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LOCALIZATION AND MIRROR SYMMETRY

DUSTIN ROSS

Abstract. These notes were born out of a five-hour lecture series for graduate students at the May

2018 Snowbird workshop Crossing the Walls in Enumerative Geometry. After a short primer on

equivariant cohomology and localization, we provide proofs of the genus-zero mirror theorems for the

quintic threefold, first in Fan-Jarvis-Ruan-Witten theory and then in Gromov-Witten theory. We

make no claim to originality, except in exposition, where special emphasis is placed on peeling away

the standard technical machinery and viewing the mirror theorems as closed-formula manifestations

of elementary localization recursions.
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0. Introduction

The mirror theorem for the quintic threefold Q ⊂ P4, first conjectured in the physics literature

by Candelas, de la Ossa, Green, and Parkes [4], reveals deep and surprising structure in the enu-

merative geometry of rational curves in Q. In the two decades since its original proof by Givental

[11], the mirror theorem has undergone countless reinterpretations and generalizations. The proof

we present here is an adaptation of ideas that were developed more generally in [8] and [14], and

they generalize naturally to prove genus-zero mirror theorems for complete intersections in toric

Deligne-Mumford stacks. En route to proving the mirror theorem for the Gromov-Witten theory of

Q, we also take a detour to prove the mirror theorem for the Fan-Jarvis-Ruan-Witten theory of Q, a

result that was first proved by Chiodo and Ruan [7]. The combination of these two mirror theorems

leads to the proof of Witten’s genus-zero “Landau-Ginzburg/Calabi-Yau correspondence”, which

we do not discuss explicitly, but which is lurking in the background.
1
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Torus localization is the primary tool used in the proofs of the genus-zero mirror theorems

presented here. Indeed, a direct application of the localization theorem of Atiyah and Bott [2] leads

to an explicit algorithm that computes any genus-zero Gromov-Witten invariant of Q. However,

as is typical with such localization computations, the combinatorial complexity of the algorithm

grows at an unmanageable rate, and it quickly becomes apparent that any hope to pin down a

closed formula for the Gromov-Witten invariants must result from the recursive structure of the

localization contributions. The main content of the proof, then, is a clever packaging of localization

recursions.

While the mirror theorems are beautiful and important results in their own right, the intent

of these lectures is not simply to present proofs of these two results for historical enlightenment.

Rather, our goal is to help the student familiarize herself with the methods of manipulating lo-

calization relations in two different but related settings. Localization is one of only a few compu-

tational methods in the Gromov-Witten theory toolkit, and nearly all of the current approaches

to understanding higher-genus Gromov-Witten and Fan-Jarvis-Ruan-Witten theory utilize clever

applications of localization on certain auxiliary moduli spaces. It is in this light that we view the

genus-zero mirror theorems as a useful setting through which the student can begin honing her

localization skills today in order to apply them in more creative settings that push the boundaries

of the field tomorrow.

0.1. Target audience. These lectures are intended for advanced graduate students who have

already taken a few courses in algebraic geometry. Some exposure to moduli spaces of stable curves

and stable maps would certainly be useful; we suggest [12, Chapters 22 - 25] for the requisite

background on Mg,n and Mg,n(X, d). A working knowledge of orbifold curves and line bundles on

them would also be useful; a good starting place is Chapter 1 of [1].

0.2. Disclaimer. For the sake of brevity, we have chosen to make many omissions, and we have

made no attempt to make this a comprehensive account of mirror symmetry. Two such accounts

already exist, and we highly recommend them: [9] and [12]. Our hope for these notes is that

they will serve as a more compact reference that only emphasizes the aspects of the story that are

essential to the proofs.

0.3. Acknowledgements. Special thanks to the organizers of the Snowbird workshop Crossing

the Walls in Enumerative Geometry for the invitation to speak; to the basketball and hot tub crew

for providing a good deal of evening entertainment while we were at Snowbird; and to Emily Clader

for many conversations related to these lectures and for feedback on a preliminary version of these

notes.
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1. Equivariant cohomology and localization

In this lecture, we introduce equivariant cohomology by way of several instructive examples

that will be important throughout the subsequent lectures. We state the localization theorem of

Atiyah and Bott in the form that will be most applicable towards the mirror theorems, and we give

a few simple applications of the localization theorem.

1.1. Equivariant Cohomology. Throughout this section, let X be a smooth, projective variety,

and let T = {(t1, . . . , tn)} = (C∗)n be an algebraic torus acting on X. In the same way that the

cohomology ring H∗(X) = H∗(X,Q) captures some of the intersection-theoretic geometry of X,

the equivariant cohomology ring, denoted H∗
T (X), captures some of the T -equivariant intersection-

theoretic geometry of X. The formal definitions are not immediately enlightening, so we choose

to forego them; essentially all of the properties necessary for the proofs in these lectures can be

gleaned from the following examples. For a more thorough treatment, the reader is directed to [2].

The first example concerns the case where the geometry (and thus, the action) is trivial.

Example 1.1.1. Let X = pt be a point. Then H∗
T (pt) is a graded polynomial ring

H∗
T (pt) = Q[α1, . . . , αn],

where degR(αi) = 2. One way to interpret the classes αi is via Chern classes of equivariant vector

bundles. It is a standard consequence of the formal definitions that

αi = c1(Oαi)

where Oαi is the equivariant line bundle on X = pt that is geometrically trivial but with T -

action on fibers given by v 7→ t−1
i v. In fact, any T -equivariant vector bundle on a point (i.e.

T -representation) uniquely decomposes as a direct sum of tensor products of the line bundles Oαi ,

and its Chern classes can be determined by the usual properties of Chern classes with respect to

tensor products and direct sums.

The second important example concerns the case where the geometry is non-trivial, but the

action is trivial.

Example 1.1.2. Let T act trivially on X. Then

H∗
T (X) = H∗(X)⊗Q[α1, . . . , αn].

If V is a(n equivariantly trivial) rank-r vector bundle on X, then the Euler class of V is the top

Chern class:

e(V ) := cr(V ) ∈ H2r(X) ⊂ H2r
T (X).

Imposing a T -action on V , such as v 7→ t−αv := t−a11 · · · t−ann v, is the same as tensoring by an

equivariant line bundle: V ⊗Oα, where α = a1α1 + · · ·+ anαn. In this case,

e(V ⊗Oα) = cr(V ) + cr−1(V )α+ · · ·+ c1(V )αr−1 + αr ∈ H2r
T (X).
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In particular, the Euler class is invertible in equivariant cohomology, as long as we formally invert

the class α:

e−1(V ⊗Oα) =
1

αr

∑

0≤k≤dim(X)

(
−
c1(V )

α
− · · · −

cr−1(V )

αr−1
−
cr(V )

αr

)k
.

More generally, if T acts trivially on X and V is an equivariant vector bundle such that

X = Tot(V )T ,

then e(V ) is invertible in H∗
T (X), after formally inverting the some of the equivariant parameters.

The final example concerns the standard torus action on projective space, where both the

geometry and the action are non-trivial.

Example 1.1.3. Let T = (C∗)n+1 act on Pn by

[x0, . . . , xn] 7→ [t0x0, . . . , tnxn].

Then

(1) H∗
T (P

n) =
Q[H,α0, . . . , αn]

(H − α0) · · · (H − αn)
.

In usual cohomology, we interpret H as a first Chern class, H = c1(OPn(1)), and that is essentially

the same here. Recall that the total space of OPn(1) can be defined globally by

(2) Tot(OPn(1)) =
(Cn+1 \ {0}) × C

C∗
,

where C∗ acts on the n + 2 coordinates in the numerator diagonally; the first n + 1 coordinates

(x0, . . . , xn) correspond to the homogeneous coordinates on Pn and the last coordinate v corresponds

to the fiber coordinate. The quotient (2) can be made equivariant in a canonical way:

[x0, . . . , xn, v] 7→ [t0x0, . . . , tnxn, v],

and in the T -equivariant geometry of Pn, we will always take OPn(1) to denote (2) with this T -

action, and we define

H := c1(OPn(1)) ∈ H∗
T (P

n).

Tensoring OPn(1) by Oα is the same as letting T act on the last coordinate of (2) by v 7→ t−αv.

From the description (2), we see that v = xi descends to a T -equivariant section of OPn(1)⊗O−αi .

In fact, the set of T -equivariant sections of OPn(1)⊗O−αi are the scalar multiples of v = xi. Since

top Chern classes are often interpreted as the (Poincaré dual of) the vanishing of a generic section,

we should interpret H − αi as the vanishing of xi:

H − αi = [{xi = 0}].

Taken a step further, we interpret
∏

i∈I

(H − αi) = [{xi = 0 : ∀i ∈ I}],
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p0 p1

p2

H − α2

H − α0H − α1

Figure 1. The T = (C∗)3-equivariant structure of P2.

and the relation in (1) has the natural interpretation that {xi = 0 : ∀i} = ∅.

If ij : pj → Pn is the inclusion of the jth coordinate point for 0 ≤ j ≤ n, then the description

(2) implies that i∗jOPn(1) = Oαj . Thus, by restricting H to fixed points, we obtain

i∗jH = αj .

Similarly, restricting the tangent bundle to pj and using the local coordinates zk = xk/xj , we obtain

i∗jTP
n =

⊕

k 6=j

C

{
∂

∂zk

}
=
⊕

k 6=j

Oαj−αk
.

1.2. Localization. Let i : F →֒ X be a closed subvariety. Via Poincaré duality, there is a well-

defined push-forward map i∗ : H∗(F ) → H∗+2r(X), where r is the complex codimension of F in

X. The excess intersection formula tells us that pulling back the image of i by i∗ is the same as

multiplying by the Euler class of the normal bundle:

i∗i∗ : H
∗(F ) → H∗(F )

φ 7→ e(NF/X)φ.

Clearly, i∗i∗ is not an isomorphism, because the Euler class of the normal bundle is not generally

invertible. However, if F is the fixed locus of a T -action on X, then we saw in Example 1.1.2 that

the Euler class is invertible after inverting (some of) the equivariant parameters. This is the main

motivation for the following result.

Theorem 1.2.1 (Atiyah-Bott [2]). Let X be a smooth projective variety with T = (C∗)n action such

that F = XT is smooth. Upon inverting the equivariant parameters {αi}, i∗ : H
∗
T (F ) → H∗+2r

T (X)

is an isomorphism with inverse

(i∗)
−1 =

i∗

e(NF/X)
.

Remark 1.2.2. While the fixed locus is required to be smooth, it is almost always reducible,

having many connected components. When applying the localization theorem, it is often the case

that computations boil down to a clever combinatorial packaging of torus fixed loci.
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Remark 1.2.3. The localization theorem holds in much greater generality than stated here. For

the purposes of these notes, it is important to note that it remains true, for example, if variety is

replaced with Deligne-Mumford stack.

Recall that the integration map is defined by
∫
X − := π∗(−) : H∗

(T )(X) → H∗
(T )(pt) where

π : X → pt can be interpreted with or without a T -action on X. As an immediate corollary of the

localization theorem, we see that
∫

X
φ =

∫

X
i∗

(
i∗φ

e(NF/X)

)
=

∫

F

i∗φ

e(NF/X)
,

where the last step uses the fact that F → pt factors through X. Thus, we obtain a powerful

strategy for computing
∫
X φ:

Step 1. Put a T -action on X.

Step 2. Choose a lift of φ to H∗
T (X).

Step 3. Compute
∫
F

i∗φ
e(NF/X) .

Remark 1.2.4. In these notes, the classes we integrate will always be given by Chern classes of

vector bundles, and the choice of lift in Step 2 corresponds to the choice of a T -action on the

corresponding vector bundle.

Remark 1.2.5. Since F often has many components, the integral in Step 3 can be a rather large

sum. While each summand is typically computable, it can be highly nontrivial to package the sum

in a nice way. However, the choice of lift in Step 2 buys us some flexibility. Often by lifting the

class cleverly, you can get it to vanish on some of the fixed loci.

The following examples provide the first applications of this strategy.

Example 1.2.6. The Euler characteristic of Pn is the integral of the Euler class of the tangent

bundle:

χ(Pn) =

∫

Pn

e(TPn).

Using the standard action of (C∗)n+1 on Pn from Example 1.1.3 (or any other torus action with

the same fixed points), we compute

∫

Pn

e(TPn) =
n∑

j=0

e(i∗jTP
n)

e(Npj/X)
=

n∑

j=0

e(i∗jTP
n)

e(i∗jTP
n)

= n+ 1.

Exercise 1.2.7. Use localization to compute χ(Gr(k, n)).

Example 1.2.8. We know that
∫
P2 H

2 = 1, so let’s try to recover this using localization. If we

choose the canonical lift of H, as described in Example 1.1.3, we compute

∫

P2

H2 =
2∑

j=0

i∗jH
2

e(i∗jTP
2)

=
α2
0

(α0 − α1)(α0 − α2)
+

α2
1

(α1 − α0)(α1 − α2)
+

α2
2

(α2 − α0)(α2 − α1)
= · · · = 1,
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where the last step required a bit of magical cancellation. If, instead, we lift the class H ∈ H∗(P2)

to H − α2 ∈ H∗
T (P

2), then the computation would only involve two summands:

∫

P2

H2 = · · · =
(α0 − α2)

2

(α0 − α1)(α0 − α2)
+

(α1 − α2)
2

(α1 − α0)(α1 − α2)
= · · · = 1,

and the cancellation becomes slightly less magical. Thus, we see how different choices of lifts can

change the complexity of the localization computations.

Exercise 1.2.9. Find a lift of Hn so that only one fixed point contributes to the computation of
∫
Pn H

n = 1.

Exercise 1.2.10. Let T = (C∗)n+1 act on M0,0(P
n, d) by post-composing each stable map with

the standard action of T on Pn.

(a) Prove that the stable map

P1 → Pn

[x0, x1] 7→ [xd0, y
d
0 , 0, . . . , 0]

is a fixed point of the T -action.

(b) What is the rank of the normal bundle to this fixed point?

(c) What is the Euler class of the normal bundle to this fixed point?

2. Fan-Jarvis-Ruan-Witten theory of the quintic threefold

This lecture introduces FJRW theory and the genus-zero FJRW mirror theorem. We do not

aim for completeness in our development of FJRW theory; rather, our intent is to introduce the

structures that will be most important for the proof of the mirror theorem. For the reader that

would like to learn more, we provide several exercises and specific references to places in the

literature where the foundations are developed more thoroughly.

2.1. FJRW theory of the quintic threefold. FJRW invariants are a special class of intersection

numbers on moduli spaces of 5-spin curves. The closed points of the moduli space of 5-spin curves

are defined by

M
1/5
g,(m1,...,mn)

= {(C; q1, . . . , qn;L; f)} / ∼

where

• (C; q1, . . . , qn) is a stable, n-pointed, genus-g orbifold curve, with orbifold structure only at

the marks and nodes;

• L is an orbifold line bundle on C such that

– L has multiplicity mi at qi, i.e. near qi, the total space of L is a quotient by the cyclic

isotropy group µ5 = 〈ξ = e2πi/5〉 acting by ξ · (x, v) = (ξx, ξmiv) with mi ∈ {1, 2, 3, 4};
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– L satisfies the kissing condition at each node, meaning that the multiplicities on each

branch satisfy m+m′ = 0 mod 5 (if m = m′ = 0, then C and L have trivial orbifold

structure near that node);

• f is an isomorphism

f : L⊗5 ∼=
−→ ωC,log := ωC

(
∑

i

5[qi]

)
,

where [qi] is the orbifold divisor of the marked point (deg([qi]) = 1/5).

An isomorphism of two 5-spin curves (C; q1, . . . , qn;L; f) ∼ (C ′; q′1, . . . , q
′
n;L; f) consists of a pair

of isomorphisms g : (C; q1, . . . , qn) → (C ′, q′1, . . . , q
′
n) and h : g∗L′ → L such that h∗f = g∗f ′. We

use M
1/5
g,n to denote the disjoint union over all possible multiplicity vectors.

Remark 2.1.1. If this is your first encounter with the moduli spaces of spin curves, then you

might naturally be wondering about the necessity of the orbifold structure and the role of the

multiplicities. Without orbifold structure at the marked points, a fifth root of ωC,log would only

exist if 2g − 2 + n ∈ 5Z, so most of these moduli spaces would be empty. Allowing orbifold

structure gives us the flexibility of line bundles with fractional degree and results in a much richer

class of moduli spaces with which we can work. More importantly, perhaps, is the observation

that, regardless of the orbifold structure at the marked points, the orbifold structure at the nodes

is necessary in order to obtain a proper moduli space. For example, if g = 6 and n = 0, then any

smooth curve has a (non-orbifold) fifth root of ωC , but there does not exist a (non-orbifold) fifth

root on any limit point where the curve splits as a g = 1 curve meeting a g = 5 curve at a node.

The moduli space M
1/5
g,~m is a smooth Deligne-Mumford stack of dimension 3g − 3 + n and

support a virtual funamental class of (complex) dimension 2n−
∑
mi:

[M
1/5
g,~m]

vir ∈ H4n−2
∑

mi
(M

1/5
g,~m).

The construction of the virtual class is highly non-trivial, but has been carried out in several

equivalent settings [13, 6, 10, 5]. FJRW invariants are defined by

〈φm1ψ
a1 · · · φmnψ

an〉FJRWg,n :=

∫

[M
1/5
g,~m]vir

ψa11 · · ·ψann ∈ Q,

where ψi is the cotangent line class at the ith marked point on the coarse underlying curve |C|.

The general construction of the virtual class is far beyond the scope of these lectures; however,

the construction simplifies a great deal in genus zero. In particular, the genus-zero virtual class can

be defined by [
M

1/5
0, ~m

]vir
:=
[
M

1/5
0, ~m

]
∩ e
(
(R1π∗L

⊕5)∨
)
,

where π : C → M
1/5
0, ~m is the universal curve and L is the universal line bundle over C.

To gain a slightly better appreciation of the genus-zero virtual class, it is instructive to verify

that (a) R1π∗L is, in fact, a vector bundle, so its Euler class is well-defined, and (b) the virtual
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dimension is 2n −
∑
mi. In order to make these verifications, let us first say a few things about

orbifold line bundles. Suppose C is a smooth curve. Locally at qi, sections of L correspond to

sections in the orbifold coordinates that are equivariant with respect to the isotropy group action.

In other words, local sections are of the form v(x) = xmiF (x5) for some polynomial F . The variable

x5 is a local coordinate on the coarse underlying curve. Thus, we see that the orbifold multiplicity

mi imposes a vanishing of degree mi/5 at each orbifold point. We define the round-down of L by

|L| := L⊗O
(
−
∑

mi[qi]
)
.

It follows from the discussion above that |L| is pulled back from the coarse underlying curve |C|,

and, since rounding up/down by mi identifies sections, we have H
i(C,L) = H i(|C|, |L|) for i = 0, 1.

In particular, these observations allow us to import the classical Riemann-Roch theorem to this

orbifold setting:

H0(C,L)−H1(C,L) = deg(L) + 1− g −
∑ mi

5
.

Using these observations, the reader is encouraged to work out the following verifications.

Exercise 2.1.2. Prove that R1π∗L is a vector bundle by showing that H0(C,L) = 0 for any

(C, q1, . . . , qn, L, f) ∈ M
1/5
0, ~m. (Hint: compute deg(|L|) on each irreducible component.) In our

definition, we do not allow mi = 0. Would your proof still work if one of the mi is allowed to be

zero?

Exercise 2.1.3. Use Riemann-Roch to prove that the genus-zero virtual class lies in complex

dimension 2n−
∑
mi.

There are a few additional properties concerning the FJRW invariants that are worth mention-

ing. First of all, the multiplicity-one insertion φ1 plays a special role in this story. In particular,

there is a forgetful map

f : M
1/5
g,(~m,1) → M

1/5
g,~m.

Roughly speaking, this map rounds down L at the last marked point, then forgets that point and

stabilizes, if necessary. This only works with φ1 insertions because rounding down a 5-spin bundle

at a φ1 insertion produces a 5-spin bundle on the curve without that marked point:

L⊗5 ∼= ωC

(
n+1∑

i=1

5[qi]

)
=⇒ (L⊗O (−[qn+1]))

⊗5 ∼= ωC

(
n∑

i=1

5[qi]

)
.

Exercise 2.1.4. Prove that f∗
[
M

1/5
0, ~m

]vir
=
[
M

1/5
0,(~m,1)

]vir
. Along with the comparison lemma for

ψ-classes ([12], Lemma 25.2.3), deduce the string and dilaton equations:

〈φm1ψ
a1 · · ·φmnψ

an · φ1〉
FJRW
0,n+1 =

n∑

i=1

〈
φm1ψ

a1 · · ·φmiψ
ai−1 · · ·φmnψ

an
〉FJRW
0,n

and

〈φm1ψ
a1 · · ·φmnψ

an · φ1ψ〉
FJRW
0,n+1 = (n− 2) 〈φm1ψ

a1 · · · φmnψ
an〉FJRW0,n .
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A final property of the genus-zero FJRW invariants that is important for our techniques con-

cerns how the virtual class restricts to the boundary. Since we do not allow multiplicity zero at the

marked points, then it would be ideal if the virtual class vanished along nodes where the multiplic-

ities were zero. Essentially, this implies that the genus-zero virtual class restricts to the boundary

in a way that is compatible with the gluing map

g : M
1/5
0,(~mI )+1 ×M

1/5
0,(~mJ )+1 → M

1/5
0, ~m.

This is indeed the case, as the next exercise verifies.

Exercise 2.1.5. Let D ⊂ M
1/5
0, ~m denote a divisor where the node has multiplicity m = m′ = 0.

Prove that
[
M

1/5
0, ~m

]vir
∩D = 0.

Remark 2.1.6. This exercise is a bit harder than the previous ones. The trick is to use the

normalization sequence and show that R1π∗L contains a sub-line bundle that has a trivial first

Chern class (c.f. [7], Lemma 4.1.1).

2.2. The genus-zero FJRW mirror theorem. In order to state the mirror theorem, it is useful

to interpret FJRW invariants as multi-linear functions on the vector space V = C{φ1, . . . , φ4},

where we have one basis element for each possible multiplicity. The space V has a non-degenerate

pairing defined by (φi, φj) =
1
5δi+j=5, and we define the dual basis of V by φi = 5φi−1.

The two main players in the mirror theorem are typically called the J-function and the I-

function. The J-function is the following formal generating series of genus-zero FJRW invariants:

J(t, z) := zφ1 + t(−z) +
∑

n≥2
1≤m≤4

φm

n!

〈
t(ψ)n

φm
z − ψ

〉FJRW

0,n+1

,

where

• t(z) =
∑
tmk φmz

k ∈ V [[z]] and tmk are considered as formal variables,

• t(ψ)n = t(ψ1) · · · t(ψn) is expanded linearly, and

• (z − ψ)−1 is expanded as a geometric series in ψ.

The I-function is the explicit formal series defined by

I(q, z) := z
∑

d≥0

qd

zdd!




∏

0≤k<d+1
d

〈k〉=〈 d+1
5 〉

(kz)5



φd+1.

By counting the number of terms in the product, one sees that I(q, z) can be written in the form

I(q, z) = I0(q)zφ1 + I1(q)φ2 + I2(q)
φ3
z

+ I3(q)
φ4
z2
,

and we write

I+(q, z) := I0(q)zφ1 + I1(q)φ2,
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for the part of I(q, z) with non-negative powers of z. The FJRW mirror theorem can be stated as

follows.

Theorem 2.2.1 (Chiodo-Ruan [7]). Set

τ = I+(q,−z) + zφ1.

Then

J(τ, z) = I(q, z).

Remark 2.2.2. The change of variables ensures that J(τ, z) = I(q, z) mod z−1. The content of

the theorem is that the coefficients of negative powers of z also agree.

Upon further inspection, the reader might notice that the formulation in Theorem 2.2.1 is not

quite the same as that in [7]. However, it is not too hard to prove that they are equivalent.

Exercise 2.2.3. Prove that Theorem 2.2.1 is equivalent to the more standard formulation:

J

(
I1(q)

I0(q)
φ2, z

)
=
I(q, z)

I0(q)
.

(Hint: use the dilaton equation.)

The formulation in the previous exercise immediately determines the genus-zero FJRW in-

variants with any number of φ2 insertions and one additional insertion, possibly with a ψ-class.

However, the next exercise shows that, actually, all genus-zero FJRW invariants are determined by

the mirror theorem.

Exercise 2.2.4. Prove that the formulation in the previous exercise determines all genus-zero

FJRW invariants. (Hint: use the string and dilaton equations along with the formula for the

virtual dimension.)

3. Proof of the Fan-Jarvis-Ruan-Witten mirror theorem

In this lecture, we present a proof of the FJRW mirror theorem, as stated in Theorem 2.2.1,

by showing that it is a consequence of certain localization relations on auxiliary moduli spaces that

have a natural T = C∗ action.

3.1. Auxiliary moduli spaces. Consider moduli spaces

GM
1/5
0, ~m,d = {(C; q1, . . . , qn;L;D; f ; g)} / ∼

where

• (C; q1, . . . , qn) is a pre-stable, n-pointed, genus-zero orbifold curve, with orbifold structure

only at the marks and nodes;

• L is an orbifold line bundle on C such that

– L has multiplicity mi at qi, with mi ∈ {1, 2, 3, 4};
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C0 = P1

•

• • |

q1

|

q2

•

C0 = P1

•

• • •

|

q1

|

q2

Figure 2. The left-hand image depicts a stable element of GM
1/5
0,2,4, where the

dashes represent marked points and the dots represent points in the support of D.

The right-hand image depicts an unstable object, because no amount of degree in

D will stabilize the top component.

– L satisfies the kissing condition at each node;

• D is an effective degree-d divisor on C, supported away from the marks and nodes,

• f is an isomorphism

f : L⊗5 ∼=
−→ ωC,log ⊗O(−D);

• g : C → P1 is a degree-1 map; and

• all of this data satisfies the stability condition: ωC,log ⊗O(ǫD) ⊗ g∗OP1(3) is ample for all

ǫ > 0.

Isomorphisms are required to preserve the divisor D and commute with the map g.

These conditions are a lot to swallow, so let us parse the main ideas. If d = 0, then GM
1/5
0, ~m,0

parametrizes usual 5-spin curves along with an additional degree-one map to P1. This additional

map parametrizes one irreducible component C0 ⊆ C, and the stability condition simply says that

C0 is always stable, regardless of how many special points it has, while every other component

is stable if and only if it has at least three special points. If d 6= 0, then any non-parametrized

component is stable if and only if it satisfies one of the following two conditions (see Figure 2):

(1) it has at least three special points (marked points or nodes), or

(2) it has two special points and intersects Supp(D) nontrivially.

As in the case of usual 5-spin curves, GM
1/5
0, ~m,d has a virtual class, defined by

[
GM

1/5
0, ~m,d

]vir
:=
[
GM

1/5
0, ~m,d

]
∩ e
(
(R1π∗L

⊕5)∨
)
,

and this virtual class vanishes on divisors where the node has multiplicity zero. Unlike the usual

case of 5-spin curves, this moduli space has a torus action. More specifically, define an action of

T = C∗ on GM
1/5
0, ~m,d by post-composing the map g : C → P1 with the action t · [x0, x1] = [tx0, x1] on

P1. This is equivalent to acting directly on |C0|
g
= P1. Let z denote the T -equivariant parameter,

so that

c1(TP
1|0) = z = −c1(TP

1|∞),
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C0 = P10 ∞

−
−

•
•

•/

•

\

C0 = P10

−
−

•
•

•/

|

qn+1 = ∞

Figure 3. The left-hand image depicts a generic T -fixed point of GM
1/5
0,n,d, where

the marked points and support of D are distributed on the two branches attached
to C0 at 0 and ∞. The right-hand image depicts the distinguished fixed locus

Γ0 ⊂ GM
1/5
0,n+1,d.

where 0 = [1, 0] and ∞ = [0, 1]. A point of GM
1/5
0, ~m,d is fixed by the T -action if and only if

C0 ∩
({
C \ C0

}
∪ {q1, . . . , qn} ∪ Supp(D)

)
⊆ {0,∞}.

See Figure 3.

3.2. Unification of the J- and I-functions. Let i : Γ0 →֒ GM
1/5
0,n+1,d be the T -fixed locus where

qn+1 = ∞ ∈ C0, and define

J (t, q, z) := −z2
∑

n≥0
d≥0

1≤m≤4

qd

n!

∫

Γ0

i∗
[
GM

1/5
0,n+1,d ∩ t(ψ)n ∩ φm

]vir

e(NΓ0)
φm.

The formal series J (t, q, z) unifies the J- and I-functions in the following sense.

Proposition 3.2.1. Setting q = 0,

J (t, 0, z) = J(t, z).

Setting t = 0,

J (0, q, z) = I(q, z).

Proof. First, consider the case q = 0. The first three images in Figure 4 depict the three types of

fixed loci and how they contribute to J(t, z). We explain each of these computations in turn.

If n = 0, then deg(ωC,log) = −1, and the moduli space is non-empty only ifm = 4, in which case

Γ0 is a point (with an order-5 automorphism). One checks that H1(C,L) = 0, so the virtual class

restricts to the usual fundamental class. The normal bundle has a single factor of −z = c1(TC0|∞)

corresponding to moving q1 away from ∞. Dividing by the automorphism group cancels with the

5 in the dual basis: φ4 = 5φ1. Thus, the coefficient works out to be zφ1.

If n = 1, then Γ0 is still a point (with an order-5 automorphism). On this fixed locus,

ψ1 = c1(TC
∨
0 |0) = −z. The virtual class is the usual fundamental class again, and the normal

bundle has two contributions z and −z corresponding to moving the two marked points away from

0 and ∞. Putting everything together, the coefficient in this case is t(−z).
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C0 = P10
|

q1 = ∞

φ1z

C0 = P1
|

q2 = ∞

|

t(ψ)

t(−z)

C0 = P10

− t(ψ)

− t(ψ)

/

t(ψ)
/

t(ψ)

|

qn+1 = ∞

∑
n≥2

1≤m≤4

φm

n!

〈
t(ψ)n φm

z−ψ

〉FJRW
0,n+1

C0 = P1
|

q1 = ∞

•

D = d[0] z
zdd!

∏
0<k<d+1

5

〈k〉=〈 d+1
5 〉

(kz)5φd+1

Figure 4. Contributions to J (t, q, z) when q = 0 (first three) and t = 0 (last one).

For n ≥ 2, Γ0
∼= M

1/5
0,n+1. Using the normalization sequence

0 → OC → OC0 ⊕OC\C0
→ Oq → 0,

one checks that the virtual class on GM
1/5
0,n+1 restricts to the virtual class on M

1/5
0,n+1. The normal

bundle has two factors z and −z corresponding to moving the node away from 0 and moving qn+1

away from ∞, respectively, and one factor of z − ψ corresponding to smoothing the node at 0.

Thus, these coefficients are equal to the n ≥ 2 terms of J(t, z).

Next, consider the case t = 0. Then Γ0 is a point (with an order-5 automorphism) where

C = C0 and D is entirely supported at 0 ∈ C0 (see Figure 4). Since

L⊗5 = ωC,log ⊗O(−d) ∼= O(−d− 1),

we see that L ∼= O
(
−d+1

5

)
and m = −(d+ 1) mod 5. With respect to the open cover consisting of

the complement of 0 and the complement of ∞, a basis of Čech sections is given by

H1(C,L) = C

{
x−k0 x

k− d+1
5

1 : 0 < k <
d+ 1

5
, 〈k〉 =

〈
d+ 1

5

〉}
.
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Since the T -action has weight −kz on each basis element, we see that the virtual class restricts as

e
(
H1(C,L⊕5)∨

)
=

∏

0<k<d+1
5

〈k〉=〈 d+1
5 〉

(kz)5.

The normal bundle contributes −z corresponding to moving the marked point away from ∞ and

d!zd corresponding to moving the support ofD away from 0. Combining these contributions recovers

the I-function. �

3.3. Proof of the mirror theorem. We now prove the FJRW mirror theorem.

Proof of Theorem 2.2.1. It suffices to prove

(3) J (t, q, z) = J (t+ τ, 0, z)

where

t =
∑

1≤m≤4

tmφm and τ = I+(q,−z) + φ1z.

If (3) holds, then setting t = 0 recovers Theorem 2.2.1 via Proposition 3.2.1. Notice that (3) is

true modulo q and it is true modulo z−1. Our strategy is to show that both sides of (3) satisfy the

same recursion, which determines the coefficients recursively in (d, n) (lexicographic ordering).

Begin with the left-hand side, and consider the equivariant integrals

(4)

∫
[

GM
1/5
0,(~m,m),d

]vir
ev∗D(0) · ev

∗
n+1(∞) ∈ H∗

T (pt) = Q[z]

where ev∗D(0) denotes the equivariant class where g−1(0) ∩ Supp(D) 6= ∅ and ev∗n+1(∞) denotes

the equivariant class where qn+1 ∈ g−1(∞). By definition, (4) is polynomial in z. Therefore, if

we invert z and compute the integral by localization, we obtain relations among the coefficients of

negative powers of z.

To exhibit how these relations can be useful, let us suppose that we are interested in computing

the qdtm1 · · · tmnφm-coefficient of J (t, q, z). Computing the integral (4) by localization, the fixed

locus Γ0 contributes d times the coefficient we are interested in (there is a dz from the restriction of

ev∗D(0) and a −z from the restriction of ev∗n+1(∞)). Moreover, the contribution of every other fixed

locus (see Figure 3) is determined recursively because the components over 0 and ∞ either have

degree < d (and any number of special points), or degree = d but with fewer special points. Thus,

with the lexicographic ordering on (d, n), this gives an effective recursion determining J (t, q, z)

from q = 0 and the coefficients of the non-negative powers of z.

Inserting these relations as coefficients of the appropriate generating series, we can package

them efficiently as the following statement:

(5)

(
∂

∂q
J (t, q, z),

∂

∂tm
J (t, q,−z)

)
[z−k] = 0 ∀k > 0 and 1 ≤ m ≤ 4.
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Now consider the right-hand side, where we investigate the equivariant integrals
∫
[

GM
1/5
0,(~m,m)+1,0

]vir

(
ev∗n+2(0)

∂τ

∂q

)
· ev∗n+1(∞).

Localizing exactly as before and packaging in the appropriate generating series, we find that

(6)

(
∂

∂q
J (t+ τ, 0, z),

∂

∂tm
J (t+ τ, 0,−z)

)
[z−k] = 0 ∀k > 0 and 1 ≤ m ≤ 4,

and the relations (6) determine the z−k coefficients of J (t+ τ, 0, z) from q = 0 and the coefficients

of the non-negative powers of z.

Since the recursions (5) and (6) are identical, and they determine the series from q = 0 and

the coefficients of the non-negative powers of z, then the two sides of (3) are equal. �

4. Gromov-Witten theory of the quintic threefold

In this lecture, we introduce GW invariants of the quintic threefold and state the genus-zero

GW mirror theorem. We also apply localization to provide an explicit algorithm for computing

any genus-zero GW invariant of the quintic threefold.

4.1. GW theory of the quintic threefold. GW invariants are a special class of intersection

numbers on moduli spaces of stable maps. The closed points of the moduli space of stable maps are

defined by

Mg,n(Q, d) = {(C; q1, . . . , qn; f)} / ∼

where

• (C; q1, . . . , qn) is a pre-stable, n-pointed, genus-g curve;

• f : C → Q is a map of degree d ∈ H2(P
4) = Z; and

• this data satisfies the stability condition: ωC,log ⊗ f∗OP4(3) is ample.

An isomorphism of two points is an isomorphism of pointed curves that commutes with the maps to

Q. The stability condition is equivalent to only allowing points with finitely-many automorphisms.

The moduli spaces Mg,n(Q, d) are not smooth, even as Deligne-Mumford stacks, and they can

have many components of higher-than-expected dimension. It is a highly non-trivial but funda-

mental fact that Mg,n(Q, d) supports a virtual fundamental class

[
Mg,n(Q, d)

]vir
∈ H2n

(
Mg,n(Q, d)

)
,

which was constructed in [3]. For ϕ1, . . . , ϕn ∈ H∗(Q), GW invariants are defined by

〈ϕ1ψ
a1 · · ·ϕnψ

an〉GW
g,n,d :=

∫

[Mg,n(Q,d)]vir
ev∗1(ϕ1)ψ

a1
1 · · · ev∗n(ϕn)ψ

an
n ∈ Q,

where evi : Mg,n(Q, d) → Q evaluates the map f at the ith marked point, and ψi is the cotangent

line class at the ith marked point on the pre-stable curve C.
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In order to state the genus-zero mirror theorem, we require the GW J- and I-functions. Let

V = H∗(Q) = Q{φi}, where {φi} is a basis of cohomology and let {φi} denote the dual basis under

the Poincaré pairing. Then for t(z) ∈ V [[z]], the J-function is defined by

J(t, z) := z + t(−z) +
∑

n,d,i

qd

n!

〈
t(ψ)n

φi
z − ψ

〉GW

0,n+1,d

φi,

and the I-function is defined by

I(q, z) := z
∑

d≥0

qd
∏5d
k=1(5H + kz)

∏d
k=1(H + kz)5

,

where H is the restriction of the hyperplane class from H∗(P4). The I-function should be expanded

as a polynomial in H ∈ H∗(Q). Similarly to the FJRW case, we can write

I(q, z) = I0(q)z + I1(q)H + I2(q)
H2

z
+ I3(q)

H3

z3
,

and we define

I+(q, z) := I0(q)z + I1(q)H.

The mirror theorem can be stated in the following way.

Theorem 4.1.1 (Givental [11]). Set

τ = I+(q,−z) + zφ1.

Then

J(τ, z) = I(q, z).

Exactly as in the FJRW case, the dilaton equation can be used to prove that Theorem 4.1.1

is equivalent to the more standard formulation of the mirror theorem:

J

(
I1(q)

I0(q)
φ2, z

)
=
I(q, z)

I0(q)
,

and the string and dilaton equation, along with the formula for the virtual dimension, show that

the mirror theorem determines all genus-zero FJRW invariants of the quintic.

4.2. Computing genus-zero GW invariants. Similarly to the FJRW setting, the general con-

struction of the virtual class is far beyond the scope of these lectures. However, the situation greatly

simplifies in genus zero. This is due to the fact that genus-zero stable maps to the quintic embed

into M0,n(P
4, d), which is a smooth Deligne-Mumford stack, and the push-forward of the virtual

class can be described concretely as an Euler class:

i∗[M0,n(Q, d)]
vir = [M0,n(P

4, d)] ∩ e(R0π∗f
∗OP4(5)),
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where π : C → M0,n(P
4, d) is the universal curve and f : C → P4 is the universal map. Therefore,

if ϕ1, . . . , ϕn ∈ H∗(P4), the projection formula implies that

(7) 〈ϕ1ψ
a1 · · ·ϕnψ

an〉GW
0,n,d =

∫

[M0,n(P4,d)]
(ev∗1(ϕ1)ψ

a1
1 · · · ev∗n(ϕn)ψ

an) e(R0π∗f
∗OP4(5)),

where we implicitly restrict ϕi to H
∗(Q) in the left-hand side. Since M0,n(P

4, d) has an action of

the torus T = (C∗)5, the invariants (7) can be computed by localization, and we now provide a

brief overview of how this works out.

Each component of the T -fixed locus in M0,n(P
4, d) can be indexed by a decorated tree. Such

a tree Γ has vertices V (Γ) and edges E(Γ). Each vertex v is labeled with an index jv ∈ {0, . . . , 4}

and has legs indexed by Iv ⊂ {1, . . . , n}, and corresponds to a connected component of f−1(pjv)

containing the fixed points {qi : i ∈ Iv}. Each edge e is labeled with a positive integer de and

corresponds to a connected multiple cover of the corresponding T -invariant line in P4. For example,

the fixed locus in Exercise 1.2.10 is indexed by the graph with two vertices labeled 0 and 1 connected

by an edge labeled d. Figure 5 gives a more general example of a localization graph and its

corresponding fixed locus.

Let iΓ : FΓ →֒ M0,n(P
4, d) denote the component of the fixed locus indexed by Γ, and let Gn,d

denote the set of all decorated graphs that index fixed loci in M0,n(P
4, d). Then the localization

theorem implies that

(7) =
∑

Γ∈Gn,d

1

|Aut(Γ)|

∫

FΓ

i∗Γ
(
ev∗1(ϕ1)ψ

a1
1 · · · ev∗n(ϕn)ψ

ane(R0π∗f
∗OP4(5))

)

e(NFΓ
)

.

By normalizing the curves in the fixed locus FΓ, the numerator can be computed as a product

of terms coming from vertices, edges, and flags (i.e. nodes). The normal bundle has a factor

of R0π∗f
∗TP4 from deforming the map f which can also be computed using the normalization

sequence, along with a factor from smoothing each node.

For each edge e ∈ E, let je and j
′
e denote the labels on the two adjacent vertices. Let Ev denote

the set of edges adjacent to v, and let F (Γ) denote the set of flags {(v, e) : e ∈ Ev}. Carefully

computing the localization contributions to each fixed locus, one derives the following formula. We

refer the reader to [12, Chapter 27] for a careful derivation.

Theorem 4.2.1. The GW invariant (7) is equal to

∑

Γ∈Gn,d

1

|Aut(Γ)|

∏

v∈V (Γ)

V (jv , Iv, Ev)
∏

e∈E(Γ)

E(de, je, j
′
e)

∏

(v,e)∈F (Γ)

F (jv)

where

V (jv , Iv, Ev) =
5αj∏

j′ 6=j

(αj − αj′)

∫

M0,val(v)

∏
k∈Iv

i∗jϕkψ
ak
k

∏
e∈Ev

(
αj−αj′e
de

− ψe

) ,
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1

3

2

1

4

1

3

1
2

3

4

5

6

p1 p2

p3

−q1

−q2

−q3

|

q4

|

q5

|

q6

4 : 1

1 : 1

3 : 1

Figure 5. The left-hand image is an example of a localization graph, and the right-

hand image is a schematic description of the maps in the corresponding fixed locus.

The inner triangle in the right-hand image represents the P2 inside P4 spanned by

the points p1, p2, and p3. The maps in this fixed locus contract two components of

the curve (the one supporting marked points q1, q2, and q3, and the one supporting

marked points q4 and q5). The non-contracted components are all mapped onto

the corresponding T -invariant lines in P4 as multiple covers of the indicated degree,

where any special points are totally ramified over the two corresponding T -fixed

points in P4.

E(d, j, j′) =
1

d

5d∏
k=0

(
5αj + k

αj′−αj

d

)

4∏
l=0

d∏
k=0

(l,k) 6=(j,0)

(
αj − αl + k

αj′−αj

d

) ,

and

F (j) =




5αj∏
j′ 6=j

(αj − αj′)




−1

,

where, in the vertex terms, we make special conventions for the unstable moduli spaces:

∫

M0,2

ψk1
z − ψ2

= (−z)k and

∫

M0,1

1

z − ψ1
= z.

If you have never computed ψ-class integrals onM0,n, the following exercise is a fun application

of the string equation.
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Exercise 4.2.2. Prove that
∫

M0,n

ψa11 · · ·ψann =

(
n− 3

a1, . . . , an

)
.

Along with Theorem 4.2.1, Exercise 4.2.2 provides an algorithm to compute any genus-zero

GW invariant of the quintic threefold. As a first example, the interested reader can recover the

following classical result.

Exercise 4.2.3. A smooth quintic threefold contains 2875 lines.

All of this seems rather promising; however, the complexity of the graph sums grows at an

enormous rate and computations very quickly become inconceivable, even with the most powerful

computers at our disposal. If you are not convinced, take a stab at the following exercise.

Exercise 4.2.4. Enumerate the T -fixed loci in M0,0(P
4, d) for d = 2, 3, 4.

Therefore, in order to prove an explicit result such as Theorem 4.1.1, we need to find and

exploit recursive combinatorial structures in the localization graphs.

5. Proof of the Gromov-Witten mirror theorem

In this lecture, we prove the genus-zero GW mirror theorem for the quintic threefold by study-

ing recursions that arise from the combinatorial structure of the localization graphs that were

described in the previous lecture.

Proof of Theorem 4.1.1. We begin with the left-hand side of Theorem 4.1.1. Pushing forward to

H∗(P4), we obtain

i∗J(τ, z) = 5Hz + 5Hτ(−z) +
∑

n,d
0≤i≤4

qd

n!

〈
τ(ψ)n

H i

z − ψ

〉GW

0,n+1,d

H4−i,

where we can safely include the summand i = 4 because the corresponding invariants vanish. Lifting

to equivariant cohomology, then restricting to the fixed point basis, we can write

Jj(τ, z) :=
i∗j i∗J(τ, z)

e(Npj/P4)
=

5αj∏
j′ 6=j

(αj − αj′)
(z + τj(−z)) +

∑

n,d

qd

n!

〈
τ(ψ)n

ρj
z − ψ

〉GW

0,n+1,d

,

where τj(z) is obtained from τ(z) by replacing H with αj and ρj =

∏

j′ 6=j

(H−αj′ )

∏

j′ 6=j

(αj−αj′ )
denotes the equi-

variant cohomology class that restricts to the unit at the jth fixed point. The correlators in Jj can

be computed by the localization formulas of the previous lecture. Each contributing graph has a

distinguished vertex v0 that supports the (n + 1)th marked point. We break the graphs up into

two types (see Figure 6):

(1) Graphs where val(v0) = 2; and
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j j0

d0
n+ 1

v0
. . .

d1

d2

d3

k1 k2
k3 . . .

j

v0
j1

j2

j3

. . .

n+ 1
d1

d2

d3

k1 k2
k3 . . .

Figure 6. Graphs of type (1) (left) and type (2) (right).

(2) Graphs where val(v0) > 2.

Notice that every graph of type (2) can be obtained in a unique way by taking some number

of graphs of type (1), identifying their distinguished vertices as a single vertex, and possibly adding

some additional points at the new distinguished vertex. Therefore, away from the vertex v0, con-

tributions from graphs of type (2) are equal to sums of contributions of graphs of type (1). We

now investigate what happens at the vertex v0.

For graphs of type (1), the contribution of the vertex v0 is

(8)
5αj∏

j′ 6=j

(αj − αj′)

1

z +
αj−αj0
d0

.

This expression can be expanded as a power series in z. For graphs of type (2), the contribution of

the vertex v0 is

(9)
5αj∏

j′ 6=j

(αj − αj′)

∫

M0,val(v0)

∏
k∈Iv

τj(ψk)

∏
e∈Ev

(
αj−αj′e
de

− ψe

) 1

z − ψn+1
,

where the denominator is expanded as a power series in the ψ-classes. Therefore, in order to

compute the contribution from a graph of type (2), one can compute the contributions from the

corresponding graphs of type (1), multiply them each by F (j) to cancel the pre-factor in (8), replace

each z with the appropriate −ψe, and then compute the integral over M0,val(v0) as in (9).

To summarize the above discussion more succinctly, define the power series Tj(z) by the formula

Tj(−z) := F (j) · (contributions of all graphs of type (1)) .

Then

(10) Jj(τ, z) =
5αj∏

j′ 6=j

(αj − αj′)


z + τj(−z) + Tj(−z) +

∑

n≥2

1

n!

∫

M0,n+1

(τj(ψ) + Tj(ψ))
n

z − ψn+1


 ,
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where (by (8)) we can write

(11) Tj(−z) =
∑

j′ 6=j
d>0

T d,j
′

j

z −
αj′−αj

d

.

In addition, by removing the vertex v0 and the edge e0 from graphs of type (1), we see that

(12) T d,j
′

j = qdF (j)E(d, j, j′)F (j′)Jj′

(
τ, z =

αj − αj′

d

)
.

Equations (10), (11), and (12) determine J(τ, z) from τ(z). To see why, notice that the q≤d terms

in (10) are determined by the q≤d terms in Tj(z) (and τj(z)), and the edge-removal recursion (12)

computes q≤d terms of Tj(z) as q
<d terms of J ′

j(τ, z).

Thus, in order to prove Theorem 4.1.1, we must show that

(13) Ij(q, z) :=
i∗j i∗J(τ, z)

e(Npj/P4)
= z

∑

d≥0

qd

5d∏
k=0

(5αj + kz)

4∏
l=0

d∏
k=0

(l,k) 6=(j,0)

(αj − αl + kz)

can also be written in the form (10) for some T̃ d,j
′

j that satisfy the edge-removal recursion (12).

Since (13) has the same simple poles as (11), along with higher-order poles at z = 0, then the

partial fractions decomposition implies that

Ij(q, z) =
5αj∏

j′ 6=j

(αj − αj′)

(
z + τj(−z) + T̃j(−z) +O(z−1)

)

where

T̃j(−z) =
∑

j′ 6=j
d>0

T̃ d,j
′

j

z −
αj′−αj

d

.

Moreover, the next exercise, which is a direct computation, verifies that the q-series T̃ d,j
′

j satisfy

(12).

Exercise 5.0.1. Prove that

Res
z=

αj′−αj

d

Ij(q, z) = qdE(d, j, j′)F (j′)Ij′

(
q, z =

αj′ − αj
d

)
.

Therefore, the only thing that is left to verify is that Ij(q, z) has the form (10); in other words, we

need to check that

(14) Ij(q, z) =
5αj∏

j′ 6=j

(αj − αj′)


z + τj(−z) + T̃j(−z) +

∑

n≥2

1

n!

∫

M0,n+1

(τj(ψ) + T̃j(ψ))
n

z − ψn+1


 .

This last check follows the exact same arguments as the proof of Theorem 2.2.1. For the reader’s

convenience, we outline the main steps and leave the details as exercises.
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Define moduli spaces

GM0,n,d = {(C; q1, . . . , qn;D; g)} / ∼

where

• (C; q1, . . . , qn) is a pre-stable, n-pointed, genus-zero curve;

• D is an effective degree-d divisor on C, supported away from the marks and nodes,

• g : C → P1 is a degree-1 map; and

• stability: ωC,log ⊗O(ǫD)⊗ g∗OP1(3) is ample for all ǫ > 0.

Define a T -equivariant virtual class:

[GM0,n,d]
vir
j :=

e(R0π∗(O(5D)⊗O5αj ))

e(R0π∗(⊕j′ 6=jO(D)⊗Oαj−αj′
))
.

The moduli spaces GM0,n,d have a C∗-action, and a distinguished fixed locus iΓ0 : Γ0 →֒ GM0,n,d.

Define

Jj(t, q, z) := −z2
∑

n,d≥0

qd

n!

i∗Γ0
[GM0,n+1,d]

vir
j ∩ t(ψ)n

e(NΓ0)
.

where t(z) =
∑

k≥0 tkz
k. The following two exercises are straightforward modifications of the

arguments of Lecture 3, and they finish the proof of Theorem 4.1.1.

Exercise 5.0.2. Define

τ̃j(z) := Ij(q,−z) + z = τj(z) + T̃j(z).

Prove that

Jj(τ̃j, 0, z) =
5αj∏

j′ 6=j

(αj − αj′)


z + τj(−z) + T̃j(−z) +

∑

n≥2

1

n!

∫

M0,n+1

(τj(ψ) + T̃j(ψ))
n

z − ψn+1


 .

and

Jj(0, q, z) = Ij(q, z).

Exercise 5.0.3. Prove that

Jj(t0 + τ̃j, 0, z) = Jj(t0, q, z).

�
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