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VANISHING COHOMOLOGY ON A DOUBLE COVER

YONGNAM LEE AND GIAN PIETRO PIROLA

Abstract. In this paper, we prove the irreducibility of the monodromy
action on the anti-invariant part of the vanishing cohomology on a dou-
ble cover of a very general element in an ample hypersurface of a com-
plex smooth projective variety branched at an ample divisor. As an
application, we study dominant rational maps from a double cover of a
very general surface S of degree≥ 7 in P3 branched at a very general
quadric surface to smooth projective surfaces Z. Our method combines
the classification theory of algebraic surfaces, deformation theory, and
Hodge theory.

In this paper we continue to study the subfields of rational functions
of complex surfaces pursued in [4], [6], and [7]. Our research has been
motivated by the finiteness theorem for dominant rational maps on a variety
of general type. Let S be smooth complex projective variety of general type.
The finiteness theorem states that dominant rational maps of finite degree
S 99K Z to smooth projective varieties of general type, up to birational
equivalence of Z, form a finite set. The proof of the finiteness theorem was
given by Maehara [8] under the assumption of boundedness of pluricanonical
maps of varieties of general type. This was proved in [5], or [9], or [10]. Also
there are several results estimating the number of rational mappings from
a fixed variety to varieties of general type. See [4] for references. Of course,
there are at least two cases for Z: Z is birational to S, or Z is rational. It
is an interesting question to determine when theses are all the possibilities
for Z, i.e. S is “rigid” in the sense of birational dominant maps.

The main result in [6] yields that a very general surface in P3 of degree
at least 5 is rigid in the sense discussed above.

Theorem 0.1. (=Theorem 1.1 in [6]) Let S ⊂ P3 be a very general smooth

complex surface of degree d > 4. Let Z be a nonsingular projective surface,

and let f : S 99K Z be a dominant rational map, then either Z is rational

or Z is birational to S.

The proof was obtained by combining deformation theory of curves on
surfaces, dimension counts on moduli, and Hodge theoretical methods, es-
pecially the Lefschetz theory. In [7], we treated the dominant rational maps
from the product of two very general curves C×D to nonsingular projective
surfaces. There, we needed to take in account the H2-Hodge structure of
étale covering of C ×D together with some improvement on the dimension
counts on moduli. See also [3] for the complete intersection case.
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For a very general curve C in the moduli space of curves of genus g,
Jacobian and Prym varieties of C are simple abelian varieties. This make
us to consider the case of double coverings.

To explain our results we let X be a smooth complex projective variety
of dimension n ≥ 2 with hn−1,0 := h0(Ωn−1

X ) = 0. Let B ⊂ X be a smooth
divisor of X and assume that the line bundle L = OX(B) is two divisible
L = M⊗2. Let π : Y → X be the double cover branched at B defined by
the square of a line bundle M and let j be the induced involution. Let H
be a very ample line bundle on X and H̃ = π∗H be its pull back. Let S be
a very general element in the linear system |H|. Assume that S is canonical,
i.e. the rational canonical map k : S 99K |KS | is birational onto its image.
Let f : S 99K Z be a generically finite dominant rational map of degree ≥ 2.
In Section 10 in [4], we proved pg(Z) := hn,0 = 0. In fact, from the Lefschetz
theory and the irreducibility of the monodromy action on vanishing cycles
(cf. Chapters I–III in [11]) we conclude that the canonical map k of S
factorizes through f gives a contradiction if pg(Z) 6= 0. Using this, and a
careful study of deformation theory of curves on surfaces, dimension counts
on moduli, we conclude Theorem 0.1 stated above.

In this paper, we consider the case of double covers, and obtain our desired
application:

Theorem 0.2. (=Theorem 2.2) Assume that H̃ and the branch divisor R
are very ample. Assume additionally that two rational maps k : S 99K |KS |
and k′ : S 99K |KS(M)| are birational onto their images. Let S̃ be a very

general element in H̃ and let f : S̃ 99K Z be a dominant rational map where

Z is a smooth projective (n − 1)-fold. Then Z is either birational to S̃, S,
or we have pg(Z) = 0.

The (n − 1)-th primitive cohomology Pn−1(S̃,Q) has a natural decom-
position into the invariant part P+ and the anti-invariant part P−, that
respects the monodromy action of suitable pencils. By the ampleness of
the ramification divisor R, the P− turns out to be the anti-invariant part
of the vanishing cohomology. Then we show by means of the monodromy
action that the anti-invariant part of vanishing cohomology is irreducible.
This is the content of Theorem 1.6. Here we only deal with cases that are of
interest to us. It would be very useful to develop some complete equivariant
Lefschetz theory.

As an application we obtain the following theorem by means of the proof
of theorem 1.1 in [6] and Theorem 2.2:

Theorem 0.3. (=Theorem 2.7) Let X = P3 and let H = OP3(d) where

d ≥ 7. Let π : Y → X be a double cover branched at a very general quadric

surface. Suppose there is a dominant rational map f : S̃ 99K Z where Z is

a smooth projective surface. Then Z is birational to S̃, S, or P2.

As far as we know this gives the first examples of fields of transcendence
degree 2 of non-ruled surfaces that contain only one proper non-rational
subfield of transcendence degree 2. We expect our result extends to a Galois
cover with some group G, i.e. for a suitable general member we expect to
get only intermediary steps that are controlled by G.
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Picard-Lefschetz theory yields that the monodromy action on the (n−1)-
th vanishing cohomology of a smooth hyperplane section of the variety X
of dimension n is irreducible. In Section 1, we extend this irreducibility of
the monodromy action on the anti-invariant part of the (n−1)-th vanishing
cohomology of a smooth hyperplane section of Y double cover branched
over a smooth ample divisor. In Section 2, we prove the above theorems as
applications.

In this paper we work on the field of complex numbers.
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1. Double coverings and the irreducibility of the monodromy

action

In this section, after introducing the double coverings (in 1.1), we will
show an irreducible result of the anti-invariant cohomology (1.6) for them.
This will be our main technical point.

1.1. Double coverings. Let X be a smooth projective variety of dimension
n > 1. Let B ⊂ X be a smooth divisor of X and assume that the line bundle
L = OX(B) is two divisible. This means that L = M⊗2 where M is a line
bundle of X. Let π : Y → X be the double cover branched at B and let
j be the induced involution. The variety Y is smooth and the ramification
divisor R is isomorphic to B. Let H be a very ample line bundle on X and
H̃ = π∗H be its pullback.

The following lemma might be well known. Since we do not find a suitable
reference, we give the proof here.

Lemma 1.1. The line bundle H̃ is very ample on Y if and only if H⊗M−1

is generated by global sections on X.

Proof. Assume that H ⊗M−1 is generated by global sections. We have the
identification

H0(Y, H̃) = H0(X,π∗H̃) = H0(X,H)⊕H0(X,H ⊗M−1) =W+ ⊕W−

where the sign corresponds to the positive and the negative eigenvalue in-
duced by the involution j∗ induced by j. We show now that if p 6= j(p),

then points p and j(p) are separated by the global sections of H̃. In fact we
can find sections s+ ∈ W+ and s− ∈ W− such that s+(p) = s−(p) 6= 0. It
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follows that s−(jp) = −s+(jp). Therefore s = s+ + s− vanishes on j(p) but

not on p. Next we show that H̃ separates the tangents at the point p ∈ R
of the ramification divisor. Since the line bundle H is very ample this will
complete the result. We have to show the surjectivity of the map ψ induced
by derivation:

ψ : H0(Y, H̃) → H̃ ⊗ T ∗
Y,p.

For a nonzero vector v ∈ TY,p, we have to find a section s ∈ H0(Y, H̃) such
that v · ψ(s) 6= 0. The differential of j gives the eigenvector decomposition
TY,p = T+ ⊕ T−. Choose local coordinates {U, xi} such that xi(p) = 0,
R ∩ U = {x1 = 0} and give the linearization of j : (x1, x2, . . . , xn) 7→
(−x1, x2, . . . , xn). The map π in these coordinates becomes

(x1, x2, . . . , xn) 7→ (x21 = y, x2, . . . , xn),

and y = 0 gives the equation of B ∩ U. We see that dimT− = 1. Write v =
v++v−. If v+ 6= 0 then we can find a section s = s+ such that v+ ·s 6= 0 and
then v · s+ = v+ · s 6= 0. Therefore we can suppose that v = v−. We need to
find a section s ∈W− that vanishes at p of order 1 in the v-direction. In our
coordinates we may assume v = ∂

∂x1
. Taking a trivialization of H on U, the

restriction of the section s ∈ W− ⊂ H0(X,H) becomes a regular function
f = f(s) such that f(−x1, x2, . . . , xn) = −f(x1, x2, . . . , xn). It follows that
f = x1g(x1, x2, . . . , xn) where g is j-invariant. Under the identification
W− = H0(X,H ⊗M−1) the local expression of s in this trivialization is
given by g. Therefore

v · s =
∂f

∂x1
(0, . . . , 0) = g(0, . . . , 0).

Now g(0) 6= 0 holds ⇐⇒ s is not in the kernel of the restriction map

H0(X,H ⊗M−1) → H0(X,H ⊗M−1)p.

The existence of such an s is equivalent to the surjectivity of H0(X,H ⊗
M−1) → H0(X,H ⊗M−1)p. The converse is clear. �

1.2. Lefschetz pencils. With the previous notation we assume that H
and H̃ are very ample. Let ℓ ⊂ |H| be a pencil of global sections of H
i.e., ℓ = P(V ) where V is a two-dimensional subspace of the vector space

H0(X,H). Let ℓ̃ be the pull back of ℓ. We also assume

(1) the pencil {Ht}∈ℓ is a Lefschetz pencil of X;
(2) the restriction of ℓ to B : {B ∩Ht}∈ℓ is a Lefschetz pencil ℓB of B.

Our definition of a Lefschetz pencil is the classical one: any singular fiber
has only one singular node (Chapter 2 in [11]). If the dimension of B is one,
we ask for a simple ramification of the map B → P1.

By blowing-up the base loci of the pencils, we obtain B̃ ⊂ X̃ and Ỹ , and
we get the fibrations

(1) h : X̃ → P1

(2) hB : B̃ → P1.

We also have

(3) g : Ỹ → P1
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and a two-to-one map that ramifies on B̃ :

Ỹ
π̃

//

g
��
✼✼

✼✼
✼✼

✼ X̃

h
��✞✞
✞✞
✞✞
✞

P1.

With the exception (that we may exclude from now on) X = P2, B a
conic and H = OP2(1), any divisors in the pencil ℓ intersect transversally

B in at least one point, this gives that all the divisors in ℓ̃ are irreducible.
Then g is a connected fibration, and all fibers are irreducible and have at
most nodes.

Nevertheless ℓ̃ is not a Lefschetz pencil on Ỹ because it has a fiber with
two nodes.

The singular fibers of g are of two types

I) the inverse image Ys′ = π̃−1(Xs′) of a singular divisor Xs′ ∈ ℓ;
II) the inverse image Ys′′ = π̃−1(Xs′′) where B ∩Xs′′ = XB,s′′ ∈ ℓB is

singular.

The set S ⊂ P1 of the critical values of h, has a decomposition

S = S′ ∪ S′′

where S′ are the critical values of h and S′′ the critical values of hB . From
now on we will assume the following:

Assumption 1.2. The intersection of S′ and S′′ is empty:

S′ ∩ S′′ = ∅.

Remark 1.3. The general pencil of hyperplanes ℓ of H satisfies our as-

sumption. In fact by the biduality theorem the intersection X∗ ∩ B∗ of the

dual varieties of X ⊂ PN = |H| and of B ⊂ PN has codimension ≥ 2 in

PN ∗
. Therefore a general pencil in PN ∗

does not meet in X∗∩B∗. We thank

the referee for pointing out that this hypothesis is necessary for our purposes.

From (1.2) we see that in the case I) Ỹs′ has two singular nodal points
and in the case II) Ys′′ is simply tangent to B in one point p ∈ S′ and Ys′′
has only one nodal singularity.

Lemma 1.4. Choose a point p ∈ V := P1\S. Then we have a decomposition

of (n− 1)-th primitive cohomology Pn−1(Yp,Q) into the invariant and anti-

invariant part: Pn−1(Yp,Q) = P+ + P−.

Proof. Set U = g−1(V ), then by restriction we have a smooth fibration

gU : U → V.

We consider the local system Rn−1gU ∗Q defined over V. By fixing a point
p ∈ V, this local system is equivalent to the monodromy action of the funda-
mental group π1(V, p) on Hn−1(Yp,Q), where Yp = g−1(p). The involution
j gives a decomposition

Rn−1gU∗Q = R+ ⊕R−
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and Hn−1(Yp,Q) = H+⊕H− into the invariant and the anti-invariant parts.
We get that H+ is isomorphic to Hn−1(Xp,Q) where Xp = h−1(p) is the
fiber of h. Let P (X,Q) ⊂ Hn−1(X,Q) (resp. P (Y,Q) ⊂ Hn−1(Y,Q)) be the

primitive cohomology which respect to H (resp. H̃). We can also define the
subsystems P+ ⊂ R+ and P− ⊂ R− that are given as π1(V, p) modules on
Pn−1(Yp,Q). Then we can decompose Pn−1(Yp,Q) into the invariant and
anti-invariant part: Pn−1(Yp,Q) = P+ + P−. �

Consider again S′ ∪ S′′ = S, that we separate by open disks D′,D′′,
S′ ⊂ D′ ⊂ P1 and S′′ ⊂ D′′ ⊂ P1 such that D′ ∩ D′′ = ∅ and such that
the base point p is in the closure of the disk p ∈ D̄′ ∩ D̄′′. Fix generators of
π1(V, p) corresponding to loops γs, s ∈ S in such a way that γs′(t) ∈ D̄′ and
γs′′(t) ∈ D̄′′ for t ∈ [0, 1]. Then we define the free groupsG′ and G′′ generated
by the loops around points of S′ and of S′′, respectively: G′ =< [γs′ ] >{s′∈S′}

and G′′ =< [γs′′ ] >{s′′∈S′′} . We have that

π1(V, p) = G′ ∗G′′/α,

where ∗ stands for the free product and α is the relation given by a suitable
product of the loops, homotopically equivalent to the boundary of the above
disks.

Let i : Xp → X be the inclusion. Then we have by Lefschetz theory

P := Pn−1(Xp,Q) = i∗Pn−1(X) ⊕Hn−1(Xp)van,

where Hn−1(Xp)van is the kernel of

i∗ : H
n−1(Xp) → Hn+1(Xp).

We have that Hn−1(Xp)van is an irreducible G′-module generated by the

vanishing cycles δs′ where s
′ ∈ S′ for the fibration X̃ → P1, And the δs′ are

all conjugate (see Chapter 3 in [11]) by G′. We have for s′ ∈ S′

π̃(δs′) = α1s′ + α2s′

where αis′ i = 1, 2 are the vanishing cycles of the two nodes over a point
s′ ∈ S′. Since the δs′ are conjugated by G′ it follows that, up to a sign, the
cycles βs′ = α1s′ − α2s′ ∈ P−, are conjugated by the group G′. In a similar
way the cycles βs′′ ∈ P−, where s′′ ∈ S′′ the vanishing cycle corresponding
to the points s′′ ∈ S′′ are conjugated by the group G′′.

Lemma 1.5. Let HS′ ⊂ P− be the subspace generated by {βs′}{s′∈S′}, and

HS′′ ⊂ P− be the subspace generated by {βs′′}{s′′∈S′′}. Then we have HS′ +

HS′′ = H−
van where H−

van = Hn−1(Yp)
−
van.

Proof. We let G := Gr1(|H̃ |) be the Grassmannian variety parametrized

lines of the linear system |H̃|. Let ℓ̃ ∈ G. Let W ⊂ G be the subset

parametrized Lefschetz pencil in |H̃|.
It is classical (see for instance Chapter 2 in [11]) that W is a nonempty

Zariski open subset of G. Let ∆ be the complex unit disk, we can find a
curve ρ : ∆ → G, such that ρ(0) = ℓ̃ and ρ(t) = ℓ̃t ∈ W for t 6= 0. We

consider the singular divisors in the pencil ℓ̃t and its singular points S(t).
Then for any s′ ∈ S′ we define then two curves s′1(t) and s′2(t) in S(t) for
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t ∈ ∆ such that s′1(0) = s′2(0) and for any point s′′ ∈ S′′ a curve s′′(t) ∈ S(t)
such that s′′(0) = s′′. We have then by continuity we may assume

(1) the vanishing cycle of s′1(t) is α1s′ ;
(2) the vanishing cycle of s′2(t) is α2s′ ;
(3) the vanishing cycle of s′′(t) is βs′′ .

Applying Lefschetz theory to ℓ̃t (cf. [11]) we see that {α1s′ , α2s′}s′∈S′ ∪
{βs′′}s′′∈S′′ generates the cohomology of Hn−1(Yp)van. And H

n−1(Yp,Q) is

Hn−1(Yp)van ⊕ i′∗Hn−1Y

where i′ : Yp → Y is the inclusion. It follows that {α1s′ − α2s′}s′∈S′ ∪
{βs′′}s′′∈S′′ generates the vanishing part of the anti-ivariant part of the prim-
itive cohomology. �

Another application of Lefschetz theory gives:

Theorem 1.6. If H̃ is very ample then the action of the monodromy of

π1(V, p) on H−
van is irreducible.

Proof. Let F ⊂ H−
van be a sub-local system. We have to show that either

F = 0 or F = H−
van. Let F

′ be a sub-local system orthogonal to F :

F ′ = {v ∈ H−
van :< v,w >= 0,∀w ∈ F}.

Note that F ′ = 0 ⇐⇒ F = H−
van and F = 0 ⇐⇒ F ′ = H−

van since the
polarization is non-degenerate on H−

van.
Now we have that for all s ∈ S either βs ∈ F or βs ∈ F ′. To see this, we

take, for instance, s′ ∈ S′ and any v ∈ F . Let T be the monodromy around
s′, then we must have T (v) ∈ F . The monodromy map can be computed
by means of the Picard-Lefschetz formula, and it gives (cf. Theorem 3.16,
Chapter 3 in [11])

T (v) = v+ < v,α1s′ > α1s′+ < v,α2s′ > α2s′ .

As v ∈ F ⊂ P− then we have also

0 =< v,α1s′ + α2s′ >=< v,α1s′ > + < v,α2s′ >,

therefore

T (v) = v+ < v,α1s′ > α1s′− < v,α1s′ > α2s′ = v+ < v,α1s′ > (α1s′ − α2s′)

v +
1

2
< v,α1s′ − α2s′ > (α1s′ − α2s′) = v +

1

2
< v, βs′ > βs′ .

Now v ∈ F and T (v) ∈ F gives that T (v)− v ∈ F, that is

< v, βs′ > βs′ ∈ F.

Then either βs′ ∈ F or < v, βs′ >= 0, for all v ∈ F, that is βs′ ∈ F ′. A
similar computation applies to the βs′′ , s

′′ ∈ S′′.

Interchanging F with F ′ if necessary we may assume that there is s′ ∈ S′

such that βs′ ∈ F. Since all the βs′ are conjugate by G′, we obtain then
HS′ ⊂ F. If F contains an element βs′′ s

′′ ∈ S′′ the same argument shows
that F ⊃ HS′′ therefore F ⊃ HS′ +HS′′ = H−

van and the proof is complete.
If we assume by contradiction that is not the case we will have F = HS′ and
F ′ ⊃ HS′′. In particular this implies for all s′ ∈ S′ and s′′ ∈ S′′ :

< βs′ , βs′′ >=< α1s′ − α2s′ , βs′′ >= 0.
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We have also

< α1s′ + α2s′ , βs′′ >= 0

since βs′′ ∈ P− and α1s′ + α2s′ ∈ P+.
That is < α1s′ , βs′′ >=< α2s′ , βs′′ >= 0, but in this case we will have

that HS′′ = F ′ is invariant by the monodromy around all the critical points
s′1(t), s

′
2(t), and s

′′(t) of the pencil ℓ̃t, for t 6= 0. This gives a contradiction

with Lefschetz irreducibility theorem (cf. [11]) since ℓ̃t ∈ W is a Lefschetz
pencil. �

Corollary 1.7. With the previous notation we assume that the ramification

divisor R is ample. Then P− = H−
van and therefore it is irreducible.

Proof. As R is ample the map Hn−1(Y ) → Hn−1(R) is injective. Since the
cohomology Hn−1(R) is j invariant it follows that Hn−1(Y )− = 0. Then it
follows that PHn−1(Yp)

− = Hn−1(Yp)
−
van. �

We note that the ampleness of B is equivalent to the ampleness of R by
Lemma 1.1.

2. Applications

2.1. Geometric genus of very general double coverings. We recall our
notation. LetX be a smooth projective n-fold andH be a very ample divisor
on X. Let π : Y → X be a double cover ramified over R ⊂ Y , branched
at B ⊂ X, and M⊗2 = OX(B). Let S be a very general element of |H|.
Let KS = OS(KX + H) be the canonical bundle of S and set KS(M) =
OS(KX +H +M). We consider the canonical rational map k : S 99K |KS |
and k′ : S 99K |KS(M)|. We finally set S̃ = π−1(S).

Assumption 2.1. We assume additionally:

(1) h0(Ωn−1
X ) = 0;

(2) B is smooth and very ample (or ample and base points free);
(3) k and k′ are birational onto its image.

It follows immediately that k̃ : S̃ 99K |KS̃ | is birational onto its image (if

it factorizes through S̃ → S 99K |KS | then the anti-invariant part must be
trivial).

Moreover h0(Ωn−1
Y ) = 0: In fact from Corollary 1.7, Hn−1(Y,Q)− = 0.

And we have

H0(Ωn−1
Y ) = H0(Ωn−1

Y )+ ⊕H0(Ωn−1
Y )− = H0(Ωn−1

X )⊕H0(Ωn−1
Y )− = 0

since H0(Ωn−1
X ) = 0 and by the Hodge decomposition

H0(Ωn−1
Y )− ⊂ Hn−1(Y,Q)− ⊗ C ∼= Hn−1(Y,Q)− ⊗ C = 0.

Theorem 2.2. Let f : S̃ 99K Z be a dominant rational map where Z is a

smooth projective (n − 1)-fold. Then Z is either birational to S̃, S, or we

have pg(Z) = 0.

Before giving the proof we recall a standard notion. Let V be a smooth
projective n-fold with n ≥ 2. Let Hn

V be the Hodge structure to Hn(V,Z).
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The transcendental Hodge structure TV of V is the smallest sub-hodge struc-
ture of Hn

V such that Tn,0
V = Hn,0(V ). We mention that pg(V ) = 0 is equiv-

alent to TV = 0. We recall that TV is a birational invariant and moreover
if f : V 99K W is a dominant rational of finite degree we have an injective
Hodge-structure map f∗ : TW → TV (this can be seen by resolving the

indeterminacy of f). Let f̃ : Ṽ → W̃ be the map after resolving the map f .
Let H be a very ample divisor of V and S be a very general element of |H|.
Suppose h0(Ωn−1

V ) = 0. It follows then that Hn−1(S)van = TS : it contains
Hn−1,0(S) since Hn−1,0(V ) = 0, and it is irreducible by Lefschetz theory.

Proof. We set T = Tn−1

S̃
. Then T is decomposed into T+ ⊕ T−. Since

h0(Ωn−1
X ) = h0(Ωn−1

Y ) = 0 we get that T+ = Hn−1(S)van and T− =

Hn−1(S̃)−van. Then under our hypothesis they are both irreducible (1.7).
Assume by contradiction that pg(Z) 6= 0 then the transcendental Hodge
structure TZ is not zero. We get f∗TZ ⊂ T+ ⊕ T−. And then f factorizes
through k, k′, or k̃ accordingly f∗TZ = T+, f∗TZ = T−, or f∗TZ = T+⊕T−.
Since the maps are all birational it proves our theorem. �

We repeat the double covering construction. For each i = 0, 1, 2, . . ., Xi

is smooth projective n-fold, πi : Xi+1 → Xi a two-to-one map ramified
on Ri ⊂ Xi+1 and branched at Bi ⊂ Xi. Let M⊗2

i = OXi(Bi), H i be a
very ample divisor on Xi, and Si be a very general element of |H i|. Let
KSi = OSi(KXi + H i) be the canonical bundle of Si and set KSi(Mi) =
OSi(KXi+H i+Mi).We consider the canonical rational map ki : S

i
99K |KSi |

and k′i : S
i
99K |KSi(Mi)|. We set Si+1 = π−1

i (Si).

Let X0 = X,X1 = Y,M0 =M,H0 = H,B0 = B,R0 = R,S0 = S, S1 = S̃
in Assmption 2.1.

Assumption 2.3. We assume additionally:

(1) h0(Ωn−1

X0 ) = 0;

(2) Branch divisors Bi are smooth and very ample (or ample and base
points free) for all i;

(3) ki and k
′
i are birational onto their images for all i.

By the same argument in Theorem 2.2, we get the following.

Corollary 2.4. Let f i : Si
99K Z be a dominant rational map where Z is a

smooth projective (n−1)-fold. Assume degf i > 1.Then either Z is birational

to one of Sj for j = 0, 1, . . . , i− 1, or pg(Z) = 0.

Corollary 2.5. Let X = P2 and let H = OP2(d) where d ≥ 4. Set M =
OP2(a) with 1 ≤ a ≤ d − 1. Let π : Y → X be a double cover branched at

a very general element B ∈ |M⊗2|. Let C be a very general element in |H|
and let C̃ = π−1(C). Suppose there is a finite map f : C̃ → Z where Z is a

smooth projective curve. Then Z is isomorphic either to C̃, C, or Z = P1.

Proof. Under our hypothesis, H⊗M−1 = OP2(d−a), KC = OC(d−3), and
KC +M = OC(d + a− 3) are very ample. Moreover, we have H1(P2,Q) =
0. �

Corollary 2.6. Let X = P3 and let H = OP3(d) where d ≥ 5. Let M =
OP3(a) with 1 ≤ a ≤ d − 1. Let π : Y → X be a double cover branched at
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a very general element B ∈ |M⊗2|. Let S be a very general element in |H|
and let S̃ = π−1(S). Suppose there is a dominant rational map f : S̃ 99K Z

where Z is a smooth projective surface. Then Z is either birational to S̃, S,
or we have pg(Z) = 0.

Proof. Under our hypothesis, H ⊗M−1 = OP3(d− a), KS = OS(d− 4), and
KS+M = OS(d+a−4) are very ample. And h0(Ω2

P3) = 0, hence it satisfies
Assumption 2.1. �

2.2. Rational maps. By using deformation of curves and arguments sim-
ilar to those in Section 2 in [6], we can show :

Theorem 2.7. Let π : Y → P3 be a double cover branched at a very general

element in the linear system |OP3(2)|. Let H = OP3(d) where d ≥ 7 and

let S be a very general element in |H|. Set S̃ = π−1(S). Suppose there is a

dominant rational map f : S̃ 99K Z where Z is a smooth projective surface.

Then Z is either birational to S̃, S, or P2.

Proof. Suppose that Z is not birational to S̃ and S. By Corollary 2.6, it is
enough to treat the case that pg(Z) = 0. We note that Y is a quadric hyper-
surface in P4. LetD be a very general curve of (d, d) type in a smooth quadric
surface Q. Then we claim that there is no birational immersion κ from D
into any smooth projective surface Z with pg(Z) = q(Z) = 0, π1(Z) = 1,
and non-negative Kodaira dimension if d ≥ 7. The proof is similar to the
argument in Section 2 in [6].

We can assume that Z is minimal because D is a very general curve of
(d, d) type in Q. Let U be the Kuranishi space of deformation of κ. Since κ
is a very general birational immersion, a basic result (see Corollary 6.11 in
[1], and Chapter XXI in [2]) gives that

dimU ≤ h0(OD(ND|Q))− 6 = d2 + 2d− 6

by Riemann-Roch theorem and h1(OD(ND|Q)) = 0. And g(D) = d2−2d+1.
Suppose that D can be birationally immersed in Z of general type with

pg(Z) = q(Z) = 0, π1(Z) = 1. Then by the same argument in Proposition
2.3 in [6]

d2 + 2d− 6− 19 ≤ g(D)−
degκ∗(KZ)

2
,

since minimal surfaces of general type with pg = q = 0 depends on 19
parameters (Corollary in [4]). It implies that

4d− 26 +
degκ∗(KZ)

2
≤ 0.

So we get a contradiction if d ≥ 7 because degκ∗(KZ) > 0.

Now, suppose D can be birationally immersed in Z with pg(Z) = q(Z) =
0, π1(Z) = 1, and of Kodaira dimension one. Then

d2 + 2d− 6− 10 ≤ g(D)−
degκ∗(KZ)

2
,

because minimal surfaces of Kodaira dimension one with pg(Z) = q(Z) = 0,
and π1(Z) = 1 depend also on 10 parameters (cf. Proof of Proposition 3.5
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in [6]). It implies that

4d− 17 +
degκ∗(KZ)

2
≤ 0.

So we get a contradiction if d ≥ 5 because degκ∗(KZ) ≥ 0. We prove the
claim.

Suppose there is a dominant rational map p from S̃ to a smooth pro-
jective surface Z. Let Z be a non-rational surface. By Corollary 2.6 we
have pg(Z) = 0, and by the argument in [4] we have π1(Z) = 1. Since the

intersection of S̃ and a very general hyperplane section of Y is D, we may
assume that a general point of Z belongs fD(D). By the above claim, fD
cannot be birational. Therefore, we have two possible cases. The normal-
ization of fD(D) is a very general plane curve of degree d or rational. If
the normalization of fD(D) is a very general plane curve of degree d then
we have a birational immersion from a very general plane curve of degree d
to Z. Then we get a contradiction by the result (proof of Theorem 1.1) in
[6]. If the normalization of fD(D) is rational then Z is a ruled surface. It
follows that f is not dominant. Therefore we get a contradiction. �
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