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MULTIPLICITY OF THE SATURATED SPECIAL FIBER RING

OF HEIGHT TWO PERFECT IDEALS

YAIRON CID-RUIZ

Abstract. Let R be a polynomial ring and I ⊂ R be a perfect ideal of height
two minimally generated by forms of the same degree. We provide a formula
for the multiplicity of the saturated special fiber ring of I. Interestingly, this
formula is equal to an elementary symmetric polynomial in terms of the degrees
of the syzygies of I. Applying ideas introduced in [5], we obtain the value of
the j-multiplicity of I and an effective method for determining the degree and

birationality of rational maps defined by homogeneous generators of I.

1. Introduction

In [5] an algebra called the saturated special fiber ring was introduced, this alge-
bra turns out to be an important tool in the study of rational and birational maps
and is also related to the j-multiplicity of an ideal. In this paper we compute the
multiplicity of this algebra in the case of height two perfect ideals. Interestingly,
we express this multiplicity in terms of an elementary symmetric polynomial that
depends on the degrees of the syzygies of the ideal. As two simple corollaries, for
this class of ideals, we obtain a closed formula for the j-multiplicity and an effective
method for determining the degree and birationality of rational maps defined by
homogeneous generators of these ideals.

Let K be a field, R be the polynomial ring R = K[x0, x1, . . . xr], and m be the
maximal irrelevant ideal m = (x0, x1, . . . , xr). Let I ⊂ R be a perfect ideal of height
two which is minimally generated by s+1 forms {f0, f1, . . . , fs} of the same degree
d. As in [5], the saturated special fiber ring of I is given by the algebra

Q̃ =

∞⊕

n=0

[(
In : m∞

)]
nd
.

It can be seen as a saturated version of the classical special fiber ring. To determine

the multiplicity of Q̃, we need to study the first local cohomology module of the
Rees algebra of I, and for this we assume the condition Gr+1. The condition Gr+1

means that µ(Ip) ≤ dim(Rp) for every non-maximal ideal p ∈ Spec(R), where
µ(Ip) denotes the minimal number of generators of Ip. To study the Rees algebra
one usually tries to reduce the problem in terms of the symmetric algebra, the
assumption of Gr+1 is important in making possible this reduction. After reducing
the problem in terms of the symmetric algebra, we consider certain Koszul complex
that provides an approximate resolution (see e.g. [22], [6]) of the symmetric algebra,

and which permits us to compute the Hilbert series of Q̃. By pursuing this general
approach, we obtain the following theorem which is the main result of this paper.
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Theorem A. Let I ⊂ R = K[x0, x1, . . . , xr] be a homogeneous ideal minimally
generated by s+1 forms {f0, f1, . . . , fs} of the same degree d, where s ≥ r. Suppose
the following two conditions:

(i) I is perfect of height two with Hilbert-Burch resolution of the form

0 →

s⊕

i=1

R(−d− µi)
ϕ
−→ R(−d)

s+1
→ I → 0.

(ii) I satisfies the condition Gr+1.

Then, the multiplicity of the saturated special fiber ring Q̃ is given by

e(Q̃) = er(µ1, µ2, . . . , µs),

where er(µ1, µ2, . . . , µs) represents the r-th elementary symmetric polynomial

er(µ1, µ2, . . . , µs) =
∑

1≤j1<j2<···<jr≤s

µj1µj2 · · ·µjr .

As a first application of Theorem A, we obtain a closed formula for the j-
multiplicity

j(I) = r! lim
n→∞

dimK

(
H0

m

(
In/In+1

) )

nr

of I. The j-multiplicity of an ideal was introduced in [1] and serves as a generaliza-
tion of the Hilbert-Samuel multiplicity for non m-primary ideals. It has applications
in intersection theory (see [13]), and the problem of finding formulas for it has been
addressed in several papers (see e.g. [20, 21, 25, 27]). The following result gives a
formula for the j-multiplicity of a whole family of ideals.

Corollary B. Assume all the hypotheses and notations of Theorem A. Then, the
j-multiplicity of I is given by

j(I) = d · er(µ1, µ2, . . . , µs).

In the second application of Theorem A, we study the degree of a rational map
F : Pr

99K Ps defined by the forms f0, f1, . . . , fs. We show that the product of
the degree of F and the degree of the image of F is equal to er(µ1, . . . , µs). From
this we can determine the degree of a rational map by just computing the degree of
the image, and conversely, the degree of the map gives us the degree of the image.
In particular, we obtain that the map is birational if and only if the degree of the
image is the maximum possible. This idea of determining birationality by studying
the syzygies of the base ideal is an active research topic (see e.g. [2,5,10,12,15,16,
18, 23, 26, 28, 29]).

Corollary C. Assume all the hypotheses and notations of Theorem A. Let F be
the rational map F : Pr

99K P
s given by

(x0 : · · · : xr) 7→
(
f0(x0, . . . , xr) : · · · : fs(x0, . . . , xr)

)
,

and Y ⊂ P
s be the closure of the image of F . Then, the following two statements

hold:

(i) deg(F) · deg
Ps(Y ) = er(µ1, µ2, . . . , µs).

(ii) F is birational onto its image if and only if deg
Ps(Y ) = er(µ1, µ2, . . . , µs).
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2. Multiplicity of the saturated special fiber ring

The following notation will be assumed in the rest of this paper.

Notation 2.1. Let K be a field, R be the polynomial ring R = K[x0, x1, . . . , xr],
and m be the maximal irrelevant ideal m = (x0, x1, . . . , xr). Let I be a homogeneous
ideal minimally generated by I = (f0, f1, . . . , fs) ⊂ R where deg(fi) = d and s ≥ r.
Let S be the polynomial ring S = K[y0, y1, . . . , ys], and A be the bigraded polynomial
ring A = R⊗KS = K[x0, . . . , xr, y0, . . . , ys]. Let Q be the standard graded K-algebra
Q = K[Id] = K[f0, f1, . . . , fs] =

⊕∞
n=0 [I

n]nd.
We assume that I is a perfect ideal of height two with Hilbert-Burch resolution

of the form

(1) 0 →

s⊕

i=1

R(−d− µi)
ϕ
−→ R(−d)

s+1
→ I → 0.

We also suppose that I satisfies the condition Gr+1, that is

µ(Ip) ≤ dim(Rp) for all p ∈ Spec(R) such that ht(p) < r + 1.

Remark 2.2. In terms of Fitting ideals, I satisfies the condition Gr+1 if and only
if ht(Fitti(I)) > i for all 1 ≤ i < r + 1. So, from the presentation ϕ of I, the
condition Gr+1 is equivalent to ht(Ir+1−i(ϕ)) > i for all 1 ≤ i < r + 1.

Proof. It follows from [11, Proposition 20.6]. �

We shall determine the multiplicity of the following algebra.

Definition 2.3 ([5]). The saturated special fiber ring of I is given by the algebra

Q̃ =

∞⊕

n=0

[(
In : m∞

)]
nd
.

The Rees algebra R(I) =
⊕∞

n=0 I
ntn ⊂ R[t] can be presented as a quotient of

A by using the map

Ψ : A −→ R(I) ⊂ R[t]

yi 7→ fit.

We set bideg(xi) = (1, 0), bideg(yj) = (0, 1) and bideg(t) = (−d, 1), which implies
that Ψ is bihomogeneous of degree zero, and so R(I) has a structure of bigraded
A-algebra. If M is a bigraded A-module and c a fixed integer, then we write

[M ]c =
⊕

n∈Z

M(c,n).

We remark that [M ]c has a natural structure as a graded S-module.

As noted in [5], to study the algebra Q̃ it is enough to consider the degree zero
part in the R-grading of the bigraded A-module H1

m (R(I)) (see e.g. [7, Lemma
2.1]).

Remark 2.4. Let X be the scheme X = ProjR-gr (R(I)), where R(I) is only
considered as a graded R-algebra. From [11, Theorem A4.1], we obtain the following
short exact sequence

0 → [R(I)]0 → H0(X,OX) →
[
H1

m (R(I))
]
0
→ 0.

By identifying Q ∼= [R(I)]0 and Q̃ ∼= H0(X,OX), we obtain the short exact sequence

(2) 0 → Q → Q̃ →
[
H1

m (R(I))
]
0
→ 0.

Remark 2.5. From [5, Proposition 2.7(i), Lemma 2.8(ii)] we have that Q̃ and[
H1

m (R(I))
]
0
have natural structures of finitely generated Q-modules.
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The Rees algebra is a very difficult object to study, but, under the present
conditions, we have that the module

[
H1

m (R(I))
]
0
coincides with

[
H1

m (Sym(I))
]
0

(see Lemma 2.6(iii)). So, the main idea is to bypass the Rees algebra and consider
the symmetric algebra instead. From the presentation (1) of I, we obtain the ideal

J = (g1, . . . , gs) = I1
(
[y0, . . . , ys] · ϕ

)

of defining equations of the symmetric algebra. Thus, Sym(I) is a bigraded A-
algebra presented by the quotient

Sym(I) ∼= A/J .

We have the following canonical short exact sequence relating both algebras

(3) 0 → K → Sym(I) → R(I) → 0,

where K is the R-torsion submodule of Sym(I).
We will consider the Koszul complex L• = K•(g1, . . . , gs;A) associated to {g1, . . . , gs}:

L• : 0 → Ls → · · · → Li → · · · → L1 → L0

where

(4) Li =
∧i




s⊕

j=1

A(−µj ,−1)



 .

This complex will not be exact in general, but the homology modules will have
small enough Krull dimension. It will give us an “approximate resolution” of the
symmetric algebra (see e.g. [22], [6]), from which we can read everything we need.

In the following lemma we gather some well-known properties of Sym(I) under
the present conditions, we include them for the sake of completeness.

Lemma 2.6. Using Notation 2.1, the following statements hold:

(i) dim (Sym(I)) = max (dim(R) + 1, µ(I)) = max (r + 2, s+ 1).
(ii) K = H0

m (Sym(I)).

(iii) Hi
m (R(I)) ∼= Hi

m (Sym(I)) for all i ≥ 1.
(iv) If s ≤ r + 1, then Sym(I) is a complete intersection.
(v) For all s ≥ 1, Sym(I) is a complete intersection on the punctured spectrum of

R.

Proof. (i) Follows from the dimension formula for symmetric algebras (see [19],
[31, Theorem 1.2.1]) and the condition Gr+1.

(ii) It follows from [17, Corollary 4.8 , §5] (also, see [24, §3.7])).
(iii) For each i ≥ 1, the short exact sequence (3) yields the long exact sequence

Hi
m (K) → Hi

m (Sym(I)) → Hi
m (R(I)) → Hi+1

m (K) .

From part (ii) and [3, Corollary 2.1.7], we have that Hi
m (K) = Hi+1

m (K) = 0, and
so we obtain the required isomorphism.

(iv) Using part (i), in this case we have that dim(Sym(I)) = r + 2. Hence, we
get

ht(J ) = dim(A)− (r + 2) = (r + s+ 2)− (r + 2) = s = µ(J ),

and so Sym(I) is a complete intersection.
(v) For each p ∈ Spec(R) such that ht(p) < r+1, the same argument of part (i)

now yields that dim(Sym(I)
p
) = dim(Rp) + 1. Thus, we have

ht(Jp) = dim(Ap)−dim(Sym(I)
p
) = dim(Rp)+s+1− (dim(Rp)+1) = s = µ(Jp).

Then, for i ≥ 1, the homology module Hi(L•) is supported on the maximal ideals
of Spec(R), but since the associated primes AssR(Hi(L•)) are homogeneous, it
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necessarily gives that SuppR(Hi(L•)) = {m}. Therefore, Sym(I)
p
is a complete

intersection for p ∈ Spec(R) \ {m}. �

The restriction to degree zero part in theR-grading of the equalityK = H0
m (Sym(I))

(Lemma 2.6(ii)) and the short exact sequence (3) yield the following

(5) 0 →
[
H0

m (Sym(I))
]
0
→ S → Q → 0,

under the identifications [Sym(I)]0 = S and [R(I)]0 = Q.
The next proposition will be an important technical tool.

Proposition 2.7. Assume Notation 2.1. Then, we have the following isomor-
phisms of bigraded A-modules

Hi

(
Hr+1

m (L•)
)
∼=

{
Hr+1−i

m (Sym(I)) if i ≤ r + 1

Hi−r−1(L•) if i ≥ r + 2,

where Hr+1
m (L•) represents the complex obtained after applying the functor Hr+1

m (•)
to L•.

Proof. Let G•,• be the first quadrant double complex given by Gp,q = Ls−p⊗RCq
m,

where C•
m is the Čech complex corresponding with the maximal irrelevant ideal m.

Since we have that

(6) Hp
m(A) ∼=

{
1

x0x1···xr
K[x−1

0 , x−1
1 , . . . , x−1

r ]⊗K S if p = r + 1

0 otherwise,

then the spectral sequence coming from the first filtration is given by

IEp,q
1 =

{
Hr+1

m (Ls−p) if q = r + 1

0 otherwise.

On the other hand, Lemma 2.6(v) implies that (L•)p is exact for all p ∈ Spec(R)\

{m}. So, for all i ≤ s − 1, Hs−i(L•) is supported on V (m) and the Grothendieck
vanishing theorem (see e.g. [3, Theorem 6.1.2]) implies that

Hj
m(Hs−i(L•)) = 0

for all j ≥ 1. Also, we have that

H0
m(Hs−i(L•)) = Hs−i(L•)

for i ≤ s − 1. Therefore, the spectral sequence corresponding with the second
filtration is given by

IIEp,q
2

∼=






Hp
m (Sym(I)) if q = s

Hs−q(L•) if p = 0 and q ≤ s− 1

0 otherwise.

Finally, from the convergence of both spectral sequences we obtain the following
isomorphisms of bigraded A-modules

Hi

(
Hr+1

m (L•)
)
∼= Hr+1+s−i (Tot(G•,•)) ∼=

{
Hr+1−i

m (Sym(I)) if i ≤ r + 1

Hi−r−1(L•) if i ≥ r + 2

for all i ≥ 0. �

The following lemma contains some dimension computations that will be needed
in the proof of Theorem A. The first one shows that I has maximal analytic spread
and it is obtained directly from [30]. The second one is a curious interplay between
the algebraic properties of I and the geometric features of the corresponding rational
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map (15), that follows from [5, Proposition 3.1]. (A much stronger generalization
of [5, Proposition 3.1] was recently obtained in [8, Theorem 4.4].)

Lemma 2.8. Using Notation 2.1, the following statements hold:

(i) ℓ(I) = dim (R(I)/mR(I)) = r + 1.
(ii) dim(Q) = r + 1.
(iii) The corresponding rational F : Pr

99K Ps in Corollary C is generically finite.

(iv) dim
([
Hi

m (Sym(I))
]
0

)
≤ r for all i ≥ 2.

Proof. (i) In the case r = s, we get from [30, Theorem 4.1] that I is of linear type
and so dim (R(I)/mR(I)) = r + 1. When s ≥ r + 1, then the result follows from
[30, Corollary 4.3].

(ii) Since we have

R(I) = [R(I)]0

⊕
(

∞⊕

n=1

[R(I)]n

)
= Q

⊕
mR(I),

then we get an isomorphism Q ∼= R(I)/mR(I) of graded K-algebras. Thus, from
part (i), dim(Q) = dim (R(I)/mR(I)) = r + 1.

(iii) Let Y be the closure of the image of F . Since Q = K[f0, . . . , fs] corresponds
with the homogeneous coordinate ring of Y , the claim follows from part (ii) and
[8, Corollary 3.3, Proposition 3.14].

(iv) Let i ≥ 2. From Lemma 2.6(iii), we have
[
Hi

m (Sym(I))
]
0
∼=
[
Hi

m (R(I))
]
0
.

The rational map F is generically finite due to part (iii), and so the inequality
follows directly from [5, Proposition 3.1]. �

Now we are ready for the proof of the main theorem.

Proof of Theorem A. The whole point of this proof is to analyze the homology
modules of the complex

F• =
[
Hr+1

m (L•)
]
0
: 0 →

[
Hr+1

m (Ls)
]
0
→ · · · →

[
Hr+1

m (L1)
]
0
→
[
Hr+1

m (L0)
]
0

obtained by applying Hr+1
m (•) to the complex L• and then restricting to the degree

zero part in the R-grading. From (4) and (6), we can make the identification

Fi =
[
Hr+1

m (Li)
]
0
∼= S(−i)

mi ,

where

mi =
∑

1≤j1<···<ji≤s

(∑i
e=1 µje − 1

r

)
.

First, from Proposition 2.7 we have

Hi(F•) ∼= [Hi−r−1(L•)]0 for i ≥ r + 2,

then the fact that [Lk]0 = 0 for k ≥ 1 (see (4)) yields the vanishing

(7) Hi(F•) = 0 for all i ≥ r + 2.

On the other hand, Proposition 2.7 also gives that

Hi(F•) ∼=
[
Hr+1−i

m (Sym(I))
]
0

for i ≤ r + 1,

and Lemma 2.8(iv) implies that

(8) dim (Hi(F•)) ≤ r for all i ≤ r − 1.

Let B•, Z• and H• be the boundaries, cycles and homology modules of the
complex F•, respectively. We have the following short exact sequences

0 → Bi →Zi → Hi → 0

0 → Zi →Fi → Bi−1 → 0
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for all i. By using the additivity of Hilbert series and assembling all these short
exact sequences we obtain the following equation

s∑

i=0

(−1)
i
HilbHi

(T ) =

s∑

i=0

(−1)
i
HilbFi

(T ).

Using (7) and (8), it follows that HilbHi
(T ) = 0 for i ≥ r+2, and that we can write

HilbHi
(T ) =

Gi(T )

(1− T )
ei for i ≤ r − 1

where Gi(T ) ∈ Z[T ] and ei = dim(Hi) ≤ r (see e.g. [4, Section 4.1]). Therefore, we
obtain the following equation

C(T )

(1 − T )
s+1 + (−1)

r
HilbHr

(T ) + (−1)
r+1

HilbHr+1
(T ) =

G(T )

(1− T )
s+1

where

C(T ) =
r−1∑

i=0

(−1)i(1− T )s+1−eiGi(T ) and G(T ) =
s∑

i=0

(−1)imiT
i.

The isomorphisms of Proposition 2.7 yield that

(9) Hilb[H1
m
(Sym(I))]

0
(T ) = Hilb[H0

m
(Sym(I))]

0
(T ) +

(−1)rG(T ) + (−1)r+1C(T )

(1 − T )
s+1

From the short exact sequence (5) we obtain that

(10) Hilb[H0
m
(Sym(I))]

0
(T ) = HilbS(T )−HilbQ(T ) =

1

(1− T )
s+1 −HilbQ(T ),

and the short exact sequence (2) and Lemma 2.6(iii) yield that

(11) Hilb
Q̃
(T ) = HilbQ(T ) + Hilb[H1

m
(Sym(I))]

0
(T ).

Hence, by summing up (9), (10) and (11) we get

Hilb
Q̃
(T ) =

1 + (−1)
r
G(T ) + (−1)

r+1
C(T )

(1 − T )
s+1 .

Let F (T ) = 1+(−1)
r
G(T )+(−1)

r+1
C(T ). Since Q →֒ Q̃ is an integral extension

(see Remark 2.5), it follows that dim(Q̃) = dim(Q). From Lemma 2.8(ii) we have

that dim(Q̃) = dim(Q) = r + 1, then well-known properties of Hilbert series (see
e.g. [4, Section 4.1]) give us that

F (T ) = (1 − T )
s−r

F1(T ),

where F1(1) 6= 0 and e(Q̃) = F1(1). The fact that ei ≤ r for i ≤ r− 1, implies that
C(s−r)(1) = 0. By denoting

P (T ) = 1 + (−1)
r
G(T ) = 1 +

s∑

i=0

(−1)
r+i

miT
i,

we get P (s−r)(1) = F (s−r)(1), and so by taking the (s − r)-th derivatives of F (T )
and P (T ) we obtain that

(−1)s−r(s− r)! · F1(1) = P (s−r)(1)

=

{
1 +

∑r
i=0 (−1)r+imi if s = r∑s

i=s−r (−1)
r+i

mi(s− r)!
(

i
s−r

)
if s > r.
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The substitution of e(Q̃) = F1(1) gives us that

(12) e(Q̃) =

{
1 +

∑r
i=0 (−1)r+imi if s = r∑s

i=s−r (−1)
s+i

mi

(
i

s−r

)
if s > r.

Finally, the formula of the theorem is obtained from Lemma 2.9(iii), (iv) below. �

In the following lemma we use simple combinatorial techniques to reduce the
equation (12).

Lemma 2.9. The following formulas hold:

(i) For 0 ≤ k ≤ r,

s∑

i=max{k,s−r}

(−1)i
(

i

s− r

)(
s− k

i− k

)
=

{
(−1)

s
if k = r

0 if k < r.

(ii) For 1 ≤ ℓ ≤ r,

s∑

i=s−r

(−1)i
(

i

s− r

) ∑

1≤j1<···<ji≤s

( i∑

e=1

µje

)ℓ
=

{
(−1)

s
r! · er(µ1, . . . , µs) if ℓ = r

0 if ℓ < r.

(iii) For s > r,
s∑

i=s−r

(−1)
i

(
i

s− r

) ∑

1≤j1<···<ji≤s

(∑i

e=1 µje − 1

r

)
= (−1)

s
· er(µ1, . . . , µs).

(iv) For s = r,

1 +
r∑

i=0

(−1)i+r
∑

1≤j1<···<ji≤r

(∑i
e=1 µje − 1

r

)
= µ1µ2 · · ·µr.

Proof. (i) We depart from the identity

(1− T )s−kT k =

s∑

i=k

(−1)
i−k

(
s− k

i− k

)
T i,

then by taking the (s− r)-th derivative in both sides we get

(
(1− T )s−kT k

)(s−r)

=
s∑

i=max{k,s−r}

(−1)i−k

(
s− k

i− k

)
(s− r)!

(
i

s− r

)
T i−s+r.

Since s− k ≥ s− r, the substitution T = 1 yields the result.
(ii) For each set of indexes {j1, . . . , ji} we have

(13)
( i∑

e=1

µje

)ℓ
=

∑

ℓ1+···+ℓi=ℓ

(
ℓ

ℓ1, . . . , ℓi

)
µℓ1
j1
· · ·µℓi

ji
.

We will proceed by determining the coefficients of each of the monomials µℓ1
j1
· · ·µℓi

ji

in the equation. Since
(

ℓ
ℓ1,...,ℓi

)
=
(

ℓ
ℓ1,...,ℓi,0

)
, we can consider the case where ℓ1 6=

0, . . . , ℓk 6= 0.
We fix 1 ≤ k ≤ r and the monomial µb1

i1
· · ·µbk

ik
where b1 6= 0, . . . , bk 6= 0 and

b1 + · · ·+ bk = ℓ. For each set of indexes {j1, . . . , ji} ⊃ {i1, . . . , ik}, the monomial

µb1
i1
· · ·µbk

ik
appears once in the equation (13), and the number of these sets is equal

to
(
s−k
i−k

)
. Thus, for each i ≥ k, the coefficient of µb1

i1
· · ·µbk

ik
in the expression

∑

1≤j1<···<ji≤s

( i∑

e=1

µje

)ℓ
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is equal to
(
s−k
i−k

)(
ℓ

b1,...,bk

)
. So the total coefficient of µb1

i1
· · ·µbk

ik
is given by

(
ℓ

b1, . . . , bk

) s∑

i=max{k,s−r}

(−1)
i

(
i

s− r

)(
s− k

i− k

)
.

From part (i), we have that this coefficient vanishes when k < r and that it is equal
to (−1)

s
r! when k = r because ℓ ≤ r.

Therefore, for ℓ < r we have that the equation vanishes, and for ℓ = r that the
only monomials in the equation are those of the elementary symmetric polynomial
er(µ1, . . . , µs) and the coefficient of all of them is (−1)

s
r!.

(iii) We can write

(∑i
e=1 µje − 1

r

)
=

(∑i

e=1 µje − 1
)(∑i

e=1 µje − 2
)
· · ·
(∑i

e=1 µje − r
)

r!
(14)

=
1

r!

r∑

ℓ=0

(−1)
r−ℓ

er−ℓ(1, 2, . . . , r)

(
i∑

e=1

µje

)ℓ

.

Therefore, by summing up and using part (ii), we obtain the required formula.
(iv) From equation (14) and part (ii) we have

r∑

i=0

(−1)
i+r

∑

1≤j1<···<ji≤r

(∑i
e=1 µje − 1

r

)
= µ1µ2 · · ·µr +

r∑

i=1

(−1)
i

(
r

i

)
.

Thus we get the result from the identity
∑r

i=0 (−1)
i(r

i

)
= 0. �

From the main theorem we easily obtain a closed formula for the j-multiplicity
of I.

Proof of Corollary B. From [5, Lemma 2.10] we have that j(I) = d · e(Q̃), then the
result follows from the computation of Theorem A. �

3. Degree of rational maps

In this short section we study the degree of the rational map

F : Pr
99K P

s(15)

(x0 : · · · : xr) 7→
(
f0(x0, . . . , xr) : · · · : fs(x0, . . . , xr)

)
,

whose base ideal I = (f0, f1, . . . , fs) satisfies all the conditions of Notation 2.1.
Here we obtain a suitable generalization of [23, Theorem 4.9 (1), (2)], where we
relate the degree of F and the degree of its image with the formula obtained in
Theorem A. An interesting result is that F is birational onto its image if and only
if the degree of the image is the maximum possible.

Let Y ⊂ Ps be the closure of the image of F . From Lemma 2.8(iii) we have that
F is generically finite, and that the degree of F is equal to the dimension of the
field extension

deg(F) = [K(Pr) : K(Y )] ,

where K(Pr) and K(Y ) represent the fields of rational functions of Pr and Y ,
respectively.

The main result of this section is a simple corollary of [5] and Theorem A.

Proof of Corollary C. From [5, Theorem 2.4(iii)] we have that e(Q̃) = deg(F) ·
deg

Ps(Y ), then the result is obtained from the computation of Theorem A. �
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We have that in the literature special cases of Corollary C have appeared before.
For instance, in [9, Proposition 5.3] a particular case of Corollary C was obtained
for parameterized surfaces. In the following simple corollaries, we prove the same
result of [23, Theorem 4.9 (1), (2)], and we generalize [5, Proposition 5.2].

Corollary 3.1. With the same notations above, if r = 1, i.e. F is of the form
F : P1

99K Ps, then deg(F) · deg
Ps(Y ) = d.

Proof. From the Hilbert-Burch theorem (see e.g. [11, Theorem 20.15]), in Notation 2.1,
I is minimally generated by the maximal minors of ϕ. Therefore, we have that
d = µ1 + µ2 + · · ·+ µs = e1(µ1, µ2, . . . , µs). �

Corollary 3.2. With the same notations above, if r = s, i.e. F is of the form
F : Pr

99K Pr, then deg(F) = µ1µ2 · · ·µr.

Proof. In this case we have Y = Pr and so deg
Pr(Y ) = 1. Hence the equality follows

from the fact that er(µ1, µ2, . . . , µr) = µ1µ2 · · ·µr. �
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