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Abstract

This article is devoted to the study of a higher-dimensional generalisation of de Rham epsilon lines. To
a holonomic D-module M on a smooth variety X and a generic tuple of 1-form (ν1, . . . , νn), we associate
a point of the K-theory space K(X,Z). If X is proper this K-theory class is related to the de Rham
cohomology RΓdR(X,M). The novel feature of our construction is that Z is allowed to be of dimension
0. Furthermore, we allow the tuple of 1-forms to vary in families, and observe that this leads naturally to
a crystal akin to the epsilon connection for curves. Our approach is based on combining a construction
of Patel with a homotopy invariance property of algebraic K-theory with respect to (P1,∞). This homo-
topical viewpoint leads us naturally to the definition of an epsilon connection in higher dimensions. Along
the way we prove the compatibility of Patel’s epsilon factors with the graded lines defined by Deligne and
Beilinson–Bloch–Esnault in the case of curves.
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1 Introduction

Let F be a constructible `-adic sheaf on a smooth proper curve X/Fq. Recall that to F one asso-
ciates an L-function L(F , t) which is a rational function in t (with `-adic coefficients). Poincaré duality
implies the functional equation L(F , 1

qt
) = ε(F) · L(F∨, t). The constant ε(F) arising in this func-

tional equation is described in terms of the Frobenius eigenvalue on the determinant of cohomology
ε(F) = tr(−F,det(H∗(X,F))). We also refer to it as the global epsilon factor.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska-Curie Grant Agreement No. 701679.
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A formalism of local epsilon factors allows one to associate to a non-zero rational 1-form ν on X and
a closed point x ∈ X an (invertible) `-adic number εν,x(F) which is equal to 1 for almost all closed points
x, such that we have a product formula

ε(F) =
∏
x∈Xcl

εν,x(F). (1)

Furthermore, the quantity εν,x(F) is only to depend on the constructible sheaf F (and the form ν) near
x, that is, the restriction to the formal completion of X at x.

The existence of a formalism of local epsilon factors was proven by Laumon [Lau87] using global
methods. A purely local definition of εν,x(F) remains elusive and would be desirable. Replacing finite
fields by the complex numbers C (or a field of characteristic zero) and `-adic sheaves by holonomic D-
modules, the determinant line of de Rham cohomology remains an interesting invariant (e.g. due to
its connection to period matrices). It’s been observed by Deligne in his farewell seminar at IHES, and
Beilinson–Bloch–Esnault [BBE02] that one can define graded lines (that is, a 1-dimensional graded vector
spaces Eν,x(F) for a holonomic D-module F and a non-zero rational 1-form on X, such that we have the
following analogue of formula (1):

det(X,F) =

2⊗
i=0

(∧top
Hi(X,F)

)(−1)i

'
⊗
x∈Xcl

Eν,x(F). (2)

We recall this construction in 2.1. Their construction for de Rham cohomology has a Betti counterpart,
and hence lends itself to define epsilon periods (see [BBDE05] for a construction of epsilon periods using
Fourier transform, and Beilinson’s [Bei07, Bei09]).

A generalisation of de Rham epsilon lines to higher dimensions was developed by Patel in [Pat12],
see also 2.2 for a summary of his theory. Let X be a smooth variety over a field k of characteristic 0,
U ⊂ X an open subset, and ν ∈ Ω1

X(U). We denote by K(DX , ν) the K-theory spectrum of locally
finitely presented D-modules M on X, such that ν(U) does not intersect the singular support of M . And
by K(X,D) the K-theory spectrum of coherent sheaves on X which are set-theoretically supported on
D = X \ U .

Theorem 1.1 (Patel). There exists a morphism of spectra EPν : K(DX , ν) // K(X,D), such that for X
proper, we have a commutative diagram

K(DX , ν)
EPν //

RΓdR
&&

K(X,D)

RΓ

��

K(k).

Patel’s epsilon factors take values in the K-theory spectrum K(X,D). If D is proper, we can apply
RΓ(X,−) and obtain a perfect complex of vector spaces. The graded determinant thereof will be denoted
by εPν (M) and referred to as Patel’s epsilon line. While this is a pleasant generalisation of the theory
for curves to higher dimensions, it would be desirable to find the higher-dimensional counterparts of the
following features of Beilinson–Bloch–Esnault’s theory in dimension 1:

(a) Is there a refinement of Patel’s epsilon factors which decomposes as a product
⊗

x∈Xclosed
εν,x(M)

similar to equation (2)?

(b) Can we vary ν in families with respect to a commutative k-algebra A, and is there an analogue of the
epsilon connection of [BBE02]?

(c) Is Patel’s epsilon factor isomorphic to the one defined for curves by Deligne and Beilinson–Bloch–
Esnault?

In this paper we give an affirmative answer to these questions. We fix a commutative k-algebra A
(where k denotes again a field of characteristic 0). Let Z ⊂ X be a proper subset (possibly 0-dimensional),
and X \ Z =

⋃m
i=1 Ui an open covering. Furthermore, we choose for every i ∈ {1, . . . ,m} a section νi

of Ω1
(Ui)A/A

. We refer to the tuple (ν1, . . . , νm) by ν, and denote by K(DX , ν) the K-theory of the full
subcategory of holonomic D-modules M , such that for every ∅ 6= I ⊂ {1, . . . ,m} the singular support of
M does not intersect the affine space

∑
i∈I λiνi with

∑
i∈I λi = 1. The following result is proven at the

end of Subsection 3.2.4.
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Theorem 1.2. There exists a morphism of spectra Eν,A : K(DX , ν) // K(XA, ZA), such that for X
proper, we have a commutative diagram

K(DX , ν)
Eν,A
//

RΓdR

��

K(XA, ZA)

RΓ

��

K(k)
⊗kA // K(A).

Taking the graded determinant of RΓ ◦ Eν one obtains a graded line which decomposes naturally into
factors

εν '
⊗

x∈π0(Z)

εν,x.

If Z is zero-dimensional, this yields the promised factorisation format in higher dimensions. The epsilon
connection is introduced in Section 4. The following is proven in Section 4, and responds to question (b)
above.

Theorem 1.3. The local epsilon line εν(M)/ SpecA of a holonomic D-module carries a natural crystal
structure. Furthermore, if X is smooth and proper, εν(M) is isomorphic to the constant crystal induced
by det(RΓdR(X,M))⊗k A.

The solution to (a) and (b) is based on the same principle: the invariance property of algebraic K-
theory along Zariski-locally trivial PN -fibrations with a modulus condition at ∞ (in the case of regular
base schemes this is simply A1-invariance of K-theory). The comparison between Patel’s and Beilinson–
Bloch–Esnault’s theory is the content of Theorem 2.19.

Categorical conventions. We work in the framework of ∞-categories (mostly stable ∞-categories) as
discussed in Lurie’s [Lur]. It should be possible for readers without prior exposure to the theory of
∞-categories to follow the outline of our construction.

Acknowledgements. The author thanks Oliver Braunling, Hélène Esnault, Javier Fresán, Deepam Patel,
Simon Pépin-Lehalleur, Kay Rülling, Markus Roeser and Jesse Wolfson for interesting conversations about
epsilon factors, differential equations and algebraic K-theory, and for their comments on a preliminary
version of this article.

2 De Rham epsilon factors: what we know so far

2.1 Beilinson–Bloch–Esnault’s epsilon lines

The theory of de Rham epsilon factors for irregular flat connections on curves was developed (indepen-
dently) by Deligne (in his farewell seminar at IHES) and Beilinson–Bloch–Esnault in [BBE02].

Situation 2.1. Let k be a field of characteristic 0 and X a smooth k-scheme of dimension 1. Furthermore,
we assume either that X is a smooth curve (possibly affine) or that X is a trait, that is, isomorphic
to Spec k′[[t]] for some finite field extension k′/k. We choose an open subset j : U ↪→ X with closed
complement D ⊂ X. We let M be a holonomic D-module on X, such that M |U is O-coherent, that
is, corresponds to a vector bundle with a flat connection E = (E,∇) on U . We denote by ν a nowhere
vanishing 1-form on U .

A graded line over a commutative ring R is a pair (L, n) where L is an invertible R-module and n ∈ Z
an integer. The groupoid of graded lines will be denoted by PicZ(R). Addition in Z and the tensor
product ⊗ of invertible sheaves leads to a monoidal structure ⊗ on PicZ(R). We endow PicZ with the
symmetric monoidal structure given by the symmetry constraint

(L1, n1)⊗ (L2, n2) //

��

(L2, n2)⊗ (L1, n1)

��

(L1 ⊗ L2, n1 + n2)
(−1)n1n2c

// (L2 ⊗ L1, n1 + n2),

where c : L1 ⊗ L2
// L2 ⊗ L1 is the canonical isomorphism.

Under the circumstances described in Situation 2.1, the theory of loc. cit. can be used to define
a graded line εν(M) which only depends on the geometry of M and X infinitely near D. We prepare
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the ground by introducing relative determinant lines. This has the desirable effect that we obtain a
symmetric monoidal functor from the groupoid of finitely generated projective R-modules (discarding all
non-invertible maps) to PicZ(R), denoted by

detZ : (P f (R))× // PicZ(R)

which sends V to (detV, rkV ).

Lemma-Definition 2.2. Let E be a vector bundle on U .

(a) A lattice in E is an O-coherent subsheaf L ⊂ j∗E, such that L|U = E.

(b) For a pair of lattices L1, L2 ⊂ j∗E we define a graded k-line

detZ(L1 : L2) = detZ(Γ(L1/L))⊗ (detZ(Γ(L2/L)))−1,

where L is an arbitrarily chosen lattice satisfying L ⊂ L1 ∩ L2. We claim that this graded line only
depends on (L1, L2) up to a unique isomorphism.

(c) The relative graded determinant detZ(L1 : L2) factorises as a tensor product (with almost all but
finitely many factors trivialised)

detZ(L1 : L2) '
⊗

x∈Xclosed

detZ(L1 : L2)x.

Proof. It suffices to show that detZ(L1 : L2) is well-defined, that is, independent of the choice of L. For
L,L′ ⊂ L1 ∩ L2 we may choose L′′ ⊂ L ∩ L′. We have detZ(Γ(L1/L

′′) ' detZ(Γ(L1/L) ⊗ detZ(Γ(L/L′′),
and similarly detZ(Γ(L2/L

′′) ' detZ(Γ(L2/L)⊗ detZ(Γ(L/L′′). This induces an isomorphism

detZ(L1 : L2) = detZ(Γ(L1/L))⊗ (detZ(Γ(L2/L)))−1 ' detZ(Γ(L1/L
′′))⊗ (detZ(Γ(L2/L

′′)))−1.

Reversing the role of L and L′ we obtain an isomorphism

detZ(L1 : L2) = detZ(Γ(L1/L))⊗ (detZ(Γ(L2/L)))−1 ' detZ(Γ(L1/L
′))⊗ (detZ(Γ(L2/L

′)))−1.

We leave the verification of the fact that this isomorphism is independent of the choice of L′′ to the
reader.

The factorisation property (c) follows by defining detZ(L1 : L2)x = detZ(Γ((L1/L)x)⊗detZ(Γ((L2/L)x))−1,
where (Li/L)x denotes the stalk at a closed point x ∈ X. Since Li/L is a skypscraper sheaf supported
at closed points, we have

Γ(Li/L) =
⊕

x∈Xclosed

(Li/L)x.

This concludes the proof.

The multiplicativity of graded determinants with respect to short exact sequences yields the following
transitivity property.

Lemma 2.3. For every triple of lattices L1, L2, L3 ⊂ j∗E we have an isomorphism t123 : detZ(L1 :

L2) ⊗ detZ(L2 : L3)
' // detZ(L1 : L3), such that for every quadruple L1, L2, L3, L4 ⊂ j∗E we get a

commutative diagram

detZ(L1 : L2)⊗ detZ(L2 : L3)⊗ detZ(L3 : L4)
t123⊗id

//

id⊗t234
��

detZ(L1 : L3)⊗ detZ(L3 : L4)

t134

��

detZ(L1 : L2)⊗ detZ(L2 : L4)
t124 // detZ(L1 : L4)

of graded lines. Similarly for detZ(Li : Lj)x.

Lemma-Definition 2.4. (a) A pair of lattices for E = (E,∇) are locally free O-coherent subsheaves
L,N ↪→ j∗E, such that L|U = E, N |U = E and satisfying ∇(L) ⊂ N ⊗ Ω1

X(D).

(b) We denote by DR(L,N)) the complex of sheaves [L
∇ //N ⊗ Ω1

X(D)].

(c) We define

ε̃ν(X, E) = detZ(L : ν−1(N ⊗ Ω1
X))⊗

(
detZ(RΓ(DR(L,N))

)−1

⊗ detZ(RΓdR(U, E).
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(c) The de Rham epsilon line is defined to be the graded line εν(X,M) = ε̃ν(E,∇)⊗ detZ(RΓdR,D(M)).

Proof. Only point (c) requires clarification. We need to verify that the definition given there is inde-
pendent of choices. Let (L1, N1) be two pairs of lattices for (E,∇). Without loss of generality we may
assume L1 ⊂ L2 and N1 ⊂ N2. The transitivity property for the relative determinant (Lemma 2.3) yields

detZ(L2 : ν−1(N2 ⊗ Ω1
X(D))) '

' detZ(L2 : L1)⊗ detZ(L1 : ν−1(N1 ⊗ Ω1
X(D)))⊗ detZ(ν−1(N1 ⊗ Ω1

X(D)) : ν−1(N2 ⊗ Ω1
X(D))).

Similarly, multiplicativity of graded determinants with respect to short exact sequences implies

detZ(RΓ(DR(L2, N2))) ' detZ(Γ(L1/L2)) detZ(RΓ(DR(L1, N1)))⊗ detZ(Γ(N2/N1)).

By definition we have detZ(Γ(L1/L2)) = detZ(L1 : L2). Therefore we see that

detZ(L1 : ν−1(N1 ⊗ Ω1
X(D)))⊗

(
detZ(RΓ(DR(L1, N1))

)−1

'

' detZ(L2 : ν−1(N2 ⊗ Ω1
X(D)))⊗

(
detZ(RΓ(DR(L2, N2))

)−1

.

This concludes the proof.

If (L,N) satisfies the property

[L
∇ //N ⊗ Ω1

X(D)] ' RjdR∗ E ,

then one says that (L,N) is a good lattice pair. According to a theorem of Deligne, good lattice pairs
always exist ([Del70, p. 110-112]).

Corollary 2.5. Let (L,N) be a good lattice pair for E. Then we have an isomorphism

ε̃ν(X, E) ' detZ(M : ν−1(N ⊗ Ω1
X(S))).

Remark 2.6. This is the definition the de Rham epsilon line given by Deligne in his farewell seminar at
IHES.

Using the factorisation property (c) of Lemma-Definition 2.2, one can define local epsilon factors.

Lemma-Definition 2.7. There exists ε̃BBEν,x (E) and εBBEν,x (M), such that

ε̃BBEν (X, E) '
⊗

x∈Uclosed

ε̃ν,x(E),

εBBEν (X,M) '
⊗

x∈Uclosed

εν,x(M).

The product formula for a proper smooth varieties X follows directly from the definition, using the
defining property of good lattice pairs. We denote by H∗dR(X,M) the de Rham cohomology of a holonomic
D-module on X which lives in degrees [0, 2].

Theorem 2.8 (Product formula). Suppose that in Situation 2.1, X is a smooth proper curve. Let M be
a (bounded complex of) holonomic D-module on X. Then, we have an isomorphism of graded lines

detZ(H∗dR(X,M)) ' εBBEν (X,M) '
⊗

x∈Xclosed

εBBEν,x (M).

Proof. The proof is reduced to the case M = RjdR∗ E where E = (E,∇) is a flat vector bundle on an open
subset U ⊂ X. We have to produce an isomorphism

detZ(H∗dR(U, E)) ' ε̃BBEν (E).

For a good lattice pair (L,N) we have

detZ(RΓ(X,L))⊗ detZ(RΓ(X,N))−1 ' detZ(RΓ(U, E)).

The left hand side is isomorphic to detZ(L : ν−1(N ⊗ Ω1
X(D))) ' ε̃BBEν (E).

5



The transitivity property of relative determinants yields the following structure on de Rham epsilon
lines.

Lemma-Definition 2.9. For every short exact sequence of holonomic D-modules

ξ : M ′ ↪→M �M ′′

we have an isomorphism of graded lines

βBBEξ : εBBEν (M) ' εBBEν (M ′)⊗ εBBEν (M ′′),

such that for every diagram
M
� � // N

����

� � // P

����

N/M
� � // P/M

����

P/N

we have a commutative diagram of isomorphisms of graded lines

εBBEν (P ) //

��

εBBEν (N)⊗ εBBEν (P/N)

��

εBBEν (M)⊗ εBBEν (P/M) // εBBEν (M)⊗ εBBEν (N/M)⊗ εBBEν (N/M)−1 ⊗ εBBEν (P/M).

The same thing holds for the local epsilon factors εBBEν,x . Furthermore, if X is a proper smooth curve,
then βξ is compatible with the isomorphism

detZ(RΓdR(N)) ' detZ(RΓdR(M))⊗ detZ(RΓdR(P )).

2.2 Patel’s epsilon factor

In [Pat12] Patel introduced a formalism of de Rham epsilon factors for higher-dimensional schemes. This
subsection is devoted to reviewing Patel’s construction. We denote by k a field of characteristic 0.

Remark 2.10. Henceforth we adopt the grading conventions of Patel’s paper [Pat12] where de Rham
cohomology RΓdR is supported in the degrees [−n, n], n = dimX. Furthermore we emphasise that D-
modules will be right D-modules.

This convention will lead to the appearance of a shift when comparing Patel’s epsilon factors with
those defined by Deligne and Beilinson–Bloch–Esnault.

Definition 2.11. Let X be a scheme of finite presentation and D ⊂ X a closed subset. We say that a
finite presentation morphism of schemes f : Y //X is an isomorphism infinitely near D, if the induced
morphism of formal schemes Ŷ form

D
// X̂ form
D is an isomorphism.

Situation 2.12. Let X be a smooth separated k-scheme, D ⊂ X a closed subset, and ν ∈ Ω1
X(X \D) a

1-form. We denote by Perf(DX , S) the bounded derived ∞-category of perfect D-modules on X, and by
Perfν(DX) the full subcategory of objects M whose singular support S does not intersect the graph of ν.

Theorem 2.13 (Patel). There exists a morphism of spectra EPν : K(DX , ν) // K(X,D), satisfying the
following properties.

(a) “Excision”: For a morphism of smooth varieties f : Y //X which is an isomorphism infinitely near
D ⊂ X we have a commutative diagram of spectra

K(DX , ν) //

EPν
��

K(DY , f
∗ν)

EPf∗ν
��

K(X,D) // K(Y, f−1(D)).

6



(b) “Product formula”: If X is proper (and dimX = n) we have a commutative diagram

K(DX , ν)
EPν //

RΓdR
&&

K(X,D)

RΓ

��

K(k)

relating the morphisms RΓ and RΓdR.

Remark 2.14. According to Thomason–Trobaugh [TT90, Theorem 2.6.3(d)], every f : Y //X as in Def-

inition 2.11 induces an equivalence K-theory spectra Lf∗ : K(X,D)
' // K(Y,D). Thomason–Trobaugh’s

definition of isomorphisms infinitely near D in [TT90, Definition 2.6.2.1] is different from our Definition
2.11. Yet, these two definitions are equivalent as is shown in [TT90, Lemma-Definition 2.6.2.2]. In the
light of Thomason–Trobaugh’s result, the excision property (a) in Patel’s Theorem 2.13 can therefore be
accurately described as stating that the epsilon factor EPν (M) of a holonomic D-modules depends only on
the geometry of X and M near D.

If D is proper, we may consider the composition RΓ ◦ EPν : K(DX , ν) // K(k). Post-composing this
with the graded determinant map K(k) //PicZ, we define a de Rham epsilon line εPν (X,M). Furthermore,
by virtue of the definition of algebraic K-theory, we have the following.

Lemma-Definition 2.15. For every short exact sequence of holonomic D-modules

ξ : M ′ ↪→M �M ′′

we have an isomorphism of graded lines

βPξ : εPν (X,M) ' εPν (X,M ′)⊗ εPν (X,M ′′),

such that for every diagram
M
� � // N

����

� � // P

����

N/M
� � // P/M

����

P/N

we have a commutative diagram of isomorphisms of graded lines

εPν (X,P ) //

��

εPν (X,N)⊗ εPν (X,P/N)

��

εPν (X,M)⊗ εPν (X,P/M) // εPν (X,M)⊗ εPν (X,N/M)⊗ εPν (X,N/M)−1 ⊗ εPν (X,P/M).

If dimX = 1, D ⊂ X a (reduced) divisor, we will show in Theorem 2.19 that Patel’s epsilon line
satisfies

εPν (X,M) ' εBBEν (X,M),

and that with respect to this equivalence, βPξ corresponds to βBBEξ .
In the remainder of this subsection we will sketch the main steps of Patel’s construction. The starting

point is a theorem of Quillen about the K-theory of D-modules on a smooth k-scheme X. We denote by
FModcoh(DX) the quasi-abelian category of DX -modules with a good filtration. The associated graded
defines an exact functor

gr : FModcoh(DX) // Coh(T ∗X).

Proposition 2.16 (Quillen). There exists a morphism of spectra Q : K(DX) // K(T ∗X), such that the
diagram

K(DX)

''

K(FModcoh(DX))oo

gr

��

K(T ∗X)

commutes.
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The key result underlying Patel’s epsilon factors is a refinement of Quillen’s result on filtered rings.
Let S ⊂ T ∗X be a closed subset. We denote by Perf(DX , S) the derived∞-category of perfect complexes
of D-modules on X with singular support contained in S.

Proposition 2.17 (Patel). There exists a morphism of spectra QS : K(DX , S) // K(T ∗X,S) fitting into
a commutative square

K(DX , S)

��

// K(T ∗X,S)

��

K(DX) // K(T ∗X).

We denote by U = X \D. The 1-form ν defines a section ν : U // T ∗X which does not intersect S
(by assumption). Let π : T ∗X //X be the canonical projection.

The identity π ◦ ν = idU gives rise to a commutative diagram of spectra

K(X)

$$

π∗ // K(T ∗X)

ν∗

��

K(U).

Since X is regular and π : T ∗X //X is Zariski-locally a fibration in to affine spaces, the induced morphism

of spectra π∗ : K(X)
' // K(T ∗X) is an equivalence. Therefore we also have a commutative diagram

K(X)

$$

K(T ∗X)
(π∗)−1

oo

ν∗

��

K(U).

In particular, we get a commutative square

K(T ∗X) //

(π∗)−1

��

K(T ∗U)

ν∗

��

K(X) // K(U).

This induces a morphism between the fibres (of the rows) φν : K(T ∗X,S) // K(X,D).

Definition 2.18 (Patel). The morphism EPν is defined to be [−n] ◦ φν ◦ QS : K(DX , ν) // K(X,D),
where n = dimX.

The excision property is obvious from the definitions and the product formula the content of [Pat12,
Corollary 3.23].

2.3 Comparison

This subsection is devoted to verifying that Patel’s epsilon line for curves agrees with Beilinson–Bloch–
Esnault’s epsilon line.

Theorem 2.19. (a) For a holonomic D-module M with singular support S on X we have an isomor-
phism of graded lines

αM : εPν (X,M)
' // εBBEν (X,M)[−1],

where ν(U) ∩ S = ∅.
(b) For every short exact sequence of holonomic D-modules on X

ξ : M ′ ↪→M �M ′′
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we have a commutative diagram

εPν (X,M)
αM //

βPξ

��

εBBEν (X,M)[−1]

βBBEξ

��

εPν (X,M ′)⊗ εPν (X,M ′′)
αM′⊗αM′′// εBBEν (X,M ′)[−1]⊗ εBBEν (X,M ′′)[−1].

of isomorphisms of graded lines, where the isomorphisms βBBEξ and βPξ are specified by Lemma-
Definition 2.9 and Lemma-Definition 2.15.

(c) Let X be proper (in addition to smooth) and M a holonomic D-module on X. There is a commutative
diagram

εPν (X,M)
αM //

((

εBBEν (X,M)[−1]

��

detZ(RΓdR(X,M))

and this isomorphism is compatible with short exact sequences of holonomic D-modules.

The proof of this result will be given below. At first we link Patel’s QS and Quillen’s Q with Deligne’s
good pairs. This is the content of Lemma 2.24 below.

We denote by π≤1 : ∞-Gpd //Grpd the functor sending a space X to the Poincaré groupoid consisting
of points of X and homotopy classes of paths between points. Similarly, we denote by π≤2 the functor
sending a space X to the Poincaré 2-groupoid, consisting of points, paths between points, and homotopy
classes of homotopies between paths.

In the following we denote by [A //B] a chain complex where A is supported in degree −1 and B in
degree 0.

Lemma-Definition 2.20. (a) Let X, U , and E = (E,∇) be as in Situation 2.1. There is a morphism

γ0 : π≤2K(Loc(U)) // π≤2K(X),

such that for a good lattice pair (L,N) for E we have

γ0(E) ' [L
0 //N ⊗ Ω1

X(D)].

(b) For ν ∈ Ω1,×
X (U) we have a morphism

γν : π≤2K(Loc(U)) // π≤2K(X,D),

such that the square

π≤2K(Loc(U))
γν //

��

π≤2K(X,D)

��

π≤2K(Loc(U))
γ0 // π≤2K(X)

commutes, and for a good lattice pair (L,N) for E we have

γν(E) ' [L
ν //N ⊗ Ω1

X(D)].

Proof. (a): We check first that there’s a well-defined map Loc(U)× // π≤2K(X) sending E ∈ Loc(U) to

[L
0 //N ⊗ Ω1

X(D)].

Claim 2.21. Let (L1, N1), and (L2, N2) be good lattices for E. There exists a homotopy q12 in π≤2K(X)

between [L1
0 // N1 ⊗ Ω1

X(D)] and [L2
0 // N2 ⊗ Ω1

X(D)]. Furthermore, given a third good lattice pair
(L3, N3) we have

q12 · q23 ' q13.

This construction is compatible with quadruples of good lattice pairs.
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Proof. This proof is a facsimile of the proof of the existence of good epsilon lines (with the additional
dimension of taking the 2-categorical nature of π≤2 into account). Without loss of generality (since the
poset of good lattice pairs is filtered) we may assume that (L1, N2) ⊂ (L2, N2) ⊂ (L3, N3). Using the
H-group structure on π≤2K(X) we see that it suffices to construct a homotopy between 0 ∈ π≤2K(X,Z)

and [Li+1/Li
0 //Ni+1/Ni ⊗ Ω1

X(D)].
By virtue of the definition of good lattice pairs, the complexes

[Li+1/Li
∇ //Ni+1/Ni ⊗ Ω1

X(D)]

are acyclic for i = 1, 2. The map ∇ is not OX -linear. However, we observe that K(X,Z) is equivalent
to the K(ShfX,Z(k)), where ShfX,Z denotes the abelian category of sheaves of k-vector spaces on X with

support Z. In π≤1K(ShfX,Z(k)) we have a homotopy

[Li+1/Li
∇ //Ni+1/Ni⊗Ω1

X(D)] ' [Li+1/Li]	 [Ni+1/Ni⊗Ω1
X(D)] ' [Li+1/Li

0 //Ni+1/Ni⊗Ω1
X(D)],

where 	 denotes subtraction with respect to the H-group structure on π≤2K(X). The left hand side is
represented by an acylic complex, and therefore homotopic to 0. This concludes the proof of the claim.

It remains to check that there exists a map π≤2K(Loc(U)) // π≤2K(X), such that the diagram

Loc(U)×

''��

π≤2K(Loc(U)) // π≤2K(X)

commutes. This follows at once from the behaviour of lattice pairs with respect to short exact sequences.

Claim 2.22. A short exact sequence of flat connections E ′ ↪→ E � E ′′ on U can be lifted to a short exact
sequence of good lattice pairs:

M ′
� � //

∇
��

M // //

∇
��

M ′′

∇
��

N ′ ⊗ Ω1
X(D)

� � // N ⊗ Ω1
X(D) // // N ′′ ⊗ Ω1

X(D).

Proof. By virtue of formal descent we may assume that X is a trait. Without loss of generality we assume
that X = Spec k[[t]] and U = SpecF where F = k((t)). For split short exact sequences the assertion is
obvious. It suffices therefore to prove the claim when E ′ and E ′′ are indecomposable and the short exact
sequence is non-split. It then follows from the Levelt–Turritin decomposition (see [Lev75]) that there
exists a finite étale morphism q : SpecF ′ // SpecF (of generic points of traits), such that the short
exact sequence is given by the push-forward q∗ applied to the short exact sequence

L ⊗ (E(n−1) ↪→ E(n)
// E(i))

where E(n) is the flat connection (OF ′ , d +
J(n)

z
dz) (where J(n) is an (n × n)-Jordan block), and L is a

rank 1 flat connection on SpecF ′.
We can then construct the short exact sequence of good lattice pairs by pushing-forward the pairs

(L⊕`, L(irr(L))⊕`) for ` = n− i, n, i, where L ⊂ L is a Deligne lattice and irr(L) denotes the irregularity
of L.

Remark 2.23. The maps γ0 and γν can also be defined on the full K-theory spectrum. However, this is
technical and more than what we need for the purpose of this subsection.

This concludes the construction of the map γ0. We now briefly turn to γν : as in the proof of Claim

2.21 one verifies that there is a well-defined map Loc(U)× // π≤2K(X,Z) given by E 7→ [L1
ν //N1 ⊗

Ω1
X(D)]. At first we remark that the complex [L1

ν //N1⊗Ω1
X(D)] is acyclic when restricted to U , since

ν(U) ∩ S = ∅. Therefore it defines indeed a point in π≤2K(X,Z). Furthermore, we may assume that
(L1, N2) ⊂ (L2, N2) ⊂ (L2, N3). As in the proof of Claim 2.21 we see that in π≤1K(ShfX,Z(k))

[L2/L1
ν //N2/N1 ⊗ Ω1

X(D)] ' [L2/L1]	 [N2/N1 ⊗ Ω1
X(D)] ' [L2/L1

∇ //N2/N1 ⊗ Ω1
X(D)] ' 0.

The compatibility of good lattice pairs with short exact sequences (Claim 2.22) implies the assertion.
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Lemma 2.24. There are commutative diagrams of Picard groupoids

π≤2K(Loc(U))
(π∗)−1

//

γ0
((

π≤2K(X,D)

π≤2K(X,D),

and

π≤2K(Loc(U))
Eν //

γν
((

π≤2K(X,D)

π≤2K(X,D).

Proof. We will verify these statements after formal completion at D (that is, after replacing X by

the disjoint union of traits X̂D). For the second diagram this is sufficient by the excision property
of Eν and γν . We can use the Levelt–Turritin decomposition (see [Lev75]) to analyse the morphism
Eν : π≤1K(Loc(U)) // K(X,D). Henceforth we assume that X is a trait and U = SpecF where
F = k((t)). There exists a finite étale extension q : SpecF ′ // SpecF , such that in π≤1(Loc(U))
we have a homotopy

E ' q∗(L)⊕n

where L is a rank 1 connection on SpecF ′. We observe that QS and Eν and γν commute with the
pushforward q∗ (as good lattice pairs do, and by virtue of [Pat12, Corollary 3.30]). The D-module j∗L
on SpecOF ′ = Spec k′[[t′]] is endowed with a good filtration (j∗L)≤m = OF ′(m(i+ 1)), where i denotes
the irregularity of L. A simple computation using this filtration to compute the value of Q, concludes
the proof of the second assertion.

For the first diagram we use the following well-known property of algebraic K-theory.

Claim 2.25 (Formal descent for algebraic K-theory). The commutative square of spectra

K(X)
j∗

//

��

K(U)

��

K(X̂D)
ĵ∗
// K(X̂D ×X U)

is cartesian.

Proof. It suffices to show that the induced map of fibres fib(j∗) // fib(ĵ∗) is an equivalence. Thomason–
Trobaugh’s localisation theorem implies that this map is homotopic to the natural morphism

K(X,D) //K(X̂D, D).

According to [TT90, Theorem 2.6.3(d)] this is an equivalence.

In order to conclude the assertion, we have to show that the following commutative diagrams of
2-Picard groupoids are equivalent:

π≤2K(Loc(U))

((

γ0 //

γ0

��

π≤2K(U)

f∗

��

π≤2K Loc(U)
(π∗)−1

//

((
(π∗)−1

��

π≤2K(U)

f∗

��

π≤2K(X̂D)
ĵ∗
// π≤2K(X̂D ×X U) π≤2K(X̂D)

ĵ∗
// π≤2K(X̂D ×X U).

In order to construct such an equivalence we “cut” the commutative squares into two halves along the
dashed arrow, as indicated in the diagram above. We will then compare these halves individually. We
claim that we have a two equivalent commutative triangles of Picard 2-groupoids

π≤2K(Loc(U))

F
((

γ0 // π≤2K(U)

f∗

��

π≤2K Loc(U)
(π∗)−1

//

F
((

π≤2K(U)

f∗

��

π≤2K(X̂D ×X U) π≤2K(X̂D ×X U),
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where F : Db(Loc(U)) // Perf(X̂D×XU) is the exact functor sending (E,∇) to [E
0 //E⊗Ω1

X ]⊗OU ÔX,D.
For the left hand side this follows from the definition of γ0, for the right hand side this is a consequence
of (π∗)−1 ' i∗0, where i0 : X // T ∗X denotes the zero section. The same argument provides a homotopy
between γ0 and (π∗)−1 which extends to a comparison of the two commutative diagrams. Mutatis
mutandis we compare the remaining two commutating triangles.

Proof of Theorem 2.19. For a holonomic D-module M on X, there exists an open subset j : U ↪→ X, such
that M |U ' E is a vector bundle with a flat connection. The fibre of the map M // j∗E is a complex of
D-modules with support on D = X \ U . Thus it suffices to prove the theorem for the D-module j∗E .

Applying the determinant of cohomology, Lemma 2.24 yields a commutative diagram of Picard
groupoids.

π≤1K(Loc(U))
εPν //

detZ(RΓ(γν)) &&

PicZ(k)

PicZ(k).

It remains to show that detZ(RΓ(X, γν)) is isomorphic to ε̃BBE(X, E). This is a consequence of Corollary
2.5.

2.4 The epsilon connection

In [BBE02] Beilinson–Bloch–Esnault study de Rham epsilon lines in a more general setting. They admit S-
families of smooth curves X (where S is a k-scheme), and consider S-families of irregular flat connections
over US ⊂ XS , satisfying an admissibility condition. Following loc. cit. we refer to such S-families
as being epsilon-nice The epsilon line is computed with respect to a relative 1-form ν ∈ Ω1

XS/S
(US).

Studying the variation of epsilon lines in dependence of ν, the so-called epsilon connection on ε̃ν(E,∇) is
defined. Recasting flat connections in terms of crystals, the epsilon connection amounts to the following
invariance property:

Theorem 2.26 (Beilinson–Bloch–Esnault). Let (E,∇) be an epsilon-nice S-family of flat connections
on US ⊂ XS // S. Let A be a commutative k-algebra, SpecA // S, such that we have two sections
ν1, ν2 ∈ Ω1

XA/A
(U). If (ν1)Ared = (ν2)Ared then there exists an isomorphism

c21 : ε̃ν1(E,∇) ' ε̃ν2(E,∇).

For every triple ν1, ν2, ν3 ∈ Ω1
XA/A

(U) satisfying (ν1)Ared = (ν2)Ared = (ν3)Ared we have c32 ◦ ν21 = c31.

In this subsection we recall the construction of this epsilon-crystal in the special case of a constant
family of curves Xk ×Spec k S, and of an irregular flat connection (E,∇)/Uk. We restrict to this case, in
order to simplify notation, and as our main interest lies in varying the rational 1-form ν.

Situation 2.27. Let X, U , M , (E,∇) be as in Situation 2.1. We let A be a commutative k-algebra, and
ν ∈ Ω1

XA/A
a nowhere vanishing section.

Lemma-Definition 2.28. (a) We choose a pair of good lattices (L,N) for (E,∇) and define

ε̃ν(E,∇) = detZ(LA : ν−1(NA ⊗ Ω1
X))⊗

(
detZ(RΓ(DR(L,N))

)−1

A
⊗ (detZ(RΓdR(U,E,∇)))A.

(b) The de Rham epsilon line of M is defined to be the graded line εν(M) = ε̃ν(E,∇)⊗detZ(RΓdR,D(M)).

Proof. Mutatis mutandis this is the same argument as in Lemma-Definition 2.4 to show that the de Rham
epsilon line is well-defined.

In order to study the dependence of the epsilon line on infinitesimal changes of ν; we assume that X
is a trait.

Situation 2.29. We assume that X = Spec k′[[t]] is a trait. Let ν1, ν2, ν3 ∈ Ω1
A((t))/A, such that

(ν1)Ared = (ν2)Ared = (ν3)Ared . We denote by f the element in A((t))×, such that ν2 = fν1.
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We denote by detZ(f) the relative determinant

detZ(f−1L : L)

where L ⊂ j∗E is an arbitrary lattice. The transitivity property (Lemma 2.3) yields

ε̃fν(E) ' ε̃ν(E)⊗ detZ(f).

Using a representation-theoretic argument based on Clifford theory, Beilinson–Bloch–Esnault showed in
[BBE02, 3.5] that the super line associated to the graded line detZ(f) admits a µ2-reduction, and hence
in particular a crystal structure over SpecA. This induces a crystal structure on the epsilon line.

3 Generalisations of de Rham epsilon factors

The goal of this section is to generalise Patel’s construction (see [Pat12], and 2.2 for a summary) in two
different directions. As it is, the epsilon factor takes values in K(X,D). If neither X nor D are proper, we
can not apply the derived pushforward RΓ(X,−) to obtain an epsilon factor in K(k) and thus an epsilon
line.

Our first goal is therefore to modify Patel’s definition, so that we obtain epsilon factors taking values
in K(X,Z) where Z ⊂ X is a zero-dimensional closed subset of X. This requires working with n = dimX
rational differential forms ν1, . . . , νn whose domains of definition cover X\Z and are sufficiently generic (in
particular, rationally linearly independent). This formalism of epsilon factors hinges on the A1-homotopy
invariance of K-theory.

Secondly, we want to study how these new epsilon factors vary in dependence of the n-tuple of 1-forms
(ν1, . . . , νn). We therefore replace the field k by a commutative k-algebra A, and for every holonomic
D-modules M on X we define a so-called epsilon connection over the space Ω of admissible n-tuples of
1-forms (ν1, . . . , νn). This is the content of Section 4.

3.1 Epsilon factors supported on points

In general, we expect Patel’s epsilon factor to be supported on a closed subset D ⊂ X of codimension 1.
Using several 1-forms at once, we can replace D by a smaller closed subset Z, even of codimension n.

Let I be a non-empty finite ordered set. We denote by A∆I the affine space of dimension |I| − 1
defined by the linear equation ∑

i∈I

λi = 1.

Situation 3.1. Let X be a smooth n-dimensional k-variety and Z ⊂ X a closed subset. Let S ⊂ T ∗X be
a closed subset. We denote the complement of Z by U . Consider an open covering U =

⋃m
i=1 Ui, and for

each i = 1, . . . ,m a nowhere vanishing 1-form νi ∈ Ω1
X(Ui), such that for each ordered subset {i1 < · · · <

i`} ⊂ {1, . . . ,m} we have for Ui1...i` =
⋂`
j=1 Uij that the image of the morphism ν∆((Ui1...i`)A)∩SA = ∅,

where ν∆ : Ui1...i` × A∆ // T ∗X, ν∆(λ1, . . . , λ`) =
∑`
j=1 λjνij .

Henceforth we denote an m-tuple of forms (ν1, . . . , νm) as in Situation 3.1 by ν. Mimicking Patel’s
definition, we introduce for every closed subset S ⊂ T ∗X a map φν : K(T ∗X,S) // K(X,Z) in Lemma
3.2, and define Eν = φν ◦QS .

Lemma-Definition 3.2. There exists a morphisms (ν)∗ : K(T ∗X \ S) // K(U), such that for all i =
1, . . . ,m we have a commutative diagram

K(T ∗X \ S)
(ν)∗

//

ν∗i &&

K(U)

��

K(Ui).

Furthermore, this morphism satisfies (ν)∗ ◦ π∗ ' id.

Sketch. As a warm-up we treat the case m = 2. The idea is to show that on U12 = U1∩U2 we can construct
a linear homotopy νt : U12×A1 //T ∗U12 between the sections ν1|U12 and ν2|U12 by νt = (1− t) ·ν1 + t ·ν2

for t ∈ A1. In this step we use that ν1 and ν2 are linearly independent on U12.
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Claim 3.3. There is a commutative diagram

K(T ∗X)
ν∗1 //

ν∗2

��

K(U1)

��

K(U2) // K(U12)

of spectra.

Proof. Since this diagram is a square, it suffices to verify that it is homotopy commutative, that is,
(ν1|U12)∗ ' (ν2|U12)∗. We have a commutative diagram of regular schemes

U12 × {0}

i0 &&

ν0

''

U12 × A1 νt // T ∗X

U12 × {1}

i1

88

ν1

77

Since the K-theory of regular schemes is A1-invariant, and i0, i1 are sections of π : U01 × A1 // U01, we
have that pullback along i0 and i1 are inverse to π∗. Therefore, ν∗0 ' i∗0◦νt ' (π∗)−1◦νt ' i∗1◦ν∗t ' ν∗1 .

The proof of the general case follows the same idea. For m ≥ 3 we have to produce a coherent system
of linear homotopies. We don’t explain this in detail, as a similar (and in fact more general) construction
is performed in Subsection 3.2.4.

By Thomason–Trobaugh [TT90, Theorem 8.1], algebraic K-theory satisfies Zariski descent, the system
of coherent homotopies alluded to above yields the descent datum for a morphism K(T ∗X \S) // K(U).
The assertion (ν)∗ ◦ (π∗) ' id can be checked Zariski-locally, and therefore holds by construction.

We now define Eν : K(Dν) // K(X,Z) by mimicking Patel’s definition surveyed in 2.2. By construc-
tion we have a commutative diagram

K(T ∗X) //

(π∗)−1

��

K(T ∗X \ S)

ν∗

��

K(X) // K(U).

This gives rise to a morphism of fibres (of the rows), that is, a map

φν : K(T ∗X,S) // KX,Z .

Definition 3.4. We define Eν = QS ◦ φν .

Depending on how we choose ν we may even assume that Z is a zero-dimensional closed subscheme.
In this case we can always apply detZ ◦RΓ and use this as a definition of an epsilon determinant.

Remark 3.5. The A1-invariance property for algebraic K-theory of regular schemes also plays an implicit
role in Abe–Patel’s [APar]. In loc. cit. Levine’s coniveau tower ([Lev08]) is used to prove a localization
formula for epsilon-factors. Levine’s construction is based on the A1-invariance property of the algebraic
K-theory spectrum of a regular scheme.

3.2 De Rham epsilon factors in families

3.2.1 A replacement for A1-homotopy

When replacing X/k by XA = X ×Spec k SpecA we can no longer apply A1-invariance of K-theory. After
all, the ring A might not be regular. In particular, pullback along πA : T ∗XA //XA induces no longer an
equivalence of K-theory spectra. The map (π∗)−1 which is used in the construction of de Rham epsilon
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factors is therefore no longer available to us. Similarly, the linear homotopies alluded to in the discussion
of Lemma-Definition 3.2 cannot be interpreted as A1-homotopies anymore.

As a substitute we can use homotopies indexed by projective spaces PN with a modulus condition at
infinity. This is reminiscent of the theory of reciprocity sheaves and motives with modulus ([KSY16]).

We recall the following well-known result which provides the technical backbone for this strategy. Let
Z be a quasi-compact and quasi-separated scheme, i : PN−1

Z
// PNZ be the inclusion as divisor at ∞.

Since i is regular we have an induced map i∗ : K(PN−1
Z ) // K(PNZ ). We denote by j : Z // PNZ a section,

factorising through the open subscheme PNZ \PN−1
Z .

Proposition 3.6. There is a cocartesian diagram of spectra

K(PN−1
Z )

i∗ //

��

K(PNZ )

Lj∗

��

0 // K(Z).

Proof. It is clear that the commutative diagram above exists (furthermore, commutativity of a square
can be checked in the homotopy category). According to Thomason–Trobaugh [TT90, Theorem 7.3], the
exact functor

Perf(Z)N+1 // Perf(PNZ )

which sends (V0, . . . , Vn) to
⊕n

i=0 Vi ⊗OPN
Z

(−i) induces an equivalence K(Z)N+1 ' // K(PNZ ).

By virtue of the locally free resolution

[OPN
Z

(−1) // OPN
Z

] // i∗OPN−1
Z

we see that we have a commutative diagram

K(PN−1
Z )

i∗ //

'
��

K(PNZ )

'
��⊕N−1

i=0 K(Z)
α //

⊕N
i=0 K(Z),

where α is homotopic to (e0, . . . , en−1) 7→ (e0, e1 − e0, . . . , en−1 − en−2,−en−1). The cofibre is therefore
equivalent to a copy of K(Z). It is given by the codiagonal morphism β :

⊕N
i=0 K(Z) // K(Z) which

sends (e0, . . . , en) to e0 + · · ·+ en. Using the description of the K-theory of PNZ of loc. cit., one sees that

K(PNZ )
Lj∗

//

'
��

K(A)

'
��⊕N−1

i=0 K(Z)
β
//
⊕N

i=0 K(Z)

commutes. This concludes the proof of the assertion.

Construction 3.7. Let Z be a quasi-compact and quasi-separated scheme, and s0, . . . , sn ∈ (PNZ \PN−1)(Z)
an (n+ 1)-tuple of sections. Then we construct an n-simplex of spectra

σs0,...,sn : ∆n // Sp,

such that for every 1-face ∆1
i = {0, i} ⊂ ∆n, the 1-simplex σs0,...,sn |∆1

i
= s∗i : ∆1 // Sp is the morphism

of spectra Ls∗i : K(PNZ ) // K(Z), and for all other 1-faces {i, j} ⊂ [n] with 0 6= i, j, σs0,...,sn |∆ij = idKZ .
Furthermore, for every given choice of (n−1)-simplices σi for (s0, . . . , ŝi, . . . , sn) (for all i ∈ {0, . . . , n})

satisfying the property above, we may assume that σi is the i-th face of σs0,...,sn .

Construction. This follows from [Lur, Remark 1.1.1.7]: if C is a stable ∞-category (in our case the ∞-
category of spectra), then we denote by E the full subcategory of the∞-category of squares Map((∆1)2, C),
consisting of all cofibre diagrams

A //

��

B

��

0 // C.
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The functor Ψ: E // Map(∆1, C) which sends such a cofibre diagram to the morphism (A // B) ∈
Map(∆1, C), is an equivalence. That is, its fibres are contractible Kan complexes.

We now apply this property of stable ∞-category to the morphism of spectra

K(PN−1
Z )

i∗ // K(PNZ ).

By virtue of Proposition 3.6, we have that for all i = 0, . . . , n a cofibre diagram

K(PN−1
Z )

i∗ //

��

K(PNZ )

Ls∗i

��

0 // K(Z),

which belongs to Ψ−1(i∗). Contractibility of Ψ−1(i∗) yields the required n-simplices.

Corollary 3.8. Let h : Z×P1 //Y be a morphism, we write h ◦ j0 = h0 and h ◦ j1 = h1. Then we have
a homotopy of maps of spectra h∗0 ' h∗1 : K(Y ) // K(X).

Proof. The diagram of Proposition 3.6 is cocartesian and its bottom left corner is contractible (we call
such diagrams cofibre diagrams). The∞-category of cofibre diagrams is equivalent to the the∞-category
of morphisms Hom(∆1,C). In particular, we conclude that Lj∗x ' Lj∗y for two rational points x, y of P1.
That is, Lj∗0 ' Lj∗1 .

For i = 0, 1 we have a commutative diagram

X × P1 h // Y

X,

ji

OO

hi

<<

where ji : X // P1
X denotes the section corresponding to the rational point i ∈ P1

k. We have

h∗i ' h∗ ◦ j∗i .

In the first paragraph of this proof we have shown that j∗0 ' j∗1 , and hence we obtain h∗0 ' h∗1.

We will also refer to a morphism h : Z × P1 // Y as a P1-homotopy between h0 and h1.

3.2.2 Associated graded modules

Let Y be a scheme and F A a filtered quasi-coherent sheaf of algebras, such that grA is a commutative
quasi-coherent sheaf of algebras on Y . Furthermore, we assume that for every i ∈ N, the i-th filtered
piece F iA is a finitely generated locally free sheaf on Y . We denote by V // Y the relative spectrum of
grA. A sheaf of A-modules is always understood to be a right A-module.

Definition 3.9. The K-theory of perfect complexes of filtered F A-modules will be denoted by K(F A).
The K-theory of perfect complexes of bifiltered modules (see [Pat12, p. 12]) will be denoted by K(FF A).

The functor Perf(F A)
gr
// Perf(V ) gives rise to a morphism of spectra K(F A) // K(V ).

The following statement is proven exactly like [Pat12, Theorem 3.1.15(1)]. It allows us to descend
constructions in the algebraic K-theory of filtered A-modules to the algebraic K-theory of unfiltered
A-modules.

Lemma 3.10 (Patel). Assume that every perfect complex of A-modules as a finite resolution by sheaves
of locally projective A-modules. Let S ⊂ V be a closed Gm-invariant subset. We have a cocartesian
diagram of spectra

K(FF A, S) //

��

K(F A, S)

��

K(F A, S) // K(A, S),

where the downward morphism K(FF A) // K(F A) forgets the first filtration, and the rightward mor-
phism K(FF A) // K(F A) forgets the second filtration.
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The associated graded gr : Perf(F A) // Perf(V ) factors naturally through Perf([V/Gm]). This ob-
servation is recorded in the right hand triangle of the following commutative diagram.

Lemma 3.11. For a Gm-invariant closed subset S ⊂ V there exists a morphism of spectra

QS : K(A) // K(V ),

such that we have a commutative diagram

K(F A, S)
g̃r
//

��

gr

((

K([V/Gm], [S/Gm])

q∗

��

K(A, S)
QS // K(V, S)

of spectra, where q : V // [V/Gm] is the quotient map.

Proof. It suffices to construct the left hand commuting triangle. As in [Pat12] we consider the K-theory of
perfect bifiltered F A-modules with set-theoretic support of the associated graded module (with respect
to either filtration) on S ⊂ V . By reducing to the case adjacent filtrations as in the proof of [Pat12,
Theorem 3.1.5, 3.1.15(2)], one produces a commutative diagram

K(FF A, S) //

��

K(F A, S)

gr

��

K(F A, S)
gr

// K(V, S).

Since K(A, S) is equivalent to the pushout of spectra K(F A, S) tK(FF A,S) K(F A, S) (Lemma 3.10), we
obtain the required morphism QS : K(A) // K(V ).

3.2.3 Compactification

The purpose of this paragraph is to state and prove 3.13. We set the stage by fixing notation.

Situation 3.12. Let Y be a scheme and A /Y a quasi-coherent sheaf of algebras on Y with a filtration
FiA, such that the associated sheaf of graded algebras is isomorphic to SymE, where E/Y is a vector
bundle on Y with total space denoted by V . Let S ⊂ V be a Gm-invariant closed subset. We consider a
line bundle L on Y and denote the twist of V (respectively S) by L with VL (respectively SL). Let U ⊂ Y
be an open subscheme, such that we have an isomorphism L|U ' OU .

Proposition 3.13. There is a commutative square of spectra

K(F A, S) //

��

K(VL, SL)

��

K(A, S) // K(V ×Y U, S ×Y U)

where the vertical arrows are given by forgetting the filtration, respectively restriction to U .

The proof will be given at the end of this paragraph. We maintain the notation fixed in Situation
3.12. The proof of the following statement is an amusing exercise and hence we will only be sketched.

Lemma 3.14. For every L there exists an equivalence of quotient stacks [V/Gm] ' [VL/Gm]. Further-
more, it induces an equivalence [(V \ S)/Gm] ' [(VL \ SL)/Gm].

Sketch. We begin by constructing a morphism V // [VL/Gm]. By definition of quotient stacks, it
corresponds to a Gm-equivariant morphism

f : V ×Y P // VL

where P is a Gm-torsor and the Gm acts on the left hand side solely on the second component P .
We choose P to be the Gm-torsor given by L minus the zero section. We then have a natural Gm-
equivariant morphism V ×Y P //VL which sends a pair of sections (s, t) to s⊗t. This defines a morphism
[V/Gm] // [VL/Gm]. Its inverse can be constructed by similar means, and the second assertion follows
by inspection.
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Proof of Proposition 3.13. Exhibiting a commutative square of spectra is equivalent to defining a commu-
tative square in the homotopy category of spectra. We claim that the following diagram in the homotopy
category of spectra commutes:

K(F A, S) //

��

K([V/Gm], [S/Gm]) //

��

K([VL/Gm], [SL/Gm])

��

// K(VL, SL)

vv

K(A, S) // K(V, S) // K(V ×Y U, S ×Y U).

The left hand square commutes by Lemma 3.11. The second square is obtained by applying the algebraic
K-theory functor to the equivalence of Lemma 3.14. The commuting triangle on the right is obtained
from the isomorphism VL ×Y U ' V ×Y U , stemming from the trivialisation of L.

3.2.4 The relative de Rham epsilon factor

Let I be a non-empty finite ordered set. We denote by A∆I the affine space of dimension |I| − 1 defined
by the linear equation ∑

i∈I

λi = 1.

Situation 3.15. Let X be a smooth n-dimensional k-variety and Z ⊂ X a closed subset. Let S ⊂ T ∗X
be a closed subset. We denote the complement of Z by U . Consider an open covering U =

⋃m
i=1 Ui, and

for each i = 1, . . . ,m a section νi ∈ Ω1
XA/A

(Ui), such that for each ordered subset {i1 < · · · < i`} ⊂
{1, . . . ,m} we have that for Ui1...i` =

⋂`
j=1 Uij , the image of the morphism ν∆((Ui1...i`)A)∩SA = ∅ where

ν∆ : Ui1...i` × A∆ // T ∗X, ν∆(λ1, . . . , λ`) =
∑`
j=1 λjνij .

The next construction is based on the P-invariance property of algebraic K-theory.

Convention 3.16. (a) We denote by T ∗XA the base change T ∗X ×k A, or equivalently, the relative
cotangent bundle T ∗(XA/A).

(b) The notation T ∗XA �OPm
A

(1) refers to the total space of the locally free sheaf p∗1Ω1
X/A ⊗ p∗2 OPm

A
(1),

where p1 and p2 are the projections from T ∗XA ×A PmA to T ∗XA respectively PmA .

(c) For a Gm-equivariant subscheme S ⊂ T ∗XA we write S �OPm
A

(1) to denote the twist of S × PmA by
p∗2 OPm

A
(1) (in the sense of 3.2.3).

(d) We use the suggestive notation

(T ∗XA \ S) �OPm
A

(1) = T ∗XA �OPm
A

(1) \ S �OPm
A

(1),

(T ∗XA, S) �OPm
A

(1) = (T ∗XA �OPm
A

(1), SA �OPm
A

(1)).

Construction 3.17. Let ν = (ν1, . . . , νm) and A be as in Situation 3.15. We construct a morphism
(ν)∗ : K((T ∗XA \ SA) �OPm

A
(1)) // K(UA), such that we have for i = 1, . . . ,m a commutative diagram

K((T ∗XA \ SA) �OPm
A

(1))
(ν)∗

//

Lν∗i ))

K(UA)

��

K((Ui)A),

of spectra, and, denoting by ν0 = 0: XA // T ∗XA the zero section, we have a commutative diagram

K(T ∗XA �OPm
A

(1)) //

Lν∗0

��

K((T ∗XA \ SA) �OPm
A

(1))

(ν)∗

��

K(XA) // K(UA)

of spectra.
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Construction. Let I ⊂ {1, . . . ,m} be a subset, we denote by (UI)A the intersection
⋂
i∈I(Ui)A inside

UA =
⋃m
i=1(Ui)A. In particular we have (U∅)A = UA. The power set P({1, . . . ,m}) is ordered by

inclusion. The corresponding diagram of schemes

P({1, . . . ,m})op // Sch

is a pushout diagram. By virtue of the Localisation Theorem for algebraic K-theory, we obtain that the
resulting diagram of spectra, obtained by applying the functor K,

U : P({1, . . . ,m}) // Sp

is a cartesian cubical diagram. By definition, the vertices of this cube are the K-theory spectra K((UI)A).
Let P ′({1, . . . ,m}) denote the set of non-empty subsets. The universal property of cartesian diagrams
shows that it suffices to produce a commutative diagram

V : P({1, . . . ,m}) // Sp,

such that V|P′({1,...,m}) = U|P′({1,...,m}), and V(∅) = K((T ∗XA \ SA)�OPm
A

(1)), and for every 1 ≤ i ≤ m
the inclusion ∅ ⊂ {i} is sent to

K((T ∗XA \ SA) �OPm
A

(1))
Lν∗i // K((Ui)A).

We construct the required simplicial map V inductively. For every non-degenerate `-simplex

σ : [`] // P({1, . . . ,m})

we have to associate an `-simplex V(σ), consistent with our previous choices for (` − 1)-simplices. The
above conditions already dictate a choice for 0 and 1-simplices. In order to fill in the remaining gaps we
have to produce a commutative diagram of spectra

K((T ∗XA \ SA) �OPm
A

(1))

--
)) ++��

K((UI1)A) // K((UI2)A) // K((UI3)A) // · · · K(((UI`)A)

for every chain of subsets ∅ = I0 ⊂ I1 ⊂ · · · ⊂ I`. It suffices to produce an `-simplex

K((T ∗XA \ SA) �OPm
A

(1))

--
)) ++��

K((UI`)A) // K((UI`)A) // K((UI`)A) // · · · K((UI`)A).

(all of whose faces are already defined by induction). Construction 3.7 delivers this `-simplex to us, as a
consequence of the contractibility of the Kan complex Ψ(i∗).

The property
(Lν∗0 )|U ' (ν)∗(?|T∗XA�OPm

A
(1)\SA�OPm

A
(1))

is obtained by applying the construction above to S = ∅ and the (m+ 1)-tuple of sections (0, ν1, . . . , νm).

Definition 3.18. (a) Let (Ui, νi)
m
i=1 a collection of open subsets Ui ⊂ X and sections νi ∈ Ω1

(Ui)A/A

which satisfies the same condition with respect to S ⊂ T ∗X as in Situation 3.15. We refer to such
a set (Ui, νi)

m
i=1 as an S-admissible collection (relative to A).

(b) The set of S-admissible collections, such that
⋃m
i=1 Ui = U will be denoted by AdmS,A(U).

(c) Given two S-admissible collections (Ui, νi)
m
i=1 and (U ′i , ν

′
i)
m′
i=1 in AdmS,A(U), we say

(Ui, νi)
m
i=1 < (U ′i , ν

′
i)
m′
i=1

if the open covering (U ′i)
m′
i=1 refines the open covering (Ui)

m
i=1, and the union

(Ui, νi)
m
i=1 ∪ (U ′i , ν

′
i)
m′
i=1

is still S-admissible.
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Applying Construction 3.17 to (Ui, νi)
m
i=1 ∪ (U ′i , ν

′
i)
m′
i=1 where (Ui, νi)

m
i=1 < (U ′i , ν

′
i)
m′
i=1 ∈ AdmS,A(U),

we obtain a homotopy between (νi)
∗ and (ν′)∗.

Corollary 3.19. Let (Ui, νi)
m
i=1 < (U ′i , ν

′
i)
m′
i=1 ∈ AdmS,A(U). Then we have a commutative diagram

K((T ∗XA \ SA) �OPm
A

(1))
(ν)∗
//

(ν′)∗
((

K(UA)

K(UA)

of spectra, and, for every triple (Ui, νi)
m
i=1 < (U ′i , ν

′
i)
m′
i=1 < (U ′′i , ν

′′
i )m

′′
i=1 ∈ AdmS,A(U) the commuting

triangles above fit into a commuting tetrahedron

K(UA)

K((T ∗XA \ SA) �OPm
A

(1))
(ν)∗
//

(ν′′)∗

33

(ν′)∗
((

K(UA)

K(UA)

of spectra. Denoting by ν0 = 0: XA // T ∗XA the zero section, we have a commutative diagram

K(T ∗XA �OPm
A

(1))

++

//

Lν∗0

��

K((T ∗XA \ SA) �OPm
A

(1))

(ν)∗

�� (ν′)∗

""

K(XA) //

,,

K(UA)

K(UA).

Proof. The first assertion follows right from the inductive definition of the morphism (ν) of Construction

3.17, applied to (Ui, νi)
m
i=1 ∪ (U ′i , ν

′
i)
m′
i=1. The second assertion follows by adding the zero section (X, ν0)

to (Ui, νi)
m
i=1 ∪ (U ′i , ν

′
i)
m′
i=1 and considering the case S = ∅.

Definition 3.20. Let Y // Pmk be a morphism of schemes, such that the closed immersion

Y ×Pm
k

Pm−1
k

i // Y

has the property that the structure sheaf i∗OY×Pm
k

Pm−1
k

is a perfect OY -module. We denote the cofibre of

K(Y ×Pm
k

Pm−1
k )

i∗ // K(Y )

by K∞(Y ). Similarly, for a closed subset Y0 ⊂ Y we write K∞(Y, Y0) to denote the cofibre of K(Y ×Pm
k

Pm−1
k , Y0 ×Pm

k
Pm−1
k )

i∗ // K(Y, Y0).

The second building block we need is a well-defined morphism of spectra

Q̃S,A : K(DX , S) // K∞((T ∗XA, SA) �OPm
A

(1)). (3)

We refer the reader to Remark 3.22 for an explanation why we don’t expect the existence of such a map
(fit for our purpose) from K(DX ⊗k A,SA) // K((T ∗XA, SA) �OPm

A
(1)).

Lemma-Definition 3.21. There exists a morphism of spectra Q̃S,A as in (3), such that the diagram of
spectra

K(DX , S)
∃Q̃S,A

//

Q

��

K∞((T ∗XA, SA) �OPm
A

(1))

Lν∗0

��

K(T ∗X) // K(T ∗XA)

commutes.
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Proof. It suffices to construct the morphism Q̃S,k. Indeed, for a commutative k-algebra A we can define

Q̃S,A = Q̃S,k ⊗k A,

where ⊗kA denotes the base change morphism

K∞(Y ) // K∞(YA)

for a Pmk -scheme Y .
Henceforth we assume A = k. We have a cocartesian diagram of spectra (see [Pat12, Theorem 3.1.15]

and Lemma 3.10)

K(FFDX , S) //

��

K(FDX , S)

��

K(FDX , S) // K(DX , S).

That is, K(DX , S) is equivalent to the pushout K(FDX , S) tK(FFDX ,S) K(FDX , S). For this reason it
suffices to construct a commutative diagram

K(FFDX , S) //

��

K(FDX , S)

��

��

K(FDX , S) //

..

K∞((T ∗X,S) �OPm(1))

Lν∗0 ))

K(T ∗X)

and deduce the assertion from the universal property of pushouts. We claim that the existence of such a
commutative diagram follows from Proposition 3.13. Indeed, loc. cit. yields a commutative diagram

K(FDX , S) //

��

K((T ∗X,S) �OPm(1))

��

K(DX , S) // K(T ∗X × Am, S × Am),

which implies that we have a commutative diagram

K(FFDX , S) //

��

K(FDX)

��

��

K(FDX , S) //

..

K(T ∗X × Am, S × Am)

((

K(T ∗X)

By virtue of localisation, the spectrum K(T ∗X × Am, S × Am) is equivalent to the cofibre of

K((T ∗X,S) �OPm−1(1)) // K((T ∗X,S) �OPm(1)).

Since the scheme T ∗X �OPm(1) is smooth, the cofibre above is isomorphic to

K∞((T ∗X,S) �OPm(1)).

This shows what we wanted.

Remark 3.22. We don’t expect there to be a morphism

K(DXA/A, SA) // K(T ∗XA �OPm
A

(1), SA �OPm
A

(1))

fitting into a commutative diagram as in Lemma-Definition 3.21. This is comparable to the epsilon-
niceness condition of Beilinson–Bloch–Esnault [BBE02, 4.4] which is needed in order to define a de Rham
epsilon line of an A-family of irregular flat connections.
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This enables us to finally define the de Rham epsilon factor with respect to the m-tuple (ν1, . . . , νm)
which takes values in K(A), as well as the de Rham epsilon line.

Definition 3.23. (a) The morphism

φ̃ν,A : K∞(T ∗XA �OPm(1), SA �OPm(1)) // K(XA, ZA)

is defined to be the induced map of cofibres of the rows of the following commutative square

K∞(T ∗XA �OPm(1)) //

��

K∞(T ∗XA �OPm(1) \ SA �OPm(1))

��

K(XA) // K(XA \ ZA).

(b) The de Rham epsilon factor is defined to be the composition

Eν,Z = φ̃ν ◦ Q̃S,A : K(DX , S) // K(XA, ZA),

where Q̃S,A is the morphism of Lemma-Definition 3.21.

(c) If Z ⊂ X is proper, we define the de Rham epsilon line

εν = detZ(τ≥0(π∗Eν,Z)) : K(DX , S) // PicZ(A),

where τ≥0 denotes the truncation functor from spectra to connective spectra.

Proposition 3.24. There is a commutative diagram in the homotopy category of spectra

K(DX , S)
Eν,A
//

Q

xx ��

K(XA, ZA)

��

K(T ∗X) // K(T ∗XA)
Lν∗0 // K(XA).

Proof. This follows immediately from Definition 3.23 of the epsilon factor, and the commutative diagram
in the homotopy category of spectra

K∞((T ∗XA, SA) �OPm−1(1)) //

φ̃ν,A

��

K∞(T ∗XA �OPm(1)) //

��

K∞(T ∗XA �OPm(1) \ SA �OPm(1))

��

K(XA, ZA) // K(XA) // K(XA \ ZA).

which exists by virtue of the definition of φ̃ν,A as the cofibre of the commuting square on the right
(considered as a commutative diagram in the stable ∞-category of spectra).

Theorem 3.25. Assume that X is proper, then we have a commutative diagram

K(DX , S)
Eν,A

//

RΓdR

��

K(X,A)

RΓ

��

K(k)
⊗kA // K(A),

and consequently we have an isomorphism of functors

detZ(RΓdR ⊗k A) ' εν,A : K(DX , S) // PicZ(A).

Proof. There is a commutative diagram

K(DX)
Q
//

RΓdR
**

K(T ∗X)
Lν∗0 // K(X)

RΓ

��

K(k)
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(see [Pat12, Lemma 3.22]). Base change along k //A leads to a commutative diagram

K(DX)
Q
//

%%

K(T ∗XA)
Lν∗0 // K(XA) // K(A)

K(T ∗X)

OO

// K(X)

OO

// K(k)

OO

in the homotopy category of spectra. Taking into account the commutative diagram of Proposition 3.24,
we conclude the proof.

Recall the relation (Ui, νi)
m
i=1 < (U ′i , ν

′
i)
m′
i=1 introduced in Definition 3.18. As a consequence of Corol-

lary 3.19 we obtain the following results:

Proposition 3.26. For every relation (Ui, νi)
m
i=1 < (U ′i , ν

′
i)
m′
i=1 in AdmS,A(U) we have a commuta-

tive diagram

(a)

K((T ∗XA, SA) �OPm
A

(1))
φ̃ν,A

//

φ̃ν′,A ))

K(XA, ZA)

K(XA, ZA),

of spectra, and,

(b) for every (Ui, νi)
m
i=1 < (U ′i , ν

′
i)
m′
i=1 < (U ′′i , νi)

m
i=1 we have a commutative diagram

K(XA, ZA)

K((T ∗XA, SA) �OPm
A

(1))

φ̃ν′′,A

33

φ̃ν,A
//

φ̃ν′,A ))

K(XA, ZA)

K(XA, ZA),

of spectra.

(c) Denoting by ν0 = 0: XA // T ∗XA the zero section, the commuting diagram of (a) extends to a
commutative diagram

K(T ∗XA �OPm
A

(1))

%%

Lν∗0

��

K((T ∗XA, SA) �OPm
A

(1))oo

φ̃ν,A

�� φ̃ν′,A

##

K(XA) K(XA, ZA)oo

K(XA)

jj

K(XA, ZA).oo

(d) If we assume in addition properness of X then we have a commutative diagram, then we have a
commutative diagram

K(XA, ZA)

RΓ

��

K(DX , S)

Eν′,A
44

Eν,A
//

RΓdR

��

K(X,A)

RΓ

��

K(k)
⊗kA // K(A),
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in particular we obtain a commutative diagram of natural isomorphism

PicZ(A)

K(DX , S)
εν,A

//

εν′,A

44

detZ(RΓdR) %%

PicZ(A)

PicZ(A).

We infer from these statements the existence of the epsilon connection. This is the content of the
subsequent section. Before turning to the construction of this canonical connection we explain how to
deduce main theorem stated in the introduction from the results of this subsection.

Proof of Theorem 1.2. The theorem follows from 3.24 and the remark that K(DX , ν) ' colimK(DX , S)
where S ⊂ T ∗X ranges over all subsets, such that ν is admissible.

4 The epsilon connection

In this short section we explain how P1-homotopies can be used to produce a connection which arises in
the shape of a crystal.

For a presheaf F : Rngk // Set, the presheaf F dR is given by the functor sending A 7→ F (Ared). One
defines PicZ(F ) to be the colimit

PicZ(F ) = lim−→
A // F

PicZ(A).

There is a well-known correspondence between PicZ(F dR) and crystals of graded lines on F . The map
F // Spec k, and the fact (Spec k)dR = Spec k induces a natural functor PicZ(k) // PicZ(F dR). Crystals
of graded lines in the essential image of this functor will be called constant.

Definition 4.1. Let X, Z, S, A, U , {Ui}i=1,...,m be as in Situation 3.15. We denote by Ω : Rngk // Set
the functor sending a commutative k-algebra A to the set of tuples ν satisfying the condition of Situation
3.15.

Situation 4.2. Let X, Z, S, A, U , {Ui}i=1,...,m be as in Situation 3.15. For j = 1, 2, 3, we denote by
νj = (νj1 , . . . , ν

j
m) an m-tuple of 1-forms νji ∈ Ω1(Ui/A) satisfying the condition of Situation 3.15 for each

j. Furthermore, we assume that ν1
i |Ared = ν2

i |Ared = ν3
i |Ared .

Corollary 4.3. Assume that Z is proper over k. For ν1 and ν1 as in Situation 4.2 there exists an
isomorphism

cri12 : εν1,A ' εν2,A.
Furthermore, for ν1, ν2 and ν3 as in Situation 4.2 we have a commutative diagram

εν1,A
cri12 //

cri13
##

εν2,A

cri23

��
εν3,A

of isomorphism. Furthermore, if X is proper, then these isomorphisms belong to a commutative diagram

εν1,A
cri12 //

��
cri13

''

εν2,A

cri23

��
detZ(RΓdR)⊗k A // εν3,A.

Proof. We claim that for ν1 and ν2 as in Situation 4.2 we have

(Ui, ν
1
i )mi=1 < (Ui, ν

2
i )mi=1
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in AdmS,A(U). The assertion the follows from Proposition 3.26. In order to verify the claim it suffices to
check that the union (Ui, ν

1
i )mi=1 ∪ (Ui, ν

2
i )mi=1 is still S-admissible. Let λ1, · · · , λ2m, such that we have a

relation
m∑
i=1

λiν
1
i +

m∑
i=1

λm+iν
2
i ∩ S 6= ∅.

We apply the homomorphism A //Ared (recall ν1
i |Ared = ν2

i |Ared) and obtain

m∑
i=1

(λi + λm+i)ν
1
i |Ared ∩ S 6= ∅.

This contradicts the assumption of S-admissibility of (Ui, νi)
m
i=1.

Consequently we have an isomorphism of graded lines εν1,A ' εν2,A, satisfying the crystalline cocycle
condition (and hence εcri is a well-defined crystal on Ω). For X a proper scheme, we have an isomorphism
of the crystal εcri with the constant crystal detZ(RΓ∗dR)Ω on Ω as a consequence of Proposition 3.26.

In light of our remarks on crystals, the theorem above yields the following corollary.

Corollary 4.4. The morphism ε : K(DX , S) // PicZ(ΩX,S) factors through PicZ(ΩdR
X,S). That is, de-

fines a crystal of graded lines on ΩX,S. We denote the induced map by εcri : K(DX , S) // PicZ(ΩX,S).
Furthermore, if X is proper, then εcri ' detZ(RΓdR)⊗k A with the constant crystal structure.

We don’t know if for X a curve, our epsilon connection is the same as the epsilon connection con-
structed by Beilinson–Bloch–Esnault in [BBE02].

A Notation
k field of characteristic 0
A commutative k-algebra (with unit)
X smooth k-scheme, also the case of a trait, that is, Spec k′[[t]] is allowed, where k′/k

is a finite field extension
U open subset of X
Z closed complement of U (reduced)
{Ui}mi=1 open covering of U
XA, UA base change X ×k A, respectively U ×k A
ν algebraic 1-form defined on U , or a section of Ω1(UA/A)
ν = (νi)

m
i=1 sections of Ω1

UA/A
((Ui)A)

PicZ(A) Picard groupoid of graded invertible A-modules (or, graded lines)

detZ graded determinant of a vector space, or projective A-module: detZ V = (rkV, detV )
εBBEν graded epsilon line as defined in [BBE02], see also 2.1
K connective algebraic K-theory spectrum of an exact category, a stable ∞-category,

or a scheme
K non-connective algebraic K-theory spectrum of an exact category, a stable ∞-

category, or a scheme
K∞ see Definition 3.20
K(DX) algebraic K-theory of locally finitely presented right D-modules
EPν Patel’s epsilon factor taking values in K(X,D), as defined in [Pat12], see also 2.2
εPν graded epsilon line as defined in [Pat12], see also 2.2
φν see 2.2
Eν epsilon factor taking values in K(XA, ZA), see Definition 3.23
εν graded epsilon line, see Definition 3.23(c)

φ̃ν,A see Definition 3.23(a)
(ν∗) see Construction 3.17
∞-Gpd ∞-category of small ∞-groupoids, or Kan complexes, or spaces
Grpd 2-category of groupoids
' denotes an equivalence of two objects in an ∞-category, including the special case of

an equivalence of two small ∞-categories, or a homotopy between paths, etc.
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