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THREEFOLD EXTREMAL CURVE GERMS

WITH ONE NON-GORENSTEIN POINT

SHIGEFUMI MORI AND YURI PROKHOROV

Abstract. An extremal curve germ is the analytic germ of a three-
fold with terminal singularities along a reduced complete curve ad-
mitting a contraction whose fibers have dimension at most one. The
aim of the present paper is to review the results concerning those
contractions whose central fiber is irreducible and contains only one
non-Gorenstein point.
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1. Introduction

One of the most important problems in the three-dimensional bira-
tional geometry is to describe explicitly all the steps of the Minimal
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Model Program (MMP). These steps consist of certain maps, called di-
visorial, flipping, and fiber-type contractions (Mori contractions). The
structure of these maps is still unknown in its complete generality,
though much progress has been made in this direction. We refer to
[CKM88] for an introduction to the subject. The aim of the present pa-
per is to review the results concerning those contractions whose fibers
have dimensio n at most one. The project was started in the ini-
tial paper [Mor88] where the minimal model problem was solved in the
three-dimensional case. To study Mori contractions in this situation one
needs to work in the analytic category and analytic counterparts of the
corresponding notions are needed. The central objects of this paper are
so-called extremal curve germs.
An extremal curve germ is the analytic germ of a threefold with termi-

nal singularities along a reduced complete curve admitting a contraction
whose fibers have dimension at most one. The present paper is a survey
of known results on the classification of objects of this type. Basically
we concentrate on the case of irreducible central fiber with only one
non-Gorenstein point. In this case the results are complete, however
they are scattered in the literature. This is the main reason to write
this survey.
The classification of extremal curve germs is done in terms of a general

element H of the linear system |OX| of trivial Cartier divisors containing
C. In many cases this element H is a normal surface and then the
threefold can be viewed as a one-parameter deformation of H .
A birational extremal curve germ f : (X,C) → (Z, o) is said

to be semistable, if for a general member D ∈ | − KZ |, the germ
DZ := SpecZ f∗OD is Du Val of type A [KM92]. The semistable case is
subdivided into two cases (k1A) and (k2A) according to the number of
non-Gorenstein points of X on C. Other cases are called exceptional. It
turns out that treating semistable and exceptional germs uses different
approaches. For example, in the exceptional flipping case, [KM92] pro-
vides relatively simple computations of flipped variety. For semistable
germs these computations become more explicit; in the (k2A) case, from
the general member H ∈ |OX| one can decide whether (X,C) is flipping
or divisorial [Mor02, Corollary 4.1] and furthermore describe the flipped
variety [Mor02, Theorem 4.7] and Z [Mor02, Theorem 4.5], respectively;
the (k1A) case is similarly treated by [HTU17] under additional assump-
tion “b2(Xs) = 1” (see 11.4.6). According to local classification (see
Propositions 5.4 and 5.5), a semistable extremal curve germ of type
(k1A) can be of type (IA∨) or (IA). They are treated in Sect. 8, 9, and
11.
Here are summary of some of the results.
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1.1. Theorem. Let f : (X,C) → (Z, o) be a flipping extremal curve
germ with irreducible central fiber C and let HZ ∈ |OZ| be a general
hyperplane section containing C. Then HZ and f−1(HZ) are normal
and have rational singularities. The singularity (HZ , o) is log terminal
except for the cases described in 11.5.5 and 12.3.3. Moreover, (HZ , o)
is a cyclic quotient singularity if and only if (X,C) is semistable.

The case where (X,C) is semistable follows from Lemma 9.3.1. If
(X,C) has only one non-Gorenstein point (i.e. of type (k1A)), we can
use explicit classification 8.2.1, 9.1.6, 10.4, 11.3, 11.5.2, 12.3. For the
remaining (kAD) case we refer to [KM92, §9].

1.2. Theorem. Let f : (X,C) → (Z, o) be a divisorial extremal curve
germ with irreducible central fiber C and let HZ ∈ |OZ| be a general
hyperplane section containing o. Then (HZ , o) is either a Du Val point,
a rational log canonical point of type D̃ (in the case 9.1.5), or a cyclic
quotient singularity of class T. Moreover, the last two possibilities occurs
only if (X,C) has a locally imprimitive point or (X,C) is semistable and
has two non-Gorenstein points whose indices are not coprime.

Moreover, by Theorem 6.4 the singularity (Z, o) is terminal. If (X,C)
has no covers étale in codimension one, then (Z, o) is of index one and
HZ is Du Val. In the semistable case the assertion as above follows from
Lemma 9.3.1. It remains to consider locally imprimitive cases (IA∨)
and (II∨) (see 9.1.5 and 9.1.6). Note that for a divisorial curve germ the
surface H := f−1(HZ) can be non-normal (see e.g. Example 12.6).
For the Q-conic bundle f : (X,C) → (Z, o) we can show that the

base is Du Val of type A (Corollary 7.7.1). The proof uses the existence
of a Du Val member D ∈ | −KX |, see [MP08a], [MP09], and Theorem
7.3.
The paper was written during the second author’s stay at RIMS,

Kyoto University. The author is very grateful to the institute for the
invitation, hospitality and good working environment.

2. Preliminaries

2.1. Threefold terminal singularities. Recall that a three-
dimensional terminal singularity of index m is a quotient of an isolated
hypersurface singularity by a cyclic group µm of order m. More pre-
cisely, let (X,P ) be an analytic germ of a three-dimensional terminal
singularity of index m. Then there exists a terminal singularity (X♯, P ♯)
of index 1 and a cyclic µm-cover

(X♯, P ♯) −→ (X,P )

which is étale outside P [Rei83]. Moreover, the singularity (X♯, P ♯)
can be embedded to (C4, 0) so that its general hyperplane section is a
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surface Du Val singularity (thus (X♯, P ♯) is so-called cDV singularity).
A detailed classification of all possibilities for equations of X♯ ⊂ C4 and
the action of µm was obtained in [Mor85] (see also [Rei87], [KSB88]).
Assume thatm > 1. Then the µm-action on (X♯, P ♯) will be analyzed.

We fix a character χ generating Hom(µm,C
∗) = Z/mZ. For a µm-semi-

invariant z, we write
wt(z) ≡ a mod m

if g(z) = χ(g)az for all g ∈ µm.

2.1.1. Theorem ([Mor85]). In the above notation the singularity
(X♯, P ♯) is µm-isomorphic to a hypersurface φ = 0 in (C4

x1,...,x4
, 0) such

that for some a, b ∈ Z prime to m one of the following holds:

(i) wt(x, φ) ≡ (a, b,−a, 0, 0) mod m;
(ii) m = 4, and wt(x, φ) ≡ (a, b,−a, 2, 2) mod m.

In the case (ii) we say that (X,P ) is a point of type cAx/4.

Thus the locus Υ ⊂ C4 of the points at which µm-action is not free is
a coordinate axis which is not contained in X♯. The following number

aw(X,P ) := mult0(φ|Υ)

is well defined and called the axial multiplicity of (X,P ).

2.2. Recall that a contraction is a proper surjective morphism f : X →
Z of normal varieties such that f∗OX = OZ .

2.2.1. Definition. Let (X,C) be the analytic germ of a threefold with
terminal singularities along a reduced complete curve. We say that
(X,C) is an extremal curve germ if there is a contraction

f : (X,C) → (Z, o)

such that C = f−1(o)red and −KX is f -ample. Furthermore, f is called
flipping if its exceptional locus coincides with C and divisorial if its
exceptional locus is two-dimensional. If f is not birational, then Z is a
surface and (X,C) is said to be a Q-conic bundle germ [MP08a].

In general, we do not assume that X is Q-factorial. This is because
the Q-factoriality is not a local condition in the analytic category (see
[Kaw88, §1]).
For future references we need the following easy example.

2.3. Example. Consider the following action of µm on P1
x × C2

u,v:

(x; u, v) 7−→ (εax; εu, ε−1v),

where ε is a primitive m-th root of unity and gcd(m, a) = 1. Let
X := P1 × C2/µm, Z := C2/µm and let f : X → Z be the natural
projection. Since µm acts freely in codimension one, −KX is f -ample.
The images of two fixed points on P1 × C2 are terminal cyclic quotient
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singularities of types 1
m
(±a, 1,−1) on X . Hence, f is a Q-conic bundle.

A Q-conic bundle germ biholomorphic to f as above is called toroidal.

The following key fact is an immediate consequence of the Kawamata-
Viehweg vanishing theorem.

2.4. Theorem. Let f : (X,C) → (Z, o) be an extremal curve germ.
Then Rif∗OX = 0 for i > 0.

2.4.1. Corollary (cf. [Mor88, Remark 1.2.1, Cor. 1.3]). (i) If J
is an ideal such that Supp(OX/J ) ⊂ C, then H1(OX/J ) = 0.

(ii) pa(C) = 0 and C is a union of smooth rational curves.
(iii) PicX ≃ H2(C,Z) ≃ Zρ, where ρ is the number of irreducible

components of C.

2.4.2. Remark. If C is reducible, then for every proper curve C ′ ( C,
the germ (X,C ′) is also an extremal curve germ.

2.5. Lemma. Let f : (X,C) → (Z, o) be an extremal curve germ.

(i) If f is birational, then on Z there exists an effective Q-divisor
B such that the pair (Z,B) has only canonical singularity at o.
If moreover f is flipping, then the singularity of (Z,B) at o is
terminal.

(ii) If f is a Q-conic bundle, then Z has a log terminal singularity
at o.

Proof. Take n ≫ 0 so that the divisor nKX is Cartier and the linear
system | − nKX | is base point free. Let H ∈ | − nKX | be a general
member. Then H is a smooth surface meeting the components of C
transversally. For (i), put D := 1

n
H and B := f∗D. Then the singu-

larities of the pair (X,D) are terminal. Since f is crepant with respect
to KX + D and does not contract components of D, we see that the
singularities of (Z,B) are canonical [KM98, Lemma 3.38]. To show (ii)
we note that the restriction fH : H → Z is a finite morphism. Thus
(Z, o) is a log terminal singularity [KM98, Prop. 5.20]. �

Note however that in (i) we do not assert that the point (Z, o) is
Q-Gorenstein, even in the divisorial case, see Theorem 6.4. The result
of (ii) is significantly improved in 4.6.5 and [MP08a, 1.2.7].

2.6. General member of |OX|. Let f : (X,C) → (Z, o) be an ex-
tremal curve germ. If f is a Q-conic bundle, then we assume that (Z, o)
is smooth. We denote by |OZ| the linear system of Cartier divisors (hy-
perplane sections) passing through o and |OX| := f ∗|OZ|. Let H be
a general member of |OX | and let HZ = f(H). Let Hn → H be the
normalization (we put Hn = H if H is normal). By [KM98, 5.25] and
Lemma 2.5 both HZ and H are Cohen-Macaulay. Hence by Bertini’s
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theorem HZ is normal. Then the composition map Hn → HZ has con-
nected fibers. Moreover, it is a rational curve fibration if dimZ = 2;
a birational contraction to a point (HZ , o) if f is birational. Thus in
the Q-conic bundle case Hn has only rational singularities. The same is
true in the birational case if the singularity (HZ , o) is rational.

2.7. Notation on dual graphs. Let S be a normal surface and let
C ⊂ S be a curve. Suppose that on the minimal resolution of S the
exceptional divisors and the proper transform of C form a normal cross-
ing divisor, say R. We use the usual notation of dual graphs ∆(S, C)
of R: each ⋄ corresponds to an irreducible component of C and each ◦
corresponds to an exceptional divisor, and we may use • instead of ⋄
if we want to emphasize that it is a complete (−1)-curve. A number
attached to a vertex denotes the minus self-intersection number. For
short, we may omit 2 if the self-intersection equals −2.

2.7.1. Proposition ([Cut88]). (i) Let f : X → Z be a Q-conic
bundle. If X is Gorenstein (and terminal), then Z is smooth
and there is a vector bundle E of rank 3 on Z and an embedding
X →֒ P(E ) such that every scheme fiber Xz, z ∈ Z is a conic
in P(E )z.

(ii) (see also [KM92, 4.7.2]) Let f : (X,C) → (Z, o) be a birational
curve germ such that X is Gorenstein. Then f is divisorial,
(Z, o) is smooth, C is irreducible, and f is the blowup of a
curve B ⊂ Z having only planar singularities. Moreover, X
has exactly one singular point which is of type cA and for a
general member H ∈ |OX| the graph ∆(H,C) has the form

•— ◦— · · ·—◦︸ ︷︷ ︸
m

The following fact is a particular case of [KM92, Theorem 4.9].

2.8. Theorem. Let f : (X,C) → (Z, o) be a divisorial extremal curve
germ. Let E be its exceptional locus (with reduced structure) and let
B := f(E)red. Assume that KZ is Q-Cartier (this automatically holds
if C is irreducible, see 6.4). Then the following holds.

(i) The set E of f is purely two-dimensional and is a Q-Cartier
divisor, and the singularity (Z, o) is terminal.

(ii) The variety X is the symbolic blowup of B, that is,

X = ProjZ

∞⊕

m=0

I
(m)
B ,

where IB is the ideal sheaf of B, and I
(m)
B denotes its symbolic

power. In particular, X is uniquely determined by B ⊂ Z.
6



It is possible to study divisorial curve germs algebraically, by scrupu-
lous analysis of the curve B and its embedding B ⊂ X (see [Tzi03],
[Tzi05a], [Kaw96], [Tzi10], [PR16, § 6.1], [Duc16]). This method is
completely different from our approach.

3. Basic techniques

3.1. Let IC ⊂ OX be the ideal sheaf of C and let I
(n)
C be its symbolic

nth power, that is, the saturation of InC in OX . Put

grnC O := I
(n)
C /I

(n+1)
C .

Further, let F n
ωX be the saturation of InCωX in ωX and let

grnC ω := F n
ωX/F

n+1
ωX .

Let m be the index of KX . We have natural homomorphisms

α1 :
∧2 gr1C O −→ H omOC

(Ω1
C , gr

0
C ω),

β0 : (gr0C ω)⊗m −→ (ω⊗m
X )∨∨ ⊗ OC .

Denote

(3.1.1) iP (1) := lenP Coker(α1), wP (0) := lenP Coker(β0)/m.

To study extremal germs more carefully, Mori [Mor88] introduced also
series of local invariants iP (n), wP (n), w

∗
P (n) similar to iP (1) and wP (0).

We do not define them here.
Assume that C ≃ P1. Then we have by [Mor88, 2.3.1]

− deg gr0C ω = −KX · C +
∑

P

wP (0),(3.1.2)

2 + deg gr0C ω− deg gr1C O =
∑

P

iP (1).(3.1.3)

Since rk gr1C O = 2, taking 2.4 into account we obtain

(3.1.4) deg gr1C O ≥ −2,

(3.1.5) 4 ≥ − deg gr0C ω+
∑

P

iP (1) = −KX ·C+
∑

P

wP (0)+
∑

P

iP (1).

3.1.6. Remark. In the case where f is birational, by the Grauert-
Riemenshneider vanishing, one has gr0C ω = OC(−1) (see [Mor88, 2.3]).
This is no longer true for Q-conic bundles: in the toroidal example 2.3
easy computations show deg gr0C ω = −2 (see (3.1.2)). Similarly, in the
case 9.1.2 we also have deg gr0C ω = −2. We will show below that these
two examples are the only exceptions (see Corollaries 4.7.8 and 5.5.1).
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3.2. Let (X,P ) be a germ of threefold terminal singularity. Through-
out this paper (X♯, P ♯) → (X,P ) denotes the index-one cover. For any
object V on X we denote by V ♯ the pull-back of V on X♯.

3.3. Lemma ([Mor88, 2.16]). In the above notation, assume that C♯ is
smooth. Denote

ℓ(P ) := lenP I
♯(2)
C /I♯2C ,

where I
♯
C is the ideal of C♯ in X♯. Then

(3.3.1) iP (1) =





ℓ(P ) if m = 1,

⌊(ℓ(P ) + 6)/4⌋ if (X,P ) is of type cAx/4,

⌊ℓ(P )/m⌋ + 1 if (X,P ) is not as above.

3.4. Lemma ([Mor88, 2.10, 2.15]). If (X,P ) is singular, then iP (1) ≥ 1.
If (X,P ) is not Gorenstein, then wP (0) > 0.

Then from (3.1.5) we obtain

3.4.1. Corollary. An extremal curve germ (X,C ≃ P1) has at most
three singular points.

3.5. Let (X,C) be an extremal curve germ. By Lemma 2.4.1(i) we
have H1(gr1C O) = 0. From the standard exact sequence

0 −−−→ I
(n+1)
C −−−→ I

(n)
C −−−→ grnC O −−−→ 0.

we obtain the following easy but useful fact.

3.5.1. Lemma. The following assertions hold.

(i) If H1
(
grnC O

)
= 0 and the map H0

(
I
(n)
C

)
→ H0

(
grnC O

)
is sur-

jective, then H1
(
I
(n+1)
C

)
≃ H1

(
I
(n)
C

)
. In particular, H1(I) = 0

from the case n = 0.

(ii) If for all i < n one has H1(griC O) = 0 and the map H0(I
(i)
C ) →

H0(griC O) is surjective, then H1(I
(n)
C ) ≃ H1(grnC O) = 0.

(iii) If H0(gr1C O) = 0, then H1(I
(2)
C ) = H1(gr2C O) = 0.

In particular, if a general member H ∈ |OX | is normal, then
H0(gr1C O) 6= 0.

Note however that this is necessary but not sufficient condition for
normality of H [MP11].

3.6. Sheaves grnC ω.

3.6.1. Lemma. Let f : (X,C) → (Z, o) be an extremal curve germ.

(i) ([Mor88, 1.2]) If f is birational, then Rif∗ωX = 0 for i > 0.
(ii) ([MP08a, Lemma 4.1]) If f is a Q-conic bundle and Z is smooth,

then there is a canonical isomorphism R1f∗ωX ≃ ωZ.
8



Proof. (i) follows from the Grauert-Riemenshneider vanishing. Let us
prove (ii). Let g : W → X be a resolution. By [Kol86, Prop. 7.6]
we have R1(f ◦ g)∗ωW = ωZ . Since X has only terminal singularities,
g∗ωW = ωX and by the Grauert-Riemenshneider vanishing, Rig∗ωW =
0 for i > 0. Then the Leray spectral sequence gives us R1f∗ωX =
R1(f ◦ g)∗ωW = ωZ . �

We also have the following useful fact

3.7. Corollary. Let f : (X,C ≃ P1) → (Z, o) be an extremal curve
germ.

(i) If f is birational, then deg gr0C ω = −1.
(ii) Assume that f is a Q-conic bundle with smooth base. If

deg gr0C ω 6= −1, then f−1(o) = C (as a scheme).

Sketch of the proof. For (i) we note that by 3.6.1(i) for an arbitrary
ideal J such that Supp(OX/J ) ⊂ C we have H1(ωX/JωX)) = 0.
Hence, H1(gr0C ω) = 0 in this case. On the other hand, deg gr0C ω < 0
by (3.1.2). For (ii) we apply [MP08a, Theorem 4.4] with J = IC . �

3.7.1. Lemma ([Mor88, Cor. 1.15], [Kol99, Prop. 4.2], [MP08a, Lemma
4.4.2]). Let f : (X,C) → (Z, o) be an extremal curve germ. Suppose that
C is reducible and let P be a singular point of C. If X is Gorenstein
at P , then f is a Q-conic bundle and C has two components meeting at
P . If moreover (Z, o) is smooth, then X is Gorenstein (see 2.7.1(i)).

We will show below in 4.7.6 that in the above assumptions (Z, o) is
smooth automatically.

Proof. By Corollary 2.4.1 there are at least two components, say
C1, C2 ⊂ C passing through P . Replacing (X,C) with (X,C1 ∪ C2)
we may assume that C = C1 ∪ C2 (see Remark 2.4.2). Since the point
P ∈ X is Gorenstein, the sheaf gr0C ω = ωX ⊗ OC is invertible at P .
Consider the injection

ϕ : gr0C ω →֒ gr0C1
ω⊕ gr0C2

ω.

Recall that (X,Ci) is a (birational) extremal curve germ by Remark
2.4.2. Then by 3.7(i) we have gr0Ci

ω = OCi
(−1), so H0(Coker(ϕ)) =

H1(gr0C ω). On the other hand, Coker(ϕ) is a sheaf of finite length
supported at P . Since gr0C ω is invertible, Coker(ϕ) is non-trivial. So,
H1(gr0C ω) 6= 0 and by Corollary 3.7 the contraction f is a Q-conic
bundle. Moreover, if the base (Z, o) is smooth, then again by Corollary
3.7 we have C = f−1(o) (scheme-theoretically). Hence P is the only
singular point of X and are done. �
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4. Topological observations

Let Clsc(X) be the subgroup of the divisor class group Cl(X) consist-
ing of Weil divisor classes which are Q-Cartier. We will use the following
easy consequence of the classification of terminal singularities without
additional reference.

4.1. Proposition ([Kaw88, Lemma 5.1]). Let (X,P ) be an (analytic)
germ of three-dimensional terminal singularity of index m. Then

(4.1.1) Clsc(X,P ) ≃ π1(X \ {P}) ≃ Z/mZ.

4.2. Definition ([Mor88, (0.4.16), (1.7)]). Let (X,P ) be a terminal
three-dimensional singularity of index m and let C ⊂ X be a smooth
curve passing through P . We say that C is (locally) primitive at P if
the natural map

̺ : Z ≃ π1(C \ {P}) −→ π1(X \ {P}) ≃ Z/mZ

is surjective and imprimitive at P otherwise. The order s of Coker(̺)
is called the splitting degree and the number m̄ = m/s is called the
subindex of P ∈ C.

It is easy to see that the splitting degree coincides with the number
of irreducible components of the preimage C♯ of C under the index-one
cover X♯ → X near P . If P is primitive, we put s = 1 and m̄ = m.

4.3. In the above notation it is easy to show that for any Weil divisor
class ξ ∈ Clsc(X,P ) there exists an effective Weil Q-Cartier divisor D
whose class in Clsc(X,P ) equals ξ and such that D ∩ C = {P}. Then
one can define the intersection number ξ ·C := (D ·C)P mod Z. Hence
there exists a well-defined homomorphism

cl : Clsc(X,P ) −→ 1
m
Z/Z ⊂ Q/Z, ξ 7−→ ξ · C.

The curve C is locally primitive at P if and only if the map cl is an
isomorphism. In general, the splitting degree equals the order of the
kernel of cl [Mor88, 1.7].

4.4. Let (X,C) be an extremal curve germ with irreducible central
fiber C. Let P1, . . . , Pn be all the non-Gorenstein points of X and let
m1, . . . , mn be their indices. We have the following exact sequence

(4.4.1)
0 // Pic(X) // Clsc(X) // ⊕Clsc(X,Pi) // 0

≃ ≃

Zρ(X) ⊕Z/miZ

4.4.2. Corollary. In the above notation assume that C is irreducible.
Let Di, n = 1, . . . , n be an effective Weil Q-Cartier divisor whose class
generates Clsc(X,Pi) and let H be an effective Cartier divisor such that
H · C = 1. Then the following holds.

10



(i) The group Clsc(X) is generated by the classes of H, D1, . . . , Dn.
(ii) If the point Pi is imprimitive of splitting degree si and subindex

m̄i, then the class of H − m̄iDi is an si-torsion element in
Clsc(X).

(iii) If (X,C) is locally primitive at distinct points Pi, Pj ∈ C and
gcd(mi, mj) = d 6= 1, then the class of mi

d
Di −

mj

d
Dj is a d-

torsion element in Clsc(X).

4.5. Construction. Let f : (X,C) → (Z, o) be an extremal curve
germ and let θ : (X♭, C♭) → (X,C) be a finite cover which is étale in
codimension one. Clearly, θ must be étale over the Gorenstein locus of
X . The Stein factorization gives us the following diagram.

(4.5.1)

(X♭, C♭)
θ

//

f♭

��

(X,C)

f

��

(Z♭, o♭) // (Z, o)

where (Z♭, o♭) → (Z, o) is a finite cover which is étale over Z \ {o}. We
have KX♭ = θ∗KX and singularities of X♭ are terminal. In particular,
(X♭, C♭) is an extremal curve germ. Note that in our situation X♭ is
the normalization of X ×Z Z

♭ and C♭ := f ♭−1(C)red.
Conversely, if f : (X,C) → (Z, o) is an extremal curve germ and

(Z♭, o♭) → (Z, o) is a finite cover which is étale over Z \ {o}. Then the
base change produces the diagram (4.5.1), where X♭ is the normaliza-
tion of X ×Z Z

♭, (X♭, C♭) is an extremal curve germ, and θ is étale in
codimension one.

4.6. Definition. Let (X,C) be an extremal curve germ. By the above
construction 4.5 the torsion part Cl(X)tors ⊂ Cl(X) defines an abelian
Galois cover

(4.6.1) τ : (X ′, C ′) −→ (X,C)

which is étale over the Gorenstein locus of X . We call this map the
torsion free cover of (X,C) and the degree of this cover we call the
topological index of (X,C). Similar to (4.5.1) we have the diagram

(4.6.2)

(X ′, C ′)
τ

//

f ′

��

(X,C)

f
��

(Z ′, o′) // (Z, o)

Hence (X ′, C ′) is also an extremal curve germ. Clearly, Cl(X ′) is torsion
free.

11



4.6.3. Lemma. Let (X,C) be an extremal curve germ and let θ :
(X♭, C♭) → (X,C) be a finite cover which is étale in codimension two.
Then θ is a cyclic cover.

Proof. We may assume that the cover θ is Galois with group G and it
is sufficient to show that the group G is cyclic. By taking composition
with the torsion free cover, we may assume also that Clsc(X♭) is torsion
free. By the construction G effectively acts on C♭ = ∪C♭

i (because X
has only isolated singularities). Since C♭ is a tree of smooth rational
curves, it is easy to prove by induction on the number of components of
C♭ that G has either an invariant component C♭

i ⊂ C♭ or a fixed point
P ♭ ∈ Sing(C♭).
In the latter case, let P = θ(P ♭). There is a surjection π1(X \{P}) ։

G. Since π1(U \ {P}) is cyclic (see 4.1), we are done.
In the former case, let Ci := θ(C♭

i ). By Remark 2.4.2 we may replace
(X♭, C♭) with (X♭, C♭

i ) and (X,C) with (X,Ci). Thus C = Ci, C
♭ = C♭

i ,
and C♭/G = C ≃ P1. Assume that the group G is not cyclic. Then
there is no fixed points on C♭. If X♭ has a point of index m > 1, then
its orbit contains at least two points of the same index. By (4.4.1) the
torsion part of the group Clsc(X♭) is non-trivial. This contradicts the
assumption above. Thus X♭ is Gorenstein.
Let P1, . . . , Pn ∈ C be all branch points of C♭ → C and letm1, . . . , mn

be their ramification indices. By the Hurwitz formula we can write

1

|G|

(
2g(C♭

i )− 2
)
= 2g(Ci)− 2 +

n∑

i=1

(
1−

1

mi

)

Hence,
∑

1/mi > n−2. Since the group G is not cyclic, we have n > 2.
The index of the point Pi ∈ X is equal tomi. By (3.1.1) and Lemma 3.4
we have wPi

(0) ≥ 1/mi and iPi
(1) ≥ 1. Therefore,

∑
wPi

(0) > 1 and
deg gr0C ω = −1 by (3.1.5). Then we get a contradiction by (3.1.2). �

4.6.4. Corollary. Let (X,C) be an extremal curve germ. Then the tor-
sion part Cl(X)tors ⊂ Cl(X) is a cyclic group. Hence the torsion free
cover (4.6.1) is cyclic. Moreover, X ′, C ′) has no finite cover which is
étale in codimension one.

4.6.5. Corollary ([Pro97, Lemma 1.10]). If f : (X,C) → (Z, o) is a
Q-conic bundle germ, then (Z, o) is a cyclic quotient singularity.

Proof. Follows from Lemma 4.6.3 and 4.5. �

4.7. From now on we assume that f : (X,C) → (Z, o) is an extremal
curve germ with C ≃ P1. Assume that the torsion part Cl(X)tors =
Z/dZ is non-trivial and consider the torsion free cover (4.6.1). Thus
(X,C) = (X ′, C ′)/G and (Z, o) = (Z ′, o′)/G, where G = µd acts on Z

′ \
12



{o′} and X ′\τ−1 (Sing(X)) freely. We distinguish two cases (cf. [Mor88,
(1.12)]):

4.7.1. Case: C ′ is irreducible. Then G = µd has exactly two fixed
points P ′

1 and P ′
2 on C ′ ≃ P1. They give us two points Pi := τ(P ′

i ) on
C whose indices are divisible by d. The germ (X,C) is locally primitive
along C.

4.7.2. Case: C ′ = ∪s
i=1C

′
i, where s > 1 and C ′

i ≃ P1. In this case,
G acts on {C ′

1, . . . , C
′
s} transitively. Since pa(C

′) = 0, each component
C ′

i meets the closure of C ′ \ C ′
i at one point. Therefore, in this case,

all the irreducible components C ′
i pass through one point P ′ and do not

meet each other elsewhere. In this case (X,C) is imprimitive at τ(P ′)
of splitting degree s and has no other locally imprimitive points.

It is worthwhile to mention in the case 4.7.2 that τ(P ′) is the only
non-Gorenstein point of X and d = s (see [Mor88, Th. 6.7, 9.4] and
[MP08a, § 7]).

4.7.3. Corollary ([Mor88, (1.10)]). Let (X,C ≃ P1) be an extremal
curve germ. Let P1, . . . , Pn be all the non-Gorenstein points of X. The
following are equivalent:

(i) D · C = 1/m1 · · ·mn for some D ∈ Clsc(X),
(ii) Clsc(X) ≃ Z,
(iii) Clsc(X) is torsion-free,
(iv) (X,C) is locally primitive and gcd(mi, mj) = 1, i 6= j.

Proof. Follows from Lemma 4.6.3 and (4.4.1). �

4.7.4. Corollary (cf. [MP08a, Lemma 2.8]). Let (X,C ≃ P1) be an
extremal curve germ. Let d be the topological index of (X,C) and let
m1, . . . , mr be indices of all the non-Gorenstein points. Assume that
(X,C) is either divisorial or a Q-conic bundle which is not toroidal 2.3.
Then

(4.7.5) −KX · C = d/m1 · · ·mr.

Proof. It follows from (4.4.1) that for the ample generator D of the
group Clsc(X)/≡ one has D · C = d/m1 · · ·mr. Write −KX ≡ aD for
some a ∈ Z. Intersecting D and KX with a general one-dimensional
fiber L, we obtain −KX · L = D · L and a = 1. �

Now we can strengthen the assertion of Lemma 3.7.1.

4.7.6. Corollary. Let f : (X,C) → (Z, o) be an extremal curve germ.
Suppose that C is reducible and let P be a singular point of C. If X
is Gorenstein at P , then (Z, o) is smooth and f is a Gorenstein conic
bundle.

13



Proof. By Lemma 3.7.1 f is a Q-conic bundle and (Z, o) is singular.
Recall (see Lemma 2.5) that (Z, o) is a quotient singularity. Thus there
is a finite Galois étale over Z \{o} cover (Z♭, o♭) → (Z, o) where (Z♭, o♭)
is smooth. Then we can consider the base change (see (4.5.1)). Thus
X = X♭/G, where G is a finite group acting on X♭ freely outside finite
number of points. Since X is Gorenstein at P , so is X♭ at all the points
P ♭
i ∈ θ−1(P ). Moreover, θ is étale over P by (4.1.1). Hence, the central

curve C♭ is singular at P ♭
i . By Lemma 3.7.1 the variety X♭ is Gorenstein

and by Corollary 2.7.1 the contraction f ♭ : X♭ → Z♭ is a standard
Gorenstein conic bundle. In particular, C♭ is a plane conic. Thus C♭

has two components meeting at one point θ−1(P ) which must be fixed
by G. Again by (4.1.1) the group G is trivial, a contradiction. �

4.7.7. Corollary. Let f : (X,C ≃ P1) → (Z, o) be an extremal curve
germ. Assume that (X,C) is locally imprimitive at P . If the subindex
of P equals 1, then f is a Q-conic bundle and in the diagram (4.6.2)
the contraction f ′ is a Gorenstein conic bundle.

Q-conic bundles which are quotients of Gorenstein conic bundles by
a finite group were described in [Pro97, § 2]. It turns out that such a
Q-conic bundle is locally imprimitive if and only if it is of type 9.1.2.

4.7.8. Corollary (cf. [Mor88, Prop. 1.14]). Let f : (X,C) → (Z, o)
be an extremal curve germ. Assume that C is irreducible. If gr0C ω 6≃
OC(−1), then f is a Q-conic bundle and in notation of (4.6.2) we have
f ′−1(o′) = C ′. If furthermore (X,C) is locally primitive, then it is
toroidal (see 2.3).

Proof. By Remark 3.1.6 the contraction f is a Q-conic bundle. Apply
the construction (4.6.2). Since

H1(gr0C ω) = H1(gr0C′ ω)µd,

we have H1(gr0C′ ω) 6= 0. By Corollary 3.7 C ′ = f ′−1(o′). If f is locally
primitive, C ′ is irreducible (see 4.7.1). So C ′ ≃ P1 and X ′ is smooth.
Up to analytic isomorphism we may assume that there exists a µd-
equivariant decomposition X ′ ≃ Z ′ × P1. So, f is toroidal 2.3, [Pro97,
§ 2]. �

4.8. Proposition ([MP08a, Lemma 9.2.3], [Mor88, 0.4.13.3]). An ex-
tremal curve germ (X,C ≃ P1) has at most two non-Gorenstein points.

Proof. Assume that P1, P2, P3 ∈ X are singular points of indices m1,
m2, m3 > 1. If (X,C) is locally imprimitive at some point, then the
torsion free cover τ : (X ′, C ′) → (X,C) has the form 4.7.2, i.e. C ′ is
a union of s components C ′

1, . . . , C
′
s passing through one point, say P ′,

and τ is étale over X ′ \ {P ′}. By Corollary 4.7.7 the point P ′ ∈ X ′ is
14



not Gorenstein. Thus for any component C ′
i the germ (X,C ′

i) has at
least three non-Gorenstein points.
Replacing (X,C) with (X ′, C ′

i) we may assume that (X,C) is locally
primitive, i.e. the maps π1(C \ {Pi}) → π1(Ui \ {Pi}) are surjective,
where Ui ⊂ X is a small neighborhood of Pi. Then using Van Kampen’s
theorem and (4.1.1) it is easy to compute the fundamental group of
X \ {P1, P2, P3}:

π1(X \ {P1, P2, P3}) = 〈σ1,σ2,σ3〉/{σ
m1

1 = σ
m2

2 = σ
m3

3 = σ1σ2σ3 = 1}.

This group has a finite quotient group G in which the images of σ1, σ2,
σ3 are exactly of order m1, m2 and m3, respectively (see, e.g., [Feu71]).
The above quotient defines a finite Galois cover τ : (X ′, C ′) → (X,C)
with non-abelian Galois group G. This contradicts Lemma 4.6.3. �

5. Local description

5.1. Notation. Let (X,P ) be a threefold terminal singularity of index
m and let C ⊂ (X,P ) be a smooth curve such that P has subindex
m̄ and splitting degree s (see 4.2). We use the notation of 2.1. Put
C♯ := π−1(C). Then C♯ has s irreducible components.
Let (C†, P †) be the normalization of an irreducible component C♯(i) ⊂

C♯, 1 ≤ i ≤ s and let τ : (X ′, C ′) → (X,C) be the torsion free cover
(see (4.6.2)). Then µm naturally acts on (X♯, P ♯) and (C♯, P ♯), and so
does µm̄ on (C ′, P ′). Let

η : OX♯,P ♯ −→ OX†,P †

be the natural map. Since (X,P ) and (C, P ) are normal, one has

OX,P =
(
OX♯,P ♯

)µm and OC,P =
(
OC†,P †

)µm̄ .

Since µm acts freely on X♯ \{P ♯}, so it does on C♯ \{P ♯} and hence µm̄

on C† \ {P †}. Hence OC†,P † has a uniformizing parameter, say t, such
that t is a µm̄-semi-invariant. Let χ be a generator of Hom(µm,C

∗) =
Z/mZ whose restriction χ̄ to µm̄ is the character associated to t. Then
OC,P = C{t}µm̄ .
For a semi-invariant z 6= 0, let C♯- wt(z)(or simply wt(z) if there is

no confusion) be n ∈ Z/mZ such that nχ is the character associated to
z. For a µm-semi-invariant z ∈ OX♯,P ♯, let

C♯- ord(z) := sup {n ∈ Z≥0 | η(z) ∈ tnC{t}} .

We also write ord(z), if it does not cause confusion. Let

ow(z) := (ord(z),wt(z)).

We define semigroups

ord(C♯) :=
{
ord(z) | z ∈ OC♯,P ♯, z 6= 0

}
⊂ Z>0,

ow(C♯) :=
{
(ord(z),wt(z)) | z ∈ OC♯,P ♯, z 6= 0

}
⊂ Z≥0 × Z/mZ.
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One can show that in some coordinates C♯ can be given by a monomial
parametrization (see [Mor88, Lemma 2.7] for the precise statement).

5.2. Notation. Let f : (X,C ≃ P1) → (Z, o) be an extremal curve
germ and let P ∈ C be a point of index m ≥ 1. Let s and m̄ be the
splitting degree and subindex, respectively. Consider the index-one µm-
cover π : (X♯, P ♯) → (X,P ) and let C♯ := π−1(C). Take normalized
ℓ-coordinates (x1, . . . , x4) and let φ be an ℓ-equation of X ⊃ C ∋ P (see
[Mor88, 2.6]). Put ai := ord(xi). Note that ai < ∞ and wt(xi) ≡ ai
mod m̄.
The following is the key fact in the local classification of possible

singularities of extremal curve germs.

5.3. Lemma ([Mor88, 3.8, 4.2], [MP08a, § 5]). In the above notation,
assume that P is not of type (IE∨) below. Then ow(C♯) is generated by
ow(x1) and ow(x2). In particular, C♯ is a planar curve.

This lemma allows to obtain a local classification of possible singulari-
ties. We reproduce this classification below. We start with the primitive
case.

5.4. Proposition ([Mor88, Prop. 4.2], [MP08a, Prop. 5.2.1]). Let f :
(X,C ≃ P1) → (Z, o) be an extremal curve germ and let P ∈ C be a
primitive point of index m ≥ 1. Then modulo permutations of xi’s, the
semigroup ord(C♯) is generated by a1 and a2. Moreover, exactly one of
the following holds:

(IA) a1 + a3 ≡ 0 mod m, a4 = m, m ∈ Z>0a1 + Z>0a2, where we
may still permute x1 and x3 if a2 = 1,

(IB) a1 + a3 ≡ 0 mod m, a2 = m, a1 ≥ 2,
(IC) a1 + a2 = a3 = m, a4 6≡ a1, a2 mod m, 2 ≤ a1 < a2, m ≥ 5,
(IIA) m = 4, P is of type cAx/4, and ord(x) = (1, 1, 3, 2),
(IIB) m = 4, P is of type cAx/4, and ord(x) = (3, 2, 5, 5),
(III) m = 1, X = X♯, C = C♯, and P ∈ X is a cDV point.

Now consider the locally imprimitive case.

5.5. Proposition ([Mor88, Prop. 4.2], [MP08a, Prop. 5.3.1]). Let f :
(X,C ≃ P1) → (Z, o) be an extremal curve germ and let P ∈ C be an
imprimitive point of index m.
Modulo permutations of xi’s and changes of ℓ-characters, the semi-

group ow(C♯) is generated by ow(x1) and ow(x2) except for the case
(IE∨) below. Moreover, exactly one of the following holds:

(IA∨) m̄ > 1, wt(x1) + wt(x3) ≡ 0 mod m, ow x4 = (m̄, 0), ow(C♯)
is generated by ow(x1) and ow(x2), and wP (0) ≥ 1/2.
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(IC∨) s = 2, m̄ is an even integer ≥ 4, and

x1 x2 x3 x4
wt 1 −1 0 m̄+ 1 mod m
ord 1 m̄− 1 m̄ m̄+ 1

(II∨) m̄ = s = 2, P is of type cAx/4, and

x1 x2 x3 x4
wt 1 3 3 2 mod 4
ord 1 1 1 2

(ID∨) m̄ = 1, s = 2, P is of type cA/2 or cAx/2, and

x1 x2 x3 x4
wt 1 1 1 0 mod 2
ord 1 1 1 1

(IE∨) m̄ = 2, s = 4, P is of type cA/8, and

x1 x2 x3 x4
wt 5 1 3 0 mod 8
ord 1 1 1 2

Moreover, cases (ID∨) and (IE∨) occurs if and only if f is a Q-conic
bundle and C ′ = f ′−1(o′). In these cases, P is the only non-Gorenstein
point.

Proofs are based on very careful local computations. We do not
present them here. See Example 5.8 for sample of computations.

5.5.1. Corollary. Let (X,C ≃ P1) be an extremal curve germ. As-
sume that gr0C ω 6≃ O(−1). Then (X,C) is a Q-conic bundle germ
which is either toroidal or the only non-Gorenstein point of (X,C) is of
type (ID∨).

Proof. By Corollary 4.7.8 (X,C) is Q-conic bundle and C ′ = f ′−1(o′).
Assume that it is not a toroidal. Then again by 4.7.8 it is locally
imprimitive and by the proposition above (X,C) has a unique non-
Gorenstein point, say P , which is of type (ID∨) or (IE∨). In the case
(IE∨) we have −KX ·C = 1/2 (see 4.7.4). Easy computations show that
wP (0) = 1/2 and so deg gr0C ω = −1 by (3.1.2). �

5.6. By Lemma 5.3 there exist monomials λ3 and λ4 in x1, x2 such
that x3 = λ3(x1, x2) and x4 = λ4(x1, x2) on C

♯. Then

xsa21 − xsa12 , x3 − λ3, x4 − λ4

generate the defining ideal I♯ of C♯ ⊂ C4. Then the equation of X♯ can
be written as follows

φ = (xsa21 − xsa12 )φ2 + (x3 − λ3)φ3 + (x4 − λ4)φ4

for some semi-invariant φi ∈ C{x1, . . . , x4} with suitable weights.
17



5.7. Lemma. Under the notation of 5.4 and 5.5, one has

(i) if P is of type (IC) or (IC∨), then (X♯, P ♯) is smooth and I♯ =
(xsa21 − xsa12 , x4 − λ4, φ);

(ii) if P is of type (IIB) or (II∨), then I♯ = (x3 − λ3, x4 − λ4, φ).

Proof. Let us consider for example the case (IC). Then λ3 must be x1x2,
and so

φ = (xsa21 − xsa12 )φ2 + (x3 − x1x2)φ3 + (x4 − λ4)φ4.

Since P is of type (IC), one sees that m = a1 + a2 > 4, φ2 ∈ (x),
and that φ4, λ4 ∈ (x)2 because wt(x4) 6≡ 0,±wt(x1),±wt(x2) mod m.
Since m ≥ 5, by the classification of terminal singularities either x1x2
or x3 must appear in the power series expansion. Since a1, a2 ≥ 2, this
is only possible if φ3 is a unit. �

5.8. Example. According to Lemma 5.7(i) a point P ∈ (X,C) of type
(IC∨) can be written as follows:

(X,C, P ) =
(
C3

x1,x2,x4
, {x4 = x22 − x2m̄−2

1 = 0}, 0
)
/µ2m̄(1,−1, m̄+ 1)

We have C ≃ {x4 = x2 − xm̄−1
1 = 0}/µm̄ and a local uniformizing

parameter on C is xm̄1 . Hence, OC,P = C{xm̄1 }. Furthermore,

OC(mKX) = OC(dx1 ∧ dx2 ∧ dx4)
m,

gr0C ω = OC(x
m̄−1
1 dx1 ∧ dx2 ∧ dx4),

gr1C O = OC(x
m̄−1
1 x4)⊕ OC(x

2
1(x

2
2 − x2m̄−2

1 )),

wP (0) = (m̄− 1)/m̄, ip(1) = 2.

6. Deformations

In this section we discuss deformations of extremal curve germs. It is
known that a small deformation of a terminal singularity is again termi-
nal (see e.g. [Ish14, Theorem 9.1.14]). Moreover, any three-dimensional
terminal singularity admits a Q-smoothing, i.e. a deformation to a col-
lection of cyclic quotient singularities [Rei87, 6.4A].
To study extremal curve germs it is very convenient to deform an

original germ to more general one. For example sometimes this pro-
cedure increases the number of singular points and it can be used to
derive a contradiction.

6.1. Definition. Let X be a threefold with at worst terminal singular-
ities. We say X is ordinary at P (or P is an ordinary point) if (X,P )
is either a cyclic quotient singularity or an ordinary double point.

First, we note that for extremal curve germs deformations are unob-
structed:
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6.2. Proposition ([Mor88, 1b.8.2], [KM92, 11.4.2], [MP08a, 6.1]). Let
f : (X,C) → (Z, o) be an extremal curve germ and let P ∈ C. Then
every deformation of germs (X,P ) ⊃ (C, P ) can be extended to a defor-
mation of (X,C) so that the deformation is trivial outside some small
neighborhood of P .

Proof. Let Pi ∈ X be singular points. Consider the natural morphism

Ψ : Def(X) −→
∏

Def(X,Pi).

It is sufficient to show that Ψ is smooth (in particular, surjective). The
obstruction to globalizing a deformation in

∏
Def(X,Pi) lies in R

2f∗TX .
Since f has only one-dimensional fibers, R2f∗TX = 0. Alternate, more
explicit proof can be found in [Mor88, 1b.8.2]. �

The following theorem was proved in [MP11, Th. 3.2] for f divisorial;
in [KM92, (11.4)] for f flipping; or in [MP08a, (6.2)] for f a Q-conic
bundle.

6.3. Theorem ([MP08a, (6.2)]). Let f : (X,C) → (Z, o) be a divisorial
(resp. flipping, Q-conic bundle) curve germ, where C is not necessarily
irreducible. Let π : X → (C1

λ, 0) be a flat deformation of X = X0 :=
π−1(0) over a germ (C1

λ, 0) with a flat closed subspace C ⊂ X such that
C = C0. Then there exists a flat deformation Z → (C1

λ, 0) and a proper
C1

λ-morphism f : X → Z such that f = f0 and

fλ : (Xλ, f
−1
λ (oλ)red) → (Zλ, oλ)

is a divisorial (resp. flipping, Q-conic bundle) extremal curve germ for
every small λ, where oλ := fλ(Cλ).

Note however that the deformations do not preserve irreducibility
of the central fiber: one can easily construct an example of an ex-
tremal curve germ (X,C ≃ P1) whose deformation (Xλ, f

−1
λ (oλ)red) has

reducible central fiber. In practice, we often pick up a suitable irre-
ducible component of f−1

λ (oλ)red and obtain an extremal curve germ
whose central fiber is irreducible (see Remark 2.4.2).

6.3.1. Let f : (X,C) → (Z, o) be an extremal curve germ with a singular
point P ∈ C of of index m, and let P1, . . . , Pr be all the other singular
points of X on C. Let (X♯, P ♯) → (X,P ) be the index one cover and
let (X♯, P ♯) ⊂ (C4

x1,...,x4
, 0) be an equivariant embedding as in 2.1.1.

Let φ = 0 be an equation of X♯. We will choose semi-invariant ψ ∈
C{x1, . . . , x4} with wt(ψ) ≡ wt(φ) mod m such that

Xλ,ǫ := {(x1, . . . , x4) | φ+ λψ = 0, |xi| < ǫ}/µm ⊂ C4/µm

has only terminal singularities for |λ| ≪ ǫ≪ 1.
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6.3.2. Proposition ([Mor88, 4.7]). For suitable choice of ψ, each nearby
extremal curve germ Xo

λ ⊃ Cλ ≃ P1 contains P, P1, . . . Pr so that
(Xo

λ, Pi) ⊃ (Cλ, Pi) is naturally isomorphic to (X,Pi) ⊃ (C, Pi) for all i
and Xλ,ǫ ⊃ Cλ,ǫ contains all the singularities (∈ Cλ) of Xλ ⊃ Cλ other
than P1, . . . Pr. All the singularities of Xλ,ǫ ⊃ Cλ,ǫ are ordinary.
If P is a primitive (resp. an imprimitive) point, then Xλ,ǫ ⊃ Cλ,ǫ is

locally primitive (resp. P is an imprimitive point of Xλ,ǫ ⊃ Cλ,ǫ with
the same subindex and splitting degree as X ⊃ C ∋ P ). Depending on
the type of X ⊃ C ∋ P , one has

type
Xλ,ǫ ⊃ Cλ,ǫ

type index wP (0), wPi
(0) on Xλ

(IA) P (IA) m the same as for X
(IA∨) P (IA∨) m the same as for X
(IIA) P (IA) m the same as for X
(II∨) P (IA∨) m the same as for X
(IB) a1 points (IA) m the same as for X
(IIB) P and Q (IA) 4 and 2
(III) iP (1) points (III) 1 0

In the case (III), one can also make Xλ,ǫ smooth by choosing some other
suitable ψ.

6.3.3.Corollary. Arbitrary extremal curve germ (X,C) can be deformed
to an extremal curve germ (Xo, Co) with only ordinary points.

6.3.4. Corollary. A flipping extremal curve germ (X,C) has at least
one non-Gorenstein point.

Proof. Assume that (X,C) has only type (III) singular points. Applying
smoothings as in 6.3.2 repeatedly at type (III) points, one obtains a
flipping extremal curve germ (Xo, Co) such that Xo is smooth. Thus
by (3.1.3) and 4.7.8 for the normal bundle of Co one has

degNCo/Xo = − deg gr1Co O = −1.

Hence the space of deformation of Co in Xo has dimension ≥ 1. This
means that Co moves inside Xo. This contradicts our assumption that
(X,C) is flipping. �

If f : X → Z is a K-negative extremal divisorial contraction from a
variety X with terminal Q-factorial singularities, then the target variety
Z is also terminal. This is no longer true for divisorial extremal curve
germs. The problem is that the exceptional locus of f is not necessar-
ily a divisor in this case (because the Q-factoriality is not assumed).
Nevertheless we have the following.

6.4. Theorem ([MP11, Th. 3.1]). Let f : (X,C) → (Z, o) be a three-
dimensional divisorial extremal curve germ, where C is not necessarily
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irreducible, and let E be its exceptional locus. Then the divisorial part
of E is a Q-Cartier divisor. If furthermore C is irreducible, then E is
Q-Cartier and (Z, o) is a terminal singularity.

6.5. Corollary. Let f : (X,C ≃ P1) → (Z, o) be a three-dimensional
birational extremal curve germ. Then f is divisorial if and only if (Z, o)
is a terminal singularity.

The proof uses deformation techniques.

6.5.1. Corollary ([Mor88, Th. 6.3], [MP08a, Prop. 8.3]). An extremal
curve germ (X,C) cannot have a point of type (IB).

Proof. Assume that (X,C) has a type (IB) point P . We may apply
deformations to (X,C) and obtain an extremal curve germ (Xo, Co ≃
P1) with only ordinary singular points which has at least two points
P o and Qo of type (IA) with the same index m (> 1). By Proposition
4.8 P o and Qo are the only non-Gorenstein points of Xo, and P is the
only non-Gorenstein point of X . Thus by (4.4.1) we have Clsc(Xo) ≃
Z ⊕ Z/mZ and so there exists an étale outside {P o, Qo} cyclic cover
(X ′, C ′) → (Xo, Co) of degree m such that (X ′, C ′) is again an extremal
curve germ with C ′ ≃ P1. By Corollary 6.3.4 the germ (X ′, C ′) and
(Xo, Co) cannot be flipping.
Assume that (Xo, Co) is divisorial and let f o : (Xo, Co) → (Zo, oo)

be the corresponding contraction. By Theorem 6.4 the point (Zo, oo)
is terminal and the construction (4.5) shows that (Zo, oo) is of index
m. According to [Kaw92] the exists an exceptional divisor, say E, with
center oo whose discrepancy equals a(E,Zo) = 1/m. On the other hand,
since E is not f o-exceptional and the contraction f o is K-negative, we
have a(E,Zo) > a(E,Zo) = 1/m, a contradiction.
Finally, assume that (Xo, Co) is a Q-conic bundle. Since (X,C) has

exactly one non-Gorenstein point which is locally primitive, the base
(S, o) is smooth. Since (Xo, Co) has two points of the same index > 1,
the base (Zo, oo) is singular. By 6.3 there exists a deformation family
whose general fiber is (Zo, oo) and the special fiber is (S, o) (in this case
a general fiber f−1

λ (oλ)red must be irreducible). This is impossible. �

6.6. Deformation arguments are also used to show the existence of
extremal curve germs. Suppose we are given a normal surface germ
(H,C) along a curve C ≃ P1 and a contraction fH : H → HZ such that
C is a fiber. Let P1, . . . , Pr ∈ H be singular points. Assume also that
near each point Pi there exists a small one-parameter deformation H i

t

of H ∩UPi
, where UPi

is a neighborhood of Pi, such that the total space
V i = ∪H i

t has terminal singularity at Pi. Further, by the arguments
similar to that in Proposition 6.2 we see that the natural morphism
DefH →

∏
Def(H,Pi) is smooth. Hence there exists a global one-

parameter deformation Ht of H which induces a local deformation of
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H i
t near each Pi. Then we construct a threefold X as a total one-

parameter deformation space X = ∪Ht. This shows the existence of
X ⊃ C with H ∈ |OX| and such that Pi ∈ C ∩ UPi

⊂ UPi
has the

desired structure. Note however that H may not be general in |OX |.)
The contraction f : X → Z exists by arguments similar to [KM92,
11.4.1] and Theorem 6.3. The contraction is birational (resp. Q-conic
bundle) if HZ is a surface (resp. a curve).

7. General member of | −KX |

7.1. Let X be a threefold having terminal singularities only and let
D be an effective integral Q-Cartier divisor on X . Then D is Cohen-
Macaulay [KM98, Cor. 5.25]. Therefore, we have

• if D has only isolated singularities, then D is normal;
• if D ∼ −KX , then D is Gorenstein.

In certain situations we can say more:

7.2. Theorem ([Rei87, (6.4B)]). Let (X,P ) be a three-dimensional ter-
minal singularity. Then a general member of | −KX | has at most a Du
Val singularity at P .

7.2.1. Depending on the types of terminal singularities, a general mem-
ber D ∈ | − KX | and its preimage D♯ under the index-one cover are
described below (see [Rei87, (6.4B)]).

name equation of D♯
µm-action cover D♯ → D aw(X,P )

cA/m xy + zk (1,−1, 0) Ak−1
m:1
−→ Akm−1 k

cAx/4 x2 + y2 + z2k−1 (1, 3, 2) A2k−2
4:1
−→ D2k+1 2k − 1

cD/3 x2 + y3 + z3 (0, 1, 2) D4
3:1
−→ E6 2

cAx/2 x2 + y2 + z2k (0, 1, 1) A2k−1
2:1
−→ Dk+2 2

cD/2 x2 + y2z + zk (1, 1, 0) Dk+1
2:1
−→ D2k k

cE/2 x2 + y3 + z4 (1, 0, 1) E6
2:1
−→ E7 3

M. Reid conjectured that an analog of 7.2 holds for any K-negative
contraction of terminal threefolds (general elephant). The conjecture
is very important in birational geometry. The following theorem shows
that this conjecture is true for extremal curve germs. Different parts of
this theorem were proved in [Mor88], [KM92] [MP08a], [MP09].

7.3. Theorem. Let (X,C ≃ P1) be an extremal curve germ. Then a
general member of the linear system |−KX | is normal and has only Du
Val singularities.

Note that by the inversion of adjunction [Sho93, § 3], [Kol92, Ch. 17]
the Du Val property of a general member D ∈ | −KX | is equivalent to
the plt property of the pair (X,D).
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All the possibilities for general members of | −KX | have been classi-
fied, see [KM92] and [MP09]. Below we reproduce this classification in
the case where (X,C ≃ P1) has only one non-Gorenstein point.

7.4. Theorem. Let f : (X,C ≃ P1) → (Z, o) be an extremal curve
germ. Assume that (X,C) has only one non-Gorenstein point P . Let
D ∈ |−KX | be a general member. If f is birational, we let DZ := f(D)
which is a general member of | −KZ |. If f is a Q-conic bundle, we let
DZ := SpecZ f∗OD. Then D and DZ have only Du Val singularities and
the morphism fD : D → DZ is birational and crepant. Moreover, only
one of the following possibilities holds.

7.4.1 ([KM92, (2.2.1), (2.2.1′)], [MP08a, (1.2.3)–(1.2.6)]). We have D∩
C = {P} and fD : D → DZ is an isomorphism. In this case, D induces
a general member of | −K(X,P )|, and ∆(D) is described by 7.2.1.

7.4.2 ([KM92, (2.2.2)], [MP09, 1.3.1]). P ∈ (X,C) is of type (IC),

∆(D,C) :

◦

◦ − · · · − ◦︸ ︷︷ ︸
m−3

◦ ⋄,

where m, the index of (X,P ), is odd and m ≥ 5.

7.4.3 ([KM92, (2.2.2′)], [MP09, 1.3.2]). P ∈ (X,C) is of type (IIB),

∆(D,C) :
◦

◦ ◦ ◦ ◦ ⋄.

In some cases of 7.4.1 there are additional restrictions on the general
member D ∈ | − KX |. For example, in the case where f is birational
and (X,P ) is of type cAx/2, the general D ∈ | − KX | is of type D4

[KM92, 4.8.5.7]. A lot of restrictions are imposed on imprimitive Q-
conic bundles (see 9.1).

7.5. Let us outline the main ideas of the proof in the case where (X,C)
has only one non-Gorenstein point. Thus, let (X,C) be an extremal
curve germ with a unique non-Gorenstein point P .

7.5.1. Lemma (see [Mor88, Theorem 7.3], [MP08a, § 7, 8.6.1]). In the
notation of 7.4 and with the symbols in Propositions 5.4 for primitive
points and 5.5 for imprimitive points, we have.

(i) If P ∈ (X,C) is of type (IA), (IIA), (IA∨), (IIA∨), (ID∨),
or (IE∨), then for a general member D ∈ | − KX | we have
D ∩ C = {P}.

(ii) If P ∈ (X,C) is of type (IC) or (IIB), then for a general member
S ∈ |−2KX | we have S∩C = {P}. Moreover, the pair (X, 1

2
S)

is klt.
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Sketch of the proof. Consider the case where P is of type (IA). Take
ψ := x2 + ψ•, where ψ• ∈ C{x1, . . . , x4} is a sufficiently general semi-
invariant with wt(ψ•) ≡ wt(x2) and let D := {ψ = 0}/µm. Then
D ∩C = {P} and wt(ψ) ≡ wt(Ω), where Ω = Res(φ−1dx1 ∧ · · · ∧ dx4).
Therefore, ψΩ−1 ∈ OX(−KX) in a neighborhood of P . Since P is
the only non-Gorenstein point, this implies that KX + D is Cartier
globally by (4.4.1). On the other hand, D · C = 1

m
ordψ = a2

m
< 1

and −KX · C < 1 (see (3.1.3) and 5.5.1). Therefore, KX + D ≡ 0.
Then Corollary 2.4.1(iii) implies KX +D ∼ 0. Other cases are treated
similarly. �

Thus in the cases of 7.5.1(i) we are done. Cases (IC) and (IIB)
are much more delicate. Rough idea of proof in these cases is to use
surjectivity of the restriction map

H0(X,OX(−KX)) −→ H0(S,OS(−KX))

and extend a “good” member of | −KX |
∣∣
S
to X .

7.6. Kawamata [Kaw88] had shown that Theorem 7.3 in the flipping
case is a sufficient condition for the existence of flips. Indeed, applying a
Bertini type arguments (see [KM98, Corollary 2.33]) one can show that,
for a general member S ∈ |−2KX |, the pair (X,

1
2
S) is klt. Consider the

double cover (X♭, C♭) → (X,C) branched over S. Then X♭ has only
canonical singularities (see [KM98, 5.20], [Mor88, 7.2]) and admits a
flopping contraction of C♭. Then the existence of flip for (X,C) follows
from the existence of flop for (X♭, C♭).

7.7. As a corollary of Theorem 7.3 we have the following fact which
was conjectured by V. Iskovskikh [Isk96].

7.7.1. Corollary ([Pro97], [MP08a]). Let f : (X,C) → (Z, o) be a Q-
conic bundle germ. Then (Z, o) is either smooth or a Du Val singularity
of type A.

The corollary has important applications in birational geometry of
conic bundles (see [Isk96], [Pro18]).

8. Index two germs

In this section we discuss extremal curve germs having index two
points only. The methods are different from those used in other sections.
Throughout this section we do not assume that the central curve of an
extremal curve germ is irreducible.

8.1. Proposition ([KM92, 4.6]). Let (X,C) be an extremal curve germ
of index two. If (X,C) is a Q-conic bundle germ, then we assume that
the base surface is smooth. Then we have the following.
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(i) If P is a point of index two, then P is the only non-Gorenstein
point, all the components of C pass through P and they do not
meet each other elsewhere.

(ii) Each germ (X,Ci) is of type (IA) at P .
(iii) A general member F ∈ | −KX | satisfies F ∩ C = {P} and has

only Du Val singularity at P .

Proof. By Lemma 3.7.1 it is sufficient to show that every irreducible
component of C has at most one non-Gorenstein point. Assume the
converse: a component Ci ⊂ C contains two points P and Q of index
two. If gr0Ci

6≃ OC(−1), then (X,Ci) is a Q-conic bundle germ by
Corollary 3.7(i). In this case, C = Ci and (X,Ci) is primitive (because
the base is smooth). This contradicts Corollary 4.7.8. Thus gr0Ci

≃
OC(−1). Since the numbers KX · Ci, wP (0), and wQ(0) are strictly
positive and contained in 1

2
Z, we get a contradiction by (3.1.2).

(ii) follows from 5.4 (the case (IB) is excluded by Corollary 6.5.1).
(iii) is proved as in Sect. 7. �

First, we consider the birational case following [KM92, §4].

8.2. Theorem ([KM92, 4.7]). Let (X,C) be a birational extremal curve
germ of index two. Let P ∈ X be a non-Gorenstein point. Then a
general member H ∈ |OX | is normal and has only rational singularities.
The following are the only possibilities for the dual graph ∆(H,C), where
3
◦— ◦— · · ·—◦︸ ︷︷ ︸

n−2

—
3
◦ should be replaced with

4
◦ if n = 1.

The following is the only flipping case.

8.2.1. Then C ≃ P1, the singularity (X,P ) is of type cA/2, (HZ , o) is
of type 1

2n+1
(1, 2n− 1), and

∆(H,C) : •—
3
◦— ◦— · · ·—◦︸ ︷︷ ︸

n−2

—
3
◦

In the remaining cases (X,C) is divisorial. Then (Z, o) is a cDV
point and (HZ , o) is a Du Val singularity. If we say that (HZ , o) is of
type A0, this means that it is smooth.

No. (X,P ) (HZ , o) ∆(H,C)
C has one component

8.2.2 cA/2 A1 ◦— •—
3
◦— ◦— · · ·—◦︸ ︷︷ ︸

n−2

—
3
◦

8.2.3 cA/2 A0 ◦— ◦— •—
4
◦

8.2.4 cA/2 A2

3
◦ ◦

3
◦

•
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No. (X,P ) (HZ , o) ∆(H,C)

8.2.5 cA/2 A0

3
◦ ◦ ◦

3
◦

•
C has two components

8.2.6 cA/2 Am •—
3
◦— ◦— · · ·—◦︸ ︷︷ ︸

n−2

—
3
◦—•

8.2.7 cA/2 A0 ◦— •—
3
◦— ◦— · · ·—◦︸ ︷︷ ︸

n−2

—
3
◦—•

8.2.8 cA/2 A1

•
■■

■■
3
◦ ◦— · · ·—◦︸ ︷︷ ︸

n−2

3
◦

•
✉✉✉✉

8.2.9 cA/2 A0

3
◦ ◦

3
◦ •

•
C has three components

8.2.10 cA/2 A0

•
■■

■■
3
◦ ◦— · · ·—◦︸ ︷︷ ︸

n−2

3
◦ •

•
✉✉✉✉

C has one component

8.2.11 cAx/2,
cD/2 or
cE/2

D4

◦
3
◦ ◦ •

◦

⑤⑤⑤⑤⑤
◦

❇❇❇❇❇

8.2.12 cD/2 or
cE/2

Dn+4

◦
■■

■■ ◦
✉✉
✉✉

◦ ◦— · · ·—◦︸ ︷︷ ︸
n−1

3
◦

◦
✉✉✉✉

◦

■■■■

•
where n ≥ 1 and n = 1 if (X,P ) is of type cE/2

8.2.13 cE/2 E6

◦ ◦ ◦ ◦ ◦

• ◦ ◦
3

Note that the singularities ofH are log terminal in all the cases except
for 8.2.11, 8.2.12, 8.2.13. In the cases 8.2.11 and 8.2.12 the singularities
of H are log canonical.

8.2.14. Theorem ([KM92, 4.2]). In the notation of Theorem 8.2 as-
sume that f is flipping (see 8.2.1) and let (X,C) 99K (X+, C+) be the
corresponding flip. Then the following hold.

(i) In appropriate coordinates the point (X ∋ P ) is given by
{
x1x2 + p(x23, x4) = 0

}
/µ2(1, 1, 1, 0)
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and C is the x1-axis.
(ii) X+ has at most one singular point which is isolated cDV with

equation x1x2 + p(x3, x4) = 0 and C+ is the x1-axis.
(iii) (Z, o) is a rational triple point given by the 2× 2-minors of the

matrix (
z1 z2 z3
z2 z5 p(z1, z4)

)

The proofs use the following standard construction.

8.2.15. Construction. Let Ci ⊂ C be the irreducible components of
C. Since X has only points of index one and two, mi = −2KX · Ci

is a positive integer. Let Ei ⊂ X be the union of mi disjoint discs
transversal to Ci and let E =

∑
Ei. Then E ∈ | − 2KX |. Hence we

can take the corresponding double cover X ′ → X branched over E.
Here X ′ has only index one terminal singularities. Let E ′ ⊂ X ′ be the
preimage of E. The natural map E ′ → E is an isomorphism. The Stein
factorization induces the following diagram

E ⊂ X ⊃ C

f
��

E ′ ⊂ X ′ ⊃ C ′oo

f ′

��

D ⊂ Z ∋ o D′ ⊂ Z ′ ∋ o′oo

where D := f(E) and D′ := f(E ′). Here Z ′ → Z is a double cover
branched over D. By construction, f ′ is crepant with respect to KX′

and the fibers of f ′ have dimension ≤ 1. Therefore, Z ′ has cDV points
only (if f is divisorial, then Z ′ has a double curve).

Sketch of the proof of 8.2 and 8.2.14. The above construction defines a
µ2-action on X ′/Z ′ and the quotient is X/Z. The fixed point set of the
action on Z ′ is precisely D′. Since Z ′ ∋ o′ is a cDV point, it is a
hypersurface in C4, thus it can be written down explicitly. This will
enable us to get equations for X and Z. We have an µ2-equivariant
embedding (Z ′, o′) ⊂ (C4

y1,...,y4
, 0), and we may assume that the coor-

dinates are eigenvectors and y1, . . . , yj are those of weights 1. Thus
D′ = {y1 = · · · = yj = 0} ∩ Z ′. Hence j = 1 or 2.

8.2.16. Claim. (i) If D′ is Cartier, then f is divisorial and D is
singular along f(E), where E is the f -exceptional divisor.

(ii) If D′ is not Cartier, then f is flipping, D is smooth and C is
irreducible.

Proof. If j = 1 then D′ is Cartier. In this case, f must be divisorial.
Indeed, otherwise since f ′ is an isomorphism outside the origin and E ′

is f ′-ample, D′ cannot be Cartier. Hence f contracts an exceptional
divisor E ⊂ X . Then for a general fiber l of E we have KX · l = −1.
Hence E · F = 2. Therefore, D has a double curve along the image of
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E and is smooth elsewhere. If E is chosen generically, then D has an
ordinary double curve along the image of E.
Assume that j = 2. Then {y1 = y2 = 0} must be contained in Z ′.

Furthermore, D′ is irreducible and this implies that C is irreducible.
Then E → D is an isomorphism outside the origin, in fact, it turns out
to be an isomorphism. In particular, D is smooth. This implies that f
is flipping. �

First consider the flipping case. Since {y1 = y2 = 0} ⊂ Z ′, the
equation of Z ′ can be written in the form y1φ1 + y2φ2 = 0. If wt(φ1) =
wt(φ2) = 1, then y1φ1+y2φ2 ∈ (y1, y2)

2, which implies that Z ′ is singular
along {y1 = y2 = 0}. This is impossible. Thus wt(φ1) = wt(φ2) = 1.
Since Z ′ is a double point, either φ1 or φ2 must contain a linear term.
Assume that φ1 contains yj. By wt reasons j = 3 or 4. Now we can
rewrite the equation in the following form

y1y3 + y2p(y
2
2, y4) = 0.

With this explicit equation we can easily compute everything. The
variety X is obtained by blowing up {y2 = y3 = 0} and taking quotient
by the group action. This gives us one singular point with the required
equation. The flipped variety X+ is obtained by blowing up {y1 = y2 =
0} and taking quotient by the group action. To get equations for (Z, o),
we note that the invariants of the µ2-action on C{y1, . . . , y4} are

z1 = y22, z2 = y1y2, z3 = y3, z4 = y4, z5 = y21.

We get exactly the equations given by the minors of the matrix in the
assertion of the theorem. A hyperplane section given by z4 = cz1.
Now consider the divisorial case. Then D′ ⊂ Z ′ is Cartier and the

µ2-action is given by wt(y) = (0, 0, 0, 1). Let D′ be given by y4 =
ψ(y1, y2, y3) = 0. Thus we can write the equation of Z ′ in the form

y24φ(y1, . . . , y4) + ψ(y1, y2, y3) = 0.

Since f ′ is crepant, Z ′ cannot be smooth, in particular, mult0(ψ) ≥ 2.
The equation of Z is now given by

(8.2.17) tφ(y1, y2, y3, t) + ψ(y1, y2, y3) = 0, (t = y24).

In particular, this shows that (Z, o) is an (isolated) cDV point (cf. 6.5).
Now the proof proceeds by a careful analysis of the equations. See
[KM92, § 4] for details. �

8.3. Now we consider Q-conic bundles. The case of singular base sur-
face is easy:

8.3.1. Proposition ([Pro97, § 3], [MP08b]). A Q-conic bundle of index
two over a singular base is either of type 9.1.2 or toroidal 2.3.
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Index two Q-conic bundles over a smooth base were classified in
[Pro97, § 3] and [MP08a]. Similar to birational case these are quotients
of some elliptic fibrations by an involution. On the other hand, one can
note that there exists an embedding to a relative weighted projective
space:

8.4. Theorem. Let f : (X,C) → (Z, o) be a Q-conic bundle germ of
index two. Assume that (Z, o) is smooth. Fix an isomorphism (Z, o) ≃
(C2, 0). Then there is an embedding

(8.4.1)

X �

�

//

f
&&◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ P(1, 1, 1, 2)× C2

p
��

C2

such that X is given by two equations

(8.4.2)
q1(y1, y2, y3)− ψ1(y1, . . . , y4; u, v) = 0,
q2(y1, y2, y3)− ψ2(y1, . . . , y4; u, v) = 0,

where ψi and qi are weighted quadratic in y1, . . . , y4 with respect to
wt(y1, . . . , y4) = (1, 1, 1, 2) and ψi(y1, . . . , y4; 0, 0) = 0. The only non-
Gorenstein point of X is (0, 0, 0, 1; 0, 0). Up to projective transforma-
tions, the following are the possibilities for q1 and q2:

no. q1 q2 f−1(o)

8.4.3 y21 − y22 y1y2 − y23 C1 + C2 + C3 + C4

8.4.4 y1y2 (y1 + y2)y3 2C1 + C2 + C3

8.4.5 y1y2 − y23 y1y3 3C1 + C2

8.4.6 y21 − y22 y23 2C1 + 2C2

8.4.7 y1y2 − y23 y21 4C1

8.4.8 y21 y22 4C1

Conversely, if X ⊂ P(1, 1, 1, 2) × C2 is given by equations of the
form (8.4.2) and singularities of X are terminal, then the projection
f : (X, f−1(0)red) → (C2, 0) is a Q-conic bundle of index two.

8.4.9. Remark. A general member H ∈ |OX | is normal in the case 8.4.7
and non-normal in the case 8.4.8.

Sketch of the proof. First we prove the last statement. By our assump-
tion X has only terminal singularities. Then X does not contain the
surface {y1 = y2 = y3 = 0} = Sing(P× C2) (otherwise both ψ1 and ψ2

do not depend on y4). By the adjunction formula, KX = −L|X , where
L is a Weil divisor on P × C2 such that the restriction L|P is OP(1).
Therefore, X → C2 is a Q-conic bundle. It is easy to see that the only
non-Gorenstein point of X is (0, 0, 0, 1; 0, 0) and it is of index two.
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Now let f : (X,C) → (Z, o) ≃ (C2, 0) be a Q-conic bundle germ of
index two. Let P ∈ X be a point of index two. Let π : (X♯, P ♯) →
(X,P ) be the index-one cover. We need the following lemma.

8.4.10. Lemma ([MP08a, 12.1.9]). Let F ♯ = π−1(F )red be the pull-back
of F . Let Γ := f−1(o) be the scheme fiber and let Γ♯ = π−1(Γ). Then
we have

OF ♯∩Γ♯ ≃ C[x, y]/(xy, x2 + y2).

Furthermore, the µ2-action is given by wt(x, y) ≡ (1, 1) mod 2.

Using this lemma one can apply arguments of [Mor75, pp. 631–633] to
get the desired embedding X ⊂ P(1, 1, 1, 2)× Z considering the graded
anti-canonical OZ-algebra

R :=
⊕

i≥0

Ri, where Ri := H0(OX(−iKX)).

We sketch the main idea.
Let w be a local generator of OX♯(−KX) at P

♯, let u, v be coordinates
on Z = C2, and let z = 0 be the local equation of F ♯ in (X♯, P ♯). Using
the vanishing of H1(OX(−KX)) for i > 0 and the exact sequence

0 → OX(−(i− 1)KX) → OX(−iKX) → OF (−iKX) → 0

one can see

Ri/(zw)Ri−1 ≃ H0(OF (−iKX)), i > 0.

Therefore,

Ri/(zw)Ri−1 + (u, v)Ri =
(
OF ♯∩Γ♯(−iKX)

)
µ2 .

By Lemma 8.4.10 we have an embedding

R/(zw, u, v)R →֒
(
C[x, y, w]/(xy, x2 + y2)

)µ2 .

Using R0/(u, v)R0 = C, one can easily see that

R/(zw, u, v)R = C[y1, y2, y4]/(y1y2, y
2
1 + y22),

where y1 = xw, y2 = yw, y4 = w2. Put y3 := zw. Then similar to
[Mor75, pp. 631–633] we obtain

R ≃ OZ [y1, y2, y3, y4]/I ,

where I is generated by the following regular sequence

y1y2 + y3ℓ1(y1, . . . , y3) +ψ1(y1, . . . , y4; u, v),

y21 + y22 + y3ℓ2(y1, . . . , y3) +ψ2(y1, . . . , y4; u, v)

with ψi(y1, . . . , y4; 0, 0) = 0. �

Note also that the construction 8.2.15 in the Q-conic bundle case pro-
duces an elliptic fibration. It can be used for classification (see [Pro97,
§ 3]).
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8.4.11. Example. Let X ⊂ P(1, 1, 1, 2)×C2
u,v is given by the equations

y1y2 = (au+ bu2 + cuv)y4,

(y1 + y2 + y3)y3 = vy4,

where a, b, c ∈ C are constants. It is easy to check that the projection
X → C2 is a Q-conic bundle as in 8.4.3. The only singular point is of
type cA/2. If a 6= 0, then this point is a cyclic quotient of type 1

2
(1, 1, 1).

8.4.12. Example. Let X ⊂ P(1, 1, 1, 2)×C2
u,v is given by the equations

y21 = uy23 + vy4

y22 = uy4 + vy23

Then the projectionX → C2 is aQ-conic bundle of type 8.4.8 containing
one singular point of type 1

2
(1, 1, 1) and two ordinary double points.

More examples are given in [MP11, § 7 and Remark 6.7.1], and [Pro97,
§ 3]. It can be shown [MP11, §7] that every type of terminal index two
singularity can occur on some index two Q-conic bundle as in 8.4.7 or
8.4.8.

9. Locally imprimitive germs

In this section we collect the results concerning extremal curve germs
with a locally imprimitive point. Note that in this case the imprimitive
point is unique and the splitting cover is locally primitive along arbi-
trary irreducible component of the central curve (see Corollary 4.6.4).
Moreover, one can show that the imprimitive point is the only non-
Gorenstein point, see [Mor88, Th. 6.7, 9.4] and [MP08a, § 7].
The following theorem summarizes the results contained in [Mor88],

[KM92], [MP08a], [MP11].

9.1. Theorem. Let f : (X,C ≃ P1) → (Z, o) be an extremal curve germ
such that (X,C) is locally imprimitive. Let P ∈ X be the imprimitive
point and let m, s and m̄ be its index, splitting degree and subindex,
respectively. In this case, P is the only non-Gorenstein point and X
has at most one type (III) point. Then one of the following holds.

9.1.1 ([MP08a, 1.2.3]). f is a Q-conic bundle, (X,C) is of type (IE∨) at
P , (Z, o) is Du Val of type A3, X has a cyclic quotient singularity P of
type 1

8
(5, 1, 3) and has no other singular points. Furthermore, (X,C) is

the quotient of the index-two Q-conic bundle germ given by the following
two equations in P(1, 1, 1, 2)y1,...,y4 × C2

u,v

y21 − y22 = uψ1(y1, . . . , y4; u, v) + vψ2(y1, . . . , y4; u, v),

y1y2 − y23 = uψ3(y1, . . . , y4; u, v) + vψ4(y1, . . . , y4; u, v)
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by µ4-action:

y1 7→ − i y1, y2 7→ i y2, y3 7→ −y3, y4 7→ i y4, u 7→ i u, v 7→ − i v

(as an example one can take ψ1 = ψ4 = y4, ψ2 = ψ3 = 0).

9.1.2 ([MP08a, 1.2.4]). f is a Q-conic bundle, (X,C) is of type (ID∨)
at P , (Z, o) is Du Val of type A1, (X,C) is a quotient of a Gorenstein
conic bundle given by the following equation in P2

y1,y2,y3
× C2

u,v

y21 + y22 + ψ(u, v)y23 = 0, ψ(u, v) ∈ C{u2, v2, uv}

by µ2-action:

u 7→ −u, v 7→ −v, y1 7→ −y1, y2 7→ y2, y3 7→ y3.

Here ψ(u, v) has no multiple factors. In this case, (X,P ) is the only
singular point and it is of type cA/2 or cAx/2.

9.1.3 ([MP08a, 1.2.5]). f is a Q-conic bundle, (X,C) is of type (IA∨)
at P with m̄ = 2, s = 2, (Z, o) is Du Val of type A1, (X,P ) is a cyclic
quotient singularity of type 1

4
(1, 1, 3), and (X,C) is the quotient of the

index-two Q-conic bundle germ given by the following two equations in
P(1, 1, 1, 2)y1,...,y4 × C2

u,v

y21 − y22 = uψ1(y1, . . . , y4; u, v) + vψ2(y1, . . . , y4; u, v),

y23 = uψ3(y1, . . . , y4; u, v) + vψ4(y1, . . . , y4; u, v)

by µ2-action:

y1 7→ y1, y2 7→ −y2, y3 7→ y3, y4 7→ −y4, u 7→ −u, v 7→ −v.

As an example one can take ψ1 = ψ4 = y4, ψ2 = 0, ψ3 = uy22 + λy1y2,
where λ is a constant. If λ 6= 0, then P is the only singular point. If
λ = 0, then X has also a type (III) point.

9.1.4 ([MP08a, 1.2.6]). f is a Q-conic bundle, (X,C) is of type (II∨) at
P , (Z, o) is Du Val of type A1, and (X,C) is the quotient of the same
form as in 9.1.3. As an example one can take ψ1 = u2y4, ψ2 = ψ4 = y4,
ψ3 = uy22 + λy1y2, where λ is a constant.

9.1.5 ([KM92, Theorem 4.11.2]). f is divisorial, (X,C) is of type (II∨)
at P , a general member H ∈ |OX | is normal. The graph ∆(H,C) is of
the form

◦ ◦ · · ·
4
◦ · · · ◦ ◦

◦ ◦ ◦ • ◦

In this case (X,C) is a quotient of an index two divisorial curve germ
(X̄, C̄) by µ2 that acts freely outside P and switches two components of
C̄. The point (Z, o) is terminal of index two given by

{tφ(y1, t) + y23 − y22 = 0}/µ2(1, 1, 0, 1)
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(cf. (8.2.17)) where the image of the exceptional divisor is the curve
{y2 = y3 = t = 0}/µ2.

9.1.6 ([MP11, Theorem 1.9]). f is birational, a general member H ∈
|OX| is normal and has only log terminal singularities of class T (see
9.1.8 below). The graph ∆(H,C) is of the form

(9.1.7)

c1
◦

c2
◦ · · · · · ·

cr
◦ · · ·

cn
◦

◦ ◦ · · · •

Here r 6= 1, n and the chain [c1, . . . , cn] corresponds to the non-Du Val
singularity (H,P ) of class T. The chain of (−2)-vertices in the bottom
line corresponds to a Du Val point (H,Q). It is possible that this chain
is empty (i.e., (H,Q) is smooth). The germ (X,C) is of type (IA∨)
and C♯ explained in 9.4 is reducible. The contraction f is divisorial or
flipping according as (H ′

Z′, o′) explained in 9.5 is Gorenstein or not.

9.1.8. Recall that a surface log terminal singularity (H,P ) is called a
singularity of class T, if it admits a one-parameter smoothing {Ht},
H0 = H whose total space X = ∪Ht is Q-Gorenstein [LW86], [KSB88].
By the inversion of adjunction this total space must be terminal. Any
singularity of class T is either Du Val or a cyclic quotient

1

m2d
(1, mdt− 1), gcd(m, t) = 1.

There is an explicit characterization of such singularities in terms of
minimal resolutions, see [KSB88, § 3] for details.

9.2. The rough idea of the proof of Theorem 9.1 is to apply the con-
struction (4.6.2). Then (X,C) can be viewed as a quotient of an ex-
tremal curve germ (X ′, C ′) with reducible central fiber by µs. In the
case (ID∨) we have m̄ = 1. Hence, (X ′, C ′) is a Gorenstein conic bun-
dle germ 2.7.1(i). Then it is easy to write down the action explicitly
[Pro97, § 2]. Similarly, in the cases (IE∨) and (II∨) we have m̄ = 2.
Then (X ′, C ′) is an extremal curve germ of index two and we can apply
the results of Sect. 8. The case (IC∨) does not occur [Mor88, Th. 6.1(i)],
[MP08a, 7.3].

9.3. Consider the case (IA∨). We need the following helpful observa-
tion which allows to study a general hyperplane section H ∈ |OX|. It
will also be used below in the case (IA).

9.3.1. Lemma. Let (Z, o) be a normal threefold singularity and let DZ ∈
|−KX | be a general member. Assume that (DZ , o) is a Du Val singularity
of type A. Then for a general hyperplane section HZ , the pair (X,HZ +
DZ) is lc. In particular, (HZ , o) is a cyclic quotient singularity.
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Proof. Clearly, HZ ∩ DZ is general hyperplane section of (DZ , o) and
so HZ ∩ DZ = Γ1 + Γ2 for some irreducible curves Γi such that the
pair (DZ ,Γ1 + Γ2) is lc. By the inversion of adjunction so is the pair
(Z,DZ+HZ) [Sho93, §3], [Kaw07]. Hence (HZ ,Γ1+Γ2) is lc and (HZ , o)
is a cyclic quotient singularity (see, e.g., [Kol92, Ch. 3]). �

9.3.2. Proposition. Let f : (X,C) → (Z, o) be an extremal curve germ
(C is not necessarily irreducible). Let D ∈ |−KX | and H ∈ |OX| be
general members. Let Λ be the non-normal locus of H and let ν : Hn →
H be the normalization (if H is normal we put Λ = ∅ and ν = id).
Assume that D ∩ C is a point P such that (D,P ) is a Du Val singu-

larity of type A. Then the pairs (X, D+H) and (Hn, ν−1(D)+ν−1(Λ))
are log canonical. In particular, H has only normal crossings in codi-
mension one. If f is birational, then the pair (Z,DZ +HZ) is also log
canonical, where DZ = f(D) ∈ |−KZ | and HZ := f(H) ∈ |OZ|. In this
case, (HZ , o) is a cyclic quotient singularity.

Proof. First we consider the case where f is birational. Then (DZ , o) ≃
(D,P ) is a Du Val singularity of type A. By Lemma 9.3.1 the pair
(X,HZ +DZ) is lc. Take H := f ∗HZ . Then KX +D +H = f ∗(KZ +
DZ + HZ), i.e., the contraction f is KX + D + H-crepant. Hence the
pair (X,D+H) is lc and so is the pair (Hn, ν−1(D)+ ν−1(Λ)) again by
the inversion of adjunction.
Now consider the case where Z is a surface. First we claim that

(X, D + H) is lc near D. Consider the restriction ϕ = fD : (D,P ) →
(Z, o). Let Ξ ⊂ Z ≃ C2 be the branch divisor of ϕ. By the Hurwitz
formula we can write KD = ϕ∗

(
KZ + 1

2
Ξ
)
. Hence,

KD +H|D = ϕ∗
(
KZ +

1

2
Ξ +HZ

)
.

Using this and the inversion of adjunction we get the following equiv-
alences: (X, D + H) is lc near D ⇐⇒ (D,H|D = ϕ∗HZ) is lc ⇐⇒
(Z = C2, 1

2
Ξ+HZ) is lc. Thus it is sufficient to show that (Z, 1

2
Ξ+HZ)

is lc. Let ξ(u, v) = 0 be the equation of Ξ ⊂ C2. Then (D,P ) is given
by the equation w2 = ξ(u, v) in C3

u,v,w. By the classification of Du Val

singularities we can choose coordinates u, v so that ξ = u2+ vn+1. Take
HZ := {v − u = 0}. Then ord0 ξ(u, v)|HZ

= 2. By the inversion of ad-
junction the pair (Z,HZ+

1
2
Ξ) is lc. Thus we have shown that (X,D+H)

is lc near D. Assume that (X,D +H) is not lc at some point Q ∈ C.
By the above, Q /∈ D. Note that H is smooth outside C by Bertini’s
theorem. If H is normal, then we have an immediate contradiction by
a connectedness result [Sho93, Th. 6.9] applied to (H,D|H). If H is not
normal, we can apply the same result on the normalization. �

9.3.3. We claim that H is normal. Assume the converse, i.e. H is
singular along C. The lemma above implies that in our situation C is the
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minimal log canonical center of (X,H) [Kaw97]. Now let τ : (X ′, C ′) →
(X,C) be the torsion free cover 4.6 and let H ′ := τ ∗H . Then the
pair (X ′, C ′) is log canonical and C ′ is its minimal log canonical center
[Kol92, 20.4]. Since the minimal log canonical center is normal [Kaw97],
we conclude that C ′ is irreducible. This contradicts imprimitivity of
(X,C) at P .

9.3.4. Thus H is normal and then P is the only log canonical center of
the pair (X,H +D). This implies that the pair (X,H) is plt. Since H
is a Cartier divisor, the singularities of H are of class T (see 9.1.8). This
gives very strong restriction to the dual graph of the minimal resolution.
If (X,C) is a Q-conic bundle germ, then using completely combinatorial
techniques one can show that for ∆(H,C) there is only one possibility
(cf. [Pro04]):

4
◦ • ◦ ◦ ◦

But in this case the pair (H,C) is plt, hence so is (H ′, C ′), whence C ′

cannot split and this case does not occur. In the birational case we
obtain (9.1.7). Since (H,C) cannot be plt as above, we have r 6= 1, n.
This concludes the explanation of the proof of Theorem 9.1.

9.4. To decide whether an extremal curve germ (X,C) is locally im-
primitive at P , one needs to compute the inverse image C♯ of C in the
index-one cover (X♯, P ♯) which can be computed within H♯ the pull
back of H as in 9.6, once the diagram like (9.1.7) is exhibited. Indeed,
P is imprimitive if and only if the splitting degree s > 1, which is equal
to the number of irreducible components of C♯, see 4.2.

9.5. To distinguish divisorial and flipping contractions in the case 9.1.6
one can use the following arguments. Let f ′ : (X ′, C ′) → (Z ′, o′) be the
torsion free cover (4.6.2). By 6.5 the germ (X,C ≃ P1) is divisorial if and
only if the point (Z, o) is terminal and if and only if the point (Z ′, o′) is
terminal of index one (i.e. isolated cDV). Note that in our case (HZ , o)
is a cyclic quotient singularity and so is its pull-back (H ′

Z , o
′). Hence

the divisoriality of (X,C) is equivalent to that (H ′
Z , o

′) is Gorenstein,
that is, Du Val singularity in our case. Once (H,C ≃ P1) is given, one
can find its splitting cover (H ′, C ′) and so the surface germ (H ′

Z , o
′) can

be computed.

9.6. Example. Consider the quotient surface singularity

(H,P ) = (C2
u,v, 0)/µm2(1, m− 1), m ≥ 3.

It is of class T and for its index-one cover we have

(H♯, P ♯) = (C2, 0)/µm(1, m− 1).
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Hence it is Du Val of type Am−1. Consider the µm-equivariant curve

C♯ = {um−2 − vm+2 = 0}/µm ⊂ H♯

and C = C♯/µm. Then C♯ is irreducible (resp. has two irreducible
components) if m is odd (resp. m is even) and it is easy to see that C is
smooth. Now consider the weighted 1

m2 (1, m− 1)-blowup of (H,P ). In
the chart v 6= 0 the origin is a Du Val point C2/µm−1(−1, m2) of type

Am−2, the exceptional divisor Λ is v′ = 0, and the proper transform Ĉ
of C is given by v′ = u′m−2. Hence, on the minimal resolution of the
Am−2-point, both Λ and Ĉ meet the same end of the chain. Therefore,
the dual graph ∆(H,C) is of the form

m+2
◦ ◦

m−3︷ ︸︸ ︷
◦— · · ·—◦

•

Now suppose that C is a compact curve, C ≃ P1 and consider a surface
germ (H,C) whose minimal resolution has the above form. It is easy
to see that KH · C = −2/m and C can be contracted to a cyclic quo-
tient singularity (HZ , o) of type

1
4
(1, 1). There is a Gorenstein threefold

germ X♯ with µm-action containing H♯ as a µm-stable hypersurface.
According to 6.6 (and [KSB88, § 3]) the germ (H,C) has a smoothing
in a Q-Gorenstein family. Thus there exists a Q-Gorenstein threefold
X containing H as a Cartier divisor. By the inversion of adjunction
(see [Sho93, § 3], [Kol92, Ch. 17]) X has only terminal singularities. By
arguments similar to 6.3 we see that there exists a birational contrac-
tion f : X → Z extending H → HZ . We note that C♯ can be identified
with the pull back of C by the splitting cover of (X,C) at P . Now we
distinguish two cases according to the parity of m.
a) m is even. Then (X,C) is imprimitive of splitting degree 2 at P .

Since (HZ , o) is a type T singularity of index 2, its pull-back (H ′
Z , o

′)
in the torsion free (degree 2) cover (4.6.2) is Du Val and so (Z ′, o′) is a
cDV point. Hence, both contractions f ′ and f are divisorial.
b) m is odd. Then (X,C) is primitive and the contraction is flip-

ping by (4.7.5). Note that in this case the singularity (Z, o) is not
Q-Gorenstein. On the other hand, since (HZ , o) is a singularity of class
T, it has a Q-Gorenstein smoothing. This smoothing belongs to a com-
ponent of the versal deformation space which is different from that cor-
responding to (Z, o) [KSB88, 3.9].

10. Cases (IC) and (IIB)

In this section we consider curve germs of types (IC) and (IIB).
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10.1. Case (IIB). Let (X,P ) be the germ of a three-dimensional ter-
minal singularity and let C ⊂ (X,P ) be a smooth curve. Recall that
the triple (X,C, P ) is said to be of type (IIB) if (X,P ) is a terminal
singularity of type cAx/4 and there are analytic isomorphisms

(X,P ) ≃ {y21 − y32 + α = 0}/µ4 ⊂ C4
y1,...,y4/µ4(3, 2, 1, 1),

C = {y21 − y32 = y3 = y4 = 0}/µ4,

where α = α(y1, . . . , y4) ∈ (y3, y4) is a semi-invariant with wt(α) ≡ 2
mod 4 and the quadratic part α2 of α(0, 0, y3, y4) is not zero (see [Mor88,
A.3]). We say that (X,P ) is a simple (resp. double) cAx/4-point if
rkα2 = 2 (resp. rkα2 = 1).

10.2. Theorem ([MP14]). Let f : (X,C ≃ P1) → (Z, o) be an extremal
curve germ. Suppose that X contains a point P of type (IIB). Then
(X,C) is not flipping [KM92, Th. 4.5] and P ∈ X is the unique singular
point of X on C. Furthermore, a general member H ∈ |OX| is normal,
smooth outside P , and has only rational singularities. The following are
the only possibilities for the dual graphs of (H,C) and HZ := f(H):

No. cAx/4-point ∆(H,C) ∆(HZ , o)

10.2.1 simple
3
◦

4
◦ ◦ ◦ ◦

◦
3

◦ •

A2 d

10.2.2 simple
3
◦ ◦ ◦ ◦ ◦ ◦

◦
3

◦
4

•

A0 d

10.2.3 double ◦ ◦ ◦
4
◦

3
◦ ◦

• ◦ ◦ ◦

❋❋❋❋
D4 d

10.2.4 double ◦
3
◦ ◦ ◦ ◦ ◦ ◦ ◦ •

◦ ◦
4

c

The last column indicates if the germ is divisorial (d) or Q-conic
bundle (c); and the column ∆(HZ , o) is not used in the latter case (c).

An example of divisorial contraction of type 10.2.1 is given in [KM92,
4.12]. The case 10.2.2 was studied also by T. Ducat [Duc16, Thm.
4.1(2b)] in terms of symbolic blowups of smooth threefolds.

Sketch of the proof. In our case a general member D ∈ |−KX | contains
C, has only Du Val singularities, and the graph ∆(D,C) has the form
7.4.3. Under the identifications of 10.1, a general member D ∈ | −KX |
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near P is given by λy3 + µy4 = 0 for some λ, µ ∈ OX such that λ(0),
µ(0) are general in C∗ [KM92, 2.11], [MP09, §4]. Let Γ := H ∩D.
By [KM92, Th. 4.5] the contraction f is not flipping. If f is divisorial,

we putDZ := f(D) and ΓZ := f(Γ). ThenDZ ∈ |−KZ |, HZ is a general
hyperplane section of (Z, o), and ΓZ is a general hyperplane section of
DZ . If f is a Q-conic bundle, we put DZ := SpecZ f∗OD (the Stein
factorization) and let ΓZ ⊂ DZ be the image of Γ. In both cases DZ is
a Du Val singularity of type E6 by 7.4.3.
We claim that Γ = C + Γ1 (as a scheme), where Γ1 is a reduced

irreducible curve, and H is normal, smooth outside P , and has only
rational singularities. Consider two cases:

10.2.5. Case: f is divisorial. Since the point (Z, o) is terminal of
index 1, the germ (HZ , o) is a Du Val singularity. Since ΓZ is a general
hyperplane section of DZ we see that the graph ∆(D,Γ) has the form

(10.2.6)

2
◦ △

◦
1

◦
2

◦
3

◦
2

⋄
1

where △ corresponds to the proper transform of ΓZ and numbers at-
tached to vertices are coefficients of corresponding exceptional curves
in the pull-back of ΓZ . By Bertini’s theorem H is smooth outside C.
Since the coefficient of C equals 1, D∩H = C+Γ1 (as a scheme), so H
is smooth outside P . In particular, H is normal. Since fH : H → HZ is
a birational contraction and (HZ , o) is a Du Val singularity, the singu-
larities of H are rational.

10.2.7. Case: f is a Q-conic bundle. We may assume that, in a
suitable coordinate system, the germ (DZ , oZ) is given by x2+y3+z4 = 0
and the double cover (DZ , oZ) −→ (Z, o) is just the projection to the
(y, z)-plane. Then ΓZ is given by z = 0. As in the case above we see
that the graph ∆(D,Γ) has the form (10.2.6). Therefore, H is smooth
outside P . The restriction fH : H → HZ is a rational curve fibration.
Hence H has only rational singularities. This proves our claim.

10.2.8. Further, gr1C O ≃ OP1(d1) ⊕ OP1(d2) for some d1 ≥ d2. Since
H1(gr1C O) = 0 by Corollary 2.4.1(i), we have d2 ≥ −1. Since H
is normal, we have d1 ≥ 0 (see Lemma 3.5.1). On the other hand,
deg gr1C O = 1 − iP (1) by (3.1.3). One can compute iP (1) = 2 from
[Mor88, (2.12)] for P of type (IIB) described in 10.1. Therefore,

gr1C O ≃ OP1 ⊕ OP1(−1)

and OC(−H) = O ⊂ gr1C O , i.e. the local equation of H must be a
generator of O ⊂ gr1C O . In the notation of 10.1 the surface H ⊂ X is
locally near P given by the equation y3v3 + y4v4 = 0, where v3, v4 ∈
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OP ♯,X♯ are semi-invariants with wt(vi) ≡ 3 and at least one of v3 or v4
contains a linear term in y1. Therefore, the surface germ (H,P ) can be
given in C4/µ4(3, 2, 1, 1) by two equations:

y21 − y32 + η(y3, y4) + φ(y1, y2, y3, y4) = 0,

y1l(y3, y4) + y2q(y3, y4) + ξ(y3, y4) + ψ(y1, y2, y3, y4) = 0,

where η, l, q and ξ are homogeneous polynomials of degree 2, 1, 2 and 4,
respectively, η 6= 0, l 6= 0, φ, ψ ∈ (y3, y4), σ- ordφ ≥ 3/2, σ- ordψ ≥ 2.
Moreover, rk η = 2 (resp. rk η = 1) if (X,P ) is a simple (resp. double)
cAx/4-point. Then considering the weighted 1

4
(3, 2, 1, 1)-blowup and

using rationality of (H,P ), as well as, generality of H in |OX | one can
obtain the possibilities in Theorem 10.2. See [MP14, § 3] for details. �

10.3. Case (IC). Let (X,C ≃ P1) be an extremal curve germ. Assume
that (X,C) has a type (IC) point P of index m. Then P is the only
singular point of X , m is odd ≥ 5, and wp(0) = (m− 1)/m. Moreover,
iP (1) = a1 = 2 and

(X,C, P ) ≃
(
C3

y1,y2,y4, {y
m−2
1 − y22 = y4 = 0}, 0

)
/µm(2, m− 2, 1).

(see Lemma 5.7(i) and [Mor88, 5.5, 6.5, A.3]). Below is a complete
classification of extremal curve germs of type (IC):

10.4. Theorem ([KM92, §8], [MP14]). Let f : (X,C ≃ P1) → (Z, o)
be an extremal curve germ of type (IC). Let P ∈ X be (a unique)
singular point and let m be its index. Then a general member H ∈ |OX |
is normal, smooth outside P , has only rational singularities. Moreover,
(X,C) is not divisorial and we have one of the following:

10.4.1. (X,C) is flipping and the following are the only possibilities for
the dual graphs of (H,C) and HZ = f(H):

•
(m+3)/2

◦ ◦ ◦

◦ ◦ ◦
3

◦— · · ·—◦︸ ︷︷ ︸
(m−7)/2

◦
3

◦ ◦
4

◦ ◦

◦
(m+3)/2

◦ ◦ ◦

• ◦ ◦ ◦
3

◦— · · ·—◦︸ ︷︷ ︸
(m−7)/2

◦
3

◦ ◦
3

◦ ◦

where ◦
3
—◦— · · ·—◦︸ ︷︷ ︸

(m−7)/2

—◦
3
must be replaced with ◦

4
in the case m = 5.
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10.4.2. (X,C) is a Q-conic bundle, m = 5, and ∆(H,C) has the form:

◦ ◦
3
◦

• ◦ ◦ ◦ ◦
3 ■■

■■

✉✉✉✉

◦
3

◦

In the flipping case, the general member H+ ∈ |OX+| of the flipped
variety is also computed. Here X+ is either of index two or Gorenstein
[KM92, A.3].

11. Case (IA)

11.1. An extremal curve germ (X,C ≃ P1) is said to be of type (IA)
if it contains exactly one non-Gorenstein point P which is of type (IA).
For readers’ convenience, we note the following characterization for an
extremal curve germ (X,C ≃ P1) to be of type (IA) with D ∈ | −KX |
a general member (see 5.4 and 7.4):

(X,C) is of type (IA) if and only if (i) P is locally
primitive, (ii) D ∩ C is a single point, and (iii) (X,P )
is not of type cAx/4.

11.1.1. From now on we assume that the germ (X,C ≃ P1) satisfies
the assumptions of 11.1. The following are the only possibilities for the
singularity (X,P ):

(i) (X,P ) is of type cA/m, in this case (X,C) is said to be of type
(k1A) according to [KM92];

(ii) (X,P ) is of type cD/3;
(iii) (X,P ) is of type cAx/2, cD/2 or cE/2.

Thus in our case of type (IA), (X,C) is semistable if and only if it is of
type (k1A). Extremal curve germs of index two are classified in Sect. 8.
Thus we discuss here cases (k1A) and cD/3. We start with Q-conic
bundles:

11.2. Theorem ([MP11, 1.6]). Let (X,C ≃ P1) be a Q-conic bundle
germ of index m > 2 and of type (IA). Let P ∈ X be the non-Gorenstein
point. Then (X,P ) is a point of type cA/m and a general member
H ∈ |OX| is not normal. Furthermore, the dual graph of (Hn, Cn), the
normalization Hn and the inverse image Cn of C, has the form:

(11.2.1)
ar
◦— · · ·—

a1
◦︸ ︷︷ ︸

∆1

— •—
b1
◦— · · ·—

bs
◦︸ ︷︷ ︸

∆2

(in particular, Cn is irreducible). Here the chain ∆1 (resp., ∆2) cor-
responds to the singularity of type 1

m
(1, a) (resp., 1

m
(1,−a)) for some

integer a (1 ≤ a < m) relatively prime to m. The germ (H,C) is
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analytically isomorphic to the germ along the line y = z = 0 of the
hypersurface given by the following weighted polynomial of degree 2m in
variables x, y, z, u:

φ := x2m−2ay2 + x2az2 + yzu

in P(1, a,m − a,m). Furthermore (X,C) is given as an analytic germ
of a subvariety of P(1, a,m− a,m)× Ct along C × 0 given by

φ+ α1x
2m−ay + α2x

m−auy + α3x
2m + α4x

mu+ α5u
2 = 0

for some α1, . . . α5 ∈ tO0,Ct and there is a Q-conic bundle structure
X → C2 through which the second projection X → Ct factors.

11.3. Theorem ([MP11, 1.9], see also [Tzi05b]). Let (X,C) be a bira-
tional extremal curve germ of type (k1A). Let P ∈ X be the point of
index m ≥ 2.

11.3.1. If a general element H is normal, then the graph ∆(H,C) has
the same form as in (9.1.7), however the cases r = 1 and r = n are not
excluded.

11.3.2. If every member of |OX | is non-normal, then the dual graph of
the normalization (Hn, Cn) is of the form

(11.3.3)
ar
◦— · · ·—

a1
◦︸ ︷︷ ︸

∆1

— •—
c1
◦— · · ·—

cl
◦︸ ︷︷ ︸

∆3

— ⋄—
b1
◦— · · ·—

bs
◦︸ ︷︷ ︸

∆2

(in particular, Cn is reducible). The chain ∆1 (resp., ∆2) corresponds
to the singularity of type 1

m
(1, a) (resp., 1

m
(1,−a)) for some a with

gcd(m, a) = 1 and the chain ∆3 corresponds to the point (Hn, Qn),
where Qn = Cn

1 ∩ Cn
2 . Moreover,

∑
(ci − 2) ≤ 2 and C̃2

1 + C̃2
2 + 5−

∑
(ci − 2) ≥ 0,

where C̃ = C̃1 + C̃2 is the proper transform of C on the minimal reso-

lution H̃. Both components of C̃ are contracted on the minimal model

of H̃. In this case,

(X,C, P ) ≃
(
{α(x1, . . . , x4) = 0}, x1-axis, 0

)
/µm(1, a,−a, 0),

where gcd(m, a) = 1 and α = 0 is the equation of a terminal cA/m-point
in C4/µm. (In particular, (X,C) is of type (IA)).

Conversely, for any germ (H,C ≃ P1) of the form 11.3.1 or 11.3.2
admitting a birational contraction (H,C) → (HZ , o) there exists a three-
fold birational contraction f : (X,C) → (Z, o) as in 11.1 of type (IA)
such that H ∈ |OX|.
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11.3.4. To study a general member H ∈ |OX | we can use Lemma 9.3.2.
However we cannot assert as in 9.3.3 that H is normal. In fact, argu-
ments similar to 9.3.4 show that the case of normal H does not occur if
(X,C) is a Q-conic bundle.

11.4. Let us outline the proofs of Theorems 11.2 and 11.3. The case
where H is normal is teated in the same way as 9.1.6 (see 9.3.4) and X
can be recovered as a one-parameter deformation space by 6.6. Exam-
ples are given in 11.4.7 below.
Suppose that H is not normal. Let ν : Hn → H be the normaliza-

tion and let Cn ⊂ Hn be the inverse image of C. By the inversion of
adjunction the pair (H,C) is slc, the pair (Hn, Cn) is lc, and the point
P ∈ (H,C) is slt [Kol92, 16.9]. In particular, H is a generically normal
crossing divisor. At certain (finite number) of dissident points H may
have singularities worse than just normal crossing points.

11.4.1. SinceH hasQ-Gorenstein smoothing, by [KSB88, Theorem 4.24,
5.2] the only possibilities are:

• Pinch point: {x2 − y2z = 0} ⊂ C3.
• Degenerate cusp of embedding dimension at most 4, where a
degenerate cusp is a non-normal Gorenstein singularity having
a semi-resolution whose exceptional divisor is a cycle of smooth
rational curves or a rational nodal curve (see [SB83]).

• Slt singularity of the form

{xy = 0}/µm(a,−a, 1), gcd(a, n) = 1}

(this point corresponds to P ∈ H).

11.4.2. The restriction νC : Cn → C of the normalization to the inverse
image of C is a double cover. We distinguish two possibilities:

(i) Cn is smooth irreducible and νC is branched at two points,
(ii) Cn has two irreducible components meeting at one point and

the restriction of νC to each of them is an isomorphism.

A detailed analysis (see [MP11] and also [Tzi05b]) shows that (i) leads
to the Q-conic bundle case (11.2.1) while (ii) leads to the birational case
(11.3.3). In both cases the subgraphs ∆1 and ∆2 correspond to points
P n
1 , P

n
2 ∈ Hn lying over P ∈ H . �

11.4.3. To recover X as a one-parameter deformation space we also can
apply arguments as in 6.6. However, in the case of non-normal surface
H , it needs some restriction to singularities and additional technical
tools [Tzi09]. Fortunately, the results of [Tzi09] are applicable if H
has singularities described above. Moreover, the miniversal deforma-
tion family of (H,C) in the Q-conic bundle case is computed explicitly
[MP11, 6.8.3]. �
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11.4.4. To check divisoriality one can use the criterion 6.5. Indeed, if f is
divisorial, then (Z, o) is a terminal point and its index equals 1 because
(X,C) is primitive (see 4.5). Therefore, its general hyperplane section
(HZ , o) must be a Du Val singularity. If on the contrary f is flipping,
then (Z, o) is not Q-Gorenstein and (HZ , o) cannot be Du Val. Given
a graph ∆(H,C) of type (9.1.7) one can easily draw the graph ∆(HZ)
contracting black vertices successfully. Thus the Du Val condition of
(HZ , o) can be checked in purely combinatorial terms.

11.4.5. Remark. Assume that in the assumptions of 11.3.1 and (9.1.7)
we have r = 1 or r = n. Then the graph ∆(H,C) is a chain. In this case
there exists an element D ∈ | −KX | containing C and having Du Val
singularities only. This is a particular case of the situation considered in
[Mor02] where a powerful algorithm to construct (X,C) was obtained.

11.4.6. One special case of Theorem 11.3 was studied in details in
[HTU17]. There the authors assumed that the nearby fiber Ht of the
one-parameter deformation ∪Ht = X has b2(Ht) = 1. This strong
assumption is equivalent to that H is normal and has so-called Wahl
singularity at P : (H,P ) ≃ C2/µm2(1, ma − 1). Under this assump-
tion, it is shown that birational germs of this type belong to the same
deformation family as those of (k2A) studied in [Mor02], constructed
the universal family, and the algorithm [Mor02] of computing flips was
extended.

11.4.7. Examples. Consider several examples of extremal germs of type
11.3.1:

(i) The index two germs 8.2.1-8.2.5 are of type (IA). By using
arguments of 11.4.4 one can conclude that the germ as in 8.2.1
is flipping and those in 8.2.2-8.2.5 are divisorial.

(ii) Let ∆(H,C) be of the form

•
c1
◦ · · ·

cn
◦

where the white vertices form a dual graph of a non-Du Val
T-singularity (see 9.1.8 ). It is easy to see that C can be
contracted to a cyclic quotient non-Du Val point. Therefore,
the one-parameter deformation produces a flipping contraction.
Since (H,C) is plt, the contraction is primitive.

(iii) Let ∆(H,C) be of the form

3
◦

5
◦ ◦

• ◦ ◦ ◦

This is an example of a divisorial contraction to a smooth point.
(iv) A series of examples were given in 9.6 b).
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For completeness, we provide an example of birational curve germ
with non-normal H .

11.4.8. Example ([Tzi05b, Ex. 2], [MP11, Ex. 6.10.3]). Consider a
surface H̃ containing a configuration with the following graph

◦
4
◦

4
⋄
C1

•
C2

◦ ◦
3
◦

Contracting all curves except those marked by C1 and C2, we obtain
a normal surface Hn having two cyclic quotient singularities P1 and
P2 of types 1

7
(1, 2) and 1

7
(1,−2). Identifying the curves C1 and C2 we

obtain a non-normal surface H so that the map ν : Hn → H is the
normalization. The dissident singularities of H are a degenerate cusp of
multiplicity 2 and embedding dimension 3 at ν(C1 ∩C2), and one point
of type {xy = 0}/µ7(2,−2, 1). The results of [Tzi09] are applicable here
and so there exists a one-parameter smoothing X ⊃ H ⊃ C which is a
divisorial curve germ and H is general in |OX |, see [MP11, Prop. 6.3
and Th. 6.10].

11.5. Points of type cD/3. Let (X,C, P ) be a triple of type (IA),
where (X,P ) is a singularity of type cD/3 [Mor85], [Rei87]. These
triples are described as follows (see [KM92, 6.5]). Put σ := (1, 1, 2, 3).
Up to coordinate change the point (X,C, P ) is given in C4

y1,...,y4
as follows

(11.5.1)
(X,C, P ) =

(
{α = 0}, {y1-axis}, 0

)
/µ3(1, 1, 2, 0),

α = y24 + y33 + δ3(y1, y2) + (terms of degree ≥ 4),

where δ3 6= 0 is homogeneous of degree 3 and α is invariant. Moreover,

α ≡ yℓ1yi mod (y2, y3, y4)
2,

where ℓ = ℓ(P ) and i = 2 (resp. 3, 4) if ℓ ≡ 2 (resp. 1, 0) mod 3
[Mor88, (2.16)]. If δ3(y1, y2) is square free (resp. has a double factor,
is a cube of a linear form), then (X,P ) is said to be a simple (resp.
double, triple) cD/3 point.
Extremal curve germs containing a terminal singular point of

type cD/3 are described by the following theorem.

11.5.2. Theorem ([KM92, Th. 6.2-6.3], [MP11, Th. 4.5, 4.8]). Let
f : (X,C ≃ P1) → (Z, o) be an extremal curve germ having a point P
of type cD/3. Then f is a birational contraction, not a Q-conic bundle.
General members H ∈ |OX | and HZ = f(H) ∈ |OZ| are normal and
have only rational singularities. We have the following possibilities for
graphs ∆(H,C) and ∆(HZ , o) and local invariants.

No. ℓ(P ) iP (1) ∆(H,C) ∆(HZ , o)
Cases of simple cD/3 point P
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No. ℓ(P ) iP (1) ∆(H,C) ∆(HZ , o)

11.5.3 2 1 •
3
◦ ◦

3
◦

◦
3

3
◦

◦ ◦ ◦
3

f

11.5.4 2 1 •
3
◦ ◦

3
◦

◦ ◦
3

A2 d

Cases of double cD/3 point P
11.5.5 2 1 • ◦

◦
3

◦ ◦
3

◦

◦

◦ ◦

◦ ◦
3

◦

◦

f

11.5.6 2 1 • ◦ ◦

◦
3

◦ ◦
3

◦

◦

D4 d

11.5.7 3, 4 2 • ◦
3
◦

◦ ◦
3

◦

◦

◦

◦ ◦ ◦
3

◦

f

Case of triple cD/3 point P
11.5.8 3, 4 2 • ◦ ◦

◦ ◦
3
◦ ◦

◦ ◦

E6 d

In the cases 11.5.3, 11.5.5, 11.5.7, and 11.5.8 the variety X is smooth
outside P and in the cases 11.5.4 and 11.5.6 X may has at most one
type (III) point. The last column indicates if the germ is flipping (f) or
divisorial (d).

Note that [KM92, § 6] and [MP11, § 4] provide much more informa-
tion about these contractions: infinitesimal structure, criterion for an
arbitrary germ to be of the corresponding type, and computations of
flipped varieties [KM92, A.1]. Flipping contractions can be constructed
explicitly by patching certain open subsets:

11.5.9. Example ([KM92, 6.11]). Let V ⊃ C be a germ of a smooth
threefold along C ≃ P1 such that NC/V ≃ OC⊕OC . Pick a point P ∈ C
and let (v1, v2, v3) be coordinates at (V, P ) such that (C, P ) = {v1-axis}.
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Let (X,C, P ) be a cD/3 point as in (11.5.1) with ℓ = 2. For suitable
ε1 and ε2 such that 0 < ε1 < ε1 ≪ 1, (y31, y4, y1y3) form coordinates for
U = (X,P ) ∩ {ε1 < |y31| < ε2} by the implicit function theorem. Thus
v1 = y31, v2 = y4, and v3 = y1y3 patch (X,P ) and V \(V, P )∩{|v1| < ε1}
along U . By [KM92, 6.2.4] the germ (X,C) is a flipping curve germ
of type cD/3 as in 11.5.3 or 11.5.5 (depending on the choice of δ3 in
(11.5.1)).

More examples of flipping contractions are given in [KM92, 6.17 and
6.21]. To show that all the possibilities in Theorem 11.5.2 occur one
can also use the deformation arguments 6.6:

11.5.10. Example. Consider the surface contraction fH : H → HZ with
dual graph 11.5.8 and consider the following triple of germs:

(X,H, P ) =
(
{y32 + y33 + y3y

4
1 + y24}, {y4 = y1y3}, 0

)
/µ3(1, 1, 2, 0),

where H is cut out by y4 = y1y3. Here (X,P ) is a triple cD/3-singularity
(see 11.5.1). By [MP11, 4.12] the dual graph of the minimal resolution
of (H,P ) is the same as that in 11.5.8. By 6.6 one obtains a birational
contraction f : X → Z extending fH : H → HZ , which is as in 11.5.8.
Examples similar to 11.5.4 and 11.5.6 are given in [MP11, 4.14].

Divisorial contractions of type 11.5.8 were studied also in [Tzi10,
5.1(2)] by a different method.

12. Case (IIA)

12.1. Setup. Let (X,C) be an extremal curve germ and let
f : (X,C) → (Z, o) be the corresponding contraction. Assume that
(X,C) has a point P of type (IIA). Then by [Mor88, 6.7, 9.4] and
[MP08a, 8.6, 9.1, 10.7] P is the only non-Gorenstein point of X and
(X,C) has at most one Gorenstein singular point R [Mor88, 6.2],
[MP08a, 9.3]. Since P ∈ (X,C) is locally primitive, the topological
index of (X,C) equals 1. Hence the base (Z, o) is smooth in the Q-
conic bundle case, and is a cDV point (or smooth) in the divisorial case
(cf. 6.4).

12.2. According to [Mor88, A.3] we can express the (IIA) point as

(12.2.1)
(X,P ) = {α = 0}/µ4(1, 1, 3, 2) ⊂ C4

y1,...,y4
/µ4(1, 1, 3, 2),

C = {y1-axis}/µ4,

where α = α(y1, . . . , y4) is a semi-invariant such that

(12.2.2) wtα ≡ 2 mod 4, α ≡ y
ℓ(P )
1 yj mod (y2, y3, y4)

2,

where j = 2 (resp. 3, 4) if ℓ(P ) ≡ 1 (resp. 3, 0) mod 4 (see (3.3.1))

and (I♯C)
(2) = (yj) + (I♯C)

2. Moreover, y22, y
2
3 ∈ α (because (X,P ) is a

terminal point of type cAx/4). Note that ℓ(P ) 6≡ 2 mod 4 because of
the lack of a variable with wt ≡ 0 mod 4.
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12.3. Theorem ([KM92, 7.2-7.4], [MP16], [MP17]). Let f : (X,C ≃
P1) → (Z, o) be an extremal curve germ having a point P of type (IIA).
We have the following possibilities for graphs ∆(H,C) and ∆(HZ , o)
and local invariants.

No. iP (1) ℓ(P ) ∆(H,C) ∆(HZ , o)
Cases: H is normal

12.3.1 1 1
4
◦

• ◦
4

◦ ◦

4
◦

◦
3

◦ ◦

f

12.3.2 1 1 ◦
4
◦

• ◦
4

◦ ◦

4
◦

◦ ◦ ◦

f

12.3.3 2 3, 4 ◦ ◦
❃❃

❃❃
◦

4
◦ ◦

• ◦

�����
◦

◦ ◦

◦
3
◦ ◦

◦

f

12.3.4 1 1 ◦ ◦ ◦

• ◦
4

◦ ◦
4

A1 d

12.3.5 1 1 ◦
3
◦

4
◦

• ◦
3

◦ ◦

A1 d

12.3.6 2 3, 5 • ◦ ◦ ◦

◦ ◦ ◦
4

◦ ◦

D5 d

12.3.7 2 4, 5 • ◦ ◦ ◦

◦ ◦ ◦
3

◦ ◦
3

◦

c

Cases: H is not normal
12.3.8 1 ◦

• ◦
3

◦ ◦

◦

D5 d

12.3.9 ◦
3
◦ ◦

• ◦ ◦ ◦

c

1This case was erroneously omitted in [Tzi05a, Th. 3.6 and Cor. 3.8].
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The variety X can have (at most one) extra type (III) singular point in
all cases except for 12.3.1, 12.3.3, 12.3.6, and 12.3.7 where the singular
point is unique.

Examples of flipping contractions can be constructed similar to 11.5.9.

12.4. Example ([KM92, 7.6.4]). Let V ⊃ C be a germ of a smooth
threefold along C ≃ P1 such that NC/V ≃ OC⊕OC . Pick a point P ∈ C
and let (v1, v2, v3) be coordinates at (V, P ) such that (C, P ) = {v1-axis}.
Let (X,C, P ) be a (IIA)-point as in (12.2.1)-(12.2.2) with α ≡ y1y2
mod (y2, y3, y4)

2. For suitable ε1 and ε2 such that 0 < ε1 < ε1 ≪ 1,
(y41, y

2
1y4, y1y3) form coordinates for U = (X,P ) ∩ {ε1 < |y41| < ε2} by

the implicit function theorem. Thus v1 = y41, v2 = y21y4, and v3 = y1y3
patch (X,P ) and V \ (V, P ) ∩ {|v1| < ε1} along U . By [KM92, 7.2.4]
the germ (X,C) is a flipping curve germ of type (IIA) as in 12.3.1. See
[KM92, 7.9.4, 7.12.5] for more examples of flipping contractions.

The existence in the above theorem in the case where H is normal
can be established by using arguments of 6.6. In the case 12.3.6 we have
also explicit example:

12.5. Example ([MP16, 6.6]). Let Z ⊂ C5
z1,...,z5 be defined by two equa-

tions:

0 = z22 + z3 + z4z
k
5 + z31 , k ≥ 1,

0 = z21z
2
2 + z24 − z3z5 + z31z2 + cz21z4.

By eliminating z3 using the first equation, one sees easily that (Z, 0)
is a threefold singularity of type cD5. Let B ⊂ Z be the z5-axis, and
let f : X → Z be the weighted blowup of B with weight (1, 1, 4, 2, 0).
By an easy computation one sees that C := f−1(0)red ≃ P1 and X is
covered by two charts: z1-chart and z3-chart. The origin of the z3-chart
is a type (IIA) point P with ℓ(P ) = 3:

{y31y3 + y22 + y23 + y4(y
2
1y

2
2 + y24 + y31y2 + cy21y4)

k = 0}/µ4(1, 1, 3, 2),

where (C, P ) is the y1-axis. Moreover, X is smooth outside P . Thus
X → Z is a divisorial contraction of type 12.3.6. See also [MP16, 8.3.3]
for an example with ℓ(P ) = 5.

The case 12.3.6 was also studied by N. Tziolas [Tzi05a, Th. 3.6].
The existence of 12.3.8 can be shown similar to Example 12.5:

12.6. Example ([MP17, 3.6]). Let Z ⊂ C5
z1,...,z5

be defined by

0 = z22 + z3 + z4z
k
5 − z31 , k ≥ 1,

0 = z21z
2
2 + z24 − z3z5.

Then (Z, 0) is a threefold singularity of type cD5. Let B ⊂ Z be the
z5-axis and let f : X → Z be the weighted (1, 1, 4, 2, 0)-blowup. The
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origin of the z3-chart is a type (IIA) point P with ℓ(P ) = 3:

{−y31y3 + y22 + y23 + y4(y
2
1y

2
2 + y24)

k = 0}/µ4(1, 1, 3, 2),

where (C, P ) is the y1-axis. In the z1-chart we have a type (III) point.
See also [MP17, 3.7] for an example of a divisorial germ as in 12.3.8
whose singular locus consists of a single (IIA) point P with ℓ(P ) = 7.

12.7. Example ([MP17, 4.8]). Let X be the the hypersur-
face of weighted degree 10 in the weighted projective space
P(1, 1, 3, 2, 4)x1,...,x4,w given by the equation

wφ6 − x61φ4 = 0, where
φ6 := x41x4 + x23 + x22w + δx34,
φ4 := x24 + νx2x3 + ηx21x4 + µx31x2

(for simplicity we assume that the coefficients δ, ν, η are general). Re-
gard X as a small analytic neighborhood of C. In the affine chart
Uw := {w 6= 0} ≃ C4/µ4(1, 1, 3, 2) the variety X is given by

φ6(y1, y2, y3, y4, 1)− y61φ4(y1, y2, y3, y4, 1) = 0

and C is the y1-axis. Clearly, it has the form (12.2.2). So, the origin
P ∈ (X,C) is a type (IIA) point with ℓ(P ) = 4.
In the affine chart U1 := {x1 6= 0} ≃ C4 the variety X is defined by

wφ6(1, z2, z3, z4, w)− φ4(1, z2, z3, z4, w) = 0.

If µ 6= 0, then X is smooth outside P , i.e. (X,C) is as in the case 12.3.7.
If µ = 0, then (X,C) has a type (III) point at (0, 0, 0, η).
We claim that (X,C) admits a structure of a Q-conic bundle germ as

in 12.3.9 (resp. 12.3.7) if µ = 0 (resp. µ 6= 0).

Proof. Consider the surface H = {φ6 = φ4 = 0} ⊂ X . Let ψ : Hn → H
be the normalization (we put Hn = H if H is normal) and let
Cn := ψ−1(C). One can explicitly check that H is normal and smooth
outside P if µ 6= 0 and H is singular along C, the curve Cn is irre-
ducible and rational, and ψC := Cn → C is a double cover if µ = 0.
Moreover, the singularities of Hn are rational. Note that H is a fiber of
the fibration π : X → D over a small disk around the origin given by
the rational function φ4/w = φ6/x

6
1 which is regular in a neighborhood

of C. Analyzing the minimal resolution one can show that there exists
a rational curve fibration fH : H → B, where B ⊂ C is a small disk
around the origin, such that C = f−1

H (0)red. Now the existence of a
contraction is a consequence of the following. �

12.7.1. Claim. (i) H1(X̂,OX̂) = 0, where X̂ denotes the comple-
tion of X along C.

(ii) The contraction fH : H → B extends to a contraction

f̂ : X̂ → Ẑ.
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(iii) There exists a contraction f : X → Z that approximates

f̂ : X̂ → Ẑ.

Proof. For (i) we refer to [MP17, 4.8.4].
(ii) Since H1(OX̂) = 0, from the exact sequence

0 −−−→ OX −−−→ OX(H) −−−→ OH(H) −−−→ 0

we see that the map H0(OX̂(Ĥ)) → H0(OĤ(Ĥ)) is surjective. Hence

there exists a divisor Ĥ1 ∈ |OX̂ | such that Ĥ1|Ĥ = Ĉ . Then the divisors

Ĥ and Ĥ1 define a contraction f̂ : X̂ → Ẑ.
(iii) Let F be the scheme fiber of fH : H → B over the origin. The

above arguments shows that the deformations of F are unobstructed.
Therefore the corresponding component of the Douady space is smooth
and two-dimensional. This allow us to produce a contraction on X . �

12.8. Example ([MP17, 4.9]). Similarly to Example 12.7, let X ⊂
P(1, 1, 3, 2, 4) be a small analytic neighborhood of C = {(x1, w)-line}
given by the equation x61φ4 − wφ6 = 0, where

φ6 := x23 + x22w + δx34 + cx21x
2
4,

φ4 := x24 + νx2x3 + ηx21x4.

It is easy to check that P := (0 : 0 : 0 : 0 : 1) is the only singular point
of X on C and it is a type (IIA) point with ℓ(P ) = 8. The rational
function φ4/w = φ6/x

6
1 near C defines a fibration whose central fiber

H is given by φ4 = φ6 = 0 such that ∆(H,C) is of type 12.3.9. The
existence of a contraction f : X → Z can be shown similar to Claim
12.7.1.

12.9. Example ([MP17, 4.9.1]). In a similar way we can construct an
example of a Q-conic bundle with ℓ(P ) = 5 and normal H as in 12.3.7.
Consider X ⊂ P(1, 1, 3, 2, 4) given by wφ6 − x61φ4 = 0, where

φ6 := x51x2 + x22w + x23 + δx34 + cx21x
2
4

and φ4 is as in 12.7. In the affine chart Uw ≃ C4/µ4(1, 1, 3, 2) the origin
P ∈ (X,C) is a type (IIA) point with ℓ(P ) = 5. It is easy to see that
X is smooth outside P . The rational function φ4/w = φ6/x

6
1 defines a

fibration on X near C with central fiber H = {φ4 = φ6 = 0}.

Appendix A. A remark on divisorial contractions

A.1. Proposition. Let (X,C ≃ P1) be a divisorial curve germ with one
non-Gorenstein point which is not of type cA/m with m > 2 and let
f : (X,C) → (Z, o) be corresponding contraction. Let E ⊂ X be the
exceptional divisor and let B := f(E) be the blowup curve. Then the
multiplicity multo(B) is given by the following table.
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(X,C) ∆(H,C) multo(B) HZ DZ

(IIA) 12.3.4, 12.3.5 3 A1 D2n+1

(IIA) 12.3.6, 12.3.8 1 D5 D2n+1

(IIB) 10.2.1, 10.2.3 2 A2, D4 E6

(IIB) 10.2.2 5 A0 E6

cD/3 11.5.4, 11.5.6 2 A2, D4 E6

cD/3 11.5.8 1 E6 E6

cA/2 8.2.2 n A1 A
cA/2 8.2.3 3 A0 A
cA/2 8.2.4 1 A2 A
cA/2 8.2.5 4 A0 A
cAx/2, cD/2 8.2.11-8.2.12 1 D D
cE/2 8.2.11-8.2.13 1 D, E6 E7

where HZ is a general hyperplane section of (Z, o) and DZ is a general
hyperplane section of (Z, o) passing through B. In the cA/2-case the
meaning of n is the same as in 8.2.2.

The cases with multo(B) = 1, i.e. those with smooth B, were studied
in details by N. Tziolas [Tzi03], [Tzi05b], [Tzi05a], [Tzi10].

Proof. Recall that Z is Q-Gorenstein and E is Q-Cartier divisor (The-
orem 6.4). By classification in all our cases Z is in fact Gorenstein
(that is, HZ has at worst Du Val singularity). Hence, E ∈ |KX |. Let
H := f ∗(HZ). Let D ∈ | − KX | be a general member. We have
−KX · C = 1/m, where m is the index of the non-Gorenstein point
(see 4.7.4). For simplicity assume that H is normal. The case 12.3.8
can be treated in a similar way.

A.2. Lemma ([Tzi05b, Lemma 5.1]). If in the above notation H is
normal, then

(A.2.1) multo(B) = −
(KC · C)2

(C2)H
= −

1

m2(C2)H
.

Now let ψ : Ĥ → H be the minimal resolution. Write ψ∗C = Ĉ +Θ,
where Supp(Θ) ⊂ Exc(ψ) and Θ =

∑
θiΘi. Since Ĉ

2 = −1, we have

(A.2.2) C2 = −1 + Ĉ ·Θ = −1 +
∑′

θi,

where
∑′ runs through all the components Θi meeting Ĉ. The coeffi-

cients θi are computed from the standard system of linear equations:

0 = −Θj · ψ
∗C = Θj · Ĉ +

∑

i

θiΘj ·Θi.

Now multo(B) can be computed by using (A.2.2). Consider for example
the cases 12.3.4, 12.3.5 and 12.3.6 of Theorem 12.3 (other cases are
similar). In the graphs below we attach the coefficients θi of Θ = ψ∗C−
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Ĉ to the corresponding vertices and indicate the value of C2. This
immediately gives us the values of multo(B) as desired. �

12.3.4
2/16
◦

◦
1/3

◦
2/3

•
1

◦
5/16

◦
4/16

◦
1/16

C2=−1/48

12.3.5
7/48
◦

◦
1/2

•
1

◦
23/48

◦
7/16

◦
1/4

◦
1/16

C2=−1/48

12.3.6

7/16
◦

3/16
◦

3/16
◦

•
1

◦
15/16

◦
7/8

◦
3/8

◦
1/4

◦
1/8

C2=−1/16
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