \partial f / \partial x_n) \in \mathcal{D}_{n(d-1)}.$$

Summarizing, we obtain a commutative diagram

where $\mathbb{P}(S_{d+1})_{\Delta}$ denotes the complement to the discriminant divisor in $\mathbb{P}(S_{d+1})$ and ∇ is the morphism sending a form into the linear span of its first partial derivatives. The above diagram is equivariant with respect to the standard $\mathrm{SL}(n)$ -actions on S and \mathcal{D} . By [2], the morphism **A** is a locally closed immersion, and it was proved in [10] that **A** sends polystable orbits to polystable orbits. Passing to the GIT quotients, we thus obtain a commutative diagram

(2.1)
$$\mathbb{P}(S_{d+1})_{\Delta} / \!/ \operatorname{SL}(n) \xrightarrow{\bar{A}} \mathbb{P}(\mathcal{D}_{n(d-1)})^{ss} / \!/ \operatorname{SL}(n) \xrightarrow{\tilde{\nabla}}_{\operatorname{Grass}(n, S_d)_{\operatorname{Res}} / \!/ \operatorname{SL}(n),} \overline{A}$$

where $\widetilde{\nabla} := \nabla /\!/ \operatorname{SL}(n)$ is a finite injective morphism (see [9]) and $\overline{\mathbf{A}} := \mathbf{A} /\!/ \operatorname{SL}(n)$ is a locally closed immersion. The main focus of this paper is the geometry of diagram (2.1).

Noting that by [9] the map ∇ extends to a morphism from $\mathbb{P}(S_{d+1})^{ss}$ to $\operatorname{Grass}(n, S_d)^{ss}$ and thus induces a map $\overline{\nabla}$ of the corresponding GIT quotients, we will now state our two main results as follows:

Theorem 2.1. The morphism $\overline{\nabla}$: $\mathbb{P}(S_{d+1})^{ss}/\!/ \operatorname{SL}(n) \to \operatorname{Grass}(n, S_d)^{ss}/\!/ \operatorname{SL}(n)$ is a closed immersion.

Theorem 2.2. The rational map

$$\bar{A}: \mathbb{P}(S_{d+1})^{ss} / \!\!/ \operatorname{SL}(n) \dashrightarrow \mathbb{P}(\mathcal{D}_{n(d-1)})^{ss} / \!\!/ \operatorname{SL}(n)$$

extends to the generic point of the discriminant divisor $\Delta // \operatorname{SL}(n)$ in the GIT compactification and contracts the discriminant divisor to a lower-dimensional variety for all sufficiently large d as described in Corollaries 5.8 and 5.9.

3. Preliminaries on dualities

In this section we collect results on Macaulay inverse systems of graded Gorenstein Artin \mathbb{C} -algebras. We also recall the duality between the Hilbert points of such algebras and the gradient points of their inverse systems.

Recall that we regard $S = \mathbb{C}[x_1, \ldots, x_n]$ as a ring of polynomial differential operators on the graded dual ring $\mathcal{D} := \mathbb{C}[z_1, \ldots, z_n]$ via polar pairing (1.1). For every positive *m*, the restricted pairing

$$S_m \times \mathcal{D}_m \to \mathbb{C}$$

is perfect and so defines an isomorphism

$$(3.1) \mathcal{D}_m \simeq S_m^{\vee},$$

where, as usual, V^{\vee} stands for the dual of a vector space V.

Given $W \subset \mathcal{D}$, we define

$$W^{\perp} := \{ f \in S \mid f \circ g = 0, \text{ for all } g \in W \} \subset S.$$

Similarly given $U \subset S$, we define

$$U^{\perp} := \{ g \in \mathcal{D} \mid f \circ g = 0, \text{ for all } f \in U \} \subset \mathcal{D}.$$

Claim 3.1. Isomorphism (3.1) sends an element $\omega \in S_m^{\vee}$ to the element

$$\mathfrak{D}_{\omega} := \sum_{i_1 + \dots + i_n = m} \frac{\omega(x_1^{i_1} \cdots x_n^{i_n})}{i_1! \cdots i_n!} z_1^{i_1} \cdots z_n^{i_n} \in \mathcal{D}_m.$$

Conversely, an element $g \in \mathcal{D}_m$ is mapped by isomorphism (3.1) to the projection

$$S_m \twoheadrightarrow S_m/(g^\perp)_m \simeq \mathbb{C}_p$$

where the isomorphism with \mathbb{C} is chosen so that $1 \in \mathbb{C}$ pairs to 1 with g.

Proof. One observes that $f \circ \mathfrak{D}_{\omega} = \omega(f)$ for every $f \in S_m$, and the first part of the claim follows. The second part is immediate from definitions.

Corollary 3.2. Given $\omega \in S_m^{\vee}$, for every $(a_1, \ldots, a_n) \in \mathbb{C}^n$ we have

(3.2)
$$\mathfrak{D}_{\omega}(a_1,\ldots,a_n) = \omega \big((a_1 x_1 + \cdots + a_n x_n)^m / m! \big).$$

Proof.

$$\omega((a_1x_1 + \dots + a_nx_n)^m/m!) = \frac{(a_1x_1 + \dots + a_nx_n)^m}{m!} \circ \mathfrak{D}_{\omega}$$
$$= \frac{(a_1\partial/\partial z_1 + \dots + a_n\partial/\partial z_n)^m}{m!}\mathfrak{D}_{\omega} = \mathfrak{D}_{\omega}(a_1, \dots, a_n),$$

where the last equality is easily checked, say on monomials.

Remark 3.3. It follows from Corollary 3.2 that all forms in a subset $W \subset \mathcal{D}_m$ vanish at a given point $(a_1, \ldots, a_n) \in \mathbb{C}^n$ if and only if $(a_1x_1 + \cdots + a_nx_n)^m \in W^{\perp}$.

Notice that the maps

$$\left[\langle \mathfrak{D}_{\omega} \rangle \subset \mathcal{D}_m \right] \mapsto \left[(\mathfrak{D}_{\omega}^{\perp})_m \subset S_m \right] = \left[\ker(\omega) \subset S_m \right]$$

define isomorphisms

$$\operatorname{Grass}(1, \mathcal{D}_m) \simeq \operatorname{Grass}(\dim_{\mathbb{C}} S_m - 1, S_m).$$

More generally, for any $1 \le m \le {\binom{m+n-1}{n-1}} - 1$ the correspondence

$$\left[W \subset \mathcal{D}_m\right] \mapsto \left[(W^{\perp})_m \subset S_m\right]$$

yields an isomorphism

(3.3)
$$\operatorname{Grass}(k, \mathcal{D}_m) \simeq \operatorname{Grass}\left(\dim_{\mathbb{C}} S_m - k, S_m\right)$$

Let $I \subset S$ be a Gorenstein ideal and ν the socle degree of the algebra $\mathcal{A} = S/I$. Recall that a *(homogeneous) Macaulay inverse system* of \mathcal{A} is an element $f_{\mathcal{A}} \in \mathcal{D}_{\nu}$ such that

$$f_{\mathcal{A}}^{\perp} = I$$

(see [11, Lemma 2.12] or [6, Exercise 21.7]). As $(f_{\mathcal{A}}^{\perp})_{\nu} = I_{\nu}$, we see that all Macaulay inverse systems are mutually proportional and $\langle f_{\mathcal{A}} \rangle = ((I_{\nu})^{\perp})_{\nu}$. Clearly, the line $\langle f_{\mathcal{A}} \rangle \in \operatorname{Grass}(1, \mathcal{D}_{\nu})$ maps to the ν^{th} Hilbert point $H_{\nu} \in \operatorname{Grass}(\dim_{\mathbb{C}} S_{\nu} - 1, S_{\nu})$ of \mathcal{A} under isomorphism (3.3) with k = 1.

Remark 3.4. Papers [3, 4], for any $\omega \in S_{\nu}^{\vee}$ with ker $\omega = I_{\nu}$, introduced the associated form of \mathcal{A} as the element of \mathcal{D}_{ν} given by the right-hand side of formula (3.2) with $m = \nu$ (up to the factor ν !). By Corollary 3.2, under isomorphism (3.3) with k = 1 the span of every associated form in \mathcal{D}_{ν} also maps to the ν^{th} Hilbert point $H_{\nu} \in \text{Grass}(\dim_{\mathbb{C}} S_{\nu} - 1, S_{\nu})$ of \mathcal{A} . In particular, for the algebra \mathcal{A} any associated form is simply one of its Macaulay inverse systems, and equation (3.2) with $m = \nu$ and ker $\omega = I_{\nu}$ is an explicit formula for a Macaulay inverse system of \mathcal{A} (see [12] for more details).

3.1. Gradient points. Given a polynomial $F \in \mathcal{D}_m$, we define the p^{th} gradient point of F to be the linear span of all p^{th} partial derivatives of F in \mathcal{D}_{m-p} . We denote the p^{th} gradient point by $\nabla^p(F)$. Note that

$$\nabla^p(F) = \{ g \circ F \mid g \in S_p \}$$

is simply the $(m-p)^{th}$ graded piece of the principal S-module SF. The 1st gradient point $\nabla F := \langle \partial F / \partial z_1, \dots, \partial F / \partial z_n \rangle$ will be called simply the gradient point of F.

Proposition 3.5 (Duality between gradient and Hilbert points). The p^{th} gradient point of a Macaulay inverse system $f_{\mathcal{A}} \in \mathcal{D}_{\nu}$ maps to the $(\nu - p)^{th}$ Hilbert point $H_{\nu-p}$ of \mathcal{A} under isomorphism (3.3).

Proof. Let G be the p^{th} gradient point of $f_{\mathcal{A}}$, that is

$$G := \left\langle \frac{\partial^p}{\partial z_1^{i_1} \cdots \partial z_n^{i_n}} f_{\mathcal{A}} \mid i_1 + \cdots + i_n = p \right\rangle.$$

We need to verify that $I_{\nu-p} = (G^{\perp})_{\nu-p}$. We have

$$(G^{\perp})_{\nu-p} = \left\{ f \in S_{\nu-p} \mid f \circ \frac{\partial^p}{\partial z_1^{i_1} \cdots \partial z_n^{i_n}} f_{\mathcal{A}} = 0 \text{ for all } i_1 + \dots + i_n = p \right\}$$
$$= \left\{ f \in S_{\nu-p} \mid f x_1^{i_1} \cdots x_n^{i_n} \circ f_{\mathcal{A}} = 0 \text{ for all degree } p \text{ monomials} \right\}$$
$$= \left\{ f \in S_{\nu-p} \mid x_1^{i_1} \cdots x_n^{i_n} f \in f_{\mathcal{A}}^{\perp} \text{ for all degree } p \text{ monomials} \right\}$$
$$= \left\{ f \in S_{\nu-p} \mid x_1^{i_1} \cdots x_n^{i_n} f \in I_{\nu} \text{ for all degree } p \text{ monomials} \right\}$$
$$= I_{\nu-p},$$

where the last equality comes from the fact that I is Gorenstein.

As a corollary of the above duality result, we recall in Proposition 3.6 below a generalization of [1, Lemma 4.4]. Although this statement is well-known (it appears, for example, in [5, Proposition 4.1, p. 174]), we provide a short proof for completeness. We first recall that a non-zero homogeneous form f in n variables has multiplicity $\ell + 1$ at a point $p \in \mathbb{P}^{n-1}$ if and only if all partial derivatives of f of order ℓ (hence of all orders $\leq \ell$) vanish at p, and some partial derivative of f of order $\ell + 1$ does

not vanish at p. We define the Veronese cone C_m to be the variety of all degree m powers of linear forms in S_m :

$$\mathcal{C}_m := \left\{ L^m \mid L \in S_1 \right\} \subset S_m.$$

Proposition 3.6. Let $I \subset S$ be a Gorenstein ideal and ν the socle degree of the algebra $\mathcal{A} = S/I$. Then a Macaulay inverse system $f_{\mathcal{A}}$ of \mathcal{A} has a point of multiplicity $\ell + 1$ if and only if there exists a non-zero $L \in S_1$ such that $L^{\nu-\ell} \in I_{\nu-\ell}$, and $L^{\nu-\ell-1} \notin I_{\nu-\ell-1}$. In particular, $f_{\mathcal{A}}$ has no points of multiplicity $\ell + 1$ or higher if and only if

$$I_{\nu-\ell} \cap \mathcal{C}_{\nu-\ell} = (0).$$

Proof. By Proposition 3.5, the ℓ^{th} gradient point of $f_{\mathcal{A}}$ is dual to the $(\nu - \ell)^{th}$ Hilbert point of \mathcal{A}

$$H_{\nu-\ell}\colon S_{\nu-\ell}\twoheadrightarrow \mathcal{A}_{\nu-\ell}.$$

We conclude by Remark 3.3 that all partial derivatives of $f_{\mathcal{A}}$ of order ℓ vanish at (a_1, \ldots, a_n) if and only if

$$(a_1x_1 + \dots + a_nx_n)^{\nu-\ell} \in \ker H_{\nu-\ell} = I_{\nu-\ell}.$$

It follows that $L = a_1 x_1 + \dots + a_n x_n$ satisfies $L^{\nu-\ell} \in I_{\nu-\ell}$ and $L^{\nu-\ell-1} \notin I_{\nu-\ell-1}$ if and only if $f_{\mathcal{A}}$ has multiplicity exactly $\ell + 1$ at the point (a_1, \dots, a_n) . \Box

4. The gradient morphism ∇

In this section, we prove Theorem 2.1. Recall that we have the commutative diagram

$$\mathbb{P}(S_{d+1})^{ss} \xrightarrow{\nabla} \operatorname{Grass}(n, S_d)^{ss}$$

$$\downarrow^{\pi_0} \qquad \qquad \downarrow^{\pi_1}$$

$$\mathbb{P}(S_{d+1})^{ss} / \!/ \operatorname{SL}(n) \xrightarrow{\overline{\nabla}} \operatorname{Grass}(n, S_d)^{ss} / \!/ \operatorname{SL}(n).$$

Let $\mathfrak{D}\mathfrak{S}_{d+1}^{ss} := \mathbb{P}(\mathfrak{D}\mathfrak{S}_{d+1})^{ss}$ be the locus of semistable direct sums in $\mathbb{P}(S_{d+1})^{ss}$. By [8, Section 3], the set $\mathfrak{D}\mathfrak{S}_{d+1}^{ss}$ is precisely the closed locus in $\mathbb{P}(S_{d+1})^{ss}$ where ∇ has positive fiber dimension.

Suppose $f \in S_{d+1}$ is a semistable form. Then, after a linear change of variables, we have a maximally fine direct sum decomposition

(4.1)
$$f = \sum_{i=1}^{k} f_i(\mathbf{x}^i),$$

where $V_i = \langle \mathbf{x}^i \rangle$ are such that $V = \bigoplus_{i=1}^k V_i$, and where each f_i is not a direct sum in $\operatorname{Sym} V_i$. Set $n_i := \dim_{\mathbb{C}} V_i$. We define the canonical torus $\Theta(f) \subset \operatorname{SL}(n)$ associated to f as the connected component of the identity of the subgroup

$$\{g \in SL(n) \mid V_i \text{ is an eigenspace of } g, \text{ for every } i = 1, \dots, k\} \subset SL(n).$$

Clearly, $\Theta(f) \simeq (\mathbb{C}^*)^{k-1}$, and since

 $\nabla([f]) = \nabla([f_1]) \oplus \cdots \oplus \nabla([f_k]), \text{ where } \nabla([f_i]) \in \operatorname{Grass}(n_i, \operatorname{Sym}^d V_i),$

we also have $\Theta(f) \subset \operatorname{Stab}(\nabla([f]))$, where Stab denotes the stabilizer under the $\operatorname{SL}(n)$ -action.

From the definition of $\Theta(f)$, it is clear that $\Theta(f) \cdot [f] \subset \nabla^{-1}(\nabla([f]))$, and in fact [8, Corollary 3.12] gives a set-theoretic equality $\nabla^{-1}(\nabla([f])) = \Theta(f) \cdot [f]$. We will now obtain a stronger result:

Lemma 4.1. One has $\nabla^{-1}(\nabla([f])) = \Theta(f) \cdot [f]$ scheme-theoretically, or, equivalently,

$$\ker(d\nabla_{[f]}) = \mathbf{T}_{[f]}(\Theta(f) \cdot [f]),$$

where $\mathbf{T}_{[f]}$ denotes the tangent space at [f].

Proof. Under the standard identification of $\mathbf{T}_{[f]}\mathbb{P}(S_{d+1})$ with $S_{d+1}/\langle f \rangle$, the subspace $\mathbf{T}_{[f]}(\Theta(f) \cdot [f])$ is identified with $\langle f_1, \ldots, f_k \rangle / \langle f \rangle$. It now suffices to show that every $g \in S_{d+1}$ that satisfies $\nabla[g] \subset \nabla[f]$ must lie in $\langle f_1, \ldots, f_k \rangle$, where $\nabla[g] := \langle \partial g / \partial x_1, \ldots, \partial g / \partial x_n \rangle \subset S_d$. This is precisely the statement of [8, Corollary 3.12].

We note an immediate consequence:

Corollary 4.2. If $f \in S_{d+1}^{ss}$ is not a direct sum, then ∇ is unramified at [f].

Further, since ∇ is equivariant with respect to the $\mathrm{SL}(n)$ -action, we have the inclusion $\mathrm{Stab}([f]) \subset \mathrm{Stab}(\nabla([f]))$. As the following result shows, the difference between $\mathrm{Stab}([f])$ and $\mathrm{Stab}(\nabla([f]))$ is controlled by the torus $\Theta(f)$.

Corollary 4.3. The subgroup $\operatorname{Stab}(\nabla([f]))$ is generated by $\Theta(f)$ and $\operatorname{Stab}([f])$.

Proof. Suppose $\sigma \in \text{Stab}(\nabla([f]))$. Then $\nabla(\sigma \cdot [f]) = \nabla([f])$ implies by Lemma 4.1 that $\sigma \cdot [f] = \tau \cdot [f]$ for some $\tau \in \Theta(f)$. Consequently, $\tau^{-1} \circ \sigma \in \text{Stab}([f])$ as desired.

Next, we obtain the following generalization of [2, Proposition 6.3], whose proof we follow almost verbatim.

Proposition 4.4. The morphism ∇ is a closed immersion along the open locus $\mathcal{U} := \mathbb{P}(S_{d+1})^{ss} \setminus \mathfrak{DS}_{d+1}^{ss}$ of all elements that are not direct sums.

Proof. Since for every $[f] \in \mathcal{U}$ we have that ∇ is unramified at [f] and $\nabla^{-1}(\nabla([f])) = [f]$, it suffices to show that ∇ is a finite morphism when restricted to \mathcal{U} . Since, by [9], the induced morphism on the GIT quotients is finite, by [13, p. 89, Lemme] it suffices to verify that ∇ is quasi-finite and that ∇ sends closed orbits to closed orbits. The former has already been established, and the latter is proved below in Proposition 4.5.

Proposition 4.5. Suppose $f \in S_{d+1}^{ss}$ is polystable and not a direct sum. Then the image $\nabla([f]) \in \text{Grass}(n, S_d)^{ss}$ is polystable.

The above result is a generalization of [9, Theorem 1.1], whose method of proof we follow; we also keep the notation of *loc.cit.*, especially as it relates to monomial orderings. We begin with a preliminary observation.

Lemma 4.6. Suppose $f \in S_{d+1}$ is such that there exists a non-trivial one-parameter subgroup λ of SL(n) acting diagonally on x_1, \ldots, x_n with weights $\lambda_1, \ldots, \lambda_n$ and satisfying

$$w_{\lambda}(\operatorname{in}_{\lambda}(\partial f/\partial x_i)) = d\lambda_i.$$

Then f is a direct sum.

Proof. We can assume that

$$\lambda_1 \leq \cdots \leq \lambda_a < \lambda_{a+1} = \cdots = \lambda_n$$

for some $1 \leq a < n$. Then the fact that

$$w_{\lambda}(\operatorname{in}_{\lambda}(\partial f/\partial x_i)) = d\lambda_i = d\lambda_n$$

for all $i = a + 1, \ldots, n$, implies

$$\partial f / \partial x_{a+1}, \dots, \partial f / \partial x_n \in \mathbb{C}[x_{a+1}, \dots, x_n].$$

Consequently, $f = g_1(x_1, \ldots, x_a) + g_2(x_{a+1}, \ldots, x_n)$ is a direct sum.

Proof of Proposition 4.5. Since f is polystable, by [9, Theorem 1.1] it follows that $\nabla([f])$ is semistable. Suppose $\nabla([f])$ is not polystable. Then there exists a oneparameter subgroup λ acting on the coordinates x_1, \ldots, x_n with the weights $\lambda_1, \ldots, \lambda_n$ such that the limit of $\nabla([f])$ under λ exists and does not lie in the orbit of $\nabla([f])$. In particular, the limit of [f] under λ does not exist.

Then by [9, Lemma 3.5], there is an upper triangular unipotent coordinate change

$$x_1 \mapsto x_1 + c_{12}x_2 + \dots + c_{1n}x_n,$$

$$x_2 \mapsto \qquad x_2 + \dots + c_{2n}x_n,$$

$$\vdots$$

$$x_n \mapsto \qquad x_n$$

such that for the transformed form

$$h(x_1, \dots, x_n) := f(x_1 + c_{12}x_2 + \dots + c_{1n}x_n, x_2 + \dots + c_{2n}x_n, \dots, x_n)$$

the initial monomials

 $\operatorname{in}_{\lambda}(\partial h/\partial x_1),\ldots,\operatorname{in}_{\lambda}(\partial h/\partial x_n)$

are distinct. Now, setting

$$\mu_i := w_\lambda(\operatorname{in}_\lambda(\partial h/\partial x_i)),$$

by [9, Lemma 3.2] we have

$$\mu_1 + \dots + \mu_n = 0.$$

It follows that with the respect to the one-parameter subgroup λ' acting on x_i with the weight $d\lambda_i - \mu_i$, all monomials of h have non-negative weights (cf. [9, the proof of Lemma 3.6]). Write $h = h_0 + h_1$, where all monomials of h_0 have zero λ' -weights

and all monomials of h_1 have positive λ' -weights. Then $h_0 \in \overline{\operatorname{SL}(n) \cdot h} = \operatorname{SL}(n) \cdot h$, by the polystability assumption on f. Furthermore, h_0 is stabilized by λ' .

If λ' is a trivial one-parameter subgroup, then $\mu_i = d\lambda_i$ for all i = 1, ..., n, and by Lemma 4.6 the form h is a direct sum, which is a contradiction.

Suppose now that λ' is a non-trivial one-parameter subgroup. Clearly, we have

$$w_{\lambda}(\operatorname{in}_{\lambda}(\partial h_0/\partial x_i) \ge w_{\lambda}(\operatorname{in}_{\lambda}(\partial h/\partial x_i)),$$

since the state of h_0 is a subset of the state of h. If one of the inequalities above is strict, then $\nabla([h_0])$ is destabilized by λ , contradicting the semistability of $\nabla([h_0])$ established in [9, Theorem 1.1]. Thus

$$w_{\lambda}(\operatorname{in}_{\lambda}(\partial h_0/\partial x_i)) = w_{\lambda}(\operatorname{in}_{\lambda}(\partial h/\partial x_i)) = \mu_i.$$

Moreover, since h_0 is λ' -invariant, we have that $\partial h_0 / \partial x_i$ is homogeneous of degree $-w_{\lambda'}(x_i) = \mu_i - d\lambda_i$ with respect to λ' . Let μ be the one-parameter subgroup acting on x_1, \ldots, x_n with the weights μ_1, \ldots, μ_n . It follows that

$$w_{\mu}(\operatorname{in}_{\mu}(\partial h_0/\partial x_i)) = dw_{\lambda}(\operatorname{in}_{\lambda}(\partial h_0/\partial x_i) + w_{\lambda'}(\operatorname{in}_{\lambda'}(\partial h_0/\partial x_i)) = d\mu_i - \mu_i + d\lambda_i.$$

Then the one-parameter subgroup $\lambda + \mu$ acting on x_1, \ldots, x_n with the weights $\lambda_1 + \mu_1, \ldots, \lambda_n + \mu_n$ satisfies

$$w_{\lambda+\mu}(\operatorname{in}_{\lambda+\mu}(\partial h_0/\partial x_i)) = w_{\lambda}(\operatorname{in}_{\lambda}(\partial h_0/\partial x_i)) + w_{\mu}(\operatorname{in}_{\mu}(\partial h_0/\partial x_i)) = d\mu_i - \mu_i + d\lambda_i + \mu_i = d(\mu_i + \lambda_i).$$

Applying Lemma 4.6, we conclude that either h_0 is a direct sum, or

$$\lambda_i + \mu_i = 0$$
 for all $i = 1, \ldots, n$.

In the latter case, it follows that λ is proportional to $\lambda' = d\lambda - \mu$. Since the limit of h under λ' exists and is equal to h_0 , the limit under λ of h must exist and be equal to h_0 as well. Observing that the inverse of an upper-triangular matrix with 1's on the diagonal has the same form, we see that the limit of

$$f(x_1, \dots, x_n) = h(x_1 + c'_{12}x_2 + \dots + c'_{1n}x_n, x_2 + \dots + c'_{2n}x_n, \dots, x_n)$$

under λ also exists. This contradiction concludes the proof.

Corollary 4.7. The morphism $\nabla \colon \mathbb{P}(S_{d+1})^{ss} \to \operatorname{Grass}(n, S_d)^{ss}$ preserves polystability.

Proof. Suppose $f = f_1 + \cdots + f_k$ is the maximally fine direct sum decomposition of a polystable form f, where $f_i \in \text{Sym}^{d+1} V_i$, and where $V = \bigoplus_{i=1}^k V_i$. Then each f_i is polystable and not a direct sum in $\text{Sym}^{d+1} V_i$. Hence $\nabla([f_i])$ is polystable with respect to the $\text{SL}(V_i)$ -action.

Since $\Theta(f) \subset \operatorname{Stab}(\nabla([f]))$ is a reductive subgroup, to prove that $\nabla([f])$ is polystable, it suffices to verify that $\nabla([f])$ is polystable with respect to the centralizer $C_{\operatorname{SL}(n)}(\Theta(f))$ of $\operatorname{Stab}(\Theta(f))$ in $\operatorname{SL}(n)$, see [14, Corollaire 1 and Remarque 1]. We have

$$C_{\mathrm{SL}(n)}(\Theta(f)) = (\mathrm{GL}(V_1) \times \cdots \times \mathrm{GL}(V_k)) \cap \mathrm{SL}(n).$$

Arguing as on [9, p. 456], we see that every one-parameter subgroup λ of $C_{\mathrm{SL}(n)}(\Theta(f))$ can be renormalized to a one-parameter subgroup of $\mathrm{SL}(V_1) \times \cdots \times \mathrm{SL}(V_k)$ without changing its action on $\nabla([f])$. Since $\nabla([f_i])$ is polystable with respect to $\mathrm{SL}(V_i)$, it follows that

$$\nabla([f]) = \nabla([f_1]) \oplus \cdots \oplus \nabla([f_k])$$

is polystable with respect to the action of λ thus proving the claim.

Proof of Theorem 2.1. Suppose that f is polystable, consider its maximally fine direct sum decomposition and the canonical torus $\Theta(f)$ in $\operatorname{Stab}(\nabla([f]))$ as constructed above. In what follows, we will write X to denote $\mathbb{P}(S_{d+1})^{ss}$ and Y to denote $\operatorname{Grass}(n, S_d)^{ss}$. Set $p := \pi_0([f]) \in X/\!\!/\operatorname{SL}(n)$.

We will prove that $\overline{\nabla}$ is unramified at p. Let $N_{[f]}$ be the normal space to the SL(n)-orbit of [f] in X at the point [f], and $N_{\nabla([f])}$ the normal space to the SL(n)-orbit of $\nabla([f])$ in Y at the point $\nabla([f])$. We have a natural map

$$\iota \colon N_{[f]} \to N_{\nabla([f])}$$

induced by the differential of ∇ . The map ι is injective by Lemma 4.1.

Since both [f] and $\nabla([f])$ have closed orbits in X and Y, respectively (see Corollary 4.7), to verify that $\overline{\nabla}$ is unramified at p, it suffices, by Luna's étale slice theorem, to prove that the morphism

(4.2)
$$s(f) \colon N_{[f]} / \operatorname{Stab}([f]) \to N_{\nabla([f])} / \operatorname{Stab}(\nabla([f]))$$

is unramified.

As ∇ is not necessarily stabilizer-preserving at [f] (i.e., $\operatorname{Stab}([f])$ may not be equal to $\operatorname{Stab}(\nabla([f]))$), we cannot directly appeal to the injectivity of ι . Instead, consider the $\Theta(f)$ -orbit, say F, of [f] in X. Let $\mathcal{N}_{F/X}$ be the $\Theta(f)$ -invariant normal bundle of F in X. Since by Lemma 4.1 we have $\nabla^{-1}(\nabla([f])) = F$, there is a natural $\Theta(f)$ -equivariant map $J : \mathcal{N}_{F/X} \to \mathcal{N}_{\nabla([f])}$. We now make a key observation that for the induced map $\tilde{J} : \mathcal{N}_{F/X} /\!\!/ \Theta(f) \to \mathcal{N}_{\nabla([f])}$ one has

$$J(\mathcal{N}_{F/X}/\!\!/\Theta(f)) = \iota\left(N_{[f]}\right).$$

Since $\overline{\nabla}$ is finite by [9, Proposition 2.1], the morphism s(f) from Equation (4.2) is quasi-finite. Applying Lemma 4.8 (proved below), with Spec $A = N_{[f]}$, Spec $B = N_{\overline{\nabla}([f])}$, $T = \Theta(f)$, H = Stab([f]), $G = \text{Stab}(\nabla([f]))$, as well as Corollary 4.3, we obtain that s(f) is in fact a closed immersion, and so is unramified. Note that here the group G is reductive by Matsushima's criterion. This proves that $\overline{\nabla}$ is unramified at p.

We now note that $\overline{\nabla}$ is injective. Indeed, this follows as in the proof of [9, Part (2) of Proposition 2.1] from Corollary 4.7 and the finiteness of $\overline{\nabla}$. We then conclude that $\overline{\nabla}$ is a closed immersion.

Lemma 4.8 (GIT lemma). Suppose G is a reductive group. Suppose $T \subset G$ is a connected reductive subgroup, and $H \subset G$ is a reductive subgroup such that G

is generated by T and H. Suppose we have a G-equivariant closed immersion of normal affine schemes admitting an action of G

$$\operatorname{Spec} A \hookrightarrow \operatorname{Spec} B.$$

such that $\operatorname{Spec} A^H \to \operatorname{Spec} B^G$ is quasi-finite. Then $\operatorname{Spec} A^G \simeq \operatorname{Spec} A^H$ and, consequently, $\operatorname{Spec} A^H \to \operatorname{Spec} B^G$ is a closed immersion.

Proof. We have the following commutative diagram

$$\begin{array}{c} \operatorname{Spec} A^{H} & \longrightarrow & \operatorname{Spec} B^{H} \\ & \downarrow & & \downarrow \\ (\operatorname{Spec} A^{H}) /\!\!/ T \simeq \operatorname{Spec} A^{G} & \longmapsto & (\operatorname{Spec} B^{H}) /\!\!/ T \simeq \operatorname{Spec} B^{G} \end{array}$$

Since the diagonal arrow is quasi-finite by assumption, and the bottom arrow is a closed immersion, we conclude that the GIT quotient $\operatorname{Spec} A^H \to (\operatorname{Spec} A^H)/\!\!/T$ is quasi-finite as well. Since this is a good quotient by a connected group, the morphism $\operatorname{Spec} A^H \to (\operatorname{Spec} A^H)/\!/T \simeq \operatorname{Spec} A^G$ must be an isomorphism. \Box

Corollary 4.9 (Theorem 1.1). The morphism

$$\bar{A} \colon \mathbb{P}(S_{d+1})_{\Delta} / \!/ \operatorname{SL}(n) \to \mathbb{P}(\mathcal{D}_{n(d-1)})^{ss} / \!/ \operatorname{SL}(n)$$

is a locally closed immersion.

5. The morphism A_{Gr}

In this section, we prove Theorem 2.2. In fact, we study in detail the rational map \overline{A} : $(\mathbb{P}S_{d+1})^{ss}/\!/ \operatorname{SL}(n) \dashrightarrow \mathbb{P}(\mathcal{D}_{n(d-1)})^{ss}/\!/ \operatorname{SL}(n)$ in codimension one.

As in Section 2, fix $d \ge 2$. As always, we assume that $n \ge 2$ and disregard the trivial case (n, d) = (2, 2). Given $U \in \text{Grass}(n, S_d)$, we take I_U to be the ideal in S generated by the elements in U. Consider the following locus in $\text{Grass}(n, S_d)$:

$$W_{n,d} = \{ U \in \text{Grass}(n, S_d) \mid \dim_{\mathbb{C}}(S/I_U)_{n(d-1)-1} = n \}.$$

Since $\dim_{\mathbb{C}}(S/I_U)_{n(d-1)-1}$ is an upper semi-continuous function on $\operatorname{Grass}(n, S_d)$ and for every $U \in \operatorname{Grass}(n, S_d)$ one has $\dim_{\mathbb{C}}(S/I_U)_{n(d-1)-1} \geq n$, we conclude that $W_{n,d}$ is an open subset of $\operatorname{Grass}(n, S_d)$. Moreover, since for $U \in \operatorname{Grass}(n, S_d)_{\operatorname{Res}}$ the ideal I_U is Gorenstein of socle degree n(d-1), we have $\operatorname{Grass}(n, S_d)_{\operatorname{Res}} \subset W_{n,d}$.

Applying polar pairing, we obtain a morphism

$$\mathbf{A}_{\mathrm{Gr}} \colon W_{n,d} \to \mathrm{Grass}(n, \mathcal{D}_{n(d-1)-1}),$$
$$\mathbf{A}_{\mathrm{Gr}}(U) = \left[(I_U)_{n(d-1)-1}^{\perp} \subset \mathcal{D}_{n(d-1)-1} \right].$$

From the duality between Hilbert and gradient points it follows that

 $\nabla(\mathbf{A}(U)) = \mathbf{A}_{\mathrm{Gr}}(U)$ for every $U \in \mathrm{Grass}(n, S_d)_{\mathrm{Res}}$.

We conclude that we have the commutative diagram:

Proposition 5.1. Suppose $U \in \text{Grass}(n, S_d)$ is such that

 $\mathbb{V}(I_U) = \{p_1, \dots, p_k\}$

is scheme-theoretically a set of k distinct points in general linear position in \mathbb{P}^{n-1} . Then $U \in W_{n,d}$.

Remark 5.2. A set $\{p_1, \ldots, p_k\}$ points in \mathbb{P}^{n-1} is in general linear position if and only if $k \leq n$, and, up to the PGL(n)-action,

$$p_i = \{x_1 = \dots = \hat{x}_i = \dots = x_n = 0\}, \quad i = 1, \dots, k,$$

in the homogeneous coordinates $[x_1 : \cdots : x_n]$ on \mathbb{P}^{n-1} .

Proof of Proposition 5.1. Since depth $(I_U) = n - 1$, we can choose degree d generators g_1, \ldots, g_n of I_U such that g_1, \ldots, g_{n-1} form a regular sequence. Then $\Gamma := \mathbb{V}(g_1, \ldots, g_{n-1})$ is a finite-dimensional subscheme of \mathbb{P}^{n-1} . By Bézout's theorem, Γ is a set of d^{n-1} points, counted with multiplicities.

Set $R := S/(g_1, \ldots, g_{n-1})$. Consider the Koszul complex $K_{\bullet} := K_{\bullet}(g_1, \ldots, g_n)$. We have

$$\mathrm{H}_0(K_{\bullet}) = S/(g_1, \ldots, g_n) = S/I_U.$$

Since g_1, \ldots, g_{n-1} is a regular sequence, we also have

$$H_i(K_{\bullet}) = 0 \quad \text{for all } i > 0$$

and

$$H_1(K_{\bullet}) = \left(((g_1, \dots, g_{n-1}) : S(g_1, \dots, g_n)) / (g_1, \dots, g_{n-1}) \right) (-d) \simeq \operatorname{Ann}_R(g_n) (-d).$$

To establish the identity

$$\operatorname{codim}((I_U)_{n(d-1)-1}, S_{n(d-1)-1}) = n$$

it suffices to prove

$$H_1(K_{\bullet})_{n(d-1)-1} = 0.$$

Indeed, in this case the graded degree n(d-1) - 1 part of the Koszul complex will be an exact complex of vector spaces and so the dimension of $(S/I_U)_{n(d-1)-1}$ will coincide with that in the situation when g_1, \ldots, g_n is a regular sequence, that is, with n.

As we have already observed, we have

$$H_1(K_{\bullet})_{n(d-1)-1} = \operatorname{Ann}_R(g_n)_{n(d-1)-1}(-d) = \operatorname{Ann}_R(g_n)_{n(d-1)-1-d}.$$

Hence it suffices to prove that $\operatorname{Ann}_R(g_n)_{n(d-1)-1-d} = 0$. Write $\Gamma = \Gamma' \cup \Gamma''$, where $\Gamma' \neq \emptyset$ and $\Gamma'' := \{p_1, \ldots, p_k\}$. Since g_n vanishes on all of Γ'' but does not vanish at any point of Γ' , every element of $\operatorname{Ann}_R(g_n)_{n(d-1)-1-d}$ comes from a degree n(d-1)-1-d form that vanishes on all of Γ' . We apply the Cayley-Bacharach Theorem [7, Theorem CB6], which implies the following statement:

Claim 5.3. Set s := d(n-1) - (n-1) - 1 = n(d-1) - d. If $r \leq s$ is a non-negative integer, then the dimension of the family of projective hypersurfaces of degree r containing Γ' modulo those containing all of Γ is equal to the failure of Γ'' to impose independent conditions on projective hypersurfaces of complementary degree s - r.

In our situation r = s - 1, and Γ'' imposes independent conditions on hyperplanes by the general linear position assumption. Hence we conclude by Claim 5.3 that every form of degree n(d-1) - 1 - d that vanishes on all of Γ' also vanishes on all of Γ'' and therefore, as the ideal (g_1, \ldots, g_{n-1}) is saturated, maps to 0 in R. We thus see that $\operatorname{Ann}_R(g_n)_{n(d-1)-1-d} = 0$. This finishes the proof. \Box

Motivated by the result above, we consider the following partial stratification of the resultant divisor $\mathfrak{Res} \subset \operatorname{Grass}(n, S_d)$. For $1 \leq k \leq n$, define Z_k to be the locally closed subset of $\operatorname{Grass}(n, S_d)$ consisting of all subspaces U such that $\mathbb{V}(I_U)$ is scheme-theoretically a set of k distinct points in general linear position in \mathbb{P}^{n-1} . Clearly, Z_1 is dense in \mathfrak{Res} , and

$$\overline{Z}_k \supset Z_{k+1} \cup \cdots \cup Z_n.$$

We will also set $\Sigma_k := \nabla^{-1}(Z_k) \subset \mathbb{P}(S_{d+1})$. By the Jacobian criterion, Σ_k is the locus of hypersurfaces with only k ordinary double points in general linear position and no other singularities.

Lemma 5.4. For every $1 \le k \le n$, one has that Z_k is a non-empty and irreducible subset of $\operatorname{Grass}(n, S_d)$, and Σ_k is a non-empty and irreducible subset of $\mathbb{P}(S_{d+1})^{ss}$.

Proof. It follows from the Hilbert-Mumford numerical criterion that any hypersurface in \mathbb{P}^{n-1} of degree d + 1 with at worst ordinary double point singularities is semistable.

Having k singularities at k fixed points p_1, \ldots, p_k (resp., having k fixed base points p_1, \ldots, p_k) in general linear position is a linear condition on the elements of $\mathbb{P}(S_{d+1})$ (resp., the elements of the Stiefel variety over $\operatorname{Grass}(n, S_d)$) and so defines an irreducible closed subvariety $\Sigma(p_1, \ldots, p_k)$ in $\mathbb{P}(S_{d+1})$ (resp., $Z(p_1, \ldots, p_k)$ in $\operatorname{Grass}(n, S_d)$). The property of having exactly ordinary double points at p_1, \ldots, p_k (resp., having the base locus being equal to $\{p_1, \ldots, p_k\}$ scheme-theoretically) is an open condition in $\Sigma(p_1, \ldots, p_k)$ in $\mathbb{P}(S_{d+1})$ (resp., $Z(p_1, \ldots, p_k)$ in $\operatorname{Grass}(n, S_d)$) and so defines an irreducible subvariety $\Sigma^0(p_1, \ldots, p_k)$ (resp., $Z^0(p_1, \ldots, p_k)$). We conclude the proof of irreducibility by noting that $\Sigma_k = \text{PGL}(n) \cdot \Sigma^0(p_1, \ldots, p_k)$ (resp., $Z_k = \text{PGL}(n) \cdot Z^0(p_1, \ldots, p_k)$).

Since $\Sigma_k = \nabla^{-1}(Z_k)$, it suffices to check the non-emptiness of Σ_k . If $F \in \Sigma_n$ has ordinary double points at p_1, \ldots, p_n , then by the deformation theory of hypersurfaces, there exists a deformation of F with ordinary double points at p_1, \ldots, p_k and no other singularities. Indeed, if $G \in S_{d+1}$ is a general form vanishing at p_1, \ldots, p_k and non-vanishing at p_{k+1}, \ldots, p_n , then $F + tG \in \Sigma^0(p_1, \ldots, p_k)$ will have ordinary double points at p_1, \ldots, p_k and no other singularities for $0 < t \ll 1$.

It remains to prove that Σ_n is non-empty. Indeed, the following is an element of Σ_n :

$$(d-1)(x_1+\cdots+x_n)^{d+1}-(d+1)(x_1+\cdots+x_n)^{d-1}(x_1^2+\cdots+x_n^2)+2(x_1^{d+1}+\cdots+x_n^{d+1}).$$

In fact, a generic linear combination of all degree (d + 1) monomials with the exception of x_i^{d+1} , for i = 1, ..., n, and $x_i^d x_j$, for i, j = 1, ..., n, i < j, is a form with precisely n ordinary double point singularities in general linear position.

By Proposition 5.1, we know that \mathbf{A}_{Gr} is defined at all points of $Z_1 \cup \cdots \cup Z_n$. In fact, we can explicitly compute $\mathbf{A}_{Gr}(U)$ for all $U \in Z_n$, as well as the orbit closure of $\mathbf{A}_{Gr}(U)$ for all $U \in Z_{n-1}$. We need a preliminary fact.

Proposition 5.5. Suppose $U \in \text{Grass}(n, S_d)$ and $p \in \mathbb{V}(I_U) \subset \mathbb{P}V^{\vee}$. Let $L \in V^{\vee}$ be a non-zero linear form corresponding to p. Then $L^{n(d-1)-1} \in (I_U)_{n(d-1)-1}^{\perp}$.

Proof. Since $p \in \mathbb{V}(I_U)$, all elements of $(I_U)_{n(d-1)-1}$ vanish at p, and it follows that $F \circ L^{n(d-1)-1} = 0$ for all $F \in (I_U)_{n(d-1)-1}$ (cf. Remark 3.3).

Corollary 5.6. Suppose $U \in Z_k$ is such that

$$\mathbb{V}(I_U) = \{ p_1 := [1:0:\cdots:0], p_2 := [0:1:\cdots:0], \ldots, p_k := [0:\cdots:1:\cdots:0] \}.$$

Then

$$\mathbf{A}_{\mathrm{Gr}}(U) = \langle z_1^{n(d-1)-1}, \dots, z_k^{n(d-1)-1}, g_{k+1}(z_1, \dots, z_n), \dots, g_n(z_1, \dots, z_n) \rangle,$$

for some $g_{k+1}, \ldots, g_n \in \mathcal{D}_{n(d-1)-1}$. In particular, for $U \in Z_n$ one has

$$\mathbf{A}_{\mathrm{Gr}}(U) = \langle z_1^{n(d-1)-1}, \dots, z_n^{n(d-1)} \rangle = \nabla \big(\big[z_1^{n(d-1)} + \dots + z_n^{n(d-1)} \big] \big).$$

Moreover, for a generic $U \in Z_k$, we have $\mathbf{A}_{\mathrm{Gr}}(U) \in \mathrm{Grass}(n, \mathcal{D}_{n(d-1)})_{\mathrm{Res}}$.

Proof. Since the point $p_i = \mathbb{V}(x_1, \ldots, \hat{x_i}, \ldots, x_n) \in \mathbb{P}V^{\vee}$ corresponds to the linear form $z_i \in V^{\vee}$, Proposition 5.5 implies that $z_i^{n(d-1)-1} \in \mathbf{A}_{\mathrm{Gr}}(U)$ for every $i = 1, \ldots, k$.

As $Z_n \subset \overline{Z}_k$ and $\mathbf{A}_{\mathrm{Gr}}(U) \in \mathrm{Grass}(n, \mathcal{D}_{n(d-1)})_{\mathrm{Res}}$ for every $U \in Z_n$, it follows that $\mathbf{A}_{\mathrm{Gr}}(U)$ is also spanned by a regular sequence for a generic $U \in Z_k$. The claim follows.

Consider the rational maps

of projective GIT quotients.

Theorem 5.7. There is a dense open subset Y_k of Z_k such that

$$\mathbf{A}: \operatorname{Grass}(n, S_d)^{ss} /\!\!/ \operatorname{SL}(n) \dashrightarrow \mathbb{P}(\mathcal{D}_{n(d-1)})^{ss} /\!\!/ \operatorname{SL}(n)$$

is defined on $\pi_1(Y_k)$, k = 1, ..., n. Moreover, for $U \in Y_k$ the value $\bar{\mathbf{A}}(\pi_1(U))$ is the image under π_2 of a polystable k-partial Fermat form. In particular, for every $U \in Z_n$ and for a generic $U \in Z_{n-1}$

$$\bar{\mathbf{A}}(\pi_1(U)) = \pi_2 \left(z_1^{n(d-1)} + \dots + z_n^{n(d-1)} \right).$$

Proof. Recall that Z_k is non-empty by Lemma 5.4. Suppose $U \in Z_k$ is generic, then by Corollary 5.6 in suitable coordinates we have

$$\mathbf{A}_{\mathrm{Gr}}(U) = \langle z_1^{n(d-1)-1}, \dots, z_k^{n(d-1)-1}, g_{k+1}(z_1, \dots, z_n), \dots, g_n(z_1, \dots, z_n) \rangle,$$

and $\mathbf{A}_{\mathrm{Gr}}(U) \notin \mathfrak{Res}$. It follows (as in the proof of [10, Proposition 2.7]) that the closure of the $\mathrm{SL}(n)$ -orbit of $\mathbf{A}_{\mathrm{Gr}}(U)$ contains

(5.1)
$$\langle z_1^{n(d-1)-1}, \dots, z_k^{n(d-1)-1}, \bar{g}_{k+1}(z_{k+1}, \dots, z_n), \dots, \bar{g}_n(z_{k+1}, \dots, z_n) \rangle,$$

where $\bar{g}_i := g_i(0, \ldots, 0, z_{k+1}, \ldots, z_n)$ for $i = k+1, \ldots, n$. Then the claim follows for for k = n - 1 and k = n as in these cases we necessarily have $\bar{g}_n = z_n^{n(d-1)-1}$.

For k arbitrary, since $\overline{\nabla}$ is a closed immersion by Theorem 2.1, we conclude that $\overline{\mathbf{A}}$ is defined at $\pi_1(U)$. Let $F \in \mathbb{P}(\mathcal{D}_{n(d-1)})^{ss}$ be a polystable element with $\pi_2(F) = \overline{\mathbf{A}}(\pi_1(U))$. Then we must have $\nabla(F) \in \overline{\mathrm{SL}(n) \cdot \mathbf{A}_{\mathrm{Gr}}(U)}$, and so $\nabla(F)$ is linearly equivalent to an element of the form (5.1). It follows at once that

$$\bar{\mathbf{A}}(\pi_1(U)) = \pi_2 \left(z_1^{n(d-1)} + \dots + z_k^{n(d-1)-1} + G(z_{k+1}, \dots, z_n) \right)$$

is the image under π_2 of a polystable k-partial Fermat form.

We will now establish Theorem 2.2 as detailed in the next two corollaries.

Corollary 5.8. The rational map

$$A: (\mathbb{P}S_{d+1})^{ss} /\!\!/ \operatorname{SL}(n) \dashrightarrow \mathbb{P}(\mathcal{D}_{n(d-1)})^{ss} /\!\!/ \operatorname{SL}(n)$$

is defined at a generic point of $\pi_0(\Sigma_{n-1})$ and at every point of $\pi_0(\Sigma_n)$. For a generic $f \in \Sigma_{n-1}$ and for every $f \in \Sigma_n$, we have

$$\bar{A}(\pi_0(f)) = \pi_2(z_1^{n(d-1)} + \dots + z_n^{n(d-1)}).$$

Corollary 5.9. When n = 2, the rational map \overline{A} contracts the discriminant divisor to a point (corresponding to the orbit of the Fermat form in \mathcal{D}_{2d-4}) for all $d \geq 3$. When n = 3, the rational map \overline{A} contracts the discriminant divisor to a lowerdimensional subvariety if $d \geq 3$. More generally, for every $n \geq 4$ there exists d_0 such that for all $d \geq d_0$ the map \overline{A} contracts the discriminant divisor to a lowerdimensional subvariety.

Proof. Notice that Σ_1 is dense in the discriminant divisor Δ . Hence, for n = 2 the statement follows from Corollary 5.8.

When n = 3, Theorem 5.7 implies that $\overline{A}(\pi_0(\Sigma_1))$ lies in the locus of a 1-partial Fermat form in $\mathcal{D}_{3(d-1)}$. The linear equivalence classes of 1-partial ternary Fermat forms are in bijection with the linear equivalence classes of binary degree 3(d-1) forms. The dimension of this locus is 3d - 6, which for $d \ge 3$ is strictly less than the dimension $\binom{d+3}{2} - 10$ of the discriminant divisor.

If $n \ge 4$, by Theorem 5.7 the set $\bar{A}(\pi_0(\Sigma_1))$ lies in the locus of a 1-partial Fermat form in $\mathcal{D}_{n(d-1)}$. The linear equivalence classes of 1-partial Fermat forms in nvariables are in bijection with the linear equivalence classes of degree n(d-1) forms in n-1 variables. The dimension of this locus is $\binom{n(d-1)+(n-2)}{n-2}$, which for sufficiently large d is strictly less than the dimension of the discriminant divisor $\binom{(d+1)+(n-1)}{n-1} - (n^2+1)$.

We conclude the paper with an alternative proof of the main fact of [1] (see Proposition 4.3 therein).

Corollary 5.10 (Generic smoothness of associated forms). The closure of Im A in $\mathbb{P}(\mathcal{D}_{n(d-1)})^{ss}$ contains the orbit

$$SL(n) \cdot \left\{ z_1^{n(d-1)} + \dots + z_n^{n(d-1)} \right\}$$

of the Fermat hypersurface. Consequently, A(f) is a smooth form for a generic smooth $f \in S_{d+1}$.

Proof. By Corollary 5.8, we have

$$\pi_2(z_1^{n(d-1)} + \dots + z_n^{n(d-1)}) \in \operatorname{Im}(\bar{A}).$$

Since the orbit of the Fermat hypersurface is closed in $\mathbb{P}(\mathcal{D}_{n(d-1)})^{ss}$, it lies in the closure of Im A.

References

- Jarod Alper and Alexander Isaev. Associated forms in classical invariant theory and their applications to hypersurface singularities. *Math. Ann.*, 360(3-4):799–823, 2014.
- [2] Jarod Alper and Alexander Isaev. Associated forms and hypersurface singularities: The binary case. J. reine angew. Math., 2016. To appear, DOI: 10.1515/crelle-2016-0008.
- [3] Michael Eastwood and Alexander Isaev. Extracting invariants of isolated hypersurface singularities from their moduli algebras. Math. Ann., 356(1):73–98, 2013.

- [4] Michael Eastwood and Alexander Isaev. Invariants of Artinian Gorenstein algebras and isolated hypersurface singularities. In *Developments and retrospectives in Lie theory*, volume 38 of *Dev. Math.*, pages 159–173. Springer, Cham, 2014.
- [5] Richard Ehrenborg and Gian-Carlo Rota. Apolarity and canonical forms for homogeneous polynomials. *European J. Combin.*, 14(3):157–181, 1993.
- [6] David Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- [7] David Eisenbud, Mark Green, and Joe Harris. Cayley-Bacharach theorems and conjectures. Bull. Amer. Math. Soc. (N.S.), 33(3):295–324, 1996.
- [8] Maksym Fedorchuk. Direct sum decomposability of polynomials and factorization of associated forms, 2017. arXiv:1705.03452.
- [9] Maksym Fedorchuk. GIT semistability of Hilbert points of Milnor algebras. Math. Ann., 367(1-2):441-460, 2017.
- [10] Maksym Fedorchuk and Alexander Isaev. Stability of associated forms. J. Algebraic Geom., to appear. arXiv:1703.00438.
- [11] Anthony Iarrobino and Vassil Kanev. Power sums, Gorenstein algebras, and determinantal loci, volume 1721 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999.
- [12] Alexander Isaev. A criterion for isomorphism of Artinian Gorenstein algebras. J. Commut. Algebra, 8(1):89–111, 2016.
- [13] Domingo Luna. Slices étalés. Mémoires de la S. M. F., 33:81–105, 1973.
- [14] Domingo Luna. Adhérences d'orbite et invariants. Invent. Math., 29(3):231–238, 1975.
- [15] David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994.

(Fedorchuk) Department of Mathematics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA

E-mail address: maksym.fedorchuk@bc.edu

(Isaev) Mathematical Sciences Institute, Australian National University, Acton, Canberra, ACT 2601, Australia

E-mail address: alexander.isaev@anu.edu.au