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QUASI-COMPACT GROUP SCHEMES, HOPF SHEAVES, AND

THEIR REPRESENTATIONS

ALVARO RITTATORE, PEDRO LUIS DEL ÁNGEL, AND WALTER FERRER SANTOS

Abstract. We explore the notion of representation of an affine extension of
an abelian variety — such an extension is a faithfully flat affine morphism of
k–group schemes q : G → A, where A is an abelian variety. We characterize the
categories that arise as the category of representations of an affine extension
q : G → A, generalizing the classical results of Tannaka Duality established
for affine k–group schemes (that is, when A = Spec(k)). We also prove the
existence of a contravariant equivalence between the category of affine exten-
sions of a given A and the category of faithful commutative Hopf sheaves on
A, generalizing in this manner the well-known op–equivalence between affine
group schemes and commutative Hopf algebras. If Hq is the Hopf sheaf on
A associated to q, the category of representations of q is equivalent to the
category of Hq–comodules.
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1. Introduction

Roughly speaking, given a certain family of objects R (the “representable ob-
jects”) and a fixed basic monoidal category C, a “representation theory” consists
in the association to an element r ∈ R, of a pair

(
Rep(r), U : Rep(r)→ C

)
, where

Rep(r) is a monoidal category — the category of representations of r —, and U
a monoidal functor (the forgetful functor) — eventually with certain additional
properties depending on the situation under consideration. One aspires to “recon-
struct” each r ∈ R in terms of the corresponding pair

(
Rep(r), U

)
, and also to

describe intrinsically all the pairs (D, U : D → C) that are equivalent to pairs of the
above form for some r. For example, such a platform has been developed within
the following frameworks: categories of groups (abstract, topological, Lie, affine
algebraic, differential); of general algebras; of Lie algebras, Hopf algebras. In this
context the notion of Tannaka Duality is generally presented as an answer to the
following questions (see [38], [53] or [58] for a precise formulation):

The Reconstruction Problem: can a representable object be described in terms
of its category of representations?

The Recognition Problem: can a category of representations be described intrin-
sically?

It is worth mentioning that the theory of Tannaka Duality was generalized to a
categorical context: the relevant concept of “tannakian adjunction” was developed
and some of the classical results were generalized and clarified (see [58] and [38]).

In the case of affine algebraic group schemes over a field (even over a commutative
ring) the theory of rational representations has achieved a considerable degree or
maturity and many of its main problems have been solved and important advances
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have been done in the theory of its actions on general schemes. Examples of sig-
nificant accomplishments in the area are: the completion of the structure theory of
reductive affine group schemes (see [20]), the development of the geometric methods
in invariant theory (see [44]), or more generally the theory of transformation groups
(see [39]). In particular both the reconstruction and recognition questions were an-
swered positively: Saavedra first presented a proof in [50] which was later observed
to have some mistakes. A correct proof of the result was produced afterwards by
Deligne and Milne in [21]; see also [22].

Temporarily, call Rep(G), the category of finite dimensional rational represen-
tations of an affine group scheme; it is well known that Rep(G) is monoidal, rigid,
abelian and k-linear. Denote as ω : Rep(G) → Vectk the corresponding monoidal
forgetful functor. In this context Saavedra-Deligne-Milne’s result can be stated as
follows (see also [38], [53] or [58] for other perspectives of the same problem):

Theorem (Tannaka Duality for affine group schemes, [21, Prop. 2.8, Thm. 2.11]).

(1) Reconstruction Theorem. Let G be an affine group scheme. Consider the
pair (Rep(G), ω) and the group scheme of tensor automorphisms of ω, denoted
as Aut⊗(ω) — see [21, page 20] for a definition of this group and compare with
Definition 3.66 below. Then Aut⊗(ω) is an affine group scheme isomorphic to G.

In particular, if G and G′ are affine group schemes such that (Rep(G), ω) and
(Rep(G′), ω′) are equivalent as monoidal k–linear categories with a forgetful functor,
then G and G′ are isomorphic group schemes.

(2) Recognition Theorem. Let C be a monoidal, abelian, rigid k–linear category such
that k = End(I), together with an exact, faithful, k–linear monoidal functor ω : C →
Vectf,k. Then (C, ω) is equivalent (as a monoidal category with forgetful functor)

to the category of rational representations of the affine group scheme Aut⊗(ω).

Let G be a group scheme of finite type (see Definition 2.1); it is easy to see
that the naive attempt to define the category of representations of G as a direct
generalization of the affine situation, yields a category which does not fulfill our
needs, as it is too small to determine G — for example, if G is an anti-affine group
(see Definition 2.36), then the only morphism of group schemes G→ GL(V ) is the
trivial morphism.

Motivated by previous work of Brion, Rittatore and others on the structure
of group and monoid schemes (see for example [10], [11], [12], [14]) and on their
actions ( [8], [15]), and taking into account the mentioned obstruction to the naive
approach, we propose a representation theory not for isolated group schemes, but
for what we call affine extensions of abelian varieties. Roughly speaking, an affine
extension is a generalization of the so-called Chevalley decomposition for algebraic
groups (see Theorem 2.26): an affine extension S is an exact sequence of group

schemes 1 // H // G
q

// A // 0 , where A is an abelian variety and H is
an affine group scheme — equivalently, q is an affine, faithfully flat morphism of
quasi-compact group schemes and H = Ker(q) (see definitions 2.12 and 2.15). It
follows that q : G→ A is an H–torsor (see definitions 2.11–2.15). A representation
for S is built on an homogeneous vector bundle over A— by homogeneous we mean
that vector bundle E → A is such that E

k
∼= t∗aEk

for any translation ta : A → A
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by a geometric point a ∈ A(k) (see [18] and Definition 3.9 for a more conceptual
and precise definition).

The basic nomenclature of the paper as well as the necessary properties of the
category of affine extensions of a fixed abelian variety A are presented in Chapter 2.
Therein, we also present minor indispensable complements to some of the classical
results on the theory of group schemes.

In order to capture (i.e. to reconstruct) the complete structure of the affine
extension S with a representation theory supported on a category with homogeneous
vector bundles as objects, we need to consider “more morphisms” than the usual
ones between vector bundles. This new category HVBgr(A) is an enriched category
over the monoidal category

(
Sch |k,×, {∗} = Spec(k)

)
. Moreover, the (scheme of)

morphisms between two objects, denoted as Homgr(E,E
′), is also a homogeneous

vector bundle over A; we call its structure morphism d : Homgr(E,E
′) → A the

degree map.

The automorphism group Autgr(E) of a general vector bundle (see Definition
3.18) is a smooth group scheme of finite type, and the degree map d : Autgr(E)→
A is an affine morphism of group schemes, with kernel Aut0(E) — the group of
“classical” automorphisms of E. This result is well known for algebraically closed
fields; more recently it was generalized for arbitrary fields (see [18, Lemma 2.8]).
We say that the bundle E is homogeneous when the sequence

Autgr(E) : 1 // Aut0(E) // Autgr(E)
d // A // 0,

is exact — and hence Autgr(E) is an affine extension, see 3.9 for a precise definition.

A representation of an affine extension S: 1 // H // G
q

// A // 0 or an
S–module, is a morphism of group schemes ρ : G→ Autgr(E), where E is a homo-
geneous vector bundle over A, such that ρ induces the identity on A (see Definition
3.33). The category Rep(S) of S–modules is the category enriched over Sch |k that
has as objects the representation of S and as hom-objects the scheme (in fact a
homogeneous vector bundle) of G–equivariant graded morphisms of homogeneous
vector bundles (see Definition 3.41 and Lemma 3.37).

IfG is an affine group schemeG (i.e. when A = Spec(k)) then the above definition
corresponds to the category of finite dimensional rational G–modules and the G–
equivariant morphisms.

The category of representations of an affine extension is monoidal “in degree
zero”, see Remark 3.27 and Lemma 3.28; and this weaker monoidality condition
becomes a decisive ingredient in the proof of the Tannaka Duality Theorem in
our context. We establish a) a version of Tannaka’s reconstruction Theorem 4.6)
proving that from the category of representations of an extension S we can define
S itself; b) we prove that the mentioned reconstruction is accomplished in the best
possible way when using the category of representations (Recognition Theorem 5.1).

Moreover, as expected in view of the results and methods of the affine case, in
order to establish a version of the Tannaka Duality in our context one should deal
with affine extensions as limits of affine extensions of finite type (that is, such that
the corresponding groups H and G are group schemes of finite type); in Theorem
2.55 we prove that any affine extension is such a limit. On the other hand, by a
result of D. Perrin, if G is a connected group scheme then G is quasi-compact and
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it is a limit of a family {Gα}α∈I of group schemes of finite type (see [45, théorèmes
II.2.4 and IV.3.2]). Moreover, G fits into an affine extension of an abelian variety
— this result, stated without a complete proof in [45, Corollary V.4.3.1], is proved
in Corollary 2.27 below.

The op-equivalence between the category of affine group schemes and commuta-
tive Hopf algebras — that to a given affine group scheme G associates the algebra
of global section OG(G) with a structure of Hopf algebra induced by the multiplica-
tion and inversion morphisms in G — is not only an important viewpoint but also
a powerful tool in the study of the representation theory of affine group schemes.
Thus, once we have constructed an adequate representation theory for affine exten-
sions — in the sense that the representation theory satisfies a full Tannaka Duality
Theorem —, we undertake the generalization of this well-known equivalence to the
context of affine extensions, by developing the notion of Hopf sheaf over an abelian
variety.

As we are working with quasi-compact morphisms of group schemes q : G →
A, we consider the categories Sch |

qc
A (of quasi-compact schemes over A), and

QA -alg (of quasi-coherent sheaves of OA–algebras) and the well known covariant
equivalence associated to the functors P : Sch |qcA → QA -algop, P(x : X → A) =
x∗(OX) and Spec : QA -algop → Sch |

qc
A, where Spec(F) is the affine scheme over

A associated to the sheaf of OA–algebras F . In general these functors are adjoint
(see Remark 6.31 and [31, §1.2,§1.3]), but they establish a covariant equivalence
when restricted to the situation that the objects x : X → A are affine morphisms.
Moreover, if A = Spec(k), then we obtain the usual equivalence mentioned above.

In order to obtain the necessary generalization of the notion of Hopf algebra
to this context, one needs to observe that Sch |

qc
A and QA -alg are in fact duoidal

categories (see Definition 6.7) and that the adjoint functors P and Spec are (strong,
colax) monoidal for the given monoidal structures (see Theorem 6.46 for a precise
statement). The construction of such duoidal structures is known in the setting
of slice categories, but we take an explicit approach in order to identify the affine
extensions as a certain type of bimonoids in the category (see Lemma 6.10, Propo-
sition 6.12 and Theorem 6.18). It its worth noticing that the construction of the
duoidal structure on Sch |

qc
A relies heavily in the fact that A supports a commu-

tative sum (see Definition 6.4).

In the general setting of arbitrary duoidal categories there is no canonical way to
define an antipode, or more generally the notion of group (Hopf) object. However,
in our particular category Sch |qcA we have an obvious candidate for a group type
object, namely the quasi-compact morphisms of group schemes q : G → A. Thus,
the affine morphisms of group schemes q : G→ A are the affine group type objects
for the duoidal structure on Sch |qcA; under the functor P, these group objects
are in bijection with the (faithful, commutative) group type objects for the duoidal
structure on QA -alg, that we call faithful commutative Hopf sheaves (see Definition
6.58 and Theorem 6.62).

A drawback of the proposed definition of S–module is that it only contemplates
the finite dimensional objects — for affine group schemes, the notion of rational
G–module allows to take into account the infinite dimensional case (see for exam-
ple [26, Definition 5.3.7]). Indeed, whereas an infinite dimensional k–space is a
colimit of finite dimensional sub-spaces — a directed union of finite dimensional
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sub-spaces —, we need an adequate notion of “rational infinite dimensional vector
bundle”, convenient for our purposes. The op-equivalence of the category of affine
extensions and the category of flat commutative Hopf sheaves allows the lifting of
this obstruction, by considering the S–modules as sheaves.

More precisely, we proceed as follows: given an affine scheme X = Spec(B), J.-
P. Serre proposed in [56] the category of projective B-modules as a generalization
of the notion of vector bundle. In [25], V. Drinfeld generalizes in turn Serre’s
proposal, by considering quasi-coherent, flat sheaves on an scheme X — recall
that if X is a nœtherian scheme, then the category of coherent flat OA–modules,
being the category locally free of finite rank OA–modules, is equivalent to the
category of vector bundles (see [56, Proposition 2], Remark 7.1 and Proposition7.5).
Hence, we establish the notion of comodule of a Hopf sheaf taking as support the
quasi-coherent, flat sheaves on A. However, in order to exploit the well known
equivalence between the category of vector bundles and the category of coherent
flat OA–modules and to establish a notion of S–linearized sheaves for an affine
extension S, we need to develop the notions of graded morphisms of sheaves and
homogeneous sheaf (see definitions 7.6 and 7.17); we define in this way the category
of homogeneous sheaves on A with graded morphisms as a Sch |k–category — in
Lemma 7.22, we prove that the category of homogeneous vector bundles with graded
morphism is equivalent to the category of homogeneous quasi-coherent, flat sheaves
with graded morphisms.

Once the categorical framework above is established, we can consider the cat-
egories of S–linearized sheaves with graded morphisms and of HS–comodules with
graded morphisms (here HS denotes the Hopf sheaf associated to S — this is
done in sections 7.3 and 7.1 respectively —, and prove the equivalence between
the category Rep(S) and the categories of coherent flat S–linearized sheaves and
HS–comodules with graded morphisms (see Theorem 7.35 and Proposition 7.38).
Finally, we also propose a notion of rational sheaf that could be useful in the study
of these categories (see definitions 7.34 and 7.37).

Acknowledgments: The authors would like to thank ANII (Uruguay), CIMAT
(Mexico), CONACyT (Mexico) and CSIC (Udelar, Uruguay) for partial financial
support. We also thank Michel Brion for several useful discussions, in particular
for pointing us to previous work on quasi-compact group schemes by D. Perrin
( [45], [46]), and Ignacio López for his helpful insight in subjects in category theory
specially in relation to the duoidal situation.

2. Extensions of abelian varieties by affine group schemes

2.1. Group schemes and their actions.

In this section we present some basic definitions and known results on quasi-
compact group schemes.

Definition 2.1. (1) A k–monoid scheme M — or monoid scheme over k — is a
k–scheme together with two k–morphisms mM :M ×M →M and eM : Spec(k) =
{∗} →M (called the multiplication, and the unit respectively), satisfying the usual
commutative diagrams (of associativity of mM and unitality of eM ).
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(2) A k–group scheme G — or group scheme over k — is a k–monoid scheme
together with an inversion morphism ιG : G → G (defined over k and satisfying
the corresponding commutative diagrams).

(3) A morphism of monoid schemes betweenM andM ′ is a morphism of k–schemes
f :M →M ′ satisfying the usual commutative diagrams:

M ×M
mM //

f×f

��

M

f

��

Spec(k)
eM //

eM′
##❍

❍❍
❍❍

❍❍
❍❍

M

f

��

M ′ ×M ′
mM′

// M ′ M ′

If both M and M ′ are group schemes, we say that f is a morphism of group
schemes (in this case, f◦ iG = iG′◦f).

(4) A monoid scheme M is affine (resp. of finite type, resp. smooth) if M is so as
scheme.

(5) An abelian variety is a smooth, connected, proper k–group scheme of finite type
— an abelian variety is necessarily a commutative group. An isogeny of abelian
varieties is a group homomorphism that is surjective and has finite kernel.

Most of the time we abbreviate and omit the mention to the base field e.g. a
k–scheme is called simply a scheme, and a k–group scheme of finite type is referred
as a group scheme of finite type.

Whenever it is convenient or necessary, we will interpret a group scheme G as
a representable functor G : (Sch |k)op → Groups — where Sch |k is the category of
k–schemes and Groups the category of abstract groups. If T is a k–scheme, then
G(T ) together with m(T ), iG(T ), eG(T ) is called the group of the T –points of the
scheme G.

Remark 2.2. Traditionally, group schemes of finite type were called “algebraic
groups” (cf. [23, 60]), but currently this nomenclature does not seem to have a
unique connotation (e.g. in [44] an algebraic group is a smooth group scheme of finite
type). In order to avoid confusion we prefer to use a more explicit, unambiguous,
name.

Definition 2.3. (1) An action of a k–group scheme G on a k-scheme X is a
morphism of schemes a : G×X → X , satisfying the usual commutative diagrams.
In this situation the scheme X is said to be a G–scheme.

(2) Given two G–schemes X and Y , a morphism f : X → Y is G–equivariant
(or a morphism of G–schemes) if the following diagram is commutative, where the
horizontal arrows are the corresponding G–actions:

G×X //

id×f

��

X

f

��

G× Y // Y

Remark 2.4. (1) It is well known (see for example [41]) that to give an action of G
onX is equivalent to give a morphism of functors (that is, a natural transformation)
φ : G → AutX , where AutX : (Sch |k)op → Groups is the so called automorphism
group functor. Recall that given a scheme T , the group AutX(T ) ⊆ AutSch |T (X ×
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T ), where Sch |T denotes the category of schemes over T and we consider X × T
as an T –scheme given by the projection on the second coordinate, is defined as
follows:

AutX(T ) =
{
f : X×T → X×T isomorphism : f(x, t) =

(
f̃(x, t), t

)
, f̃ : X×T → X

}
.

Equivalently, f ∈ AutX(T ) if f : X × T → X × T is an isomorphism and the
following diagram commutes

X × T
f

∼=
//

p2

��

X × T

p2

��

T
idT // T

in which case f̃ = p1◦f (see for example [41] or [14]).

(2) In particular, when AutX is a group scheme, we have a canonical action a :

AutX ×X → X , induced by idAutX : AutX → AutX : if f = (f̃ , p2) ∈ AutX(T ) and

x ∈ X(T ), then a(f, x) = f̃◦ (x, idT ).

Remark 2.5. (1) If G is a connected group scheme, then G is quasi-compact, as
follows from [45, Théorème IV.3.2]).

(2) Let f : G → G′ be a morphism of group schemes. Then the scheme theoretic
image of f , denoted as f(G), is the smallest closed subgroup scheme ofG′ containing
the image of f .

(3) Any group scheme is separated (because eG : Spec(k)→ G is a closed immersion,
see for example [57, Tag 045W]).

(4) Since any morphism of separated schemes is separated, any morphism of group
schemes f : G→ G′ is separated.

We finish this section by recalling some fundamental results on the structure of
quasi-compact group schemes due to D. Perrin (see [45, 46]).

Theorem 2.6 (Perrin, [45, Théorème II.2.4 and Théorème V.1.1]). Let G be a
quasi-compact group scheme. Then

(1) There is a unique irreducible component of G passing trough eG — this compo-
nent is called the neutral component of G and denoted as G0 —; moreover G0 is
geometrically irreducible;

(2) the inclusion i : G0 → G is a flat closed immersion;

(3) G0 is a normal (quasi-compact) subgroup of G;

(4) the quotient G/G0 exists and is an affine group scheme, with fields as local
rings. Moreover, G/G0 is compact, totally discontinuous, and limit of étale finite
groups (see Section 2.5). �

Theorem 2.7 (Perrin, [45, Corollaire V.3.2]). Let G be a quasi-compact k–group
scheme, and K ⊂ G a closed subgroup scheme. Then, in the following two situations
the quotient G/K exists in the category of k–schemes:

(1) K is defined by a sheaf of finitely generated ideals, in which case G/K is of
finite type;

(2) K is a normal subgroup of G, in which case G/K is a group scheme. �
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Proposition 2.8. Let M be a monoid scheme, G a reduced group scheme and
f : M → G a quasi-compact dominant morphism of monoid schemes. Then f is
flat.

Proof. If M is a group scheme, this result is proved in [45, Proposition II.1.3].
An inspection of the proof presented therein, shows that it is still valid for M a
monoid scheme. �

Theorem 2.9 (Perrin, [45, Proposition II.1.5, Lemme V.3.3.1 and Corollaire V.3.3]).

Let f : G → K be a quasi-compact morphism of group schemes; let f(G) be the
scheme theoretic image of f . Then f(G) ∼= G/Ker f and the induced morphism

f̃ : G→ f(G) is faithfully flat. In particular, the induced morphism G/Ker f → K
is a closed immersion. �

Corollary 2.10. Let f : G → K be a quasi-compact morphism of group schemes,
with K reduced. Then the following three assertions are equivalent: (a) f is faith-
fully flat; (b) the map associated to f at the level of sets is surjective; (c) the map
f(k) : G(k)→ K(k) is surjective.

Moreover if f is as above and K is connected, then the restriction f |
G0 : G0 → K

is faithfully flat.

Proof. Indeed, under the hypothesis of this corollary, K(k) is dense in the base
space of K.

IfK is connected, since f is faithfully flat, it follows that G0 dominatesK (see for
example [32, Proposition IV.2.3.4]). Since f |

G0 factors through a closed immersion,
the result follows. �

2.2. Extensions of abelian varieties by affine group schemes.

Definition 2.11. Let H be a k–group scheme, X an H–scheme with action a and
f : X → Y an H–invariant morphism of schemes, f is an (H, a)–torsor if:

(1) f is quasi-compact and faithfully flat;

(2) The morphism H × X → X ×Y X induced by a and the projection over the
second coordinate, is an isomorphism; in other words, the commutative diagram
below is cartesian:

H ×X
a //

p2

��

X

f

��

X
f

// Y

When no confusion arises, we will say that f is an H–torsor of a torsor under
H .

Definition 2.12. Let j : N → G and q : G → Q be two morphisms of group
schemes. The sequence

S : 1 // N
j

// G
q

// Q // 1

is a short exact sequence of group schemes if and only if the following two conditions
are satisfied:
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(1) The sequence S is left exact; that is, the sequence 1→ N(T )→ G(T )→ Q(T )
is exact for every k-scheme T — equivalently, Ker j is trivial and j induces an
isomorphism Ker q ∼= N .

(2) If T is a scheme and y ∈ Q(T ), then there exists a faithfully flat, quasi-compact
morphism f : T ′ → T and x ∈ G(T ′) such that qT ′(x) = Q(f)(y) ∈ Q(T ′).

Remark 2.13. (1) Notice that condition (2) of Definition 2.12 holds whenever
q : G→ Q is an fpqc (i.e. faithfully flat quasi-compact) morphism.

(2) Moreover, if q : G → Q is an fpqc morphism, then clearly q is an N–torsor —
the second condition of Definition 2.11 is easily proved due to the fact that all the
schemes involved are group schemes. In particular, since q is an N–torsor, q is a
categorical quotient (see for example [14, §2.6]).

Example 2.14. Let G be a connected group scheme and H ⊂ G a normal closed
subgroup scheme. Then it follows from [45, Corollaire IV.3.3] that G/H is a group
scheme and the quotient map q : G → G/H is a faithfully flat quasi-compact

morphism. In particular, the sequence 1 // H // G
q

// G/H // 0 is exact.

Definition 2.15. Let A be an abelian variety. A group extension of A is a short

exact sequence S: 1 // H // G
q

// A // 0 . If moreover q : G → A is a
faithfully flat quasi-compact morphism we say that S is a quasi-compact group
extension of A; if q is a faithfully flat affine morphism, we say that S is an an affine
group extension of A.

Remark 2.16. Let A be an abelian variety. If q : G → A is a surjective quasi-
compact morphism of group schemes, then G is a quasi-compact group scheme and
q is a faithfully flat morphism by [45, Proposition II.1.3], since A is a reduced group
scheme (see Corollary 2.10). It follows that

Sq : 1 // Ker(q) // G
q

// A // 0

is a quasi-compact extension of A.

On the other hand, if G is a quasi-compact group scheme and H ⊂ G is a normal
subgroup scheme such that A = G/H is an abelian variety, then the canonical
projection q : G → A is an H–torsor, and the corresponding exact sequence is a
quasi-compact extension (see [45, Corollaire IV.3.3 and Proposition II.1.3]).

Remark 2.17. (1) Let S: 1 // H // G
q

// A // 0 be a quasi-compact ex-
tension. Then S is an affine extension if and only if H is an affine group scheme.
See [23, III, § 3,2.5/6], or [37, § I.5.7] for a similar result for H–torsors.

(2) By definition, if a group scheme G fits into an affine extension then G is quasi-
compact; see Corollary 2.27 below for a partial converse due to D. Perrin ( [45]).

(3) It is well known that if 1 // H // G
q

// A // 0 is an affine extension
then G is of finite type if and only if H is of finite type, see for example [14,
Proposition 2.6.5]; if this is the case, we say that the extension is of finite type.

(4) Let A be an abelian variety and S: 1 // H // G
q

// A // 0 a short exact
sequence. It follows from Remark 2.16 that a S is a quasi-compact (resp. affine)
extension if and only if S is left exact and q a surjective quasi-compact (resp. affine)
morphism.
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We complete the definition of the category of quasi-compact (resp. affine) exten-
sions of an affine variety A by defining its morphisms (see also Section 6.1).

Definition 2.18. Let A be an abelian variety.

(1) The category GE |qcA of quasi-compact group extensions of A has as objects
the quasi-compact extensions of A and as morphisms φ : S → S ′ between two
quasi-compact extensions of A, the commutative diagrams of the form:

(2.1)

S :

φ

��

1 // N
j

//

fN

��

G
q

//

f

��

A // 0

S ′ : 1 // N ′ j′
// G′ q′

// A // 0

where fN and f are morphisms of group schemes.

(2) The category GE |
aff
A of affine extensions of A is defined as the full subcategory

of GE |
qc
A with objects the affine extensions.

(3) If P is a class of morphisms of schemes (affine, quasi-compact, finitely presented,
etc.) we say that the morphism φ : S → S ′ is of class P if and only if f is of class
P.

Notation 2.19. In the situation of a diagram such as (2.1), the morphism f : G→
G′ will be called, the mid morphism of φ.

Remark 2.20. It is evident that it is equivalent to give a diagram as (2.1) or a
commutative triangle of morphisms of group schemes as below, with q and q′ affine
morphisms.

G
f

//

q ��
❅❅

❅❅
G′

q′~~⑥⑥
⑥⑥

A

Indeed, if f : G → G′ is as above, then Ker(f) ⊂ Ker(q) and the restriction
f |Ker(q) : Ker(q)→ Ker(q′) makes sense as f

(
Ker(q)

)
⊂ Ker(q′).

In particular, notice that if φ : S → S ′ is a morphism of affine extensions then
the mid morphism f is an affine morphism, since it is a morphism in the category
Sch |

aff
A.

Remark 2.21. (1) The composition of morphisms in GE |
qc
A and the identity

morphism are defined in the obvious manner.

(2) Clearly S and S ′ are isomorphic if and only if the maps fN and f are isomor-
phisms — this last assertion is equivalent the assertion that f is an isomorphism
(compare with Theorem 2.9, Remark 2.16 and § 2.3).

Definition 2.22. If in Definition 2.15 the group scheme H is smooth, then the
canonical projection q : G→ A is a smooth morphism; in this situation we say that
the extension is smooth.

Examples 2.23. (1) If G is an affine group scheme, then G can be viewed in a
canonical way as an affine extension of the trivial abelian variety Spec k = {∗} by

means of the short exact sequence 1 // G
id // G // Spec(k) // 0 .

(2) An abelian variety A can be thought as an affine extension in a natural way as:

0 // 0 // A
id // A // 0 .
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(3) If S: 1 // H // G
q

// A // 0 is an affine extension and f : A → A is
an isogeny (i.e. a surjective morphism of abelian varieties with finite kernel), then

1 // Ker(f◦q) = q−1
(
Ker(f)

)
// G

f◦ q
// A // 0 is an affine extension of A

(see Remark 2.17).

In particular if f : A→ A is an isogeny, then 0 // Ker(f) // A
f

// A // 0

is an affine extension.

Remark 2.24. Let S: 1 // H // G
q

// A // 0 be an affine extension and
ℓ : H → H ′ be a morphism of affine group schemes. Assume moreover thatH ⊂ G is
central in G and that ℓ(H) ⊂ H ′ is central in H ′. Then Γℓ(H), the scheme theoretic
image of the “graph” morphism Γℓ = (inc, ℓ◦ ιH) = (inc×ℓ)◦∆H : H → G×H ′, is a
central subgroup scheme of G×H ′ — here ∆H : H → H ×H denotes the diagonal
embedding, ∆H(h) = (h, h−1). Therefore, the quotient G×HH ′ = (G×H ′)/Γℓ(H)
is a quasi-compact group scheme and fits into an affine extension, that we denote
ℓ∗S — it is also possible to deduce the existence of ℓ∗S from the properties of the
induced space (see Theorem 2.61). Moreover, ℓ yields a morphism λ : S → ℓ∗S of
affine extensions:

S :

λ

��

1 // H //

ℓ

��

G
q

//

j

��

A // 0

ℓ∗S : 1 // H ′ // G×H H ′
πH′

// A // 0

where j : G → G ×H H ′ is given by j(g) = [g, 1] := πG×H′(g, 1), with πG×H′ :
G×H ′ → G×H H ′ the canonical projection, and πH′ : G×H H ′ → A is given by
πH′

(
[g, h′]

)
= q(g). Indeed, note that πH′ is well defined and that πH′

(
[g, h′]

)
= 0

if and only if g ∈ H , therefore Ker(πH′ ) =
{
[1, h′] : h′ ∈ H ′

}
= H ′.

Note that if H ′ is smooth, then ℓ∗S is a smooth extension.

Definition 2.25. A closed immersion of the affine extension T into the affine
extension S (both extensions of A) is a morphism φ : T → S of affine extensions

T :

φ

��

1 // H ′ //� _

f |
H′

��

G′ q′
//� _

f

��

A // 0

S : 1 // H // G
q

// A // 0

such that the vertical morphism f : G′ → G (and therefore f |
H′ : H ′ → H) is a

closed immersion.

In particular, if G′ ⊂ G is a closed subgroup scheme such that q(G′) = A and

H ′ = Ker(q|
G′ ), then T : 1 // H ′ // G′

q|
G′

// A // 0 is an affine extension
and the inclusion T →֒ S is a closed immersion, we say that T is a (closed, affine)
sub-extension of S.

The following theorem was first announced by C. Chevalley in the 1950s and
published in 1960 in [19]. We present here a slightly more general version, due to
M. Brion (see [14, Theorem 2] and Corollary 2.27 below).
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Theorem 2.26 (Chevalley, Raynaud, Brion). Every k–group scheme of finite type
G has a smallest normal subgroup scheme Gaff such that the quotient G/Gaff is
proper. Moreover, Gaff is affine and connected, and the associated short sequence
of group schemes over k is exact (see Definition 2.12)

(2.2) 1 // Gaff
// G

q
// G/Gaff

// 0.

If k is perfect and G is smooth, then Gaff is smooth as well, and its formation
commutes with field extensions — that is, if k ⊆ K, then G(K)aff = Gaff(K). In
particular, if G is a connected group scheme of finite type over a perfect field, then
G fits in a (smooth) affine extension of the abelian variety A = G/Gaff . �

Since every group scheme of finite type is an extension of a smooth group scheme
by an infinitesimal group scheme (see [14, Proposition 2.9.2]), Theorem 2.26 implies
that any connected group scheme of finite type fits in an affine extension.

Corollary 2.27. Let G be a connected group scheme of finite type. Then there

exists an affine extension of an abelian variety S: 1 // H // G
q

// A // 0 ,
with H a connected affine group scheme.

Proof. See [14, Corollary 4.3.7]. �

Remark 2.28. It follows from Perrin’s Approximation Theorem ( [45, Théorème
V.3.1], see Theorem 2.54 below) that Theorem 2.26 and its Corollary 2.27 imply
that any connected group scheme fits into an affine extension (see [45, Corollary
V.4.3.1]).

Notation 2.29. If G is a smooth group scheme of finite type, then the sequence
(2.2) is known as the Chevalley decomposition of G.

Remark 2.30. If G is a smooth group scheme of finite type over a perfect field k,
then Gaff is the largest normal, affine, connected, smooth, subgroup scheme of G
(see for example [14]).

The following uniqueness result (for k a perfect field) follows easily. Assume that
a given smooth group scheme G fits in an exact sequence

1 // H // G // G/H // 0,

with H affine connected and G/H an abelian variety. Then there are isomorphisms
f1 : H ∼= Gaff and f2 : G/H ∼= A, such that the diagram of short exact sequences
is commutative:

1 // H //

f1

��

G //

id

��

G/H //

f2

��

0

1 // Gaff
// G // A // 0.

It follows that Gaff is the unique normal, affine, connected, smooth, subgroup
scheme H such that G/H is proper. Indeed, if H is such a group, then Gaff ⊂ H by
the Chevalley decomposition theorem 2.26, and H ⊂ Gaff by the preceding remark.
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Lemma 2.31. Let G be a group scheme of finite type over a perfect field k and
assume that G fits in an exact sequence of group schemes

1 // H // G
qG // G/H // 0

with H an affine connected normal subgroup scheme and G/H proper. Then

1 // Hred
// Gred

// (G/H)red // 0

is the Chevalley decomposition of Gred.

Proof. By construction Gaff ⊂ H and it follows that (Gaff)red ⊂ Hred. Now, since
Hred is affine and connected, then its Albanese variety is Alb(Hred) = Spec(k) and
so qG(Hred) = {0} ⊂ A; therefore, Hred ⊂ Gaff . �

Remark 2.32. In Lemma 2.31 the condition that k is a perfect field cannot be
omitted. Indeed, if k is not perfect, then Gred is not necessarily a group scheme, as
it is shown in [14, Example 2.5.5].

The Chevalley decomposition of smooth group schemes has the following func-
torial property.

Lemma 2.33. If f : G → G′ is a morphism of smooth group schemes of finite
type, then their Chevalley decompositions fit in the following commutative diagram:

(2.3)

G :

φ

��

1 // Gaff
//

f |
Gaff

��

G
q

//

f

��

Q //

f̃

��

0

G′ : 1 // G′
aff

// G′

q′
// Q′ // 0

If f is a faithfully flat morphism, then the vertical arrows of the diagram above

are faithfully flat morphisms. Moreover, if f is affine and faithfully flat, then f̃ is
an isogeny.

Proof. Since G is a group scheme of finite type the image of q′◦f is closed in
Q′; thus q′◦f(G) ⊂ Q′ is a proper group and it follows that Gaff ⊂ Ker(q′◦f).
By the universal property of the quotient, it follows that q′◦f induces a morphism

f̃ : Q→ Q′ that fits in Diagram (2.3).

Assume now that f is faithfully flat. Then f̃◦ q = q′◦f is faithfully flat, q being a

faithfully flat morphism it follows that f̃ is faithfully flat. Since f(Gaff) ⊂ G′
aff is a

closed (therefore affine) subscheme and f is faithfully flat, it follows that f(Gaff) is
an affine normal subgroup scheme of G′ — recall that if g′ ∈ G′(T ) then there exists
a faithfully flat quasi-compact morphism f : T ′ → T and a point g ∈ G(T ′) such
that f(T ′)(g) = g′. The faithfully flat morphism G → G′/f(Gaff) factors through
Q and so G′/f(Gaff) is a proper group scheme. The minimality of G′

aff then implies
that f(Gaff) = G′

aff ; that is, f |Gaff
is faithfully flat.

If f is an affine morphism, then Ker(q′◦f) is an affine closed subgroup scheme

of G. It follows that Ker(f̃) = q
(
Ker(q′◦f)

)
∼= Ker(q′◦f)/Gaff is a closed affine

subgroup scheme of an abelian variety, and therefore is an affine (and hence a finite)
subgroup scheme of Q. �
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2.3. Quasi-compact extensions as schemes over an abelian variety.

As follows from Remark 2.16, to give a quasi-compact (resp. affine) extension over
an abelian variety A is equivalent to give a surjective, quasi-compact (resp. affine),
morphism of group schemes q : G→ A.

On the other hand and concerning the arrows, given two surjective quasi-compact
(resp. affine) morphisms of group schemes q : G → A and q′ : G′ → A, and a
morphism of group schemes f : G → G′ such that q′◦f = q. It easily follows that
f
(
Ker(q)

)
⊂ Ker(q′). Hence, f induces a morphism of extensions

S :

f̃

��

1 // Ker(q) //

f |
Ker(q)

��

G
q

//

f

��

A // 0

S ′ : 1 // Ker(q′) // G′

q′
// A // 0

Therefore, the category GE |
qc
A of quasi-compact (resp. GE |

aff
A of affine) ex-

tensions is equivalent to a subcategory of Sch |
qc
A (resp. Sch |

aff
A), that has as

objects the separated (see Remark 2.5) quasi-compact (resp. affine) surjective (and
therefore faithfully flat) morphisms of group schemes q : G→ A and as morphisms
f : (q : G → A) → (q′ : G → A), the morphisms in Sch |

qc
A (resp. Sch |

aff
A) that

are also morphisms of group schemes f : G→ G′.

Remark 2.34. The reader should be aware that under the above equivalence,
affine extensions do not correspond to affine group schemes over the scheme A —
recall that the product of a group scheme over A is a morphism m : G×A G→ G.

In Section 6.1 we will introduce a structure of duoidal category on Sch |qcA
(see Definition 6.7 and Lemma 6.10), such that the quasi-compact (resp. affine)
extensions correspond to the group type objects for this category (resp. the group
type objects that are affine over A). See Proposition 6.12 and Theorem 6.18.

Notation 2.35. In view of the above equivalence, we will abuse of notation and say
that a surjective, quasi-compact (resp. affine) morphism of group schemes q : G→ A
is a quasi-compact (resp. affine) extension of A.

In what follows, we will freely use both points of view (affine extensions as short
exact sequences or as surjective affine morphism of group schemes) depending on
which one is better adapted to the particular result or definition.

2.4. Rosenlicht decomposition for affine extensions.

Definition 2.36. (1) A group scheme G defined over a field k is called anti-affine
if OG(G) = k.

(2) An affine extension S: 1 // H // G
q

// A // 0 , with G anti-affine, is
said to be of anti-affine type. Equivalently, an affine extension of anti-affine type is
a surjective affine morphism q : G→ A, with G an anti-affine group scheme.

Whereas the notion of anti-affine group scheme already appeared (implicitly) in
the work of Rosenlicht ( [48]) and Serre ( [54]) in the late 50s, it was not regularly
studied until about 10 years ago. In [11], Brion began a thorough study of anti-affine
group schemes, generalizing earlier results by Rosenlicht on the decomposition of
a group scheme of finite type (see [48] and [49] and Theorem 2.42 below) — the



16 A REPRESENTATION THEORY FOR QUASI-COMPACT GROUP SCHEMES

classification of anti-affine groups was obtained simultaneously by Brion (op. cit.)
and C. Sancho de Salas and F. Sancho de Salas ( [52], see also [51]).

In this section (see Theorem 2.42), we present a generalization of the Rosenlicht
decomposition to the setting of affine extensions of an abelian variety as well as
some related properties. We begin by recalling the results on anti-affine group
schemes that will be used in what follows; for other properties, in particular for a
complete classification theorem, see [11], [12] and [14].

Remark 2.37. (1) It is well known (see for example [12, Chapters 2 and 5]), that
an anti-affine group scheme is connected and commutative.

(2) If G is an anti-affine group scheme of finite type, then G is smooth (see for
example [14, Lemma 3.3.2]).

(3) In particular, if G is an anti-affine smooth group scheme of finite type, using
the Chevalley decomposition (Theorem 2.26) we deduce that G is the extension of
a proper group scheme A by a commutative affine group scheme of finite type. This
result was much improved by Brion in [14, Section 5.5] (see also [11]): the affine
subgroup Gaff and the group scheme A appearing therein are smooth (i.e. A is an
abelian variety).

Definition 2.38. The affinization functor Aff : Sch |qck→ Sch |
aff
k (the codomain

is the category of affine k–schemes) defined at the level of objects as Aff(X) =
Spec

(
OX(X)

)
, and Aff(f : X → Y ) : Aff(X)→ Aff(Y ) is defined as the morphism

Spec(f#
Y ) : Spec

(
f∗(OX)(Y )

)
= Spec

(
OX(X)

)
→ Spec

(
OY (Y )

)
. In this situation

Aff(X) is called the affinization of X .

Remark 2.39. We list some of the properties of this functor for immediate use,
see [23, III.3.8], [45, § V.4.2], and [14, § 3.2]) for general references. Later in 6.34
we deal with the properties of this functor in the more general context of schemes
over a fixed scheme S.

(1) There is an adjunction Aff ⊣ inc as: Sch |
qc
k

Aff //

oo
inc

⊥ Sch |
aff
k .

(2) The counit of this adjunction is an isomorphism and the unit is given by a
family of morphisms of schemes ηX : X → Aff(X) : Sch |k→ Sch |

aff
k that satisfies

the following universal property.

For any morphism f : X → Y with X ∈ Sch, Y ∈ Sch |
aff
k there is a unique

morphism f̂ that makes commutative the diagram below:

X
ηX //

f ��
❄❄

❄❄
❄ Aff(X)

f̂{{
Y

The morphism ηX : X → Aff(X) is called the affinization morphism of X ;
if U = Spec

(
OX(U)

)
⊂ X is an affine open subset, then ηX |U is the morphism

induced by the restriction OX(X)→ OX(U).

(3) In the case that G is a quasi-compact group scheme so is Aff(G), and the
adjunction restricts to the category of group schemes. In particular the unit ηG is
a morphism of group schemes and its kernel is a closed subgroup scheme of G, that
we call Gant.
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In [45], Perrin considered the affinization morphism in the situation of quasi-
compact group schemes:

Proposition 2.40. Let G be a quasi-compact group scheme. Then

(1) The affinization morphism is a faithfully flat morphism (of group schemes).

(2) Ker(ηG) is a geometrically reduced, connected anti-affine group scheme, con-
tained in the center of G0.

(3) Ker(ηG) is the smallest normal subgroup scheme K such that the quotient G/K
is affine.

(4) Ker(ηG) is the largest anti-affine subgroup scheme of G.

Proof. Assertions (1) and (2) are the content of [45, ThéorèmeV.4.2]. The remain-
ing assertions can be proved easily using the universal property of the affinization
morphism η. Indeed, let K ⊂ G be a normal subgroup scheme such that G/K is
an affine group; let qK : G→ G/K be the canonical projection. Then there exists
a morphism of group schemes f : Aff(G)→ G/K such that f◦ηG = qK . It follows
that Gant = Ker(ηG) ⊂ Ker(qK) = K.

On the other hand, it is clear that if we consider a subgroup L ⊆ G that is anti-
affine, then the inclusion L ⊂ G induces a closed immersion inc : Aff(L) →֒ Aff(G),
such that ηG|L = inc ◦ηL. Since L is anti-affine, it follows that ηL is the trivial
morphism; thus, L ⊆ Ker(ηG). �

As noted in the introduction of this section, Rosenlicht decomposition was gen-
eralized by Brion (for smooth group schemes of finite type, see [14, theorems 1 and
5.1.1, Proposition 3.3.5]). In Theorem 2.42 we produce a Rosenlicht decomposition
for affine extensions — that will be improved afterwards in Theorem 2.60. Before
proving the existence of such decomposition, we mention an easy technical result on
faithfully flat morphisms for which we write the proof for the lack of an adequate
reference.

Lemma 2.41. Let i : X → Y be a closed immersion of k–schemes and f : T ′ → T
a faithfully flat morphism. If y : T → Y is a T–point of Y , and x : T ′ → X a T ′

point of X such that i◦x = y◦f , then there exists a T–point x̃ : T → X such that
the following diagram is commutative

T ′

x

��

f
// T

y

��

X
~~

x̃
⑥⑥⑥⑥⑥⑥⑥⑥

� �

i
// Y

Proof. By the universal property of the fibred product we obtain a commutative
diagram:

T ′

x

##

f

!!

ℓ
❆❆

❆❆

  
❆❆

❆❆

X ×Y T

p1

��

� � p2 // T

y

��

X � �

i
// Y.
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where p2 is again a closed immersion. Since f is faithfully flat, then p2 is an

isomorphism (since p2 is also surjective with p
#
2 injective) and the result follows. �

Theorem 2.42 (Rosenlicht decomposition of affine extensions).

Let S: 1 // H // G
q

// A // 0 be an affine extension and Gant = Ker(ηG).
Then:

(1) The restriction m|
Gant×H

: Gant × H → G is a faithfully flat morphism of
group schemes, with kernel ∆(Gant ∩ H), the image of the diagonal embedding
∆ : Gant ∩H → Gant ×H, ∆(z) = (z, z−1):

1 // Gant ∩H // Gant ×H
m|

Gant×H
// G // 1.

In particular, G = GantH = HGant
∼= (Gant ×H)/(Gant ∩H).

(2) The restriction q|
Gant

: Gant → A is faithfully flat and induces a closed sub-
extension of anti-affine type of S:

Sant :

��

1 // Gant ∩H //
� _

��

Gant� _

��

q|
Gant // A // 0

S : 1 // H // G
q

// A // 0

(3) If moreover G is connected of finite type, then:

(a) (Gant)aff ⊂ Gant ∩H, and (Gant)aff is a normal subgroup of finite index.

(b) If ∆ = (id(Gant)aff , i|(Gant)aff ) : (Gant)aff → Gant × H, ∆(z) = (z, z−1), is
the diagonal embedding of (Gant)aff in Gant × H, then the quotient G′ = (Gant ×
H)/∆

(
(Gant)aff

)
exists and it is a group scheme of finite type. Moreover, the canon-

ical morphism f : G′ → G is an isogeny — in the terminology of Section 2.6,
G′ = Gant ×(Gant)aff H, the induced space for the canonical action of (Gant)aff on
H.

Proof. We first prove Assertion (1) in the case that G is connected, situation in
which one can follow closely the proof of [14, Theorem 5.1.1], where it is proved
for the case that G is a smooth scheme of finite type — the fact that the quotient
G/H = A is an abelian variety allows this transcription.

Since Gant is central in G, it is clear that m|
Gant×H

: Gant ×H → G is a quasi-
compact morphism of group schemes, with Ker(m|

Gant×H
) = ∆Gant∩H(Gant ∩H) ={

(h, h−1) : h ∈ Gant ∩H
}
; therefore its schematic image is the image of the closed

immersion (Gant×H)/∆Gant∩H(Gant ∩H) by [45, Corollaire V.3.3]. Hence, GantH
is a normal closed subgroup of G and the quotient G→ G/(GantH) factors through
morphisms G/H → G/(GantH) and G/Gant → G/(GantH)

G //

��

A = G/H

��

Aff(G) = G/Gant
// G/(GantH)

It follows that G/(GantH) is on the one hand a quotient of the (connected)
abelian variety A — and hence it is a connected abelian variety — and on the
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other hand G/(GantH) is a quotient of an affine group scheme by a normal closed
subgroup — and hence affine by [24, VIb 11.17]. We deduce that G/(GantH) =
Spec(k) and therefore G = GantH .

In order to prove Assertion (2) we can assume that G is connected, since Gant ⊂

G0, and 1 // H ∩G0 // G0
q|

G0
// A // 0 is an affine extension (see Corollary

2.10). Since A = q(G) = q(Gant ·H) = q(Gant), it follows that A ∼= Gant/(Gant∩H),
and hence Assertion (2) is proved.

In order to prove (1) in the non–connected situation, assume that G is not
necessarily connected and let g : T → G ∈ G(T ) be a T –point. Since Sant is
an affine extension, there exists a faithfully flat morphism h : T ′ → T and b :
T ′ → Gant ∈ Gant(T

′) such that q◦ b = q◦ g◦h : T ′ → A ∈ A(T ′). It follows
that (g◦h)b−1 ∈ H(T ′); therefore, g◦h ∈ Gant(T

′)H(T ′) ⊂ GantH(T ′). But the
morphismm|

Gant×H
: Gant×H → G is a morphism of quasi-compact group schemes

and therefore has closed image GantH . Applying Lemma 2.41, we deduce that
g ∈ GantH(T ). Hence GantH = G. �

The proof of part (a) of assertion (3) appears in [14, Theorem 5.1.1]. In order
to prove part (b) consider Gant, the Chevalley decomposition of Gant:

Gant : 0 // (Gant)aff // Gant
q̃

// A // 0

Notice first that in general q̃ 6= q, since (Gant)aff 6= Gant ∩ H . As observed in
Remark 2.24, since (Gant)aff is central in G as well as in H , q̃ induces an affine

extension of finite type S ′: 1 // H // G′ q′
// A // 0 . It is clear that the

multiplication morphism Gant × H → G induces a morphism of group schemes
f : G′ = (Gant × H)/∆

(
(Gant)aff

)
→ G, with finite Kernel Ker(f) ∼= (Gant ∩

H)/(Gant)aff . �

Notation 2.43. In view of Proposition 2.40, Remark 2.39 and Theorem 2.42, from
now on if G is a quasi-compact group scheme, we denote Gant = Ker(ηG).

Remark 2.44. Let S: 1 // H // G
q

// A // 0 be an affine extension.
Then G0 = (G0 ∩H)Gant and G = HG0 = HGant.

Indeed, 1 // H ∩G0 // G0
q|

G0
// A // 0 is a closed sub-extension of

S and the result follows from Theorem 2.42.

Remark 2.45. Let G be a connected group scheme of finite type. Consider the

Chevalley decomposition of G: 1 // Gaff
// G

q
// A // 0 .

In this situation we have that: the Rosenlicht decomposition of G is G =
GaffGant; (Gant)aff ⊆ Gaff ∩ Gant is of finite index; and the product morphism
m : Gant ×Gaff → G induces an isogeny (Gant ×Gaff)/∆

(
(Gant)aff

)
→ G.

Hence, Theorem 2.42 can be viewed as a generalization to affine extensions of
the above well known decomposition (see [14][Thm. 5.1.1]).

The following lemma is an easy consequence of Lemma 2.33.

Lemma 2.46. If f : G → G′ is a morphism of quasi-compact group schemes,
then f(Gant) ⊂ G′

ant. If G,G′ are of finite type, then the morphism f induces the
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following commutative diagram of Chevalley decompositions:

Gant :

φ

��

0 // (Gant)aff //

f |
(Gant)aff

��

Gant
q̃

//

f |
Gant

��

A //

f̃

��

0

G′ant : 0 // (G′
ant)aff // G′

ant
q̃′

// A′ // 0

Moreover, if f is faithfully flat, then the vertical arrows of the diagram above are

also faithfully flat. In particular, if f is an affine faithfully flat morphism, then f̃
is an isogeny.

Proof. The morphism ηG′◦f : G → Aff(G′) factors through ηG. It follows that
f(Gant) ⊂ G′

ant. Since in the finite type case Gant is a smooth group scheme, all
assertions follow from Lemma 2.33. �

2.5. Filtered systems of affine extensions.

We begin with some considerations about limits of filtered systems of schemes
over k. Recall that a filtered system of schemes consists of a family

{
(Xα, fα,β) :

α, β ∈ I , α ≥ β , fα,β : Xα → Xβ

}
, where I is a finitely upper bounded — or

filtered — poset, {Xα : α ∈ I} is a family of schemes and fα,β are morphisms of
schemes — called the connecting (or transition) morphisms — such that if α ≥ β ≥
γ, then fα,γ = fβ,γ◦fα,β and fα,α = idXα

. If the limit of such a system of schemes
exists, we use the following notation: (X, fα : α ∈ I) = limα∈I{Xα , fα,β : α, β ∈ I}
and when the rest of the ingredients are clear we write X = limXα. A family of
morphisms gα : Z → Xα , α ∈ I is said to be compatible with the filtered system{
(Xα, fα,β)

}
if for all α ≥ β, fα,βgα = gβ.

Next, we recall some known properties of the limit in the above situation; the
basic references are [33, §8] and [57, Tag 01YT].

Remark 2.47. Let
{
(Xα, fα,β)

}
α,β∈I

be a filtered system of schemes, and assume

that the transition morphisms fα,β : Xα → Xβ are affine. Then:

(1) X = limXα exists in the category of schemes and the induced morphisms fα
are affine. Moreover, if all the Xα are affine, so is the limit X (see [57, Tag 01YX]).

(2) If the transition morphisms fα,β are surjective for all α, β ∈ I then the mor-
phisms fα : limXα → Xα are surjective for all α ∈ I — this is an easy exercise on
limits on the category of topological spaces.

Moreover, if Z is a quasi-compact k–scheme and gα : Z → Xα, α ∈ I, is a
family of compatible morphisms that are also surjective, then the induced morphism
g : Z → X is surjective.

(3) If the transition morphisms fα,β are faithfully flat for all α, β ∈ I, then the
morphisms fα are faithfully flat for all α.

Moreover, if Z is a quasi-compact scheme and gα : Z → Xα, α ∈ I, is a family
of faithfully flat compatible morphisms, then the induced morphism g : Z → X is
faithfully flat.

(4) For any α ∈ I and Uα ⊆ Xα open subscheme, we have that f−1
α (Uα) =

limβ≥α f
−1
β,α(Uα) as schemes.
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Notation 2.48. In what follows we work with filtered systems in the categories of
group schemes over k and GE |

aff
A, with the additional condition that the transition

morphisms are affine faithfully flat. We introduce for clarity the following notations.

(1) A filtered system of group schemes {Gα, fα,β} is affine (resp. faithfully flat)
if the transition morphisms are affine (resp. faithfully flat) morphisms of group
schemes.

(2) A filtered system of affine extensions is a family
{
(Sα, φα,β) : α, β ∈ I

}
, where

I is a filtered poset, such that for all α ≤ β the transition morphisms φα,β

Sα :

φα,β

��

1 // Hα

��

// Gα
qα //

fα,β

��

A // 0

Sβ : 1 // Hβ
// Gβ qβ

// A // 0

are morphisms of affine extensions, and the family {Gα, fα,β} is a filtered system
of group schemes — notice that in particular this implies that φα,γ = φβ,γ◦φα,β
and φα,α = idSα

for all α ≥ β ≥ γ.

A filtered system of affine extensions is affine (resp. faithfully flat) if the filtered
system of group schemes {Gα, fα,β} is so — that is, in accordance with Definition
2.18, the transition morphisms φα,β are affine, faithfully flat.

Remark 2.49. It follows from Remark 2.20 that a filtered system of affine exten-
sions is always affine.

Proposition 2.50. Let
{
(Sα, φα,β : Sα → Sβ) : α ≥ β ∈ I

}
be an (affine) faithfully

flat filtered system in GE |
aff
A (see Notation 2.48). Then:

(1) The limits G := limGα and H := limHα exist in the category of group schemes
and H is affine. Moreover, the morphisms fα : G → Gα are affine and faithfully
flat.

(2) If we call q : G → A the morphism induced by the compatible morphisms qα :

Gα → A, then Ker(q) = H and the sequence S : 1 // H // G
q

// A // 0
coincides with limSα in GE |

aff
A.

Proof. (1) The existence of the limits in the category of schemes and the affineness
of H as well as the assertions about the maps fα follow from Remark 2.47, taking
also into account [45, Proposition II.1.3] (see Remark 2.16).

(2) First observe that q : G → A is affine and faithfully flat, since q = qαfα with
qα and fα affine and faithfully flat.

Next, we prove that the sequence S is left exact, that is Ker(q) = H . The
commutative diagrams

H //

  ❇
❇❇

❇❇
Hα

//

��

Gα

��

Hβ
// Gβ

induce an injective morphism of group schemes H → G. As Hα = Ker(qα) for all
α, then H ⊂ Ker(q). Moreover, if h : K → G is a morphism of group schemes such
that q◦h = 0, then qα◦fα◦h = 0 for all α. Therefore, Im(fα◦h) ⊂ Hα for all α
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and fα,β◦fα◦h = fβ◦h, so h : K → G factors through H and the proof of the left
exactness is finished.

Thus, S ∈ GE |
aff
A and for all α ∈ I we have morphisms of affine extensions

φα : S → Sα, compatible with the transition morphisms φα,β :

S :
φα

��

1 // H
fα|

H

��

// G
q

//

fα

��

A // 0

Sα : 1 // Hα
// Gα qα

// A // 0

where fα, α ∈ I, are the morphisms associated to G = limαGα.

In order to prove that (S, φα) = limSα, let S ′: 1 // H ′ // G′ q′
// A // 0

be an affine extension and φ′α : S ′ → Sα be a compatible family of morphisms of
affine extensions. Then we have compatible families of morphisms f ′

α : G′ → Gα
and f ′

α|H′ : H ′ → Hα , for the filtered systems {Gα, fα,β} and {Hα, fα,β|Hα
}

respectively, that factors through morphisms f ′ : G′ → G and f ′′ : H ′ → H . It
is easy to see that f ′′ = f ′

H′
, and therefore f ′ induces a morphism of extensions

φ′ : S ′ → S, that factors the morphisms φ′α. �

Definition 2.51. An affine extension S ∈ GE |
aff
A is called pro-algebraic if there

exists an (affine) faithfully flat filtered system of affine extensions of finite type
{Sα, φα,β : α, β ∈ I} such that such that S = limSα.

Remark 2.52. The term pro-algebraic has its roots in the fact that usually group
schemes of finite type are called algebraic groups, see Remark 2.2.

Examples 2.53. (1) Any affine group scheme G is the limit of an affine faithfully
flat filtered system of affine group schemes of finite type (see for example [60, Page
24]). In terms of affine extensions, this well known result reads as follows: let

G = limGα and consider the affine extensions Gaff : 1 // G
id // G // 0 // 0 ,

and Gα,aff : 1 // Gα
id // Gα // 0 // 0 . Then Gaff = limGα,aff .

(2) Let S : 1 // H // G
q

// A // 0 be an affine extension, with H central.
Then H = limHα, where {Hα}α∈I is an (affine) faithfully flat filtered system
of affine group schemes of finite type; denote the transition morphisms by fα,β :
Hα → Hβ and the canonical projections by fα : H → Hα. Since H is central and
the canonical maps are faithfully flat, we can apply Remark 2.24 and construct
the push-forward by fα, obtaining an affine faithfully flat filtered system of affine
extensions as follows:

(fα)∗(S) :

φα,β

��

1 // Hα
//

fα,β

��

G×H Hα

πHα //

fα,β

��

A // 0

(fβ)∗(S) : 1 // Hβ
// G×H Hα

πHα // A // 0

where G×HHα = (G×Hα)/∆(H) and fα,β : G×HHα → G×HHβ is the morphism
induced by G ×Hα → G ×H Hβ , (g, hα) 7→

[
g, fα,β(hα)

]
— notice that if h ∈ H ,

then
[
gh−1, fα,β(fα(h)hα)

]
=

[
gh−1, fβ(h)fα,β(hα)

]
=

[
g, fα,β(hα)

]
∈ G×H Hβ .

Thus, if H is central, the affine extension S is pro-algebraic. In particular,
commutative affine extensions are pro-algebraic.



A REPRESENTATION THEORY FOR QUASI-COMPACT GROUP SCHEMES 23

Let S: 1 // H // G
q

// A // 0 be an affine extension; then G is a quasi-
compact group scheme (see Remark 2.17). Conversely, Perrin proved in [45, Corol-
lary V.4.3.1] that if G is a connected quasi-compact group scheme, then G fits into
an affine extension. This result is a consequence of the Chevalley decomposition
of group schemes of finite type (Theorem 2.26), together with Perrin’s Approxima-
tion Theorem below, that in particular shows that any quasi-compact connected
group scheme G is pro-algebraic, that is G is the limit of a directed system of group
schemes of finite type.

Theorem 2.54 (Perrin’s Approximation Theorem, [45, Théorème V.3.1]). Let G
be a quasi-compact group scheme. Then there exists an affine faithfully flat filtered
system of group schemes of finite type {Gα, fα,β : alpha, β ∈ I}, such that G ∼=
limαGα. In particular, the canonical morphisms fα : G → Gα are faithfully flat,
with Ker(fα) an affine closed subgroup. �

Combining Theorem 2.42 with the well known approximation theorem for affine
group schemes, we can refine Perrin’s approximation Theorem and show that any
affine extension is pro-algebraic.

Theorem 2.55. Let S: 1 // H // G
q

// A // 0 be an affine extension.
Then S is pro-algebraic.

Proof. Let G = GantH = Gant ×Gant∩H H be the Rosenlicht decomposition of S
(Theorem 2.42). Since H is an affine scheme, there exists an affine faithfully flat
filtered system {Hα, pα,β : α, β ∈ I}, such that H = limHα; let pα : H → Hα be
the canonical morphisms (of group schemes, faithfully flat). Since Gant is central,
Gant ∩H is central in H ; it follows that pα(Gant ∩H) is central in Hα. By Remark
2.24, we have morphisms of affine extensions

Sant

φα

��

1 // Gant ∩H //

pα

��

Gant

fα
��

// A // 0

Sα 1 // Hα
// Gant ×Gant∩H Hα

// A // 0

where fα(z) = [z, 1] for all z ∈ Gant (see Example 2.53). These morphisms clearly
extend to morphisms

S

λα

��

1 // H //

pα

��

G = GantH

ℓα
��

// A // 0

Sα 1 // Hα
// Gant ×Gant∩H Hα

// A // 0

where ℓα : G → Gant ×Gant∩H Hα is the morphism of group schemes induced by
πGant×Hα

◦ (idGant ×pα) : Gant ×H → Gant ×Hα → Gant ×Gant∩H Hα.

Moreover, the morphisms idGant ×pαβ induce affine, faithfully flat morphisms of
group schemes ℓα,β : Gα = Gant ×Gant∩H Hα → Gβ = Gant ×Gant∩H Hβ. There-
fore, the family {Sα, ℓα,β} conforms an affine faithfully flat filtered system of affine
extensions of finite type; let G be its limit.
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We prove now that G ∼= S. Indeed, the morphisms λα induce a faithfully flat
morphism

S

λ

��

1 // H //

ℓ|
H
��

G = GantH

ℓ
��

// A // 0

G 1 // H̃ // G̃ // A // 0

But by construction H̃ = H = limHα and ℓ|
H

= idH . Moreover, by the com-
mutativity of the diagram above, Ker(ℓ) ⊂ H . Hence, ℓ is injective and S ∼= G. �

Once we have established that any affine extension is pro-algebraic, we can estate
Rosenlicht decomposition (Theorem 2.42) in terms of affine sub-extensions.

Lemma 2.56. Let
{
Sα, φα,β : Sα → Sβ ;α ≥ β

}
, be an (affine) faithfully flat

filtered system of affine extensions of finite type, and assume that all the extensions
are Chevalley decompositions. Consider the limit S := limSα

S : 1 // H // G
q

// A // 0.

Then H is minimal among the affine subgroups schemes H ′ ⊂ G such that the
quotient scheme G/H ′ exists and is proper.

Proof. Let H ′ ⊂ H be an affine subgroup scheme of H such that G/H ′ exists
and is proper. If fα : G → Gα denotes as usual the mid morphism of φα (recall
the notations in 2.48 and 2.19), then fα(H

′), the scheme theoretic image of H ′ by
fα, is a closed affine subscheme of Gα,aff . Since fα is faithfully flat for all α, then
fα|H : H → Gα,aff is faithfully flat (see Lemma 2.33), and we can factor fα to a

faithfully flat morphism fα : G/H ′ → Gα/fα(H
′).

Since G/H ′ is proper, it follows that Gα/fα(H
′) is also proper, and therefore,

by minimality of Gα,aff , fα(H
′) = Gα,aff . It follows that {fα|H′ : H ′ → Gα,aff} is

a compatible family of faithfully flat morphism, with inc : H ′ → H = limGα,aff
as induced morphism. We deduce from that H ′ = H , since inc is a faithfully flat
morphism (see Remark 2.47). �

Lemma 2.57. The affinization functor Aff : Sch |
qc
k → Sch |

aff
k preserves limits

of affine faithfully flat filtered systems of quasi-compact group schemes.

Proof. Let {Gα, fα,β : Gα → Gβ , α ≥ β ∈ I} be an affine faithfully flat fil-
tered system of quasi-compact group schemes, with limit the quasi-compact group

scheme G = limGα. Then the transition morphisms induce morphisms f̃α,β =
Aff(fα,β) : Aff(Gα) → Aff(Gβ), such that the solid part of the following diagram
is commutative:

(2.4) G
fα

//

lim ηGα

��

Gα
fα,β

//

ηGα

��

Gβ

ηGβ

��

limAff(Gα)
f̃α

// Aff(Gα)
f̃α,β

// Aff(Gβ)

Since the morphisms ηGα
, ηGβ

and fα,β are faithfully flat (see Prop. 2.40), it

follows that f̃α,β is faithfully flat. Thus, the limit limAff(Gα) exists and it is
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an affine group scheme fitting into the left part of diagram (2.4). Moreover, the
(faithfully flat) morphisms ηGα

◦fα : G→ Aff(Gα) induce a faithfully flat morphism
f : G→ L (see Remark 2.47), that factorizes through ηG, by the universal property
of the affinization morphism as shown in the diagram below.

(2.5) G

ηG

xxqqq
qqq

qqq
qqq

fα //

lim ηGα

��

Gα

ηGα

��

Aff(G)
f

// limAff(Gα)
f̃α

// Aff(Gα)

It is then clear that fα
(
Ker(f◦ηG)

)
⊂ Gα,ant. Therefore, Ker(f◦ηG) ⊆ Gant

and as the other inclusion is evident, it follows that limAff(Gα) = G/Gant =
Aff(G). �

Theorem 2.58. Let S = limSα: 1 // H // G
q

// A // 0 be an affine ex-

tension, with Sα: 1 // Hα
// Gα

qα // A // 0 an (affine) faithfully flat fil-

tered system of finite type in GE |
aff
A, with transition morphisms φα,β : Sα → Sβ.

Let us call Gα,ant = Ker(ηGα
) ⊂ Gα (see Remark 2.39 and Theorem 2.42). Then

the morphisms fα,β|Gα,ant
define an affine faithfully flat filtered system for the family

{Sα,ant}α∈I

Sα,ant :

φ̃α,β

��

1 // Gα,ant ∩Hα
//

fα,β |Gα,ant∩H

��

Gα,ant
qα|

Gα,ant
//

fα,β |Gα,ant

��

A // 0

Sβ,ant : 1 // Gβ,ant ∩Hβ
// Gβ,ant

qβ |Gβ,ant

// A // 0

with limit Sant = limSα,ant: 1 // H ∩Gant
// Gant

q|
Gant // A // 0 .

Proof. First we prove that in the above context, limGα,ant = Gant. By Lemma
2.46, fα,β(Gα,ant) ⊂ Gβ,ant for all α ≥ β and fα,β |Gα,ant

is an affine faithfully flat

morphism; thus the limit limGα,ant exists (see Remark 2.47); let L = limGα,ant

and f̃α : L → Gα,ant be the canonical morphisms. Then the family f̃α induces a

morphism f̃ : L→ G.

On the other hand, since fα(Gant) ⊂ Gα,ant, it follows that there exists a mor-

phism h : Gant → L, such that f̃α◦h = fα|Gant
for all α. By the universal property

of the limit G = limGα, we deduce that f̃◦h = inc : Gant ⊆ G. Hence, it suffices

to prove that L is anti-affine, since if this is the case then f̃(L) is anti-affine and

therefore f̃(L) ⊂ Gant. Then Gant = L = limGα,ant. But applying Lemma 2.57 we
see that Aff(limGα,ant) = limAff(Gα,ant) = Spec(k).

Now we prove that Gant ∩ H = limGα,ant ∩ Hα. Since fα,β |Hα
: Hα → Hβ

is an affine morphism (see Remark 2.49), it follows that the family {Gα,ant ∩
Hα, fα,β|Gα,ant∩Hα

: Gα,ant ∩ Hα → Gβ,ant ∩ Hβ : α, β ∈ I} is an affine filtered

system of group schemes. Then the limit N = limGα,ant ∩Hα is a group scheme,
and the restriction morphisms f |

Gant∩H
: Gant∩H → Gα,ant∩Hα induce a morphism
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ℓ : Gant ∩H → N . But it is clear that N ⊂ Gant ∩H — since 0 = qα◦fα : N → A
for all α and that qα(N) ⊂ Gα,ant —; therefore N = Gant ∩H . �

As a consequence of Theorem 2.58, we have the following result.

Lemma 2.59. Let S = limSα, S ′ = limS ′α be two affine extensions, where Sα,S ′α
are of finite type, and φ : S → S ′ a morphism of affine extensions:

S :
φ

��

0 // H //

��

G
q

//

f

��

A // 0

S ′ : 0 // H ′ // G′

q′
// A // 0

Then f induces by restriction a morphism of affine extensions

Sant :

��

0 // Gant ∩H //

f |
Gant∩H

��

Gant

q|
Gant //

f |
Gant

��

A // 0

S ′ant : 0 // G′
ant ∩H

′ // G′
ant

q′|
Gant

// A // 0

Moreover, if f is faithfully flat then f |
Gant

: Gant → G′
ant is faithfully flat.

Proof. By Lemma 2.46, we have that f(Gant ⊂ G′
ant and that f |

Gant
;Gant → Gant

is a faithfully flat morphism. �

Theorem 2.60 (Rosenlicht decomposition of affine extensions, revisited).

Let S: 1 // H // G
q

// A // 0 be an affine extension, with G connected.
Let {Sα, φα,β : α, β ∈ I} be an (affine) faithfully flat filtered system of affine exten-

sions of finite type, with Sα: 1 // Hα
// Gα

qα // A // 0 . Then:

(1) Let Gα,ant: 1 // (Gα,ant)aff // Gα,ant
q̃α // A // 0 be the Chevalley de-

composition of Gα,ant, for α ∈ I. Then Gant ∩H contains K = lim(Gα,ant)aff as a
closed subgroup scheme, and (Gant ∩H)/K is finite.

(2) The induced space G′ = Gant ×K H is a quasi-compact group scheme, and the
canonical morphism (induced by the multiplication) f : G′ → G is an isogeny, and
Ker(f) = (Gant ∩H)/K.

Proof. First, observe that since Gant = limGα,ant (by Theorem 2.58) and H =
limHα (by Proposition 2.50), it follows that Gant ∩ H = limGα,ant ∩ Hα. Let
να : K → (Gα,ant)aff be the canonical morphisms. Then, by Theorem 2.42 the
family {να} induces a compatible family {ν̃α : K → Gα,ant ∩ Hα}, with in turn
induces a morphism ν : K → Gant ∩ H . In order to prove that K ⊂ Gant ∩ H
is a closed subgroup of finite type, observe that Ker(ν) = ν−1

(
∩αKer(fα|H∩Gant

)
)

(again by Theorem 2.58 and Proposition 2.50). It follows from the compatibility
conditions that Ker(ν) =

⋂
α

(
Ker((να|H∩Gant

) = Spec(k).

In order to prove that K is of finite index in Gant ∩H , we follow the procedure
presented in [14, Theorem 5.1.1].

Since the filtered system
{
(Gα,ant)aff , fα,β|Gα,ant)aff

}
is affine and faithfully flat

(see Lemma 2.46), we have the following commutative diagrams of groups schemes,
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with exact sequences of group schemes as rows and affine faithfully flat vertical
arrows, for any β ≥ α — notice that by Theorem 2.42 Gα is a finite group scheme
—:

1 // (Gα,ant)aff //

fα,β |(Gα,ant)aff
��

Gα
qα //

fα,β

��

Gα = Gα/(Gα,ant)aff //

fα,β
��

1

1 // (Gβ,ant)aff // Gβ
qβ

// Gβ = Gβ/(Gβ,ant)aff // 1

Taking limits, we deduce that G/K ∼= limGα — since the compatible morphisms
q̃α◦fα : G → Gα induce a faithfully flat morphism G → limGα with Kernel equal
to K. Thus we have the following commutative diagram of groups schemes, with
exact sequences as rows and faithfully flat vertical arrows:

1 // K //

fα|
K ����

G //

fα
����

G/K

fα����

// 1

1 // (Gα,ant)aff // Gα // Gα = Gα/(Gα,ant)aff // 1

Sine G = GantH (see Theorem 2.42), it follows that G/K = (GantH)/K =
(Gant/K)(H/K). Since H/K is the limit of the affine group schemes of finite
type Hα/(Gα,ant)aff , it is an affine group scheme. On the other hand, Gant/K ∼=(
Gant/(Gant ∩H)

)
/
(
(Gant ∩H)/K

)
= A/

(
(Gant ∩H)/H

)
is an abelian variety (see

Theorem 2.58). Therefore, (H ∩Gant)/K ∼= (H/K) ∩ (Gant/K) is finite.

The remaining assertions follow easily. �

2.6. H–torsors and induced spaces.

Let G be a smooth group scheme of finite type over an algebraically closed field
k, H ⊂ G a closed subgroup scheme andX a quasi-projective scheme equipped with
an H–action. Serre proved in [55] that the diagonal action H × (G×X)→ G×X ,
h · (g, x) = (gh−1, h · x) has a geometric quotient, that we denote as G ×H X . If
(g, x) ∈ G ×X , then we denote by [g, x] the class of (g, x) in the quotient. Then
G×HX is a G–scheme (with action given by g′ · [g, x] = [g′g, x]), and the canonical
projection G×H X → G/H , induced by [g, x] 7→ gH , is a fiber bundle, with fibers
isomorphic to X . We call G×H X the induced space.

Later on, Serre’s result was generalized in several directions: let H be a group
scheme of finite type and Y an H–scheme (for a right H–action), such that the
geometric quotient Y → Y/H exists (in the sense of GIT, [44, pages 3,4]). If X is
an H–scheme, we are concerned with the existence of the quotient for the diagonal
action, that we denote as πY×X : Y × X → Y ×H X := (Y × X)/H . In [44,
Proposition 7.1], Mumford gives sufficient conditions in terms of the existence of
an ample H–linearized line bundle on H ×X (see Definition 7.24 below) in order
to guarantee the existence of Y ×H X (by means of “fppf descent” techniques) —
see [16, § 3.3] for a detailed proof of how to apply Mumford’s result in order to
prove the existence of Y ×H X . In [36, Chapter I.5], Jantzen studies this problem
in the context of schemes over a commutative ring R. It is also worth noting that
in [6] Bialynicki-Birula studied the existence of the induced space Y ×H X for
locally isotrivial (in the finite étale topology) H–torsors Y → Y/H , in the context
of algebraic spaces — of course, some additional hypothesis must be made on Y .
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Let S: 1 // H // G
q

// A // 0 be an affine extension and V a finite
dimensional H–module. Then q : G→ A is affine and faithfully flat. Thus, we are
in the setting of fpqc descent (see [29, Exposé VIII]), and we can guarantee the
existence of the quotient πG×V : G × V → G ×H V , as in Theorem 2.61 below —
notice that this result follows from the works cited above, but we couldn’t find it
as a precise statement.

Theorem 2.61. Let S: 1 // H // G
q

// A // 0 be a affine extension of the
abelian variety A, V be a finite dimensional H–module, and consider the diagonal
H–action aG×V :=

(
m◦ (p2, i◦p1), aV ◦p13

)
: H × (G × V ) → G × V , where p13

is the projection in the first and third coordinates and aV : H × V → V is the
action associated to the representation. Then the scheme G× V endowed with the
H–action aG×V admits a geometric quotient (G ×H V, πG×V : G × V → G×H V )
in the category of schemes over k, in the sense of GIT, [44, pages 3,4]. Moreover,
EV := G ×H V is a G–linearized vector bundle with fibers isomorphic to V —
that is, EV admits a left G–action, linear on the fibers, such that the canonical
projection πV : EV → A is a G–equivariant morphism.

Proof. The existence of the quotient EV , as well as the fact that the fibers of
πV : EV → A are isomorphic to V , follow directly from fpqc descent (see [29, Exposé
VIII, Theorem 2.1]). Moreover, the affine morphism G × V → G can be seen as

the bundle associated to the free sheaf O⊕ dimV
G and the local triviality of EV → A

follows from loc.cit. Exposé VIII, Theorem 1.1 and Corollary 1.2. Finally, it is
clear that G× (G×H V )→ G×H V , (induced by g′ · (g, v) = [g′g, v]), is an action
linear on the fibers, and that πV is a G–equivariant fibration. �

Notation 2.62. Let S: 1 // H // G
q

// A // 0 be an affine extension and
V an H–module. If f : G× V → Y is H–invariant, then by the universal property

of the quotient there exists a unique morphism f̃ : EV → Y such that f̃◦πG×V = f .

We will abuse notations denote f̃
(
[g, v]

)
= f(g, y).

Remark 2.63. (1) Notice that πG×V : G× V → G×H V is an H–torsor.

(2) By definition of geometric quotient, G×H V represents the quotient of the fpqc
sheaf G×V by the pre-relation j = (aG×V , p23) : H× (G×V )→ (G×V )× (G×V )
(see [57, Tags 022O and 02VE]). It follows in particular that πG×V : G × V →
G ×H V is a categorical quotient in the category of fpqc sheaves (see [44, pages
3,4]).

(3) In this context, recall that a morphism (of schemes, resp. fpqc sheaves) f :
G× V → Z is H–invariant if f◦aG×V = f◦p23 : H × (G× V )→ Z.

3. A finite dimensional representation theory for affine extensions

3.1. Homogeneous vector bundles over an abelian variety.

In this section we recall some basic facts on the category of homogeneous vector
bundles over an abelian variety (see Definition 3.9 below). The study of homo-
geneous vector bundles over an abelian variety was initiated by Atiyah in 1956
(see [3], [4], [5]). Later on, Miyanishi, Mukai and others generalized Atiyah’s origi-
nal results (for homogeneous vector bundles over elliptic curves over C) to a more
general setting — for homogeneous vector bundles over an abelian variety A, over
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an arbitrary algebraically closed field k —, giving a nice description of the cor-
responding category and its main properties (see for example [42], [43] and [8]).
Recently, Brion in [18] introduced the definition and first properties of the cat-
egory of homogeneous vector bundles over an arbitrary field k. In what follows
we take Brion’s definition as departure point in order to enlarge the category of
homogeneous vector bundles by introducing new morphisms (see Definition 3.18
below). For this, we adapt the approach taken in [8] (where the authors dealt with
homogeneous vector bundles over an algebraically closed field) to this more general
context.

Definition 3.1. If T is an scheme, then the category of vector bundles with base
T , denoted as VB0(T ), is defined as follows:

(1) Objects : the family of vector bundles with base T . Recall that a vector
bundle is a pair (E, π) with π : E → T a morphism that is locally trivial in
the Zariski topology: there exists an open covering {Ui}i∈I of T and isomor-
phisms ψi : A

n
Ui
→ π−1(Ui) compatible with π — called the trivializations

of the bundle — such that for any affine open subset V = Spec(R) ⊂ Ui∩Vj ,
the “transition morphisms” ψ−1

j ◦ψi|An
V
: AnV → AnV are given by linear au-

tomorphisms of R[x1, . . . , xn]. If t ∈ T , the n-dimensional k(t)–vector space
π−1(t) := E ×T Spec

(
k(t)

)
is called the fiber of E at t ∈ T . Notice that in

particular the morphism π is affine.
(2) Arrows : if π : E → T, π′ : E′ → T are vector bundles over T , a morphism of

vector bundles is a morphism f : π → π′ of schemes over T , i.e. a morphism
of schemes f : E → E′ such that π′

◦f = π i.e. the diagram

E
f

//

π

��

E′

π′

��

T
idT

// T

is commutative, and for any pair of trivializations ψ′
j : A

m
Vj
→ π′−1(Vj) and

ψi : A
n
Ui
→ π−1(Ui) and any open affine subset V = Spec(R) ⊂ Vj ∩Ui, the

morphism ψ′
j
−1

◦f◦ψi|An
V

: AnV → AmV is given by a linear endomorphism

R[x1, . . . , xn]→ R[y1, . . . , ym].

Notation 3.2. (1) In the literature, the vector bundles (defined as above) are
sometimes called geometric vector bundles, see for example [28, Definition 11.5]
or [34, Exer. 5.18]. Later in the consideration of Hopf sheaves, it is convenient
to view the vector bundles from a more general perspective (see Section 7.4). We
regard them in terms of the relative spectrum of a locally free sheaf (see Section
6.3 and Remark 3.4).

(2) The pair (E, π) is abbreviated as E and if t ∈ T , the fiber π−1(t) is denoted
as Et. For further compatibility we denote the k-vector space of arrows between
two vector bundles E,E′ as Hom0(E,E

′) (see Definition 3.18 and Lemma 3.24).
A morphism f ∈ Hom0(E,E

′) restricts to the fibers defining a k(t)–linear map
written as ft : Et → E′

t.

(3) If (E, π) is a vector bundle, we denote End0(E) = Hom0(E,E), and Aut0(E) ⊂
End0(E) the group of automorphisms of E.
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Definition 3.3. Given a vector bundle π : E → T then, using the local character-
ization of a vector bundle, one can define a morphism of schemes, called the zero
section, σE : T → E such that: i) π◦σ = idT , ii) if f : (π : E → T )→ (π′ : E′ → T )
is a morphism in Hom0(E,E

′), then f◦σE = σE′ . In other words, σE(t) = 0 ∈ Et
for all t ∈ T .

Remark 3.4. (1) It is standard knowledge that the category VB0(T ) is op-equivalent
with the category of locally free finitely generated sheaves of OT –modules (see
e.g. [31, Def. 1.7.8] and the basic general constructions of Section 6.3 below).

(2) It is also well known that VB0(T ) is a monoidal, rigid, k–linear category, with
unit object p2 : A1

k
×T = k×T → T and final object the trivial bundle Spec(k)×T .

(3) In particular, given the vector bundles E,E′, Hom0(E,E
′) is a k–vector space,

and naturally it supports a k–scheme. Thus, VB0(T ) can be seen as a category
enriched over Sch |k in a canonical way (compare with Definition 3.14 and Remark
3.15).

If π : E → A is a vector bundle over an abelian variety, it is well known that
Aut0(E) can be endowed with a structure of a group scheme of finite type (see for
example [41] and [18, §2.3]). Moreover, it is it is possible to define a group scheme
Autgr(E) (of graded automorphisms) as follows.

Notation 3.5. (1) If X,T are k–schemes, then the canonical projection p2 : X ×
T → T endows X × T with a structure of T -scheme, that we denote as XT =
(X × T, p2).

(2) If π : E → S is a vector bundle, then πT = π × idT : ET → ST is a vector
bundle.

(3) If A is an abelian variety and ℓ ∈ A(T ) is a T –point, then we define the
translation by ℓ as the morphism of T –schemes tℓ = (s × idT )◦ (ℓ◦p2, idA×T ) :
AT → AT — notice that if (b, l) ∈ AT , then tℓ(b, t) = (ℓ+ b, t).

Definition 3.6. If A is an abelian variety and π : E → A is a vector bundle, define
a functor Autgr(E) : (Sch |k)op → Groups as follows:

(1) Objects. If T ∈ Obj(Sch |k), then Autgr(E)(T ) is the group of pairs (f, ℓ), where
f : ET → ET is a T –automorphism and ℓ : T → A is a T –point. such that:

(i) the diagram below commutes

ET = E × T
f

//

π×idT

��

ET = E × T

π×idT

��

AT = A× T
tℓ

// AT = A× T

(ii) the morphism of AT -schemes f̂ : ET → t∗ℓET , defined by the pullback
diagram given by base change, is an isomorphism of AT –vector bundles in
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Sch |T — in other words f̂ is an isomorphism in VB0(AT ).

ET

f̂
●●

●●

##●
●●

●

π×idT

$$

f

!!

t∗ℓ (ET )

��

// ET

π×idT

��

AT
tℓ

// AT

(2) hom-objects. The functor Autgr(E) at the level of hom-objects is defined as
follows: if g : T ′ → T is a morphism of k–schemes then the map Autgr(E)(g) :
Autgr(E)(T )→ Autgr(E)(T ′) is given by

Autgr(E)(g)(f, ℓ) =
(
p1◦ (f◦ (idE ×g), p2), ℓ◦g

)
∈ Autgr(E)(T ′).

Remark 3.7. (1) The product in Autgr(E)(T ) (the composition of graded auto-
morphisms) is defined by the following rule: (f ′, ℓ′)(f, ℓ) =

(
f ′

◦f, s◦ (ℓ, ℓ′)
)
.

(2) Notice that by construction, if (f, ℓ) ∈ Autgr(E)(T ), then f = (f̃ , p2), where

f̃ : E×T → E is a morphism of k–schemes. It is equivalent to give f or f̃ provided
that the new map makes the diagram below commutative,

E × T
f̃

//

π×idT
��

E

π×idT
��

A× T
idA ×ℓ

// A×A
s

// A.

To simplify notations we write indistinctly f : ET → ET or f : E × T → E in
accordance with the context.

(3) Let (f, ℓ) ∈ Autgr(E)(T ) and g : T ′ → T . If Autgr(E)(g)(f, ℓ) = (h, ℓ◦g) ∈

Autgr(E)(T ′), then h = (h̃, p2) : ET ′ → ET ′ , with

h̃(e, t′) =
(
p1◦ (f◦ (idE ×g)

)
(e, t′) = f̃

(
e, g(t′)

)
∈ E.

Remark 3.8. (1) In [18, Lemma 2.8] it is proved that the functor T → Autgr(E)(T )
is representable by a group scheme of finite type, denoted as Autgr(E). It follows
that the projection d : Autgr(E) → A, given by d(T )(f, ℓ) = ℓ ∈ A(T ) for any
(f, ℓ) ∈ Autgr(E)(T ), is a morphism of group schemes. It is clear that Ker(d) =
Aut0(E), i.e. the smooth, affine and connected group scheme of finite type consisting
of all the automorphisms of the vector bundle E.

(2) In the particular case where A = Spec(k) and T = Spec(R) for R a commutative
k–algebra, it is clear that E is a k–vector space and f ∈ Autgr(E)

(
Spec(R)

)
is

determined by a morphism fR : E×kSpec(R)→ E×kSpec(R), linear on the fibers,

which is equivalent to give an k–linear automorphism f̂ : E → E.

(3) Consider the canonical action a : Autgr(E) × E → E of the group scheme
Autgr(E) on E as described in Remark 2.4. If T is a k–scheme and

(
g, d(g)

)
∈

Autgr(E)(T ), then g = (g̃, p2) : ET → ET . If e ∈ E(T ), then a(g, e) = g̃ ◦ (e, idT ) :
T → E × T → E ∈ E(T ). A direct computation shows that the degree d

(
e →

g̃ ◦ (e, id)
)
= d(e→ a(g, e)) = d(g).
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Therefore, the diagram in Definition 3.6, (i) in this context reads as:

Autgr(E)× E
a //

d×π

��

E

π

��

A×A
s // A.

Definition 3.9. Let A be an abelian variety. A vector bundle π : E → A is
called homogeneous if the induced morphism of group schemes d : Autgr(E) → A
is faithfully flat — i.e. if d is surjective, in view of Theorem 2.9.

The category HVB0(A) is defined as the full subcategory of VB0(A) that has as
objects the homogeneous vector bundles.

Remark 3.10. (1) In view of Corollary 2.10, a vector bundle π : E → A is
homogeneous if and only if for any geometric point b ∈ A

(
k
)
, there exists an

isomorphism of k–vector bundles E
k
→ t∗bEk

.

(2) Since A is an abelian variety, it follows that if π : E → A is a homogeneous
vector bundle, then the short exact sequence:

Autgr(E) : 1 // Aut0(E) // Autgr(E)
d // A // 0

is a smooth affine extension of A, of finite type. In particular, Autgr(E) is a smooth
group scheme of finite type.

(3) It follows from Remark 2.44 that Autgr(E) = Aut0(E)Autgr(E)0 and therefore
Autgr(E) is a connected group scheme.

Lemma 3.11. Let S: 1 // H // G
q

// A // 0 be an affine extension of the
abelian variety A, and let V be a finite dimensional H–module. Then the vector
bundle πV : EV = G ×H V → A is homogeneous. Conversely, if πE : E → A is
an arbitrary homogeneous vector bundle, then E ∼= Autgr(E) ×Aut0(E) E0, where
E0 = π−1(0) is as usual the fiber over 0 ∈ A.

Proof. Indeed, it follows from Theorem 2.61 that πV : EV → A is a vector bundle
and that G acts linearly on EV . Since the G–action of EV induces a morphism of
affine extensions S → Autgr(E), it follows (for example from Remark 3.10) that
the vector bundle EV is homogeneous.

Conversely if πE : E → A is a homogeneous vector bundle, by the first part of
the lemma Autgr(E) ×Aut0(E) E0 is a homogeneous vector bundle, and clearly the
restriction of the action Autgr(E) × E → E to Autgr(E) × E0 → E induces the
required isomorphism (see Remark 3.10). �

Definition 3.12. The vector bundle EV is called the homogeneous vector bundle
associated to the H–module V .

Remark 3.13. It is clear from the definition that if E,E′ ∈ HVB0(A) are homo-
geneous vector bundles, then E ⊕E′, E ⊗E′ and E∨ also are objects of HVB0(A)
and these operations (and the corresponding morphisms) endow this category with
a k–linear and monoidal rigid structure — this was proved in [42] and [43]) when
k is an algebraically closed field, then by Remark 3.10 we deduce the general case.
Moreover, in [18, Theorem 2.9 and Corollary 2.10], Brion proved that HVB0(A) is
also an abelian category, stable by direct summands.
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Next we enlarge the family of arrows in the categories VB0(A) and HVB0(A)
taking instead of arrows of degree zero, arrows of arbitrary degree a ∈ A. We use
the same notations and abbreviations than in Definition 3.6, and remarks 3.7 and
3.8.

Definition 3.14. Let π : E → A and π′ : E′ → A be two vector bundles. We
define the graded homomorphisms functor Homgr(E,E

′) : Schop → Sets as follows.

(1) If T ∈ Sch, then Homgr(E,E
′)(T ) is the set of pairs (f, ℓ), where f : ET → E′

T

is a T –morphism and ℓ ∈ A(T ) such that:

(i) the diagram below commutes

ET = E × T
f

//

π×idT

��

E′
T = E′ × T

π′×idT

��

AT = A× T
tℓ

// AT = A× T

(ii) The induced morphism of AT -schemes ET → t∗ℓE
′
T (see diagram below) is

a morphism in VB0(AT ).

ET

f̂
●●

●●

##●
●●

●

π×idT

$$

f

""

t∗ℓ (E
′
T )

��

// E′
T

π′×idT

��

AT
tℓ

// AT .

(2) If g : T ′ → T is a morphism of schemes and (f, ℓ) ∈ Homgr(E,E
′)(T ), with

f = (f̃ , p2) : E × T → E × T , then

Homgr(E,E
′)(g)(f) =

(
(f̃◦ (idE ×g), p2), ℓ◦g

)
.

Notice that
(
f̃◦ (idE ×g), p2

)
: ET ′ → E′

T ′ is a morphism of AT ′–schemes.

Remark 3.15. (1) By construction (and descent theory, see [23, I.2.2.7] of [57, Tag
0238]) Homgr(E,E

′) is a fpqc sheaf.

(2) Let π : E → A, π′ : E′ → A and π′′ : E′′ → A be three vector bundles.
Then the composition of morphisms induces a natural composition morphism (a
natural transformation between the functors) Homgr(E,E

′) × Homgr(E
′, E′′) →

Homgr(E,E
′′).

(3) Notice that the family d(T ) : Homgr(E,E
′)(T ) → A(T ) produces also a mor-

phism (natural transformation) d : Homgr(E,E
′)→ A.

Example 3.16. Given two homogeneous vector bundles E,E′, the zero morphism
0 : E → E′ is given by 0 = σE′◦πE (see Definition 3.3). We generalize this
construction to arbitrary degrees as follows.

If ℓ ∈ A(T ), it is clear that the pair (ζℓ, ℓ) with ζℓ = σE′◦p1◦ tℓ◦ (π × idT ) : E ×
T → E′ yields a graded morphism of degree ℓ. The T –point (ζℓ, ℓ) ∈ Homgr(E,E

′)(T )
is called the pseudo-zero of degree ℓ.

Notice that (ζℓ, ℓ) induces the zero morphism 0 : ET → t∗ℓET .
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Remark 3.17. Let V = Func
(
(Sch |k)op, Sets

)
; then we can endow V with the

product induced by the cartesian product in Sets, which final object is the constant
functor equal to the final object in Sets.

Clearly, the Yoneda embedding Y : Sch |k → V = Func
(
(Sch |k)op, Sets

)
pre-

serves finite products.

Definition 3.18. (1) For V as above, we define the V–categoryVBgr(A) (i.e. VBgr(A)
is enriched over V) as follows:

The objects of VBgr(A) are the same than VB0(A).

Given (E, π), (E′, π′) ∈ VBgr(A), the hom-object with domain (E, π) and codomain
(E′, π′) is Homgr(E,E

′) ∈ V , i.e. the functor of graded homomorphisms of vector
bundles, with compositions as defined before (Remark 3.15).

(2) The V–category HVBgr(A) is the full V–subcategory of VBgr(A) with objects
the homogeneous vector bundles (compare with Definition 3.9).

Similarly than Definition 3.9, the category HVBgr(A) is the full subcategory of
VBgr(A) with objects the homogeneous vector bundles.

Remark 3.19. Let π : E → A and π′ : E′ → A be two vector bundles and
f : E → E′ ∈ Hom0(E,E

′) be a morphism of vector bundles. Then fT = f ×
idT : ET → E′

T ∈ Homgr(E,E
′)(T ). Thus Hom0(E,E

′) represents a subfunctor
of Homgr(E,E

′), with Hom0(E,E
′)(T ) =

{
f ∈ Homgr(E,E

′)(T ) : d(T )(f) = 0
}
.

Thus, VB0(A) ⊆ VBgr(A) is a wide (V–enriched) subcategory — in the sense that
has the same objects but less morphisms. Similarly for the homogeneous situation.

Notation 3.20. If E = E′, then Endgr(E) := Homgr(E,E) and End0(E) :=
Hom0(E,E).

Remark 3.21. It is clear that Endgr(E) and End0(E) are functors on monoids, and
that the group Autgr(E) (resp. Aut0(E)) is a subfunctor on monoids of Endgr(E)
(resp. End0(E)).

The relationships between the (enriched) categories we just defined is illustrated
in the diagram below, where the vertical arrows are full subcategories and the
horizontal are wide subcategories.

VB0(A) ⊆ VBgr(A)

HVB0(A)

⊆

⊆ HVBgr(A)

⊆

Example 3.22. It is clear that if A = Spec(k), then all these categories collapse
into Vectk = VB0

(
Spec(k)

)
= HVB0

(
Spec(k)

)
= HVBgr

(
Spec(k)

)
= VBgr

(
Spec(k)

)
.

Indeed, if T = Spec(R) ∈ Sch |
aff
k, and V,W ∈ Vectk, then VT = (V × T →

T ) and Homgr(V,W )(T ) ∼= Homk(V,W ) ⊗k R — in other words, the functor
Homgr(V,W ) is represented by the vector space Homk(V,W ).

Remark 3.23. (1) In the category VB0(Ak
), for ℓ ∈ A we denote as Tℓ the

“pullback by the translation tℓ” functor (compare with Definition 3.6,(ii)). Thus,



A REPRESENTATION THEORY FOR QUASI-COMPACT GROUP SCHEMES 35

Tℓ : VB0(Ak
)→ VB0(Ak

) is given at the level of objects by:

Tℓ(E)
pE //

π̂ℓ

��

E

π

��

A
tℓ

// A.

It is clear that the vector bundle
(
Tℓ(E), π̂ℓ

)
∼= (E, t−ℓ◦π); when there is no

danger of confusion, the structure map π̂ℓ is denoted simply as πℓ.

If (E, π) and (E′, π′) are objects in VB0(Ak
) and f : (E, π)→ (E′, π′) is an arrow

in VB0(Ak
), then Tℓ(f) = f :

(
Tℓ(E), πℓ

)
→

(
Tℓ(E

′), π′
ℓ

)
is an arrow in VB0(Ak

)
as shown in the diagram below.

E
Tℓ(f)=f

//

π

��
❄❄

❄❄
❄❄

❄❄

πell

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

E′

π′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

π′
ℓ

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍

A

t−ℓ

��

A

The map ℓ → Tℓ : A → Fun
(
VB0(Ak

)
)
is a morphism of the monoid (A,+) to(

Fun(VB0(Ak
)), ◦

)
(◦ denotes the composition of functors). In particular for each

ℓ ∈ A the functor Tℓ is invertible and its inverse is T−ℓ.

(2) Let ℓ ∈ A, and (E, π), (E′, π′) be two objects in VB0(Ak
) and f : E → E′

a morphism of the underlying schemes. The diagram (whose rightmost triangle is
commutative):

E

π

��

f
// E′

π′

��

π′
ℓ

♣♣♣
♣♣♣

xx♣♣♣
♣♣♣

A
tℓ

// A

proves that Hom0

(
E, Tℓ(E

′)
)
=

{
f : E → E′ : π′f = tℓπ, f |Eb

: Eb → Eℓ+b linear
}
.

In view of the preceding remark, if E,E′ are homogeneous vector bundles over an
algebraically closed field one can work with sets of graded morphisms, i.e. to consider
the set of morphisms f : E → E′ such that π′

◦f = tℓ◦π for some ℓ ∈ A, rather
than with the functor Endgr(E,E

′). This is the approach taken by L. Brambila-Paz
and A. Rittatore in [8], for examination of the geometry and algebraic structure of
Endgr(E) and Homgr(E,E

′).

If k is an arbitrary field, and E,E′ ∈ HVBgr(A), we present below the proof that

Homgr(E,E
′) is representable by the vector bundle LHom0(E,E′) = Autgr(E

′)×Aut0(E
′)

Hom0(E,E
′) (see Lemma 3.11). It is similar to the proof in [8] (in the hypothesis

that k = k), with the necessary adaptations to the general situation.

Lemma 3.24. Let π : E → A, π′ : E′ → A be two homogeneous vector bundles
over the abelian variety A. Then the homogeneous vector bundle LHom0(E,E′) =

Autgr(E
′)×Aut0(E

′) Hom0(E,E
′) (see Lemma 3.11) represents Homgr(E,E

′).
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Moreover, Homgr(E,E
′) ∼= RHom0(E,E′) = Autgr(E) ×Aut0(E) Hom0(E,E

′) ∈
HVB0(A).

Proof. We adapt the strategy used in [8] for the algebraically closed field case to
this general case.

Let ϕ : Autgr(E
′)×Hom0(E,E

′)→ Homgr(E,E
′) the morphism of fpqc sheaves

given by composition. Then clearly ϕ is Aut0(E)–invariant (see Remark 2.63), and
therefore induces a morphism of fpqc sheaves φ : LHom0(E,E′) → Homgr(E,E

′).

We prove now that ϕ is a monomorphism. Let y1 : T → LHom0(E,E′), y2 : T →
LHom0(E,E′) be two points in LHom0(E,E′)(T ) such that φ(T )(y1) = φ(T )(y2) ∈
Homgr(E,E

′)(T ). Let σi : Ti → T , i = 1, 2, be fpqc morphisms and x1 =
(g1, f1), x2 = (g2, f2) ∈ Autgr(E

′) × Hom0(E,E
′)(Ti) be such that π(xi) = yi◦σi.

Then as points in Homgr(E,E
′)(T1 ×T T2), we have that

g1◦f1 = φ(T1 ×T T2)(x1) = φ(y1) = φ(y2) = φ(T1 ×T T2)(x2) = g2◦f2.

It follows that f2 = g−1
2 ◦ g1◦f1 ∈ Hom0(E,E

′)(T1 ×T T2), with g−1
2 ◦g1 ∈

Aut0(E
′). Thus, y1 = y2 ∈ LHom0(E,E′)(T1 ×T T2) and it follows that y1 = y2 ∈

LHom0(E,E′)(T ).

In order to prove that ϕ(T ) is surjective for all T , let (f, ℓ) ∈ Homgr(E,E
′)(T ).

Let σ : T ′ → T a fpqc morphism and g ∈ Autgr(E
′)(T ′) such that q(T )(g) =

ℓ◦σ ∈ A(T ′). Then h = g−1
◦ (f◦ (idE ×σ), ℓ◦σ

)
∈ Hom0(E,E

′)(T ′). It follows that

ϕ(T ′)
(
g, h) ==

(
(f◦ (idE ×σ), ℓ◦σ) ∈ Homgr(E,E

′)(T ′). From the commutative
diagram:

LHom0(E,E′)(T )
φ(T )

//

σ∗

��

Homgr(E,E
′)(T )

σ∗

��

LHom0(E,E′)(T
′)

φ(T ′)
// Homgr(E,E

′)(T ′)

we deduce that there exists y ∈ LHom0(E,E′)(T ) such that φ(y) = (f, ℓ) by descent.

The last assertion can be proved by a similar argument. �

Remark 3.25. Let E,E′ ∈ HVBgr(A). Since Homgr(E,E
′) = Autgr(E

′)×Aut0(E
′)

Hom0(E,E
′) is a homogeneous vector bundle, it follows that HVBgr(A) is a closed

category.

Corollary 3.26. Let π : E → A be a homogeneous vector bundle. Then Endgr(E)
is a smooth monoid scheme of finite type, such that the following diagram is com-
mutative, where the vertical arrows are open immersions.

1 // End0(E) // Endgr(E)
d // A // 0

1 // Aut0(E)
?�

OO

// Autgr(E)
?�

OO

d
// A // 0

Proof. Once we know that Endgr(E) is a smooth scheme of finite type, and taking
into account [13, Theorem 1], the result follows easily. �
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Remark 3.27. We observed in Remark 3.13 that HVB0(A) is a abelian, monoidal,
rigid category. Nevertheless, these structures cannot be defined in the (wide) ex-
tension of the category HVB0(A) that we denoted as HVBgr(A).

However, for homogeneous morphisms of the same degree it is clear that the
following holds.

Lemma 3.28. Let E,E′, F, F ′ ∈ HVBgr(A) and (f, ℓ) ∈ Homgr(E,F )(T ), (f
′, ℓ) ∈

Homgr(E
′, F ′)(T ) be graded morphisms. Then the following maps are graded mor-

phisms in HVBgr(A):

(i) (f ⊕ f ′, ℓ), where f ⊕ f ′ : (E ⊕ E′)T ∼= ET ⊕ E′
T → (F ⊕ F ′)T is given by

(f ⊕ f ′)(e+ e′) = f(e) + f ′(e′);

(ii) (f ⊗ f ′, ℓ); where f ⊗ f ′ : (E ⊗ E′)T ∼= ET ⊗ E′
T → (F ⊗ F ′)T is given by

(f ⊗ f ′)(e⊗ e′) = f(e)⊗ f(e′).

(iii) (f∨,−ℓ), where f∨ : (E′
T )

∨ ∼= ((E′)∨)T → ET . �

Remark 3.29. Let E → A be a homogeneous vector bundle and assume that
Autgr(E) admits a section σ : A→ Autgr(E), d◦σ = idA. Then (σ, idE0) : A×E0 →
Autgr(E) × E0 clearly induces a morphism of vector bundles A × E0 → E =

Autgr(E)×Aut0(E) E0. Thus, we have proved that a homogeneous vector bundle is
trivial if and only if Autgr(E) admits a section. This is a well known result when
k is algebraically closed field (see [42] and [8]).

Definition 3.30. Given an object E in the category HVB0(A), we call HVB0(A)E
the full abelian monoidal rigid category generated by E. We call HVBgr(A)E the
full subcategory of HVBgr(A) that has the same objects that HVB0(A)E .

Remark 3.31. (1) By definition the category HVB0(A)E is characterized by the
following universal property: for every abelian monoidal rigid category C and any
object c ∈ C there is one and only one additive monoidal functor Fc : HVB0(A)E →
C such that Fc(E) = c.

(2) The relations between the above categories is depicted in the diagram below:

HVB0(A) ⊆ HVBgr(A)

HVB0(A)E

⊆

⊆ HVBgr(A)E

⊆

where the horizontal maps are wide inclusions and the vertical ones are full.

Remark 3.32. Let πE : E → A, πE′ : E′ → A ∈ HVB0(A). Then we have a
morphism of schemes a : Homgr(E,E

′)× E → E′ as follows:

If T is a k–scheme, then a(T ) : Homgr(E,E
′)(T ) × E(T ) → E′(T ) is given by

a(T )
(
(f, ℓ), e

)
= f◦ (e × idT ). Notice that πE′

(
f(e× idT )

)
= d(f) + πE(e).

In other words, we have a commutative diagram

Homgr(E,E
′)× E

a //

d×πE

��

E′

πE′

��

A×A
s // A

If E = E′, then a : Endgr(E) × E → E is an action of the smooth monoid
Endgr(E) (see Corollary 3.26), we say that the action is linear on the fibers.
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3.2. Representations of affine extensions.

Definition 3.33. Let S : 1 // H // G
q

// A // 0 be an affine extension
of the abelian variety A. A representation of S or S–module, is a homogeneous
vector bundle πE : E → A equipped with a morphism of affine extensions ̺ : S →
Autgr(E)

S :

̺

��

1 // H //

��

G
q

//

ρ

��

A // 0

Autgr(E) 1 // Aut0(E) // Autgr(E)
dE // A // 0

Remark 3.34. (1) To give a representation of S on an homogeneous vector bundle
πE : E → A is equivalent to give an action of a : G × E → E, linear on the fibers
(see Remark 3.8), such that the following diagram is commutative

G× E
a //

q×πE

��

E

πE

��

A×A
s

// A

Therefore, when we talk about a representation of S we mean either a morphism
of affine extensions schemes ̺ : S → Autgr(E) or a vector bundle E together with
the action a̺ of G associated to ̺.

In particular in the above perspective, if g ∈ G(T ) and ρ(T )(g) =
(
fg, ℓ

)
, then

ℓ = d
(
ρ(T )(g)

)
= q(g) ∈ A(T ) and

(
a̺(g,−), p2

)
= fg : ET → ET is such that

the induced morphism ET → t∗q(g)ET is an automorphism of vector bundles (i.e. an

isomorphism in the category HVB0).

(2) By construction, if ρ(G) is the scheme theoretic image of ρ : G→ Autgr(E), then

̺(S): 1 // ρ(H) // ρ(G)
dE |

ρ(G)
// A // 0 is a closed sub-extension of Autgr(E).

Example 3.35. Let S: 1 // H // G
q

// A // 0 be an affine extension and
I := (p2 : k × A → A) be the trivial bundle. Then Autgr(I) is the extension

0 // Gm
(id,0A◦ st)

// Gm ×A
p2 // A // 0 , where st : G→ Spec(k) is the

structure morphism of G as a k–scheme.

It is clear that the representations ̺ : S → Autgr(I) are in bijective corre-
spondence with the characters of G, i.e. with the group scheme homomorphisms
χ : G → Gm, this identification is given by χ 7→ (χ, q) : G → Gm × A for χ a
character as above.

The trivial character i.e. the morphism χ0 = 1Gm
◦ st , induces the representation

̺0 = (χ0, q) : S → Autgr(I), and the associated action a̺0 : G× I→ I is called the
trivial representation or trivial S–module.

Remark 3.36. Let (E, ̺E), (E
′, ̺E′) be two S–modules. Then G acts on the vector

bundle Homgr(E,E
′) as follows.

If g : T → G ∈ G(T ) and (f, ℓ) ∈ Homgr(E,E
′)(T ), then a̺

(
g, (f, ℓ)

)
=

̺′E(g)◦ (f, ℓ)◦̺E(g
−1) ∈ Homgr(E,E

′)(T ).
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Notice that a̺(g,−) : Homgr(E,E
′)(T ) → Homgr(E,E

′)(T ) is a morphism of
AT –vector bundles and that the diagram below is commutative

G×Homgr(E,E
′)

a̺
//

d◦ p2
''◆◆

◆◆◆
◆◆◆

◆◆◆
◆

Homgr(E,E
′)

d
yyrr
rr
rr
rr
rr

A

In particular, a̺ induces a morphism of group schemesG→ Aut0
(
Homgr(E,E

′)
)
⊂

Autgr
(
Homgr(E,E

′)
)
.

Lemma 3.37. Let (E, ̺E), (E
′, ̺E′) be two S–modules and consider the action a̺ :

G×Homgr(E,E
′)→ Homgr(E,E

′) defined in Remark 3.36. Then GHomgr(E,E
′) ∼=

Gant ×Gant∩H GHom0(E,E
′), where GHomgr(E,E

′) denotes as usual the fixed
points subscheme. In particular, GHomgr(E,E

′) is an Sant–module and hence it is
a homogeneous vector sub-bundle of Homgr(E,E

′).

Proof. Consider the action of G given by post-composition by ρE′(g), that is
aρE′ = ρE′◦− : G×Homgr(E,E

′)→ Homgr(E,E
′).

Let Sant be the closed subextension associated to the Rosenlicht decomposition
of S (see Theorem 2.42), and notice that GHomgr(E,E

′) is stable by the action of
Gant, sinceGant is central inG. In particular, GHom0(E,E

′) isGant∩H–submodule
(clearly GHom0(E,E

′) is a vector space), and RG Hom0(E,E′) = Gant ×Gant∩H

GHom0(E,E
′)→ A is a homogeneous vector bundle (see Lemma 3.11). The action

aρE′ clearly induces an injective morphism of vector bundles ãρE′ : RG Hom0(E,E′) →

Homgr(E,E
′) , with image contained in GHom0(E,E

′). Since
(
RG Hom0(E,E′)

)
0
=

GHom0(E,E
′), it follows that RG Hom0(E,E′)

∼= GHomgr(E,E
′). �

Definition 3.38. In the notations of Lemma 3.37, the sub-bundle GHomgr(E,E
′)

is called the (homogeneous) vector bundle of G–equivariant morphisms.

Remark 3.39. Let (E, ̺E) and (E, ̺E′) be S–modules and denote by aE : G×E →
E and aE′ : G × E′ → E′ the corresponding linear actions. Let us call a :=
aG Homgr(E,E′) :

GHomgr(E,E
′)×E → E′ the morphism associated to GHomgr(E,E

′)

(see remarks 3.34 and 3.32). Then we have the following commutative diagram:

GHomgr(E,E
′)×G× E

σ12
��

idG Homgr(E,E′)×aE
// GHomgr(E,E

′)× E

a

��

G× GHomgr(E,E
′)× E

idG ×a
��

G× E′
aE′

// E′

where σ12 : GHomgr(E,E
′)×G×E → G×GHomgr(E,E

′)×E is the isomorphism
given by the permutation of the first two coordinates.

Corollary 3.40. Let S: 1 // H // G
q

// A // 0 be an affine extension
and E,E′ ∈ Rep(S). Then a morphism f ∈ HomRep(S)(E,E

′) is determined by its

restriction to E0 = π−1(0), the fiber over 0 ∈ A.

Proof. Indeed, f
(
[g, e]

)
= f

(
g · [1, e]

)
= g · f

(
[1, e]

)
for all (g, e) ∈ G× E0. �
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Definition 3.41. Let S : 1 // H // G
q

// A // 0 be an affine extension of
the abelian variety A. We define the category (enriched over Sch |k) of representa-
tions of S or S–modules, denoted as Rep(S), as follows:

The objects are the representations of S.

If (E, ̺E), (E
′, ̺E′) ∈ Rep(S), then HomRep(S)(E,E

′) := GHomgr(E,E
′), the

(homogeneous) vector bundle of G–equivariant morphisms.

We define Rep0(S) as the wide subcategory of Rep(S) that has as morphisms
HomRep0(S)(E,E

′) := HomRep(S)(E,E
′)0. Notice that HomRep0(S)(E,E

′) can be
identified with the vector space of morphisms of vector bundles f : E → E′ that
commute with the action (compare with remarks 3.19 and 3.39).

Remark 3.42. Later — for reasons of notational uniformity — we represent an

affine extension such as S : 1 // H // G
q

// A // 0 simply as q : G→ A and
Rep(S) simply as Rep(q) and the same for Rep0(S) = Rep0(q). See the comments
at the introduction of Section 6 and also Example 6.25.

The following theorem exhibits the relationship between Rep(S) and Rep(H) —
it can be seen as a generalization of [18, Theorem 2.9].

Theorem 3.43. Let S : 1 // H // G
q

// A // 0 be an affine extension
and V ∈ Repfin(H) a finite dimensional (rational) H–module. Then πV : EV =
G ×H V = (G × V )/H → A is a representation of S — recall from Theorem 2.61
that the quotient πG×V : G × V → EV exists and that πV : EV → A is a vector
bundle of fiber isomorphic to V .

Conversely, if the vector bundle π : E → A is a representation of S, then E and
G×H E0 are isomorphic in the category HVB0(A), where the action H ×E0 → E0

is given by restriction.

Moreover, the category Rep0(S) is equivalent to Repfin(H). In particular, Rep0(S)
is an abelian, monoidal, rigid, category.

Proof. The first assertion is the content of Theorem 2.61.

Conversely, if E → A is a S–module, then E0 is an H–module and therefore,
again by Theorem 2.61, the induced space EV = G ×H E0 is a representation of
S. Moreover, the morphism f : G × E0 → E, (g, v) 7→ g · v is H–invariant and

therefore induces a morphism f̃ : EV → E (given by f̃
(
[g, v]

)
= g · v). Since f̃ is

clearly a bijective morphism of vector bundles, it follows that f̃ is an isomorphism.

It is now an easy exercise to verify that a morphism of H–modules f : V → W

induces the morphism of S–modules f̃ : G ×H V → G ×H W f̃
(
[g, v]

)
=

[
g, f(v)

]
.

Therefore, we have just constructed a functor Repfin(H) → Rep0(S) such that

V 7→ G ×H V and HomRepfin(H)(V,W ) ∋ f 7→ f̃ ∈ Hom0(G ×H V,G ×H W ).
This functor is clearly the inverse functor of the “restriction to the fiber” functor
Rep0(S)→ Repfin(H). �

Corollary 3.44. Let S: 1 // H // G
q

// A // 0 be an affine extension and
E,E′ ∈ Rep(S). Then E ∼= E′ as S–modules if and only if E0

∼= E′
0 as H–modules.

Proof. Since the H–action of E0, E
′
0 is by restriction, it is clear that if E ∼= E′,

then E0
∼= E′

0. Assume now that f : E0 → E′
0 is an isomorphism of H–modules.
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Then the canonical morphism G×E0 → E′ = G×H E′
0 given by (g, v) 7→

[
g, f(v)

]

induces a morphism f : E = G ×H E0 → E′, that is clearly a G–equivariant
isomorphism of vector bundles. �

Corollary 3.45. Let S: 1 // H // G
q

// A // 0 be an affine extension and
E ∈ Rep(S). Then E ∼= Gant ×Gant∩H E0.

Proof. Let (Gant∩H)×E0 → E0 be the (Gant∩H)–module obtained by restriction
of the H–action. Since S has a Rosenlicht decomposition, G/(Gant ∩H) = A and
Gant ×Gant∩H E0 → A is a vector bundle. The canonical inclusion Gant × E0 →֒
G × E0 induces a morphism of vector bundles Gant ×Gant∩H E0 → G ×H E0 = E
(of the same dimension) that is clearly an isomorphism. �

Corollary 3.46. Let S : 1 // H // G
q

// A // 0 be an affine extension,

and
(
π : E → A, ̺E : G → Autgr(E)

)
an S–module. Then E ∼= ρ(G) ×ρ(H) E0,

where, as usual, ρ : G→ Autgr(E) is the mid morphism of ̺E and E0 = π−1(0).

Proof. Immediate. �

Combining Theorem 3.43 with Corollary 3.46 we obtain the following character-
ization of an homogeneous vector bundle.

Proposition 3.47. Let π : E → A be vector bundle. Then E is homogeneous if

and only if there exists an affine extension S: 1 // H // G
q

// A // 0 and
an action a : G× E → E, such that the following diagram is commutative.

G× E
a //

q×π

��

E

π

��

A×A
s // A

and the restriction a|
H×E0

H × E0 → E0 is a linear representation of H.

Proof. Let E, S and a be as in the hypothesis. Then, as in the proof of Theorem
3.43, a|

G×E0
: G× E0 → E induces an isomorphisms G×H E0

∼= E. Conversely, if

If π : E → A is homogeneous, then E is a Autgr(E)–module by Corollary 3.46. �

Examples 3.48. (1) Let Gaff : 1 // G
id // G // Spec(k) // 0 be an affine

group scheme viewed as an affine extension. Then Rep(Gaff) = Rep(G), the “clas-
sical” category of representations of an affine group scheme (see Example 3.22).

(2) Let A be the trivial extension 0 // 0 // A
id // A // 0 . Since a homoge-

neous vector bundle E is trivial if and only if there exists a section A →֒ Autgr(E)
(see Remark 3.29), it follows that Rep(A) has as objects the trivial bundles A×V ,
with action a : A × (A × V ) → A × V , b · (c, v) = (b + c, v). On the other hand
HomRep(S)(E,E

′) = Homgr(E,E
′) = Homk(E0, E

′
0)×A.

(3) Consider an isogeny g : A → A and the corresponding affine extension SN :

1 // N // A
g

// A ∼= A/N // 0 , whereN is a normal finite subgroup scheme.

If E ∈ Rep(SN ), then E = A×N V , where V ∈ Rep(N).

It follows that Rep(SN ) can be obtained as follows. Let N be the category
of the trivial homogeneous vector bundles built on Rep(N): (i) E ∈ Obj(N ) if
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E = A × V , with V ∈ Rep(N); (ii) (f, ℓ) ∈ HomN (A × V,A × V ′)(T ) if and only
if f = (tℓ × h) : A × T × V → A × T × V ′, with h ∈ HomRep(N)(V, V

′). Consider
the functor Q : N → HVBgr(A) given by the quotient by the diagonal action
n · (a, v) = (an−1, nv). Then the Rep(SN ) is the image of N by Q.

(4) Assume that k = k and let L ∈ Pic(A) be an invertible homogeneous vec-
tor bundle. Then L× = L \ θ(L), where θ : A → L is the trivial section, is
a smooth group scheme, with Chevalley decomposition induced by the canoni-
cal projection π : L → A (see [47, Theorem 2] and [8, Corollary 6]): L× :

1 // k∗ // L×
π|

L
×

// A // 0 .

It follows from Theorem 3.43 thatE is an L×–module if and only if E ∼= L××k
∗

V ,
where V is a k∗–module. On the other hand, it is clear that L⊗n is an L×–module,
with action L× × L⊗n → L⊗n given by a · (l1 ⊗ · · · ⊗ ln) = (a · l1) ⊗ · · · ⊗ (a · ln).

It follows that if V ∼= ⊕Vi, where a · v = aiv for v ∈ Vi, then E ∼=
⊕

i

⊕dimVi

j=1 L⊗i.

For further use in the next section, we introduce now the definition of T–
morphisms of homogeneous vector bundles and some related notions.

Definition 3.49. Let C be a Sch |k–category and T ∈ Sch |k. The category C(T )
is defined as follows:

(1) its objects are the objects of C.

(2) given two objects x, y ∈ C, HomC(T )(x, y) = HomC(x, y)(T ).

Remark 3.50. (1) Notice that if C is a Sch |k–category, T ∈ Sch |k and x ∈ C,
then the structure morphism st : T → Spec(k) induces an identity morphism in
EndC(T )(x), by post-composition with the identity morphism Spec(k)→ EndC(x).

(2) Let C,D be two Sch |k–categories, and F : C → D a functor. It is clear that F
induces a functor F (T ) : C(T )→ D(T ).

Definition 3.51. Let S be an affine extension and T ∈ Sch |k. We define the
category of S–modules with T–morphisms, as the category Rep(S)(T ).

Remark 3.52. Notice that the degree morphism Homgr(E,E
′) → A induces a

degree morphism HomRep(S)(T )(E,E
′) = Homgr(E,E

′)(T )→ A(T ).

Definition 3.53. Let C,D be two Sch |k–categories, and F,G : C → D two functors.
If T ∈ Sch |k, a T–natural transformation is a natural transformation λ : F (T )⇒
G(T ).

A functor on natural transformations λ : F ⇒ G is a functor λ : Sch |kop → Sets,
such that λ(T ) : F (T )⇒ G(T ) is a T –natural transformation.

3.3. The category Rep(S).

In this paragraph we collect some basic properties of the categories of representa-

tions Rep(S) and Rep0(S) of an affine extension S : 1 // H // G
q

// A // 0 .

Remark 3.54. Let S be an affine extension. Even though the category Rep(S) is
not monoidal, a situation similar to the one described in Lemma 3.28 holds, since
Rep0(S) is an abelian monoidal rigid category.

Indeed, once Theorem 3.43 is established, the assertion for Rep0(S) is proved
by transplanting the corresponding structure from Repfin(H). In that manner we
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obtain for E,E′ objects in Rep0(S) (that has the same objects than Rep(S)), other
objects in the same categories called E∨, E ⊕ E′ and E ⊗ E′ and for arrows in
Rep0(S) we can define the arrows — also in Rep0(S) —: f∨, f ⊗ g, f + g as well
as the functors Ker and Coker in Rep0(S). This construction at the level of arrows
can be defined directly or by transporting them from Repfin(H).

On the other hand, Lemma 3.28 implies the following weaker version of the
universal properties.

Lemma 3.55. Let S be an affine extension and E,E′, F, F ′ objects in Rep(S).
Consider the graded morphisms (f, ℓ) ∈ HomRep(S)(E,F )(T ), (f

′, ℓ) ∈ HomRep(S)(E
′, F ′)(T ),

and (g, ℓ) ∈ HomRep(S)(E
′, F )(T ). Then (f⊗f ′, ℓ) ∈ HomRep(S)(E⊗E

′, F⊗F ′)(T ),
(f + g, ℓ) ∈ HomRep(S)(E ⊕ E

′, F )(T ) and (f∨,−ℓ) ∈ HomRep(S)(F
∨, E∨)(T ).

Proof. Immediate. �

Definition 3.56. Let S: 1 // H // G
q

// A // 0 be an affine extension of
the abelian variety A. We call ωgr : Rep(S) → HVBgr(A) the forgetful functor in
the category of homogeneous vector bundles over A; and ω0 : Rep0(S)→ HVB0(A)
is the functor induced by restriction of ωgr — notice that ω0 is a monoidal functor.

Rep0(S)

ω0

��

� � // RepS

ωgr

��

HVB0(A)
� � // HVBgr(A).

Notation 3.57. In the future and in order to simplify the notations, if (E, ̺E) ∈
Rep(S) we often omit the morphism ̺E and write that E is an S–module. The
forgetful functor ωgr : Rep(S) → HVBgr(A) is given at the level of objects by
(E, ̺E) 7→ E. Occasionally and when it does not produce confusions, the forgetful
functor applied to objects might be omitted and we write ωgr(E) := E, and similarly
for the hom-objects.

Remark 3.58. Consider the functor ωgr : Rep(S)→ HVBgr(A) and let T ∈ Sch |k.
Then a T –natural transformation λ : ωgr(T )⇒ ωgr(T ) is given by a family of graded
morphisms λE = (fE , ℓE) ∈ Endgr

(
ωgr(E)

)
(T ) = Endgr(E)(T ), E ∈ Rep(S), such

that the graded morphisms λE satisfy the following compatibility condition:

For all E,F ∈ Rep(S) and (g, a) ∈ HomRep(S)(E,F )(T ) = GHomgr(E,F )(T )
the diagram below, that is a diagram in Sch |T , commutes:

ωgr(E)T

g

��

fE // ωgr(E)T

g

��

ωgr(F )T
fF

// ωgr(F )T

Notice that in the diagram above we use the fact that ωgr(T )(g, a) = (g, a) ∈
Homgr(E,F ).
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In particular, givenE1, E2 ∈ Rep(S), then the canonical inclusions inci : (Ei)T →
(E1 ⊕ E2)T ∼= (E1 ⊕ E2)T induce the following commutative diagram:

ωgr(Ei)T

ωgr(inci,0)

��

λEi // ωgr(Ei)T

ωgr(inci,0)

��

ωgr(E1 ⊕ E2)T
λE1⊕E2

// ωgr(E1 ⊕ E2)T

It follows that d(λE1) = d(λE1⊕E2) = d(λE2 ). In other words, the degree of the
morphisms λE is constant.

Definition 3.59. In view of Remark 3.58, if λ : ωgr(T ) ⇒ ωgr(T ) is a T –natural
transformation, the degree of Λ is defined as d(λI), where I = k × A → A is the
trivial representation (see Example 3.35).

Definition 3.60. Given the functor ωgr : Rep(S) → HVBgr(A) we consider the
functor on natural transformations End(ωgr) : Sch |k→ Mon, defined as

End(ωgr)(T ) =
{
λ : ωgr(T )⇒ ωgr(T ) : λ is T -natural transformation

}
.

If g : T ′ → T , then End(ωgr)(f) : End(ωgr)(T ) → End(ωgr)(T
′) is given by

End(ωgr)(f)
(
{λE}

)
= {λ′E}, where λ

′
E = Endgr

(
ωgr(E)

)
(g) = Endgr(E)(g) (see

Definition 3.14).

Remark 3.61. (1) By definition, an element of End(ωgr)(T ) is a family
{
λE =

(fE , ℓ) ∈ Endgr(E)(T ) : E ∈ Rep(S)
}
(see Remark 3.58).

(2) The monoid structure on End(ωgr)(T ) is given by vertical composition of the
families: {λE}◦{µE} = {λE◦µE}. The unit of the monoid is the family

{
(idE×T , 0) ∈

Endgr(E)(T )
}
. Notice that d(λE◦µE) = d(λE) + d(µE) ∈ A(T ).

Definition 3.62. The degree map dωgr : End(ωgr) → A is given by dωgr(T )
(
λ
)
=

d
(
λE

)
= d

(
λI
)
.

We denote by End0(ωgr) ⊂ End(ωgr) the subfunctor of the families of degree 0
End0(ωgr)(T ) =

{
λ ∈ End(ωgr)(T ) : dωgr(λ) = 0

}
.

Remark 3.63. It is clear the degree map d is a morphism of functors on monoids,
and that End0(ωgr) = Ker(d).

Definition 3.64. Define the subfunctor on monoids Aut(ωgr) ⊂ End(ωgr) by

Aut(ωgr)(T ) =
{
λ = {λE} : λE ∈ Autgr(E)(T )

}
⊂ End(ωgr)(T )

and the corresponding subfunctor Aut0(ωgr) ⊂ End0(ωgr) by Aut0(ωgr) = Ker
(
dωgr |Aut(ωgr)

)
:

Aut(ωgr)→ A:

Aut0(ωgr)(T ) = {λ ∈ Aut(ωgr)(T ) : dωgr(λ) = 0}.

Remark 3.65. In accordance with Corollary 3.26 and Lemma 3.37, if E := (π :
E → A) ∈ Rep(S), then Endgr

(
ωgr(E)

)
= Endgr(E) and ωgr

(
EndRep(S) are a

smooth monoid scheme of finite type, and Autgr
(
ωgr(E)

)
→֒ Endgr

(
ωgr(E)

)
and

ωgr

(
AutRep(S)(E)

)
→֒ ωgr

(
EndRep(S)(E)

)
are open immersions.

On the other hand, is not clear that the functor on monoids End(ωgr) and
Aut(ωgr) are representable, since the situation much more complex as one must
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take into account the complete natural transformation — i.e. the family λ = {λE ∈
Endgr(E) : E ∈ Rep(S)} — as well as all the consistency conditions (see Remark
3.58).

Next we define a subfunctor on monoids of End(ωgr) and the corresponding
subfunctor on groups, that will be crucial for the reconstruction process.

Definition 3.66. (1) In the context above, we call End⊗(ωgr) the subfunctor on
monoids of End(ωgr) given by the natural transformations λ ∈ End(ωgr)(T ), T ∈
Sch |k, such that:

(i) λE1⊗E2 = λE1 ⊗ λE2 for all E1, E2 ∈ Rep(S) (see Lemma 3.28);
(ii) If I = (p2 : k × A → A) is the trivial representation (see Example 3.35),

then (λI, ℓ) = (idk×tℓ, ℓ) ∈ Endgr(k×A)(T ).

(2)We define the subfunctor on monoids Aut⊗(ωgr)(T ) =
{
λE : λE is an isomorphism

}
⊂

End⊗(ωgr)(T ), for T ∈ Sch |k — notice that Aut⊗(ωgr) is a functor on groups.

Remark 3.67. It is clear that Aut⊗(ωgr) can also be seen as a subfunctor of
Aut(ωgr).

Example 3.68. G be an affine group and let S be the associated affine exten-
sion of Spec(k), (see examples 3.48 and 3.22). In this case, ωgr : Rep(S) →
HVBgr

(
Spec(k)

)
) is the forgetful functor ω : Rep(G) → Vectk. If T = Spec(R) ∈

Sch |
aff
k, since HomRep(S)(V,W )(T ) ∼= HomRep(G)(V,W ) ⊗ R, we deduce that a

T -natural transformation ωgr(T ) ⇒ ωgr(T ) is a family λV : V ⊗ R → V ⊗ R
of R–linear morphisms, such that the following diagram is commutative for all
f ∈ HomRep(G)(V,W )

V ⊗R

f⊗idR

��

λV // V ⊗R

f⊗idR

��

W ⊗R
λW // W ⊗R

Moreover, in the notation of [21, page 20] {λR} ∈ Aut⊗(ωgr)(T ) if and and only

if {λV } ∈ Aut⊗(ω).

Definition 3.69. Adapting Definition 3.60 we can consider the forgetful functor
ω0 : Rep0(S)→ HVB0(A) and define End(ω0) as

End(ω0) =
{
ζ : ω0 ⇒ ω0 : ζ is a natural transformation

}
.

We can proceed similarly and define: Aut(ω0),End
⊗(ω0),Aut

⊗(ω0).

Remark 3.70. It is easy to see that the functor on monoids End0(ωgr) and

End(ω0); End
⊗
0 (ωgr) and End⊗(ω0); Aut0(ωgr) and Aut(ω0) as well as Aut⊗0 (ωgr)

and Aut⊗(ω0) are isomorphic. For example, it is clear that d(λE , ℓ) = 0 if and only
if ℓ = 0 and λE ∈ End(ω0).

Definition 3.71. (1) GivenE an object in Rep0(S) (or in Rep(S)) we call Rep0(S)E
the abelian (monoidal) subcategory of Rep0(S) generated by E and Rep(S)E the
wide extension (in Rep(S)) obtained by taking the graded morphisms.

(2) For E ∈ Rep(S) we call ωgr| : Rep(S)E → HVBgr(A) the restriction of the for-
getful functor ωgr : Rep(S)→ HVBgr(A) to the subcategory Rep(S)E and similarly
for ω0| : Rep0(S)E → HVBgr(A) the restriction of ω0 : Rep0(S)→ HVBgr(A)
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Remark 3.72. (1) The two categories Rep0(S)E and Rep(S)E are defined along
the same lines than the constructions of Definition 3.30.

(2) The structures just defined are illustrated in the following commutative diagram:

Rep0(S)

ω0

��

hh

5 U◗◗◗
◗◗
� � // RepS

ωgr

��

Rep0(S)E
ω0|

vv♠♠♠
♠♠

⊆ Rep(S)E

) 	
66♠♠♠♠♠♠

ωgr|

((◗◗
◗◗◗

HVB0(A)
� � // HVBgr(A)

(3) If µ ∈ End⊗
(
ωgr|Rep(S)E

)
, from the conditions on the family µ it follows that

µE determines µ. Moreover, the universal property of the category Rep(S)E guar-
antees that End⊗

(
ωgr|Rep(S)E

)
is isomorphic with a closed submonoid scheme of

Endgr
(
ωgr(E)

)
and hence it is a monoid scheme of finite type.

Example 3.73 (The universal extension of an abelian variety). In [17] and [18],
Brion constructs the projective cover of A in the category of commutative pro-
algebraic group schemes. This cover has associated an affine extension GA of anti-
affine type, called the universal extension of the abelian variety A. We prove in this
example that Rep(GA) ∼= HVBgr(A).

Given a homogeneous vector bundle E → A, consider the smooth affine extension
Autgr(E) (see Remark 3.10), and let Autgr(E)ant be the associated closed sub-
extension of anti-affine type (see Theorem 2.42). Then, by Corollary 3.45, E ∼=
Autgr(E)ant ×Autgr(E)ant∩Aut0(E) E0.

Consider an affine faithfully flat filtered system within the family of the affine
extensions Autgr(E)ant, E ∈ HVBgr(A) — for example, such a family can by con-
structed using the partial order E ≤ E′ if E ∼= E′⊕E′′ for some homogeneous vector
bundle E′′, see the proof of Lemma 4.4 —. Then, taking limit on E we get a (com-
mutative) affine extension GA together with morphisms ̺E : GA → Autgr(E)ant:

1 // HA

ρE |
HA

��

// GA

ρE

��

q
// A // 0

1 // Autgr(E)ant ∩ Aut0(E) // Autgr(E)ant qE
// A // 0

The affine extension GA is called the universal (anti-affine) extension of the
abelian variety A.

The equivalence of Brion’s construction and the construction of GA as an limit, is
a direct consequence of the Tannaka Duality Theorem 4.6, see Example 5.3 below.

Observe that the affine extension GA, being the limit of extensions of anti-affine
type, is also an extension of anti-affine type, by Theorem 2.58.

Next, we prove that Rep(GA) ∼= HVBgr(A).

If E → A is a homogeneous vector bundle, then the morphism ̺A : GA →
Autgr(E)ant ⊂ Autgr(E) is a representation for GA. Consider the restricted action
HA × E0 → E0; by Theorem 3.43 GA ×HA E0 → A exists and is a GA–module.
Clearly, E ∼= GA ×HA E0 in HVB0(A), and therefore the vector bundles are iso-
morphic in HVBgr(A).
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Moreover, let E,E′ ∈ HVBgr(A) be two vector bundles and consider the struc-
tures of GA–modules defined above. Then GA Homgr(E,E

′) = Homgr(E,E
′). In-

deed, the action GA × Homgr(E,E
′) → Homgr(E,E

′) (given as in Remark 3.36)
is such that Homgr(E,E

′)a = Hom0(E,E
′) ⊗ k(a) is (GA)k(a)–stable for all a ∈

A. Thus the anti-affine group (GA)k(a) acts trivially on Homgr(E,E
′)a, since

Hom0(E,E
′)a is an affine k(a)–space. It follows thatGA acts trivially on Homgr(E,E

′)
and HomGA

(E,E′) = Homgr(E,E
′).

The remarks above clearly show that the category Rep(GA) is equivalent to
HVBgr(A).

Example 3.74. Recall that any affine group scheme G can be interpreted as an
affine extension of the trivial abelian variety A = Spec(k) (see Example 2.23); in
particular, the trivial group Spec(k) corresponds to the sequence

E : 1 // Spec(k) // Spec(k) // Spec (k) // 0 .

Analogously, the category HVB0

(
Spec(k)

)
is equivalent to Vectk.

Moreover, Rep(E) = HVB0

(
Spec(k)

)
∼= Vectk = Rep

(
Spec(k)

)
. On the other

hand, since Autgr(V ) = GL(V ) and that GL(V )ant = Spec(k), it follows that
GSpec(k) is the limit of the constant trivial extension E . Hence, GSpec(k) = E and in
particular GSpec(k) = Spec(k) — as expected from the Tannaka Duality Theorem
for affine group schemes applied to the category Vectk with the identity as forgetful
functor.

The definition that follows is the natural generalization of the one referred to in
the affine case.

Definition 3.75. An S–module E ∈ Rep(S) is faithful is the corresponding mor-
phism S → Autgr(E) is a closed immersion of affine extensions.

Remark 3.76. Let S : 1 // H // G
q

// A // 0 be an affine extension and
̺ : S → Autgr(E) be a representation. Since H →֒ G is a closed immersion, it
follows that ̺ is faithful if and only if ρ : G → Autgr(E) is a closed immersion,
if and only if ρ is an immersion (since G is a quasi-compact group scheme, see
Theorem 2.9).

Theorem 3.77. Let S : 1 // H // G
q

// A // 0 be an affine extension.
Then S is of finite type if and only if there exists a faithful S–module E ∈ Rep(S).

Proof. Recall that G is of finite type if and only if H is so (see Remark 2.17).
If H is of finite type, then there exists a faithful representation ρV : H →֒ GL(V ).
Consider the induced S–module EV = G×H V (see Theorem 3.43). Then we have
a morphism of affine extensions

S :

̺

��

1 // H //

ρ|
H

��

G
q

//

ρ

��

A // 0

Autgr(EV ) : 1 // Aut0(E) // Autgr(E) // A // 0

where ρ|
H

: H → Aut0(E) is a closed immersion. It follows that ̺ is a closed
immersion (since Ker(ρ) ⊂ H).
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On the other hand, if there exists a faithful representation ̺ : S → Autgr(E),
then the restriction ρ|

H
: H → Aut0(E) is a closed immersion. It follows that the

restriction ̺|
H×E0

: H ×E0 → E0 is a faithful representation of H . Therefore, S is
of finite type. �

Lemma 3.78. Let S : 1 // H // G
q

// A // 0 be an affine extension, and

S ′ : 1 // H ′ // G′
q|

G′
// A // 0 a closed sub-extension of S. Then there

exists a homogeneous vector bundle E ∈ Rep(S) and a homogeneous line sub-bundle
L ⊂ E, such that G′ is the stabilizer of L, that is for all schemes T ,

G′(T ) =
{
g ∈ G(T ) : g induces a T–automorphism in L× T

}

(see for example [14, § 2.2]).

Proof. It is well known that given the pair H ′ ⊂ H as above, there exists a
finite dimensional H–module V and a one dimensional subspace W ⊂ V such that
H ′ is the stabilizer of W , i.e. H ′ is the largest closed group subscheme of H such
that H ′ ·W ⊂ W (see for example [26, Chapter 8, Theorem 2.3]). Since S ′ is an
affine extension, it follows from Theorem 3.43 that the quotients EV = G ×H V
and EW = G′ ×H

′

W exist and are representations of the extensions S and S ′

respectively. We affirm that ϕ : EW → EV , the morphism induced by the canonical
morphismG′×W → EV , (g, w) 7→ [g, w]; is an immersion of vector bundles. Indeed,

if ξi = [gi, wi] ∈ EW = G′ ×H
′

W , i = 1, 2, such that [g1, w1] = [g2, w2] ∈ EV =
G ×H V , then there exists h ∈ H such that g2h = g1 and w1 = h · w2. It follows
that h ∈ G′ and therefore h ∈ H ′; hence, ξ1 = ξ2.

Let L = ϕ(EW ) ⊂ EV be the subvector bundle image of ϕ; we prove that L ⊂ EV
does the required job for G and G′. Let g ∈ G be such that g · L = L; we want to
prove that g ∈ G′. Since g stabilizes L, it follows that g · [g1, w1] = [gg1, w1] ∈ L for
all [g1, w1] ∈ L; therefore there exist g2 ∈ G′, w2 ∈W such that [gg1, w1] = [g2, w2].

Assume that g ∈ H . If moreover g1 = 1, then [g2, w2] = [g, w1] = [1, gw1], and
there exists t ∈ H such that t = g2 and tw2 = gw1. It follows that t ∈ H ∩G′, and
thus gw1 ∈W for all w1 ∈W . Therefore, g ∈ H ′.

If g ∈ G(T ) is arbitrary, let f : T ′ → T a fpqc morphism and c ∈ G′
(
T ′),

q◦ c = q◦g◦f ∈ A(T ′) (such a pair (f, c) exists because S ′ is a short exact sequence).
Then (g◦f)c−1 ∈ H(T ′) stabilizes L

(
T ′
)
and therefore (g◦f)c−1 ∈ H ′(T ′). It

follows that g◦f ∈ G′(T ′), and hence g ∈ G′(T ) (indeed f is a faithfully flat
morphism and hence we can apply Lemma 2.41). �

4. Recovering an affine extension from its representations

In this section we fix an affine extension S : 1 // H // G
q

// A // 0 ,

S = limSα, where
{
Sα : 1 // Hα

// Gα
qα // A // 0 ;φα,β}α,β∈I is an (affine)

faithfully flat filtered system of affine extensions of finite type. Call φα : S → Sα
the canonical maps depicted in the diagram below:

S :

φα

��

1 // H

fα|
H

��

// G

fα

��

q
// A // 0

Sα : 1 // Hα
// Gα

qα
// A // 0.
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As in the classical case of Tannaka Duality for affine group schemes, given now
the more general situation of an affine extension S and the category Rep(S), we
characterizeG as the group scheme consisting of all the (families of) automorphisms
of the objects E ∈ Rep(S) that commute with all the morphisms of the category
f ∈ HomRep(S)(E,E

′) and that satisfy additional compatibility conditions related
to the abelian and monoidal properties of Rep(S). In order to formalize this idea,
we will make use of the forgetful functors ωgr : Rep(S) → HVBgr(A) and ω0 :

Rep0(S)→ HVB0(A), as well as the associated functors on groups Aut⊗(ωgr) and

Aut⊗0 (ωgr) ∼= Aut⊗(ω0) (see definitions 3.56 and 3.66).

Following the usual pattern and similarly to the classical case, we first treat the
problem in the “finite type” setting, and then take limits.

Remark 4.1. (1) By definition, (λE , ℓ)E ∈ Aut⊗(ωgr)(T ) if

(i) The morphisms λE fit in the commutative diagram of T –schemes

ET = E × T

πE×idT

��

λE // E × T

πE×idT

��

AT = A× T
tℓ

// A× T

for all E ∈ Rep(S), and the induced morphisms λ̂E : ET → t∗ℓ (ET ) are isomor-
phisms of AT –vector bundles (recall that ℓ ∈ A(T ));

(ii) for all E,E′ ∈ Rep(S) we have equalities of morphisms of AT –vector bundles

λ̂E⊗E′ = λ̂E ⊗ λ̂E′ : (ET ⊗ E′
T )→ t∗ℓ (ET ⊗ E

′
T );

(iii) λI =
(
idk×tℓ, ℓ

)
: (k×A)×T → (k×A)×T , where I is the trivial representation,

and

(iv) for every G-equivariant morphism (f, b) ∈ HomRep(S)(E,E
′)(T ) the following

diagram of morphisms of T –schemes is commutative:

E × T
f

//

λE

��

E′ × T

λE′

��

E × T
f

// E′ × T

(2) There exists a canonical morphism (natural transformation) from the group
functor G into Aut⊗(ωgr), given as follows. If T is a scheme, we consider the

morphism of groups (g : T → G) 7→ g =
(
ρE(T )(g)

)
E

: G(T ) → Aut⊗(ωgr)(T ),

where ̺E : S → Autgr(E) is as usual the morphism of affine extensions associated
to the representation E.

Observe that if ρE(T )(g) = (ρg, b), then the morphisms of T –schemes ρg : ET →
ET satisfy the following commutative diagram.

E × T

πE×idT

��

ρg
// E × T

πE×idT

��

A× T
tb

// A× T,
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and induce morphisms of AT –vector bundles ̂ρE(T )(g) : ET → t∗bET . Moreover, by
definition of Rep(S), the commutativity of the maps g with the maps that come
from applying the forgetful functor (condition stated in Remark 4.1, (iv)) follows
directly. Regarding the other requirements in the remarks just mentioned we have
that condition (i) was already checked, and conditions (ii) and (iii) are direct.

(3) Let E ∈ Rep(S) and consider the restriction of the forgetful functor ωgr :
Rep(S)→ HVBgr(A) to the subcategory Rep(S)E (see Definition 3.71 and Remark

3.72) and construct the corresponding group functor Aut⊗
(
ωgr|Rep(S)E

)
. Then the

map λ 7→ λE identifies Aut⊗
(
ωgr|Rep(S)E

)
as a group subfunctor with its image

in Autgr(E) ⊂ Aut(E). Moreover, it follows (in a similar manner than in the

mentioned remark) that Aut⊗
(
ωgr|Rep(S)E

)
can be identified with a closed sub-

group scheme of the smooth group scheme of finite type Autgr(E) and therefore

Aut⊗
(
ωgr|Rep(S)E

)
is of finite type — Aut⊗

(
ωgr|Rep(S)E

)
is the unit group of the

algebraic monoid scheme End⊗
(
ωgr|Rep(S)E

)
.

Remark 4.2. Let (E, ̺E) ∈ Rep(S). We denote the scheme theoretic image ρE(G)
by GE . Since Autgr(E) of finite type, it follows that GE is a group scheme of finite
type, and the morphism ̺E factors through an affine subextension SE as follows

S :

̺E

��

1 // H //

��

G

ρE

��

q
// A // 0

SE :� _

��

1 // (GE)0 = ρE(H)� _

��

// GE� _

��

dE |
GE // A // 0

Autgr(E) : 1 // Aut0(E) // Autgr(E)
dE

// A // 0

Lemma 4.3. Let E ∈ Rep(S). Then Rep(S)E ∼= Rep(SE). Moreover, the canon-
ical inclusion GE →֒ Aut⊗

(
ωgr|Rep(S)E

)
is an isomorphism. In particular, the cor-

responding affine extensions are isomorphic.

Proof. Recall thatGE ⊂ Autgr(E) is a closed subgroup scheme, and hence of finite
type. Since any representation of GE (resp. Autgr(E)) is a G-homogeneous vector
bundle, and that E is a faithful representation of GE (resp. Autgr(E)), it follows
that any representation of GE (resp. Autgr(E)) belongs to Rep(S)E . Indeed, it fol-
lows from Theorem 3.43 that E0 is a faithful representation of (GE)0 and Aut0(E);
therefore, any (GE)0–module (resp. Aut0(E)–module) belongs to (Vectk)E0 (see for
example [60, § 3.5]). Applying again Theorem 3.43 we deduce that Obj

(
Rep(SE)

)
=

Obj
(
Rep0(SE)

)
and Obj

(
Rep

(
Autgr(E)

))
= Obj

(
Rep0

(
Autgr(E)

))
are contained

in Obj
(
Rep(S)E

)
.

Let F ∈ Rep(S)E be a Autgr(E)–homogeneous vector bundle and L ⊂ F a GE–

line sub-bundle. We affirm that Aut⊗
(
ωgr|Rep(S)E

)
stabilizes L. If this is the case,

since Aut⊗
(
ωgr|Rep(S)E

)
⊂ Autgr(E) (by the assignment (λE′ , ℓ) 7→ (λE , ℓ)) is an

closed subgroup scheme, it follows from Lemma 3.78 applied to GE ⊂ Autgr(E)

that Aut⊗
(
ωgr|Rep(S)E

)
= GE ; in particular, notice that Aut0(E) = (GE)0.

Let L ⊂ F as before; then the morphism ρE : G → Autgr(E) induces G–
linearizations on L and F . Since the inclusion ι : L →֒ F is GE–equivariant, it is
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also G–equivariant, and it follows that if T is a k–scheme, g ∈ G(T ), (λE′ , b)E′ ∈
Aut⊗

(
ωgr|Rep(S)E

)
(T ) and (ℓ, t) ∈ L× T , then

λE(ℓ, t) =
(
λE◦ (ι × idT )

)
(ℓ, t) =

(
(ι× idT )◦λL

)
(ℓ, t) ∈ L× T.

In other words, (λE , b) stabilizes L, and therefore (λE′ , b)E′ ∈ Autgr(E) stabilizes
L. �

Lemma 4.4. Let S be an affine extension. Let Aut⊗0 (ωgr) ⊂ Aut⊗(ωgr) be the
subgroup functor constructed in Definition 3.66. Then the sequence

Aut⊗(ωgr) : 1 // Aut⊗0 (ωgr) = Aut⊗(ω0) // Aut⊗(ωgr)
qωgr

// A // 0

is the limit of the affine faithfully flat filtered system of affine extensions of finite
type Aut⊗

(
ωgr|Rep(SE )

)
:

1 // Aut⊗0
(
ωgr|Rep(S)E

)
= Aut⊗

(
ω0|Rep(S)E

)
// Aut⊗

(
ωgr|Rep(S)E

) qωgr|Rep(S)E // A // 0

where the system is directed as follows: if E,E′ ∈ Rep(S), then E′ ≥ E if and only
E = E′ ⊕ F for some F ∈ Rep(S), with transition morphisms given by restriction.

In particular, Aut⊗(ωgr) is an affine extension.

Proof. Ii is clear that if E′ ≥ E, then Rep(S)E′ ⊂ Rep(S)E , and the system
defined above is filtered, with transition morphisms given by restriction.

1 // (GE)0 // GE // A // 0

1 // Aut⊗0
(
ωgr|Rep(S)E

)
//

��

Aut⊗
(
ωgr|Rep(S)E

) qωgr|Rep(S)E //

��

A // 0

1 // Aut⊗0
(
ωgr|Rep(S)

E′

)
// Aut⊗

(
ωgr|Rep(S)

E′

)
qωgr|Rep(S)

E′

// A // 0

Moreover, by the very definition of Aut⊗(ωgr) and Aut⊗0 (ωgr) as group functors,
it follows that

1 // Aut⊗0 (ωgr) // Aut⊗(ωgr) // A // 0

1 // limAut⊗0 (ωgr) // limAut⊗
(
ωgr|Rep(S)E

)
// A // 0

�

Notation 4.5. In what follows, K denotes the (affine, faithfully flat) filtered system
defined in Lemma 4.4 above.

Theorem 4.6 (Reconstruction of affine extensions). Let S be an affine extension.
Then the natural map ϕ : G → Aut⊗(ωgr) is an isomorphism of functors G ∼=
Aut⊗(ωgr) : Sch

op → Groups. Moreover, this isomorphism induces an isomorphism
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of affine extensions

S :

φ ∼=

��

1 // H //

f |
H

∼=

��

G
q

//

f ∼=

��

A // 0

Aut⊗(ωgr)
)
: 1 // Aut⊗0 (ωgr) = Aut⊗(ω0) // Aut⊗(ωgr) // A // 0

In particular, two affine extensions S and S ′ of the abelian variety A are isomor-
phic if and only if there exists an equivalence of categories F : Rep(S) → Rep(S ′)
such that F |

Rep0(S)
: Rep0(S) → Rep0(S

′) is a monoidal functor and the following
diagram is commutative

Rep(S)

ωgr,Rep(S)
&&▲

▲▲
▲▲

▲▲
▲▲

▲
F // Rep(S ′)

ωgr,Rep(S’)
xxqq
qq
qq
qq
qq

HVBgr(A)

Proof. Let E ∈ Rep(S) and GE ⊂ Autgr(E) be the scheme theoretic image of
ρE : G → Autgr(E). The group GE is by definition a closed subgroup scheme of
Autgr(E), and fits into the affine extension SE = ̺E(S) (see Remark 4.2). More-
over, GE = Aut(ωgr|Rep(S)E

) ⊂ Autgr(E) by Lemma 4.3.

We direct the system of affine extensions {SE}E∈Rep(S) by E
′ ≥ E if and only if

the representation E′ factorizes trough GE — i.e. there exists a morphism of group
schemes ρE,E′ : GE → GE′ , with ρE′ = ρE,E′◦ρE . In particular, if E′ ≥ E, then
E′ ∈ Rep(SE); it follows that Rep(S)E′ ⊂ Rep(S)E . Hence, we have the following
commutative diagram of group schemes (of finite type)

GE
∼= //

ρE,E′

��

Aut⊗
(
ωgr|Rep(S)E

)

fE,E′

��

GE′
∼=

// Aut⊗
(
ωgr|Rep(S)

E′

)

that fits in a commutative diagram of affine extensions. In particular, one has that
fE,E′ is an epimorphism if and only if ρE,E′ is so. It is clear that these morphisms
induce an affine faithfully flat filtered system indexed by Rep(S), that we call J .

Since S is an affine extension, we deduce from Theorem 3.77 that S is the limit
of a subsystem of affine extensions {SE}E∈I , I ⊂ J , and therefore limJ SE =
limI SE = S.

On the other hand, it follows from Lemma 4.4 that the systems of affine ex-
tensions {SE}J and

{
Aut⊗(ωgr|Rep(SE )

)
}
K

(see Notation 4.5) have the same limit

limJ SE = limKAut⊗(ωgr|Rep(SE)
) = Aut⊗(ωgr).

The last assertion is clear. �

Definition 4.7. Let S : 1 // H // G
q

// A // 0 be an affine extension and
E an object in Rep(S). Call 〈E〉 the full subcategory of Rep(S) generated by the
objects of the form En and its subquotients.
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Proposition 4.8. Let S : 1 // H // G
q

// A // 0 be an affine extension.
Then

(1) H is a finite group if and only if there exists a representation E ∈ Rep(S) such
that any object in Rep(S) is isomorphic to an object of 〈E〉. In particular, the
extension S is of finite type.

(2) G is a group scheme of finite type if and only if there exist E ∈ Rep(S) such
that Rep(S) = Rep(S)E (see Definition 3.71).

(3) S: 1 // H // H ×A // A // 0 is a trivial extension of A, if and only
if any representation of S is constructed over a trivial bundle kn×A (compare with
Example 3.48 (3)).

Proof. (1) It is enough to prove the corresponding result for Rep0(S) (see Theorem
3.43). For the proof in this situation of the classical representation theory of affine
groups, see for example [21, Prop. 2.20].

(2) Just combine Theorem 3.77 and Lemma 4.3, together with the fact that if E ∈
Obj

(
Rep(S)

)
is such that Rep(S)E = Rep(S), then G ∼= GE by the Reconstruction

Theorem.

(3) If G = H × A, and E is a representation, then we clearly have a section
A → Autgr(E) of the corresponding affine extension. It follows that E is a trivial
homogeneous vector bundle (see Remark 3.29 above).

Assume now that any S–representation is trivial. Since Autgr(k
n×A) = GLn(k)×

A, it follows that GE = KE × A for some closed subgroup scheme KE ⊂ GLn(k).
Therefore, G ∼= limGE = limKE×A = K×A, where K is the affine group scheme
K = limKE. �

5. The Recognition Theorem

Once that the Reconstruction Theorem 4.6 has been proved, its combination
with the structure Theorem 3.43 and with the Recognition Theorem for affine
group schemes, yields the Recognition Theorem for affine extensions.

Theorem 5.1 (Recognition Theorem). Let (C, ωgr) be a category C, enriched over
Sch |k, together with a fully faithful functor ωgr : C → HVBgr(A), such that:

(1) HomC(X,Y ) is a homogeneous vector bundle over A.

(2) For any pair of objects X,Y ∈ C,

ωgr

(
HomC(X,Y )

)
= Homωgr(C)

(
ωgr(X), ωgr(Y )

)
⊂ Homgr

(
ωgr(X), ωgr(Y )

)

is a subvector bundle.

(3) The category C0 with objects Obj(C0) = Obj(C) and morphisms

HomC0(X,Y ) = HomC(X,Y )0 = ωgr
−1

(
Hom0

(
ωgr(X), ωgr(Y )

))

is abelian, monoidal, rigid.

(4) EndC0(I)
∼= k.

(5) The restriction of the forgetful functor ω0 = ωgr|C0
: C0 → HVB0(A) is a

monoidal functor.

(6) The functor ω0 remains fully faithful after taking restriction to the fiber over
0 ∈ A. In other words, the functor ω̃ : C0 → Vectk, ω̃(X) =

(
ω0(X)

)
0
, ω̃(f :
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X → X ′) = f |
(ω0(X))0

:
(
ω0(X)

)
0
→

(
ω0(X

′)
)
0
is a fully faithful abelian, monoidal

functor.

Then there exists an affine extension SC and an equivalence of categories F :
C → Rep(SC) such that the following diagrams are commutative

C
F //

ωgr
##❍

❍❍
❍❍

❍❍
❍❍

❍ Rep(SC)

ωgr
xxqq
qq
qq
qq
qq

C0
F |

C0 //

ω0
##❍

❍❍
❍❍

❍❍
❍❍

❍ Rep0(SC)

ω0
xxqq
qq
qq
qq
qq

HVBgr(A) HVB0(A)

where the restriction F |
C0

is a monoidal functor.

Proof. Since the pair
(
C0, ω̃ : C0 → Vectk

)
satisfies the hypothesis of the Recog-

nition Theorem for affine group schemes (see [21, Proposition 2.8]), it follows that
there exists an affine group scheme H such that C0 ∼= Repfin(H).

Let Aut⊗(ωgr) be as presented in Definition 3.66 (for the category C instead of
Rep(S)), and for X an object of C define CX ⊂ C as in definitions 3.71 and 3.30.
Then, as in Remark 4.2 and Lemma 4.4, it follows that we have a limit of affine
extensions of finite type

Aut⊗(ωgr) :

��

1 // Aut⊗(ωgr)0 = H //

��

Aut⊗(ωgr) //

��

A // 0

Aut⊗
(
ωgr|CX

)
: 1 // Aut⊗0

(
ωgr|CX

)
// Aut⊗

(
ωgr|CX

)
// A // 0

Indeed, since the functor ωgr|C0
is monoidal, the same calculations hold — recall

that Aut⊗(ωgr)0 = H by the Reconstruction Theorem for affine group schemes.

Next, we show that C (or equivalently ωgr(C)) is equivalent to the representation

theory of Aut⊗(ωgr). For this, let X ∈ C; then ωgr(X) is a Aut⊗(ωgr)–module.

Conversely, if E is a Aut⊗(ωgr)–module, then E0 is a H–module, and E ∼=
Aut⊗(ωgr) ×H E0 by Theorem 3.43. Let X ∈ C be such that ωgr(X)0 ∼= E0 as
H–modules — recall that C0 is the representation theory of H . Since ωgr(X) is an

Aut⊗(ωgr)–module, it follows that ωgr(X) ∼= E, by Corollary 3.44.

LetX,Y ∈ C, be two objects. Since ωgr(C)0 = ωgr(C0) ∼= Rep(H) = Rep
(
Aut⊗(ωgr)0

)
,

it follows that

ωgr

(
HomC0(X,Y )

)
= Homωgr(C)0

(
ωgr(X), ωgr(Y )

)
∼=

HomRep(H)(X0, Y0) = Hom
Rep

(
Aut⊗(ωgr)0

)(ωgr(X)0, ωgr(Y )0
)

Recall that Homωgr(C)

(
ωgr(X), ωgr(Y )

)
= ωgr

(
HomC(X,Y )

)
∈ HVBgr(A) is a

vector bundle, with fiber ωgr

(
HomC0(X,Y )

)
= HomRep(Aut⊗(ωgr)0)

(
ωgr(X)0, ωgr(Y )0

)
.

On the other hand, by construction we have that

Homωgr(C)

(
ωgr(X), ωgr(Y )

)
⊂ HomRep(Aut⊗(ωgr))

(
ωgr(X), ωgr(Y )

)
;

the later being also a vector bundle of fiber HomRep(Aut⊗(ωgr)0)

(
ωgr(X)0, ωgr(Y )0

)

by definition. It follows that these vector bundles coincide. In other words, ωgr(C)
is the category of representations of Aut⊗(ωgr). �
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Remark 5.2. Condition (5) in Theorem 5.1 states that any morphism f ∈ HomC0(X,Y )
is determined (after taking the forgetful functor) by its value in the fiber over 0 ∈ A.
A fortiori, by Corollary 3.40, this implies that this condition holds for any morphism
in HomC(X,Y ).

We finish this section by describing HVBgr(A) as the category or representations
of GA, the universal extension of the abelian variety A (see Example 3.73).

Example 5.3. The identity functor Id : HVBgr(A)→ HVBgr(A) can be though as

a forgetful functor. Therefore, Aut⊗(Id) is an affine extension, such that Rep
(
Aut⊗(Id)

)

is equivalent as a category with the forgetful functor (in the sense of Theorem 4.6)
with HVBgr(A) with the identity functor.

Since Rep(GA), the representation theory of the universal extension of A (see
Example 3.73), is also equivalent to HVBgr(A), it follows by the Reconstruction

Theorem 4.6 that GA ∼= Aut⊗(Id).

6. Affine extensions and Hopf sheaves

The well known op–equivalence between the category of affine group schemes over
a field k and the category of Hopf algebras over k has been generalized in [24, Exposé
I, Section 4.2] to the context of affine group schemes over a scheme S — that is,
group objects in the category of affine schemes over S with respect to the monoidal
structure given by the fibered product over S. The algebraic counterpart of the
group object is in this case a sheaf of bialgebras in S -alg. In this section we go
one step further and establish an op–equivalence between the category GE |

aff
A of

affine extensions of the abelian variety A (see Definitions 2.18 and Notation 6.2 as
well as Definition 6.4) and a category of OA–algebras with additional structure that
we call faithful (commutative) Hopf sheaves — named as HQAf -alg in Definition
6.60.

In our situation GE |
aff
A will appear as a subcategory of the category of bi-

monoids (with an antipode) in a duoidal category based upon Sch |
sqc
A, the cate-

gory of separated, quasi-compact schemes over A (see Definition 6.7). One of the
two monoidal structures is the fibered product over A as in the classical case, but
the other is defined taking into account the additive structure of A: it is the compo-
sition of the product over k with the base change by s : A×A→ A, where s is the
sum in A. This second structure is essential in order to capture in abstract terms
the fact that the base scheme has the additional structure of an abelian variety and
that q : G → A is a group homomorphism (see Definitions 6.4 and 6.42). See also
remark 6.52.

For the following undertakings, as was mentioned before, it is better to view the
affine extensions of an abelian variety A as a surjective (faithfully flat, separated)
affine morphism of group schemes: q : G→ A (see Remark 2.16 and Section 2.3).

To make the exposition clearer, we deal first with the monoid structure of G
— and the bialgebra structure of the associated sheaf —, and after this is firmly
secured, we present a formal treatment of the inversion morphism of G and the
corresponding “antipode” in the associated sheaf. As it happens frequently when
dealing with “generalized Hopf type objects”, it is harder to deal with the antipode
than with the bialgebra structure.
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To be in safe ground from the viewpoint of the categorical considerations, we
will recall and use some definitions and concepts pertaining to the theory of duoidal
categories, that are categories with two monoidal structures, that are related by an
interchange law (see [1] and [27]). The reader should be aware that other names
are used in the literature for this concept, see Definition 6.7 below.

Notation 6.1. In what follows we will deal with several monoidal structures, on
different categories. A monoidal structure in a category C will be denoted as a 3-
uple (e.g. (C,⊗, I)) — that is, we omit the associativity and unit constraints in the
formulæ. We write Cop for the opposite category with the same monoidal structure.

6.1. Affine extensions as schemes over an abelian variety, revisited.

Even though our final goal is to work in the category Sch |
aff
A (of affine schemes

over A) we have to formulate our basic definitions in larger categories such as
Sch |qcA (of quasi-compact schemes over A) and others. This is due to the fact that
some of the basic ingredients — for example the construction of the new monoidal
structure — do not live in the “affine universe” (see Remark 6.52).

It is convenient to begin by setting the notation of the different subcategories of
Sch |S that we will use henceforth.

Notation 6.2. Let S be a k–scheme.

(1) We denote the category of quasi-compact schemes over the k–scheme S as
Sch |

qc
S: its objects are the quasi-compact morphisms of k-schemes x : X → S

and its morphisms f : (x : X → S) → (y : Y → S) are morphisms of schemes
f : X → Y such that y◦f = x.

We denote an object (x : X → S) ∈ Sch |qcS as x, when no confusion arises.

(2) We denote as Sch |
sqc
S the full subcategory of separated, quasi-compact schemes

over S; the full subcategory of affine schemes over S is denoted as Sch |
aff
S. Since

any affine morphism is separated and quasi-compact, we have that Sch |
aff
S is fully

embedded in Sch |
sqc
S.

(3) We also consider the categories Sch |pqcS, Sch |fpqc
S defined by the conditions

that the map x : X → S is flat (plate in french) quasi-compact and faithfully flat
(fidèlement plate) quasi-compact respectively.

(4) Also, we denote as Sch |psqcS and Sch |
fpsqc

S the categories defined by the con-
ditions that the map x : X → S is flat separated and quasi-compact or faithfully
flat separated and quasi-compact, respectively.

(5) Let x : X → S ∈ Sch |sqcS. If there exists a closed point s : Spec(k)→ S ∈ S(k),
such that x factors through s, way say that x has constant structure morphism equal
to s. See diagram below.

Xst

yysss
s

x

��

Spec(k)

s %%❑
❑❑❑

S

(6) If f : T → S is a morphism of schemes, recall that the pull-back functor
f∗ : Sch |S → Sch |T has the push forward functor f∗ : Sch |T → Sch |S as left
adjoint — the functor f∗ is defined as f∗(x : X → T ) = f◦x for x ∈ Sch |T and
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f∗(y : Y → S) = (pT : Y ×S T → T ) is given by the pull-back diagram:

Y ×S T
pT //

pY
��

T
f

��

Y
y

// S.

At the level of arrows the definitions are the standard ones. Also recall that if f is
an isomorphism, then f∗ = (f−1)∗ = (f∗)

−1.

In the case that S = A an abelian variety, we have additional elements to take
into account.

Definition 6.3. (1) Let op : A → A be the inversion morphism, op(a) = −a and
denote op∗(x) = −x = x−, where op∗ : Sch |

qc
A → Sch |

qc
A is op∗(x : X → A) =

op ◦x : X → A and op∗(f) = f .

(2) Let c0 = 0 ◦ st : A → A, where 0 = eA : Spec(k) → A and st : A → Spec(k) is
the structural morphism of the k–scheme A — thus, c0 is “the constant morphism
equal to 0 ∈ A”.

Definition 6.4. (1) The Cauchy monoidal structure in Sch |
qc
A is defined as fol-

lows:

×̃ := s∗× : Sch |
qc
A× Sch |

qc
A

×
// Sch |

qc
(A×A)

s∗ // Sch |
qc
A ,

where s denotes as usual the addition in A and the functor × is the product in the
category Sch |

qc
k, i.e. if x : X → A, y : Y → A ∈ Sch |

qc
A, then

(x : X → A)× (y : Y → A) := (X × Y
x×y

// A×A).

The fact that the construction ×̃ induces a monoidal structure on Sch |
qc
A, with

unit element 0 : Spec(k) → A, is a straightforward calculation that we omit. We
denote its unit element as I×̃.

(2) Similarly the fibered product×A, that we call the Hadamard monoidal structure,
induces a monoidal structure on Sch |

qc
A, with unit element idA : A → A that we

denote as I×
A
.1

Remark 6.5. Both monoidal structures presented in Definition 6.4 are symmetric
braided. This fact is true in general for the fibered (Hadamard) product over any
base, and in the case of the Cauchy product is due to the abelianity of the group
structure in A.

Later, when working with the “group type objects” in the category Sch |qcA we
will concentrate our attention mainly to the case of group extensions, i.e. morphisms
of group schemes q : G → A with additional properties. As these morphisms are
separated, it is natural to consider the restriction of the Cauchy and Hadamard
monoidal structures to the category Sch |

sqc
A of separated, quasi-compact schemes

over A. Similarly, one can consider the subcategory Sch |psqcA (see Notation 6.2).
These restrictions will be necessary to deal with certain technical aspects such as
the ones considered in Section 6.3.

1The names of Hadamard and Cauchy monoidal structure, are used in similar situations in
other contexts, in particular in the theory of species (see [1, Sect. 6.1,Ex. 6.22,Ex. 8.13.5]).
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Lemma 6.6. The Cauchy and Hadamard monoidal structures restrict to Sch |
psqc

A
and Sch |sqcA.

Proof. This is clear. �

The Cauchy and the Hadamard monoidal structures endow Sch |
qc
A with a struc-

ture of duoidal category:

Definition 6.7. A duoidal category — also known as 2–monoidal category or
two-fold monoidal category, see [27, Sect. 4.9] or [1, Chapter 6] — is a quintu-
ple (C, ⋄, I⋄, ⋆, I⋆) with the following properties — the quintuple will be abbreviated
as C when there is no danger of confusion —:

(1) (C, ⋄, I⋄) and (C, ⋆, I⋆) are monoidal categories with their respective units.

(2) There is a natural transformation, called the interchange law,

ζa,b,c,d : (a ⋆ b) ⋄ (c ⋆ d)⇒ (a ⋄ c) ⋆ (b ⋄ d),

defined for all a, b, c, d ∈ C.

(3) There are three morphisms:

∆⋄ : I⋄ → I⋄ ⋆ I⋄ , µ⋆ : I⋆ ⋄ I⋆ → I⋆ , uI⋆ = εI⋄ : I⋄ → I⋆.

(4) All the data above satisfy additional conditions:

(i) compatibility of units, that amounts to the following assertions:

(I⋆, µ⋆, uI⋆) is a monoid in (C, ⋄, I⋄);

(I⋄,∆⋄, εI⋄) is a comonoid in (C, ⋆, I⋆).

(ii) associativity for ζ, that is expressed as the commutativity of the following
diagrams for all objects a, b, c, d, e, f ∈ C — for the sake of simplicity, all the
diagrams are written omitting the associativity constrains, i.e. pretending that the
monoidal structures are strict —:

(a ⋆ b) ⋄ (c ⋆ d) ⋄ (e ⋆ f)
ida⋆b ⋄ζc,d,e,f

//

ζa,b,c,d⋄ide⋆f

��

(a ⋆ b) ⋄
(
(c ⋄ e) ⋆ (d ⋄ f)

)

ζa,b,c⋄e,d⋄f

��(
(a ⋄ c) ⋆ (b ⋄ d)

)
⋄ (e ⋆ f)

ζa⋄c,b⋄d,e,f

// (a ⋄ c ⋄ e) ⋆ (b ⋄ d ⋄ f)

((a ⋆ b) ⋆ c) ⋄ ((d ⋆ e) ⋆ f)
ζa,b⋆c,d,e⋆f

//

ζa⋆b,c,d⋆e,f

��

(a ⋄ d) ⋆
(
(b ⋆ c) ⋄ (e ⋆ f)

)

ida⋄d ⋆ζb,c,e,f

��(
(a ⋆ b) ⋄ (d ⋆ e)

)
⋆ (c ⋄ f)

ζa,b,d,e⋆idc⋄f

// (a ⋄ d) ⋆ (b ⋄ e) ⋆ (c ⋄ f)

(iii) unitality/counitality for ζ, that is expressed as the commutativity of the fol-
lowing diagrams for all a, b ∈ C — again we omit the associativity constrains —:

(a ⋆ b) = (a ⋆ b) ⋄ I⋄ = I⋄ ⋄ (a ⋆ b)
∆⋄⋄ida⋆b //

ida⋆b ⋄∆⋄

��

kk

id

++❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲

(I⋄ ⋆ I⋄) ⋄ (a ⋆ b)

ζI⋄,I⋄,a,b

��

(a ⋆ b) ⋄ (I⋄ ⋆ I⋄)
ζa,b,I⋄,I⋄

// a ⋆ b
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(a ⋄ b) = (a ⋄ b) ⋆ I⋆ = I⋆ ⋆ (a ⋄ b) oo
µ⋆⋆ida⋄b

OO

ida⋄b ⋆µ⋆

ll

id

,,❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨

(I⋆ ⋄ I⋆) ⋆ (a ⋄ b)
OO

ζI⋆,a,I⋆,b

(a ⋄ b) ⋆ (I⋆ ⋄ I⋆) oo
ζa,I⋆,b,I⋆

(a ⋆ I⋆) ⋄ (b ⋆ I⋆) = a ⋄ b = (I⋆ ⋆ a) ⋄ (I⋆ ⋆ b)

It is clear that if (C, ⋄, I⋄, ⋆, I⋆) is a duoidal category, then (Cop, ⋆, I⋆, ⋄, I⋄) is also
a duoidal category that is written simply as Cop and is called the opposite of the
duoidal category C — the interchange law of C and Cop is the same morphism.

We refer the reader to [1, Paragraph 6.1.1] or [27, Section 4] for more information
on the properties of duoidal categories.

In the context of duoidal categories, one can establish the notion of bimonoid as
follows.

Definition 6.8. Let (C, ⋄, I⋄, ⋆, I⋆) be a duoidal category. A quintuple (b, µb, ub,∆b, εb)
consisting of an object b ∈ C, and morphisms µb : b⋄b→ b, ub : I⋄ → b, ∆b : b→ b⋆b
and εb : b→ I⋆ is a bimonoid for the duoidal category if:

(1) (b, µb, ub) is a monoid in (C, ⋄, I⋄);

(2) (b,∆b, εb) is a comonoid in (C, ⋆, I⋆);

(3) The following conditions hold:

εb : b→ I⋆ is a morphism of monoids in (C, ⋄, I⋄);

ub : I⋄ → b is a morphism of comonoids in (C, ⋆, I⋆);

(4) The following diagram is commutative:

(b ⋆ b) ⋄ (b ⋆ b)
ζb,b,b,b

// (b ⋄ b) ⋆ (b ⋄ b)

µb⋆µb

��

b ⋄ b

∆b⋄∆b

OO

µb

// b
∆b

// b ⋆ b

We call Bimon(C) the category whose objects are the bimonoids in C and its
arrows the morphisms of C that preserve the bimonoid structure.

Remark 6.9. (1) In accordance with Definition 6.7,4.(i) (I⋆, µ⋆, uI⋆) is a monoid
in (C, ⋄, I⋄) and in a trivial manner I⋆ is also a comonoid in (C, ⋆, I⋆). It is clear
that the compatibility conditions are satisfied and hence, I⋆ is a bimonoid in the
duoidal category C.

(2) Similarly (I⋄,∆⋄, εI⋄) is a comonoid in (C, ⋆, I⋆) and also has a natural structure
of monoid in (C, ⋄, I⋄) and also of bimonoid in the duoidal category C.

(3) The map I⋆ → I⋄ in Definition 6.7, is a morphism of bimonoids.

We proceed now to show that if A is an abelian variety, then the Hadamard
and Cauchy monoidal structures on Sch |

qc
A combine into a structure of duoidal

category. In this duoidal category, bimonoids correspond to morphisms of monoid
schemes M → A, where M is a quasi-compact monoid scheme.

Lemma 6.10. The quintuple (Sch |
qc
A, ×̃, I×̃,×A, I×A

) consisting of the category of
quasi-compact schemes over A with the Cauchy and Hadamard monoidal structures,
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and their respective unit objects, together with the morphisms ∆×̃ : I×̃ → I×̃ ×A I×̃

(the diagonal morphism); µ×A
:= s : I×A

×̃ I×A
→ I×A

, uI×
A

= εI×̃ := 0 : I×̃ →

I×
A

constitute a duoidal category. Moreover, with the restricted structures (see

Lemma 6.6) the categories (Sch |
sqc
A, ×̃, I×̃,×A, I×A

) and (Sch |
psqc

A, ×̃, I×̃,×A, I×A
)

are duoidal.

Proof. We only give an sketch of the proof. First of all, notice that the morphisms
∆×̃, µ×A

and uI×
A

= εI×̃ are morphisms in Sch |qcA, since the following diagrams

are commutative:

Spec(k)
∆×̃

//

0

��

Spec(k)×A Spec(k)

0

��

A
id

// A

A×A
µ×A //

id× id

��

A

id

��

A×A

s

��

A
id

// A

Spec(k)
uI×

A
=εI

×̃
//

0
##●

●●
●●

●●
●●

A

id
����
��
��
��

A

It is clear that (I×̃,∆×̃, ε×̃ = 0) is a comonoid for the Hadamard monoidal
structure, and (I×

A
, µ×A

, u×A
= 0) is a monoid for the Cauchy monoidal structure.

The interchange law is defined as follows: for x : X → A, y : Y → A, z : Z → A
and w : W → A, ζx,y,z,w : (x ×A y) ×̃(z ×A w) → (x ×̃ z)×A (y ×̃w) is the unique
morphism given by the universal property of the fibered product:

(X ×A Y )× (Z ×AW )

pX×pZ

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐

ζx,y,z,w

��

pY ×pW

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯

X × Z

x×z

��

(X × Z)×A (Y ×W )
pX×Z

oo
pY ×W

// Y ×W

y×w

��

A×A
s

// A A×A
s

oo

Once the interchange law is established, the associativity and unitality of ζ follow
easily.

The fact that all the duoidal structure can be restricted to the subcategories is
clear. For example:

(
Sch |qcA, ×̃, I×̃ :=

(
0 : Spec(k)→ A

)
,×A, I×

A
:= (idA : A→ A)

)
,

restricts to a duoidal structure (Sch |sqcA, ×̃, I×̃,×A, I×A
) — if x : X → A, y : Y →

A ∈ Sch |
qc
A, then the morphisms s◦ (x, y) : X × Y → A and x◦p1 = y◦p2 : X ×A

Y → A are separated, as well as I×̃ = 0 : Spec(k)→ A and I×
A
= idA : A→ A. �

The following remark is of some relevance for future use.

Remark 6.11. (1) All the objects in the monoidal category (Sch |
qc
A,×A, idA) can

naturally be endowed with a unique comonoid structure, given by the morphisms
depicted in the diagrams below, where δX : X → X×AX is the canonical diagonal
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morphism and the counit is εX := qX .

X

q
X

��
❅❅

❅❅
❅❅

❅❅
δX // X ×A X

q
X×AX

{{✈✈
✈✈
✈✈
✈✈
✈

A

X

q
X   

❅❅
❅❅

❅❅
❅❅

εX // A

id
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

A

Notice that qX×AX = qX◦p1 = qX◦p2 : X ×A X → A.

(2) Similarly — in a somewhat redundant way — in the monoidal category of
sheaves of OA–algebras (A -alg,⊗OA

,OA) all objects are monoids in a unique way
(see Definition 6.42 below).

(3) A peculiarity of this duoidal category is related to the element I⋄ = I×̃, which

is the unit of the monoidal half (Sch |
qc
A, ×̃, I×̃): I×̃ is idempotent with respect to

the other half of the monoidal structure, i.e. I×̃ ×A I×̃
∼= I×̃.

Also, I×
A
×̃ I×

A
= s : A×A→ A.

Proposition 6.12 below encompasses the main properties of quasi-compact mor-
phisms of monoid schemes M → A in a categorical framework, and will translate
— by the op-equivalence of categories mentioned before, once we take into consid-
eration the inverse when M is a group scheme — to the notion of Hopf sheaf.

Proposition 6.12. In the duoidal category (Sch |qcA, ×̃, I×̃,×A, I×A
), an object

qM : M → A ∈ Sch |
qc
A is a bimonoid if and only if M is a monoid in Sch and

the morphism qM :M → A is a morphism of monoids; that is, qM is multiplicative
and q(1M ) = 0A.

Given two bimonoids qM : B → A and qM ′ → A, a morphism f : qM → qM ′ is
of bimonoids if and only if f :M →M ′ is a morphism of monoid schemes.

Proof. Indeed, a structure of monoid in qM : M → A is given by two morphisms
µM : M ×M →M and uM : Spec(k)→M , such that µM and uM satisfy the usual
axioms of associativity and unitality, together with the diagrams depicted below.

M ×M

qM×qM

��

µM
// M

qM

��

A×A

s

��

A
id

// A

Spec(k)
uM //

0
##●

●●
●●

●●
●●

M

qM
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

A

The last assertion follows easily. �

Notation 6.13. We denote MM |
aff
A ⊂ Bimon(Sch |

qc
A, ×̃, I×̃,×A, I×A

) the full
subcategory with objects the affine morphisms of monoid schemes qM : M → A.

The main properties of the functor op∗ with respect to the duoidal structure are
expressed in the following easy proposition.

Proposition 6.14. Consider the duoidal category (Sch |
qc
A, ×̃, I×̃,×A, I×A

). The

functor op∗ : Sch |qcA→ Sch |qcA satisfies the following properties:
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(1) It is a strict monoidal involution with respect to ×̃ and ×A.

(2) op∗(I×̃) = I×̃ and op∗(I×A
)×A op∗(I×A

) ∼= op∗(I×A
). �

Next, with the purpose of obtaining an adequate categorical formulation for the
inverse morphism for a group object in Sch |

qc
A, we need to establish some basic

properties involving the functors

−×̃ I×
A
: Sch |qcA→ Sch |qcA , −×A I×̃ : Sch |qcA→ Sch |qcA,

and others associated to the duoidal structure.

Lemma 6.15. Consider the duoidal category (Sch |
qc
A, ×̃, I×̃,×A, I×A

). Then, with
the above notations we have that:

(1) (a) 0∗0
∗x = x×A I×̃ for any x : X → A;

(b) The map εx = idx×A εI×̃ : 0∗0
∗x → x is the counit of the adjunction

0∗ ⊣ 0∗;
(c) The unit uz : z → 0∗0∗z of the adjunction 0∗ ⊣ 0∗ is an isomorphism.

(2) (a) st∗ z = 0∗z ×̃ I×
A

for z : Z → Spec(k) ∈ Sch |k and st : A→ Spec(k);

(b) 0∗(c0)∗ = 0∗0∗ st∗ = st∗.
(3) c∗0x = (x ×A I×̃) ×̃ I×

A
. Equivalently, if x : X → A, X0 = x−1(0) and

x0 = x|
X0

: X0 → A, then c∗0x = pA : X0 ×A→ A.

(4) There is a natural transformation ρx : (c0)
∗x→ x ×̃ I×

A
.

Proof. (1) In the commutative diagram

X ×A Spec(k)

''

p2
//

p1

��

Spec(k)

0

��

X
x

// A,

the upper horizontal arrow is 0∗x and its composition with the vertical 0 arrow
yields 0∗0

∗x that is the arrow: 0p2 = xp1 : X ×A Spec(k) → A. It is clear that
0∗0

∗x = x×A I×̃. The remaining parts of the proof are direct.

(2) The proof of the first part is direct and for the second, the chain of equalities
is guaranteed by 1(c).

(3) If x : X → A ∈ Sch |
qc
A, then c∗0x = st∗ 0∗x = 0∗0

∗x ×̃ I×
A
= (x ×A I×̃) ×̃ I×

A

the second equality follows from (2)(a) and the third from (1)(a). The proof of the
second assertion is easy.

(4) The natural transformation ρ is obtained by considering the equality proved in
(3), and then applying the unit morphism u : I×̃ → I×

A
to the second factor. �

Next we define two natural transformations that are crucial for the definition of
the antipode in Theorem 6.18 below.

Proposition 6.16. Consider the duoidal category (Sch |
qc
A, ×̃, I×̃,×A, I×A

) and

let x : X → A, y : Y → A ∈ Sch |qcA.

(1) There is a natural transformation πx,y : (c0)∗
(
x×A −y

)
→ x ×̃ y.

(2) There is a natural transformation γ̃x,y : x×A −y → (x ×̃ y) ×̃ I×
A
.

(3) There is a natural transformation γx,y : (−x) ×A y → I×
A
×̃ (x ×̃ y).
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Proof. For the proof of (1) we consider the commutative diagram that follows —
in the next diagrams in order not to loose track of the structure morphism −y we
are using the slightly unorthodox notation op∗(y : Y → A) = (−y : Y − → A) even
though as schemes Y − = Y .

X ×A Y − p2 //

p1

��

Y −

−y

��

��

X
x

//

..

A

st

$$❍
❍❍

❍❍
❍❍

❍❍

Spec(k)

The canonical projections pi induce a morphism τx,y : X×AY − → X×Y such that
s◦ (x×y)◦ τx,y = 0◦ stX×AY . In other words, the following diagram is commutative:

(6.1) X ×A Y −

st xp1=st(−y)p2

��

τx,y
// X × Y

x×y

��

Spec(k)

0
$$■

■■
■■

■■
■■

A×A

s
||①①
①①
①①
①①
①

A

Diagram (6.1) means that the map τx,y is a morphism (c0)∗
(
x×A−y

) τx,y
−→ x ×̃ y.

(2) It is clear that applying (c0)
∗ to the natural transformation τx,y we obtain a nat-

ural transformation (c0)
∗(τx,y) : (c0)

∗(c0)∗
(
x×A−y

)
→ (c0)

∗(x ×̃ y). By composing
with the unit of the adjunction (c0)∗ ⊣ (c0)

∗ we obtain a natural transformation:
x×A −y ⇒ (c0)

∗(x ×̃ y). The conclusion of (2) follows by post composition of this
natural transformation with the natural transformation ρx ×̃ y defined in Lemma
6.15.

(3) To obtain γ one proceeds similarly. �

Remark 6.17. For a pair x : X → A, y : Y → A the natural transformation γ̃x,y,
is a morphism of schemes that has domain x×A (−y) : X×AY − → A and codomain
x + y + idA : X × Y × A → A. Tracking down the above construction it is easy
to see that γ̃x,y =

〈
π, x ×A (−y)

〉
: X ×A Y − → X × Y × A. It is clear that the

diagram below is commutative:

X ×A Y −
〈τx,y,x×A(−y)〉

//

x×A(−y)
$$■

■■
■■

■■
■■

■ X × Y ×A

x+y+idA
yytt
tt
tt
tt
tt
t

A

Notice that if (u, v) ∈ x ×A (−y) and a ∈ A, then
〈
τx,y, x ×A (−y)

〉
(u, v) =(

u, v, x(u)
)
,
(
x×A (−y)

)
(u, v) = x(u) = −y(v) and (x+ y + idA)(u, v, a) = x(u) +

y(v) + a = a.
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We are ready to wrap up the duoidal perspective for a group extension by com-
pleting the result of Proposition 6.12.

Theorem 6.18. In the duoidal category (Sch |
qc
A, ×̃, I×̃,×A, I×A

) a bimonoid (b :

M → A, µb, ub,∆b, εb) is such that M is a quasi-compact group scheme and b
a quasi-compact morphism of group schemes if and only if there is a morphism
ιb : b→ −b in Sch |

qc
A, called an antipode, such that both diagrams below commute:

(6.2)

b×A b
id×Aιb // b×A (−b)

γ̃b,b
// (b ×̃ b) ×̃ I×

A

µb ×̃ id

$$❏
❏❏

❏❏
❏❏

❏❏

b

εb
��
❀❀

❀❀
❀❀

❀❀

∆b

AA✄✄✄✄✄✄✄✄
b ×̃ I×

A

I×A ∼=
// I×̃ ×̃ I×A

(ub ×̃ id)

::ttttttttt

(6.3)

b×A b
ιb×Aid

// (−b)×A b
γb,b

// I×
A
×̃(b ×̃ b)

id ×̃µb

$$❏
❏❏

❏❏
❏❏

❏❏

b

εb
��
❀❀

❀❀
❀❀

❀❀

∆b

AA✄✄✄✄✄✄✄✄
I×

A
×̃ b

I×A ∼=
// I×A
×̃ I×̃

(id ×̃ub)

::ttttttttt

where γ̃ and γ are the natural transformations depicted in Proposition 6.16 (see
also Remark 6.17) and the bottom maps ∼= are the natural identifications associated
to the unit of the ×̃ monoidal structure.

Proof. If (M,µ, u, inv) is a group scheme over k and b : M → A ∈ Sch |
qc
A is a quasi-

compact group extension, in accordance with Proposition 6.12, b is a bimonoid in
the duoidal category Sch |qcA. Additionally, if we define ιb := inv, it is clear that ιb
is a morphism in the category Sch |

qc
A. Indeed, the diagram below is commutative

M
inv //

b
  ❆

❆❆
❆❆

❆❆
❆ M

−b
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

A

A direct verification shows that diagrams (6.2) and (6.3) are commutative provided
that µb = µ, ub = u, ιb = inv, ∆b is the diagonal morphism and εb = b :M → A.

Conversely, suppose we have a bimonoid (b :M → A, µb, ub,∆b, εb) in the duoidal
category, such that the bimonoid is equipped with a map ιb : b → −b satisfying
diagrams such as (6.2), (6.3). A direct computation shows that the morphism
associated to the upper path of the diagram (6.2) corresponds to the upper curved
arrow of the diagram below, and similarly for the lower path and the lower curved
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arrow:

M

〈d,b〉
,,

〈c1,b〉

22

b
  ❆

❆❆
❆❆

❆❆
❆ M ×A

pA
{{✇✇
✇✇
✇✇
✇✇
✇

A

with d = µb(id×ιb) and c1 the 1–morphism of b (or in other words the constant
morphism to the unit ofM) — here we use the structure and conclusions considered
in Proposition 6.12. The commutativity of the diagram implies the equality of both
curved arrows. Then, ιb is a right inverse of the identity. Similarly, interpreting the
second diagram (6.3), we conclude the proof of the theorem. �

Definition 6.19. We denote GM |
qc
A ⊂ Bimon(Sch |

qc
A, ×̃, I×̃,×A, I×A

) the full

subcategory with objects the bimonoids b : M → A such that M is a (quasi-
compact) group scheme and b a morphisms of group schemes.

We denote GM |
aff
A ⊂ GM |

qc
A the full subcategory with objects the affine

morphisms of group schemes — notice that GM |
aff
A ⊂ MM |

aff
A in a canonical

way (see Notation 6.13).

Notice that GE |qcA, the category of quasi-compact group extensions of A, is a
full subcategory of GM |

qc
A and that the category of affine extensions GE |

aff
A is a

full subcategory of GM |
aff
A (see Definition 2.18).

Remark 6.20. The procedure of Theorem 6.18 is related to the work of Böhm
and Lack [7], where the authors construct a certain duoidal category associated to
a so-called Frobenius map–monoidale and introduce an antipode in that context.

Notice also that our construction of an antipode can be generalized as follows:
let C = (C, ⋄, I⋄, ⋆, I⋆) be a duoidal category and assume that it can be equipped
with a functor op : C → C and natural transformations similar to γ̃, γ satisfying
conditions such as the ones appearing in 6.14 and 6.15. For a bimonoid b ∈ C a
morphism ιb : b → op(b) that satisfies diagrams and properties such as the ones
appearing in (6.2) and (6.3), is called an antipode in b. We intend to explore this
construction in further work.

6.2. Bimonoids in duoidal categories.

We briefly recall the behavior of bilax functor between duoidal categories, as
well as other monoidal structures related to duoidality, such as the constructions
of modules and comodules over bialgebras in this context (see [1, Chap. 6, §6]).

Definition 6.21. (1) Given a functor F : (C,⊗C, IC) → (D,⊗D, ID) between two
monoidal categories, a lax monoidal structure consists of a map ℓ0 : ID → F (IC) and
a natural transformation ℓc,c′ : F (c) ⊗D F (c′) → F (c ⊗C c

′) subject to associative
and unitality axioms. If such an structure exists, we say that F is a lax functor.
A monoidal functor F : C → D is called op-lax (or colax ) if the induced functor
Cop → Dop is lax (monoidal).

If the maps ℓ0, ℓc,c′ are isomorphisms we call F a strong monoidal functor.

(2) Given the above situation and two lax monoidal functors (F, ℓ0, ℓ), (G, ℓ
′
0, ℓ

′) a
monoidal natural transformation is a natural transformation σ : F ⇒ G : C → D,
that satisfies the commutativity of the diagrams below:



66 A REPRESENTATION THEORY FOR QUASI-COMPACT GROUP SCHEMES

F (c)⊗D F (c′)
σx⊗Dσy

//

ℓc,c′

��

G(c)⊗D G(c′)

ℓ′
c,c′

��

F (c⊗C c
′)

σc⊗Cc′

// G(c⊗C c
′)

ID

ℓ0||②②
②②
②②
②② ℓ′0

""❊
❊❊

❊❊
❊❊

❊

F (IC) σIC

// G(IC)

(3) Suppose that C,D are two monoidal categories and let L and R be lax monoidal

functors. An adjunction C
L //

oo
R

⊥ D is monoidal if the unit η and the counit ε are

monoidal natural transformations. In that case we say that the abstract adjunction
“lifts” to a monoidal adjunction.

Suppose now that L : C → D is colax with associated maps cℓ0 : L(IC)→ ID and
cℓc,c′ : L(c ⊗ c′) → L(c) ⊗ L(c′). Then, the maps defined by the diagrams below
define a lax monoidal structure for R and vice versa (see [1, Prop (3.84)] for the
proof).

IC

ηIC
��
✾✾

✾✾
✾✾

✾

ℓ′0 // R(ID)

RL(IC)

R(cℓ0)

??⑦⑦⑦⑦⑦⑦⑦

R(d)⊗R(d′)
ℓ′
d,d′

//

ηR(d)⊗R(d′)

��

R(d⊗ d′)

RL(R(d)⊗R(d′))
R(cℓR(d),R(d′))

// R(LR(d)⊗ LR(d′))

R(εd⊗ε
′
d)

OO

Definition 6.22. Let C = (C, ⋄, I⋄, ⋆, I⋆) and D = (D, ⋄′, I⋄′ , ⋆′, I⋆′) be duoidal
categories.

(1) A functor F : C → D that is lax monoidal with respect to (⋄, ⋄′) with structure
τc,d : F (c) ⋄

′ F (d)→ F (c ⋄ d), ν : I⋄′ → F (I⋄), and colax monoidal with respect to
(⋆, ⋆′) with structure ρc,d : F (c ⋆ d)→ F (c) ⋆′ F (d), λ : F (I⋆)→ I⋆′ , is called a bilax
functor from C into D, provided the following diagrams are commutative.

(1) Interchange.

F (a ⋆ b) ⋄′ F (c ⋆ d)
τa⋆b,c⋆d

uu❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥ ρa,b⋄
′ρc,d

**❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱

F ((a ⋆ b) ⋄ (c ⋆ d))

F (ζa,b,c,d)

��

(F (a) ⋆′ F (b)) ⋄′ (F (c) ⋆′ F (d))

ζ′F (a),F (b),F (c),F (d)

��

F ((a ⋄ c) ⋆ (b ⋄ d))

ρa⋄c,b⋄d
))❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚
(F (a) ⋄′ F (c)) ⋆′ (F (b) ⋄′ F (d))

τa,c⋄
′τb,dtt❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤

F (a ⋄ c) ⋆′ F (b ⋄ d)
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(2) Unitality.

I⋄′
ν //

∆⋄′

��

F (I⋄)
F (∆⋄)

// F (I⋄ ⋆ I⋄)

ρI⋄,I⋄

��

I⋄′ ⋆′ I⋄′

ν ⋆′ν

// F (I⋄) ⋆
′ F (I⋄)

I⋆′ oo
λ

OO

µ⋆′

F (I⋆) oo
F (µ⋆)

F (I⋆ ⋄ I⋆)
OO

τI⋆,I⋆

I⋆′ ⋄′ I⋆′ oo
λ ⋆′λ

F (I⋆) ⋄′ F (I⋆)

F (I⋆)
F (uI⋆ )=F (εI⋆ ) // F (I⋆)

λ

��

I⋆′
uI⋄′

=εI
⋆′ //

ν

OO

I⋆′

(2) Let F,G : (C, ⋄, ⋆) → (D, ⋄′, ⋆′) be bilax functors. Call (τ, ν), (τ ′, ν′) the lax
(⋄, ⋄′)–monoidal structures for F and G respectively and call (ρ, λ), (ρ′, λ′) the colax
(⋆, ⋆′)–monoidal structures for F and G respectively.

A natural transformation σ : F ⇒ G is a morphism of bilax functors if it is at the
same time a natural transformation of lax and colax functors. In other words if the
following diagrams for the monoidal structures are commutative for all c, c′ ∈ C.

F (c) ⋄ F (c′)
τc,c′

//

σc⋄σc′

��

F (c ⋄ c′)

σc⋄c′

��

G(c) ⋄G(c′)
τ ′
c,c′

// G(c ⋄ c′)

I⋄′

ν

||②②
②②
②② ν′

""❋
❋❋

❋❋
❋

F (I⋄) σI⋄

// G(I⋄)

F (c) ⋆ F (c′) oo
ρc,c′

σc⋆σc′

��

F (c ⋆ c′)

σc⋆c′

��

G(c) ⋆ G(c′) oo
ρ′
c,c′

G(c ⋆ c′)

I⋆′<<
λ

②②
②②
②②

bb
λ′

❋❋
❋❋

❋❋

F (I⋆) σI⋆

// G(I⋆)

The details of the proof of the result that follows (and some variations) can be
found in [1, Chap. 6, §8].

Lemma 6.23. Let C = (C, ⋄, I⋄, ⋆, I⋆) and D = (D, ⋄′, I⋄′ , ⋆′, I⋆′) be duoidal cat-
egories and b = (b, µb, ub,∆b, εb) a bimonoid in C. Let F : C → D be a lax
(⋄, ⋄′)–monoidal functor and colax (⋆, ⋆′)–monoidal functor and τ, ν, ρ and λ as
in Definition 6.22. Then F (b) =

(
F (b), F (µb)◦ τb,b, F (ub)◦ν, ρb,b◦F (∆b), λ◦F (εb)

)

is at the same time a monoid and a comonoid with respect to ⋄′ and ⋆′ respectively.
Moreover, if F is bilax monoidal, then F (b) is a bimonoid in D.

Moreover, if f is a morphism of bimonoids so is F (f), hence F restricts to a
functor in the categories of bimonoids: F : Bimon(C)→ Bimon(D). �

Definition 6.24. (1) Assume that (C,⊙ , I⊙) is a monoidal category and let m =
(m,µm, um), be a monoid in (C, ⊙ , I⊙). A (left) m–module structure on x ∈ C or
a (left) action of m on x is a morphism αx : m⊙x → x such that the following
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diagrams are commutative:

m⊙m⊙x
idm ⊙αx //

µm ⊙ idx

��

m⊙x

αx

��

I⊙ ⊙x
um ⊙ idx //

∼=
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
m⊙x

αx

��
m⊙x

αx

// x x

The pair (x, α) is called an m–module — when there is no ambiguity on the
action, we will say that x is an m–module. If (x, αx), (y, αy) are left m–modules,
a morphism of left m–modules x → y is a morphism f ∈ Hom(x, y) such that
αy◦ (idm ⊙ f) = f◦αx : m⊙x→ y.

We define mM, the category of left m-modules as the category with objects the
left m–modules and morphism the morphisms the morphism of left m–modules.

In a similar way, we define Mm, the category of right m-modules.

(2) If (c,∆c, εc) is a comonoid in (C, ⊙ , I⊙), a right c–comodule structure on y ∈ C
or a (right) coaction of c on y is a morphism χy : y → y ⊙ c such that the following
diagrams are commutative:

y
χ

//

χ

��

y ⊙ c

χ⊙ idc

��

y
χ

//

∼=
$$■

■■
■■

■■
■■

■ y ⊙ c

idy ⊙ εc

��

y ⊙ c
id⊙∆c

// y ⊙ c⊙ c y ⊙ I⊙

We say that the pair (y, χ) is a right c–comodule — we will often omit the
coaction and say that y is a c–comodule.

If (x, χx) and (y, χy) are c–comodules, a morphism of c–comodules between x an
y is a morphism f ∈ Hom(x, y) such that (f ⊙ idc)◦χx = χy◦f : x→ y ⊙ c.

We denote Mc the category of right c–comodules, defined in the usual way. Anal-
ogously, we define its left counter part cM, the category of left c–comodules,

Example 6.25. If m : M → A is a quasi-compact morphism of monoid (group)
schemes, then to give an m–module in the monoidal category (Sch |qcA, ×̃, I×̃) is
equivalent to give a pair (x : X → A, a), where a : M ×X → X is an action — in
the usual sense — such that the following diagram is commutative:

M ×X

m×x

��

a // X

x

��

A×A
s

// A

Spec(k)×X

∼=
''◆◆

◆◆◆
◆◆◆

◆◆◆
◆

uM×id
// M ×X

a

��

X

In particular, if S ∈ q : G → A is an affine (or more generally quasi-compact)
extension, then any representation E ∈ Rep(S) — in the nomenclature of Definition
3.41 — is a q–module in the monoidal category Sch |

qc
A and conversely.

In the case that the monoidal category (C, ⊙ , I⊙) is part of a duoidal category,
more structure is available as shown in the next proposition, that admits — wher-
ever it is possible — a left and a right version.
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Proposition 6.26. Let (C, ⋄, I⋄, ⋆, I⋆) be a duoidal category and m1,m2 be monoids
in (C, ⋄, I⋄), c1, c2 comonoids in (C, ⋆, I⋆) and (b, µb, ub,∆b, εb) a bimonoid in (C, ⋄, I⋄, ⋆, I⋆).
Then:

(1) m1 ⋆ m2 is a monoid in (C, ⋄, I⋄) and c1 ⋄ c2 is a comonoid in (C, ⋆, I⋆);

(2) if x1, x2 are left modules for m1 and m2 with structures α1, α2 respectively, then
x1 ⋆ x2 is a left m1 ⋆ m2 module with structure:

α1⋆α2 : (m1 ⋆ m2) ⋄ (x1 ⋆ x2)
ζm1,m2,x1,x2 // (m1 ⋄ x1) ⋆ (m2 ⋄ x2)

α1⋆α2 // x1 ⋆ x2;

(3) if y1, y2 are right comodules for c1 and c2 with structures χ1, χ2 respectively,
then y1 ⋄ y2 is a right c1 ⋆ c2 comodule with structure:

χ1⋆χ2 : y1 ⋄ y2
χ1⋄χ2 // (y1 ⋆ c1) ⋄ (y2 ⋆ c2)

ζy1,c1,y2,c2 // (y1 ⋄ y2) ⋆ (c1 ⋄ c2);

(4) if x1, x2 are left modules for b with structures α1, α2 then, x1 ⋆ x2 is also a left
module for b with structure:

α1,2 : b ⋄ (x1 ⋆ x2)
∆b⋄ id

// (b ⋆ b) ⋄ (x1 ⋆ x2)
α1⋆α2

// x1 ⋆ x2.

(5) if y1, y2 are right comodules for b with structures χ1, χ2 then, y1 ⋄ y2 is also a
right comodule for b with structure:

χ1,2 : y1 ⋄ y2
χ1⋄χ2

// (y1 ⋄ y2) ⋆ (b ⋄ b)
id ⋆µb // (y1 ⋄ y2) ⋆ b.

Proof. The detailed proof of this result can be found in [1, Prop.6.25]. For example,
the morphism given by the composition of the interchange map and the ⋆ monoidal
product of the multiplications of m1 and m2,

(m1 ⋆ m2) ⋄ (m1 ⋆ m2)
ζm1,m2,m1,m2 // (m1 ⋄m1) ⋆ (m2 ⋄m2)

µ1⋆µ2 // m1 ⋆ m2,

is the multiplication morphism of m1 ⋆ m2. �

Definition 6.27. If b is a bimonoid in C, a right b–comodule algebra in the duoidal
category C is a right b–comodule (y, χ) equipped also with a monoid structure
(y, µy, uy) in (C, ⋄, I⋄) such that the diagrams below commute:

y ⋄ y
χ12 //

µy

��

(y ⋄ y) ⋆ b

µy⋆id

��

y
χ

// y ⋆ b

I⋄
∆⋄ //

uy

��

I⋄ ⋆ I⋄

uy⋆ub

��

y
χ

// y ⋆ b

As usual, we have also the notion of left b–comodule algebra.

The following Corollary follows easily from the proposition above and extends
the results of Lemma 6.23 to modules and comodules.

Corollary 6.28. If C = (C, ⋄, I⋄, ⋆, I⋆) be a duoidal category, then the subcategory
Mon(C, ⋄) ⊂ C is monoidal with respect to the structure (⋆, I⋆) and the subcategory
Comon(C, ⋆) ⊂ C, is monoidal with respect to the structure (⋄, I⋄).

Assume that D = (D, ⋄′, I⋄′ , ⋆′, I⋆′) is another duoidal category and that F : C →
D is a functor that is lax (⋄, ⋄′)–monoidal and colax (⋆, ⋆′)–monoidal.
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Then F restricts to a colax–(⋆, ⋆′) monoidal functor F :
(
Mon(C, ⋄, I⋄), ⋆, I⋆

)
→(

Mon(D, ⋄′, I⋄′), ⋆′, I⋆′
)
.

Dually, F restricts to a lax–(⋄, ⋄′) monoidal functor F :
(
Comon(C, ⋆, I⋆), ⋄, I⋄

)
→(

Mon(D, ⋆′, I⋆′), ⋄′, I⋄′

)
.

Also, in the case that the functor F is a bilax functor and b ∈ Bimod(C), we call
Mod(b) and Comod(b) the categories of b–modules with respect to the ⋄–monoidal
structure and of b–comodules with respect to the ⋆–monoidal structure. Then:

(i)
(
Mod(b), ⋆

)
and

(
Comod(b), ⋄

)
are monoidal categories.

(ii) If F : C → D is a bilax monoidal functor as above. Then F induces a
monoidal functor F :

(
Mod(b), ⋆

)
→ (Mod(F (b)), ⋆′) and F :

(
Comod(b), ⋄

)
→(

Comod(F (b)), ⋄′
)
.

Proof. The proof is direct using the definitions and results of Lemma 6.23 and
Proposition 6.26. �

6.3. Quasi-compact morphisms and their associated sheaves.

In this section we collect some results and definitions on (separated) quasi-
compact morphisms and their associated (quasi-coherent) sheaves, that will be
used later. The basic definitions can be found in [34, Chap. II] or [30, Chap. 0,
Chap. 1]. The original reference for the adjunction results is [31, §1.2,§1.3], but
they also appear as a series of exercises in [34, Ex. II.5.17, II.5.18] as well as in
many other references, e.g. [57], [59].

Notation 6.29. If S is a scheme, the category of OS–modules (algebras) will be
denoted as S -mod (S -alg) and the category of quasi-coherent S–modules (algebras)
as QS -mod (QS -alg).

Definition 6.30. We denote P : Sch |
qc
S → S -algop the functor given as follows

(see [31][Prop (1.3.1)] or [34, Proposition II.5.8]): If x : X → S ∈ Sch |qcS, then

P(x) := x∗(OX); if (f, f#) : (x : X → S) → (x′ : X ′ → S) is a morphism
in Sch |

qc
S (recall that f# : OX′ → f∗OX) then P(f, f#) := x′∗(f

#) : P(x′) =
x′∗(OX′)→ P(x) = x∗(OX).

It is well known that the restriction of P to Sch |
sqc
S induces a functor to

QS -algop, that we still call P : Sch |sqcS → QS -algop.

We recall now the well known construction of a right adjoint to P : Sch |
sqc
S →

QS -algop.

Remark 6.31. (see [31, Prop. 1.3.1 and Prop. 1.2.7]) The functor P : Sch |
sqc
S →

QS -algop admits a right adjoint Spec : QA -algop → Sch |
sqc
S. Given F ∈ QS -alg,

then Spec(F) is the unique — up to isomorphisms of S-schemes — scheme over
S such that Spec(F) ∈ Sch |

aff
S and P

(
Spec(F)

)
= F . We denote Spec(F) as

πF : Spec(F)→ S.

Recall that the adjunction Sch |
sqc
S

P //

oo
Spec

⊥ QS -algop is given by a natural trans-

formation

HomQS -alg

(
F ,P(x)

)
= Hom(QS -alg)op

(
P(x),F

)
∼= HomSch |sqcS

(x, SpecF),
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that has a unit η and counit ε the natural transformations:



(i) ηx : x→ AffS(x) := Spec
(
P(x)

)
∈ Sch |

sqc
S;

(ii) εF : P
(
Spec(F)

)
→ F ∈ (QS -alg)op or

εF : F → P
(
Spec(F)

)
∈ QS -alg,

In this particular case, we have that for all F ∈ QS -alg , εF is an isomorphism
(see [31, §1.2, §1.3, §1.4]).

Definition 6.32. By construction, for x ∈ Sch |
sqc
S the morphism ηx : x →

AffS(x) ∈ Sch |
sqc
S is affine; ηx is called the (relative) affinization map and its

codomain is called the (S–)affinization of x (frequently just called “affinization”).
The functor AffS = Spec ◦ P : Sch |

sqc
S → Sch |

aff
S ⊂ Sch |

sqc
S is called the affiniza-

tion over S or the relative affinization (over S). Compare with Definition 2.38.

Remark 6.33. The affinization satisfies the following universal property (compare
with Remark 2.39):

For any morphism f : x → y with x ∈ Sch |sqcS, y ∈ Sch |
aff
S there is a unique

morphism f̂ that makes commutative the diagram below: x
ηx //

f ��
❁❁

❁❁
❁❁

AffS(x)

f̂{{
y

In view of Remark 6.31, we have the following equivalence of categories:

Proposition 6.34. The adjunction Sch |sqcS
P //

oo
Spec

⊥ (QS -alg)op restricts to func-

tors P |
Sch |

aff
S
: Sch |

aff
S → QS -algop and Spec : QS -algop → Sch |

aff
S that estab-

lish an adjoint op-equivalence between Sch |
aff
S and QS -alg.

In particular the counit ε of the original adjunction is an isomorphism (see Re-
mark 6.31 and [31, Prop. 1.3.1] for a proof). �

We finish this section presenting (without proofs) some known results on flat
(separated, quasi-compact) schemes over S that will be needed; we follow [32, §2.1
– 2.3].

Lemma 6.35. Let x : X → S ∈ Sch |sqcS. Then x is flat if and only if the pull-back
functor x∗ : S -mod→ X -mod is exact. �

Lemma 6.36. Let x : X → S ∈ Sch |
sqc
S be a flat morphism. Then P(x) = x∗(OX)

is a quasi-coherent flat sheaf of algebras in S -mod.

Conversely, if F is a quasi-coherent flat sheaf of algebras in S -mod, then πF :
Spec(F)→ S is an affine (hence separated) flat morphism. �

Remark 6.37. Let X,Y ∈ Sch |S, F ∈ X -mod, G ∈ Y -mod, and let h : X → Y
ℓ : Y → Y ′ be morphisms of schemes over S. Then the counits associated to the
adjunction between h∗ ⊣ h∗; ℓ∗ ⊣ ℓ∗: εF : h∗h∗F → F and εG : ℓ∗ℓ∗G → G, induce
a homomorphism of sheaves

εF ⊠ εG : h∗h∗F ⊠ ℓ∗ℓ∗G = (h× ℓ)∗(h∗F ⊠ ℓ∗G)→ F ⊠G.

Using the standard adjunction again we obtain the map:

ΓF ,G := (h× ℓ)∗(εF ⊠ εG)ν
h∗F ⊠ ℓ∗G

: h∗F ⊠ ℓ∗G → (h× ℓ)∗(F ⊠G),
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where ν
h∗F ⊠ ℓ∗G

is the unit of the adjunction.

We are interested in conditions on h, ℓ and F ,G in order to guarantee that ΓF ,G

is an isomorphism. A set of conditions was established by Brandenburg in response
to a question in “stackexchange/math”, in a more general setting. In our context,
Brandenburg answer can be stated as follows:

Lemma 6.38. Let h, ℓ, F ,G as above and assume that either:

(a) h, ℓ are quasi-compact and quasi-separated, or

(b) h, ℓ are affine morphisms.

Then ΓF ,G is an isomorphism.

Proof. See [9]. �

Remark 6.39. In the notations of Lemma 6.38, notice that since we are working
with k–schemes, it follows that F ,G are S–flat quasi-coherent sheaves — that is,
h∗F and ℓ∗G are flat sheaves.

6.4. A duoidal structure for QA-mod.

In Section 6.1 we considered a duoidal structure on Sch |
qc
A together with an

additional functor op∗ : Sch |
qc
A → Sch |

qc
A (denoted as op∗(x) = −x) for which

the subcategory Bimon(Sch |
qc
A) ⊆ Sch |

qc
A has as objects the quasi-compact mor-

phisms of monoids qM : M → A (and as morphisms the morphisms over A, that
are of monoids). Thus, the category GE |qcA of quasi-compact group extensions of
the abelian variety A can be interpreted as the full subcategory of Bimon(Sch |

qc
A)

that has objects the faithfully flat morphisms of group schemes. In terms of the
category Sch |qcA, a group extension is a bimonoid x in the category, equipped with
an additional arrow ιx : x→ (−x) satisfying the supplementary conditions of Theo-
rem 6.18. Since the category GE |

aff
A of affine extensions of A is a full subcategory

of GE |
qc
A, it can viewed also as a full subcategory of Bimon(Sch |

qc
A).

In order to dualize the above situation to the category of sheaves, we first re-
strict the above setting to the duoidal category based upon Sch |sqcA — recall that
since a since a group scheme is separated GE |

qc
A ⊂ Bimon(Sch |

sqc
A). In this con-

text, the functors P and Spec (see Remark 6.31) establish an adjunction between
Sch |sqcA and QA -algop — our goal is to describe the behavior of GE |

aff
A under

the mentioned adjunction. In order to describe the correlate of Bimon(Sch |
sqc
A) in

QA -alg, we introduce a duoidal structure on QA -mod such that the correspond-
ing subcategory of bimonoids Bimon(QA -mod) is the seeked correlate. Finally,
we introduce an additional structure that corresponds under the adjunction to the
antipode, and construct the category of commutative Hopf sheaves. In this we end
up with a monoidal adjunction from the category GM |

qc
A (see Definition 6.19)

and the category of schemes commutative Hopf sheaves. If moreover we restrict
ourselves the subcategory GE |qcA, we obtain an adjunction with the subcategory
of flat commutative Hopf sheaves, that restrict in turn to an equivalence between
the category of affine extensions of A and the category of flat commutative Hopf
sheaves.

Be begin by recalling the definition of the external tensor product of sheaves
over a scheme S.
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Definition 6.40. Let S be a scheme and X,Y ∈ Sch |S. If F ∈ QX -mod, and
G ∈ QY -mod, we define the sheaf F ⊠ SG := p∗1F ⊗OX×SY

p∗2G ∈ Q(X ×S Y ) -mod,
where p1 : X ×S Y → X and p2 : X ×S Y → Y are the canonical projections.
This correspondence can be extended to a functor ⊠ S : QX -mod×QY -mod →
Q(X×SY ) -mod. This functor is called in [30, Section 9] the tensor product over OS
or the tensor product over S, but currently it is called the external tensor product
(over S). In the particular case that S = k, we usually write F ⊠ Spec(k)G = F ⊠ G.

Remark 6.41. In the situation that X = Y = S and F ,G ∈ QS -mod,F ⊠ SG =
F ⊗OS

G the usual monoidal structure in the category of the sheaves of OS–mod.

Definition 6.42. Let A be an abelian variety. (1) Along this section and to be
consistent with Definition 6.4 we call the usual monoidal structure ⊗A : QA -mod×
QA -mod→ QA -mod the Hadamard monoidal structure — the unit I⊗A

is OA.

(2) We define the Cauchy monoidal structure in QA -mod as follows:

⊠̃ = s∗◦ ⊠ Spec(k) : QA -mod×QA -mod
⊠ Spec(k)

// Q(A×k A) -mod
s∗ // QA -mod,

where s∗ is the push-forward functor by the addition morphism s : A×A→ A.

It is easy to show that
(
QA -mod, ⊠̃ , I

⊠̃
= skysc0(k)

)
, where skysc0(k) ∈

QA -mod denotes the skyscraper sheaf at 0 ∈ A with stalk k, is a monoidal struc-
ture.

Indeed, if F ,G are quasi-coherent sheaves on A, then F ⊠ Spec(k)G is also quasi-

coherent. Moreover, since F ⊠̃ G = s∗(F ⊠ Spec(k) G) is the push-forward of a quasi-

coherent sheaf by the proper morphism s : A × A → A, the sheaf F ⊠̃ G is also
quasi-coherent (see for example [34, Proposition 5.8]).

On the other hand, if ι = (id, 0) : A → A ×k A is the closed immersion
ι(a) = (a, 0) and F ∈ QA -mod, then ι∗(F) ∼= F ⊠ Spec(k) skysc0(k). Apply-
ing s∗ to the above isomorphism (and using that sι = idA), we have that F =
s∗
(
F ⊠ Spec(k) skysc0(k)

)
= F ⊠̃ skysc0(k). Therefore, skysc0(k) is a right side unit,

and similarly one proves that skysc0(k) is also a left side unit.

The next elementary constructions and notations will be useful in what follows.

Definition 6.43. If op : A → A is the inversion morphism of A we consider the
functor op∗ : QA -mod→ QA -mod and define −F := op∗(F).

Remark 6.44. Let 0 : Spec(k) → A, st : A → Spec(k) and c0 = 0 ◦ st : A → A
(see Definition 6.3). Then:

(1) If F ∈ A -mod, then the sheaf st∗(F) has stalk F(A) at the only point of
Spec(k). If V a sheaf on Spec(k) of stalk V , then 0∗(V) = skysc0(V ) and (c0)∗(F) =
skysc0

(
F(A)

)
.

(2) On the other hand, for V as above, st−1(V)(U) = V for all U open in A. Hence
st∗(V) = OA ⊗k V .

(3) If F ∈ A -mod, then 0−1F is the sheaf of OA,0–modules on Spec(k) with stalk
F0. Hence, 0

∗F is the sheaf of OSpec(k)–modules (i.e. k–spaces) with stalk k⊗OA,0

F0 = F0/MA,0F0, whereMA,0 ⊆ OA,0 is the maximal ideal of the local ring OA,0.

(4) Combining (2) and (3), we deduce that c∗0(F) = OA ⊗k F0/MA,0F0. In partic-
ular, c∗0

(
skysc0(k)

)
= OA.
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Proposition 6.45. Let A be an abelian variety. Then (QA -mod,⊗A, I⊗A
, ⊠̃ , I

⊠̃
)

can be completed to a duoidal structure (see Definitions 6.7, 6.40, 6.42). Moreover,
the subcategory QA -alg inherits this duoidal category, that is
(QA -alg,⊗A|QA -alg ×QA -alg

, I⊗A
, ⊠̃ |

QA -alg ×QA -alg
, I

⊠̃
) is a duoidal category.

Proof. We have already shown that (QA -mod,⊗A, I⊗A
) and (QA -mod, ⊠̃ , I

⊠̃
) are

monoidal structures. We concentrate now our attention in the description of the
interchange law as presented in Definition 6.7: for sheaves A,B, C,D ∈ QA -mod
we need to define:

ζA,B,C,D : (A ⊠̃ B)⊗A (C ⊠̃ D)→ (A⊗A C) ⊠̃ (B ⊗A D).

Since p∗1(A⊗OA
C) = p∗1A⊗OA×A

p∗1C and p∗2(B⊗OA
D) = p∗2B⊗OA×A

p∗2D, if we
write p∗1A = L, p∗2B = R, p∗1C = M, p∗2D = N , we need to check that there is a
natural morphism

ζ : s∗(L ⊗OA×A
R)⊗OA

s∗(M⊗OA×A
N ) //

,,❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳
s∗(L ⊗OA×A

M⊗OA×A
R⊗OA×A

N )

∼=

��

s∗(L ⊗OA×A
R⊗OA×A

M⊗OA×A
N )

The existence of this map follows from the general fact that in the context above
if X ,Y are sheaves on A×A then, due to the existence of the morphism of algebras
s♯ : OA → s∗OA×A, there is a natural map s∗X ⊗OA

s∗Y → s∗X ⊗s∗OA×A
s∗Y =

s∗(X ⊗OA×A
Y).

The ⊠̃ –comonoidal structure ∆⊗A
: I⊗A

→ I⊗A
⊠̃ I⊗A

is ∆⊗A
:= s♯ : OA →

s∗OA×A = OA ⊠̃ OA and the ⊗A–monoidal structure µ
⊠̃

: I
⊠̃
⊗A I

⊠̃
→ I

⊠̃
is

the map associated to the structure of OA–algebra in skysc0(k). Finally, the map
εI×

A
= uI˜

⊠
: OA → skysc0(k) is defined by the multiplication of an element of OA

by the unit element of skysc0(k).

The proofs of the associativity, unitality and counitality of ζ are easy exercises
and therefore are omitted.

The fact that (QA -alg,⊗A, I⊗A
, ⊠̃ , I

⊠̃
) is also a duoidal category follows easily

from Proposition 6.26. �

The definitions of the duoidal structures on the categories Sch |sqcA ⊂ Sch |qcA
and QA -alg ⊂ QA -mod are tailored to give the following result.

Theorem 6.46. Let A be an abelian variety. Then:

(1) The functor P : (Sch |
sqc
A, ×̃, I×̃,×A, I×A

)→ (QA -algop, ⊠̃ , I
⊠̃
,⊗A, I⊗A

) is bi-

lax monoidal. More precisely, P : (Sch |
sqc
A, ×̃, I×̃)→ (QA -algop, ⊠̃ , I

⊠̃
) is strong

monoidal, P : (Sch |
sqc
A,×A, I×

A
) → (QA -algop,⊗A, I⊗A

) is colax monoidal, and
the conditions of interchange and unitality in the definition 6.22 are satisfied.

(2) The functor Spec : (QA -modop, ⊠̃ , I
⊠̃
,⊗A, I⊗A

) → (Sch |
sqc
A, ×̃, I×̃,×A, I×A

)

is bilax monoidal — in this case, Spec : (QA -algop, ⊠̃ , I
⊠̃
) → (Sch |

sqc
A, ×̃, I×̃)

is lax monoidal and Spec : (QA -algop,⊗A, I⊗A
) → (Sch |

sqc
A,×A, I×

A
) is strong

monoidal.
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(3) The adjunction Sch |
sqc
S

P //

oo
Spec

⊥ (QS -alg)op P ⊣ Spec is bimonoidal — that

is the unit and counit with respect to both structures are (lax) monoidal morphisms.

Proof. Let x : X → A, y : Y → A ∈ Sch |sqcA and x × y : X × Y → A × A.
In this situation and in accordance with Lemma 6.38, there is an isomorphism
Γ−1
OX ,OY

: (x×y)∗(OX×Y ) = (x×y)∗(OX ⊠OY )→ x∗(OX)⊠ y∗(OY ) = P(x)⊠ P(y)
— the existence of such an isomorphism is due to the fact that OX ,OY are quasi-
coherent, flat sheaves over Spec(k) and x, y are separated, quasi-compact morphisms
(see Remark 6.37). Then pushing forward the above isomorphism by s : A×A→ A
we have s∗(Γ

−1
OX ,OY

) := s∗(x×y)∗(OX×Y ) = (x ×̃ y)∗(OX×Y ) −→ s∗
(
P(x)⊠ P(y)

)
.

In other words we have a natural isomorphism:

s∗(Γ
−1
OX ,OY

) : P(x ×̃ y) −→ P(x) ⊠̃ P(y).

This guarantees that P is strong (and hence lax) monoidal in the category
QA -algop with respect to ×̃ and ⊠̃ . For the second assertion take p : X×AY → X
that induces a morphism p♯ : OX → p∗(OX×AY ). Then, x∗(p

♯) : x∗(OX) = P(x)→
x∗p∗(OX×AY ) = (x×A y)∗(OX×AY ) = P(x×A y). This map together with the map
corresponding to y yields a morphism

P(x)⊗A P(y)→ P(x×A y) ∈ QA -alg,

the required condition of colax in the category QA -algop with respect to (×A,⊗A).
The proofs of the conditions in Definition 6.22[(1)(a),(b)] for P is direct and left to
the reader.

It is well known that the functor Spec is strong monoidal with respect to ⊗A and
×A (see [31][Prop. 1.4.6]). The lax monoidality with respect to ⊠̃ and ×̃ follows
by “doctrinal adjunction” from the fact that it is the right adjoint of the colax
monoidal functor P (See Remark 6.47).

Assertion (3) is clearly a consequence of (1) and (2). �

Remark 6.47. (1) The version of “doctrinal adjunction” that we are using can be

stated as: let L ⊣ R : C
L
−→ D

R
←− C be an adjunction with C and D monoidal

categories. Then L : C → D can be endowed with a structure of colax monoidal
functor if and only if R : D → C can be endowed with a structure of lax monoidal
functor that makes (L,R) a monoidal adjunction. In any case each structure can
be uniquely determined from the other. See [40] for the basic results on this subject
and for example [1][Prop. 3.84] for a direct proof.

(2) In explicit terms, if F ,F ′ ∈ QA -alg, then the lax monoidality of the functor
Spec (see Theorem 6.46) is implemented via the natural transformation

η
Spec(F) ×̃ Spec(F′)

: Spec(F) ×̃ Spec(F ′)→ Aff
A

(
Spec(F) ×̃Spec(F ′)

)
= Spec

(
F ⊠̃ F ′).

See also Proposition 6.12.

6.5. Bimonoid sheaves and schemes of monoids over A.

Once we have established in Theorem 6.46 the adjunction between Sch |sqcA and
QA -modop, the notion of sheaf of bimonoids as a bimonoid in the duoidal category
of separable, quasi-coherent A -alg, will appear as the natural counterpart of the
notion of affine — or quasi-compact separable — bimonoid extension of A. In this
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section we set the basic result for bimonoids, namely that P and Spec establish
an adjunction between the categories of quasi-compact separable bimonoids over A
(i.e. bimonoids in Sch |

sqc
A) and bimonoids in QA -alg. The additional structure of

the inversion morphism for a “group extension”, can also be added in a compatible
fashion in order to extend the result to group extensions.

We begin by displaying in explicit terms, the definition of bimonoid in the duoidal
categoryQA -modop (see Theorem 6.46) — we use the notations of Proposition 6.45.

Definition 6.48. A sheaf of bimonoids or a bimonoid sheaf on A is a sheaf B ∈
QA -mod equipped with four sheaf morphisms ∆B : B → B ⊠̃ B, µB : B ⊗A B → B,
εB : B → I

⊠̃
, uB : I⊗A

→ B that make commutative the diagrams below:

B
∆B //

∆B

��

B ⊠̃ B

∆B ⊠̃ id
��

B ⊠̃ B
id ⊠̃ ∆B // B ⊠̃ B ⊠̃ B

B oo
µB

OO

µB

B ⊗A BOO

µB⊗Aid

B ⊗A B oo
id⊗AµB

B ⊗A B ⊗A B

B

∆B

��

dd

∼=

$$❏
❏❏

❏❏
❏❏

❏❏
❏::

∼=

zztt
tt
tt
tt
tt

B ⊠̃ I
⊠̃

B ⊠̃ B
id⊗εB
oo

εB⊗id
// I

⊠̃
⊠̃ B

BOO

µB

ee

∼=

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲88

∼=

xxqq
qq
qq
qq
qq
q

B ⊗A I⊗A
B ⊗A B//

id⊗uB

oo
uB⊗id

I⊗A
⊗ B

B
∆B

''PP
PPP

PPP
PPP

PP

B ⊗A B

µB

77♦♦♦♦♦♦♦♦♦♦♦♦♦

∆B⊗A∆B

��

B ⊠̃ B

(B ⊠̃ B)⊗A (B ⊠̃ B)
ζB,B,B,B

// (B ⊗A B) ⊠̃ (B ⊗A B)

µB ⊠̃ µB

OO

Putting together the above results (see Proposition 6.12, Lemma 6.23, Remark
6.31 and Theorem 6.46) we obtain the following consequence.

Proposition 6.49. The functor P : Sch |sqcA → QA -algop, takes bimonoids in

(Sch |
sqc
A, ×̃, I×̃,×A, I×A

) into bimonoids in (QA -modop, ⊠̃ , I
⊠̃
,⊗A, I⊗A

). Simi-

larly, the functor Spec takes bimonoids in (QA -modop, ⊠̃ , I
⊠̃
,⊗A, I⊗A

) into affine

bimonoids in the category of Sch |sqcA.

Moreover, the adjunction Sch |
sqc
S

P //

oo
Spec

⊥ (QS − alg)op restricts to an adjunc-

tion as below:

Bimon(Sch |
sqc
A)

P

))

⊥ Bimon
(
(QA -alg

)op
)

Spec

hh
.

In particular, the relative affinization over A (see Definition 6.32) takes bi-
monoids in Sch |sqcA into bimonoids that are affine schemes over A. �
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Remark 6.50. In view of Remark 6.47, if (B,∆B, µB, εB, uB) is a bimonoid in
QA -alg, then the product m : Spec(B) ×̃Spec(B)→ Spec(B) is obtained as

Spec(B) ×̃Spec(B)
ηSpec(B) ×̃ Spec(B)

//

m

,,❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

AffA
(
Spec(B) ×̃Spec(B)

)
= Spec(B ⊠B)

Spec(∆B)

��

Spec(B)

As an immediate consequence of Proposition 6.49, we have the following.

Theorem 6.51. Let A be an abelian variety. Then the functors P and Spec es-
tablish a contravariant isomorphism between MM |

aff
A and the category of sheaves

of bimonoids on A (see Notation 6.13 and Definition 6.48) with arrows the sheaf
morphisms of bimonoids.

Proof. By Proposition 6.49, we have that if qM :M → A is a morphism of monoid
schemes — that is, a bimonoid in Sch |

sqc
A, see Proposition 6.12 —, then P(qM )

is a sheaf of bimonoids, and if f : (qM : M → A) → (qN : N → A) is a morphism
of bimonoids, then P(f) : P(qM )→ P(qN ) is a morphism of sheaves of bimonoids.
Conversely, if H is a sheaf of bimonoids then SpecH → A is an affine morphism of
monoid schemes, and if f : H → H′ is a morphism of sheaves of bimonoids, then
Spec(f) : Spec(H)→ Spec(H′) is a morphism of bimonoids in Sch |

qc
A. Notice that

Spec(f) is in particular a morphism of affine schemes over A.

On the other hand, since the objects of MM |
aff
A are affine morphisms qM :M →

A, clearly MM |
aff
A is isomorphic to a subcategory of Sch |

aff
A, that we also denote

MM |
aff
A. Since P and Spec induce a contravariant isomorphism between Sch |

aff
A

and QA -alg, in order to prove that P |
MM |

aff
A
: MM |

aff
A→ Bimon(QA -alg

)op
we

can use an elementary result on reflections of monoidal categories, that we added
below for lack of an adequate reference (see Remark 6.53). �

Remark 6.52. The reader should be aware that, as we pointed out in the beginning
of Section 6.1, in order to define the subcategory MM |

aff
A ⊂ Sch |

aff
A (see Theorem

6.51), we need to work in the category Sch |
qc
A, since s◦ (qM , qM ) :M ×M → A is

not an affine scheme over A.

Remark 6.53. (1) Assume that C0 ⊆ C is a pair of categories with the following
additional conditions:

(a) C0 is a full and replete subcategory of C;

(b) C is monoidal with structure (×, I) and C0 is monoidal with structure (×0, I0);

(c) The inclusion functor inc : C0 → C has a left adjoint A : C → C0 with counit
ε : A◦ inc ⇒ idC0 and unit η : idC ⇒ inc ◦A such that: ε is an isomorphism and η
is strong monoidal, i.e. Ax×0 Ay ∼= A(x × y) for all x, y ∈ C and I0

∼= A(I).

Then, in the above situation Mon(C) ∩ C0 ∼= Mon(C0).

The proof of the assertion above is easy: for (x,m) ∈ Mon(C) ∩ C0, we consider
the counit ηx×x : x× x→ A(x× x) = A(x)×0 A(x) = x×0 x. Then, the structure
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morphism m : x× x→ x can be uniquely extended as in the diagram below:

x× x
ηx×x

//

m
""❊

❊❊
❊❊

❊❊
❊ x⊗0 x

m̂
{{✇✇
✇✇
✇✇
✇✇

x

It is clear that given a monoid structure in C0 such as m̂ the monoid in C is
obtained by composition with the unit.

(2) Thus, we complete the proof of Theorem 6.51 by considering in (1) above the
categories C = Sch |

sqc
A and C0 = MM |

aff
A (or Sch |

aff
S) and A the affinization

functor, we complete the.

(3) In particular, if B is a sheaf of bimonoids in A with coproduct ∆B, then the
product in Spec

(
P(m)

)
is obtained as

m = AffA(m) = Spec
(
P(m)

)
◦ηM ×̃M = Spec(∆BM

)◦ηSpec(BM ) ×̃ Spec(BM ).

6.6. Affine extensions of abelian varieties and Hopf sheaves.

To finish our considerations on this topic, we define — given an abelian variety
A — the concept of Hopf sheaf on A and show the category of commutative Hopf
sheaves and its morphisms is op–equivalent with the category GM |

aff
A of affine

morphisms of group schemes (see Definition 6.19).

Recall that if we call op : A → A the map given by the inverse morphism in
A, the antipode of x : X → A in the duoidal category Sch |

sqc
A is a morphism

ιx : x → op∗(x) that fits in the commutative diagrams (6.2), (6.3) (see Theorem
6.18 and Remark 6.20). The situation is analogue in QA -alg.

Notation 6.54. Let op : A → A be the morphism given by the inversion map
in the abelian variety A and consider the push-forward functor op∗ : QA -alg →
QA -alg. We denote op∗(F) = −F and similarly for an arrow F : F → G we denote
op∗(F : F → G) = (−F : −F → −G).

Notice that since the inversion map is an involution, then −(−F) = F .

Remark 6.55. In order to fix notation, we recall the following easy properties of
the functor op:

(1) op∗ = op∗ : QA -alg→ QA -alg;

(2) The diagrams below are commutative:

Sch |
sqc
A

P //

op∗

��

QA -alg

op∗

��

Sch |sqcA P
// A -alg

Sch |
sqc
A

op∗

��

QA -alg

op∗

��

Spec
oo

Sch |sqcA A -alg .
Spec
oo

(3) In the situation above we consider the morphisms A
st
−→ Spec(k)

0
−→ A (see

Definition 6.3) and the associated adjunctions k− alg
st∗ //

oo
st∗

⊥ (QA -alg)op and

(QA -alg)op
0∗ //

oo
0∗

⊥ k− alg .
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The adjunctions defined in Remark 6.55 have the following properties, analogous
to the situation in Lemma 6.15 and Proposition 6.16.

Remark 6.56. (1) Consider the following pull back diagram and the corresponding
diagram of functors:

A
δ //

st

��

A×A

s(id× op)

��

Spec(k)
0 // A

A -mod
0∗ //

(s(id× op))∗

��

Spec(k)−mod

st∗

��

A×A−mod
δ∗ // A -mod .

Evaluating at F ⊠̃ −G :=
(
s(id× op)

)
∗
(F ⊠G) we obtain a natural transforma-

tion in F ,G: st∗ 0∗(F ⊠̃ −G) = δ∗
(
s(id× op)

)∗(
s(id× op)

)
∗
(F ⊠G)→ δ∗(F ⊠G) ∼=

F ⊗A G, the penultimate arrow coming from the unit of the corresponding adjunc-
tion and the last equality follows from general properties of the external tensor
product (see Definition 6.40). Indeed, it is well known that in the case of a mor-
phism f : X → Y and a pair of sheaves F ,G ∈ QY−mod we have: f∗(F ⊗Y G) ∼=
f∗(F)⊗X f∗(G) (see [59, Theorem 16.3.7]). In the case that we are dealing with the
situation of δ : A→ A⊗A and F ,G ∈ QA−mod, δ∗(F ⊠̃ G) = δ∗(p∗1F⊗A×Ap

∗
2G) =

δ∗p∗1F ⊗A δ
∗p∗2G = F ⊗A G.

(2) For R ∈ k−alg we have that: st∗R = 0∗R ⊠̃ I⊗A
.

Proposition 6.57. Assume that F ,G are sheaves in QA -alg and recall the notation
op∗ G = −G. Then we can define two natural transformations as below:

(1) γ̃F ,G : (F ⊠̃ G) ⊠̃ I⊗A
→ F ⊗A −G;

(2) γF ,G : I⊗A
⊠̃ F ⊠̃ G → −F ⊗A G.

Proof. We sketch the proof of (1), the proof of (2) being similar. Using the first
result of the Remark 6.56 we deduce the existence of a natural transformation
st∗ 0∗(F ⊠̃ −G)→ F ⊗A G — we are using that −(−G) = G. Using now the second
result of the mentioned remark we transform the above to: 0∗0

∗(F ⊠̃ −G) ⊠̃ I⊗A
→

F ⊗A G, and then using the adjunction 0∗ ⊣ 0∗ we obtain a natural transformation
γF ,G : (F ⊠̃ −G) ⊠̃ I⊗A

→ F ⊗A G. �

We are ready to define Hopf sheaf on the abelian variety A. We will use the
nomenclature summarized in Definition 6.48.

Definition 6.58. Assume thatH is a sheaf of bimonoids on A (see Definition 6.48).
We say that H is a Hopf sheaf if there is a sheaf homomorphism σH : −H → H —
called the antipode — such the diagrams below are commutative.

(6.4)

H⊗A H oo
id⊗AσH

H⊗A −H oo
γ̃H,H

(H ⊠̃ H) ⊠̃ I⊗Aff
∆H ⊠̃ id

▼▼▼
▼▼▼

▼▼▼
▼▼

H ``

uH ❅❅
❅❅

❅❅
❅❅

❅

~~

µH

⑥⑥⑥⑥⑥⑥⑥⑥
H ⊠̃ I⊗A

I⊗A

∼=
I
⊠̃

⊠̃ I⊗A

xx εH ⊠̃ id

qqqqqqqqqqq
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(6.5)

H⊗A H oo
σH⊗Aid

−H⊗A H oo
γH,H

I⊗A
⊠̃ (H ⊠̃ H)

ff
id ⊠̃ ∆H

◆◆◆
◆◆◆

◆◆◆
◆◆

H ``

uH ❅❅
❅❅

❅❅
❅❅

❅

~~

µH

⑥⑥⑥⑥⑥⑥⑥⑥
I⊗A

⊠̃ H

I⊗A

∼=
I⊗A

⊠̃ I
⊠̃

xx id ⊠̃ εH

qqqqqqqqqqq

where γ̃ and γ are the natural transformations defined in Proposition 6.57 and
the bottom maps ∼= are the natural identifications associated to the unit of the ⊠̃

monoidal structure.

A Hopf sheaf H is commutative if (H, µH, uH) is a sheaf of commutative OA–
algebras, and a flat Hopf sheaf is a Hopf sheaf that is flat as sheaf of OA–modules
— that is, the stalks Ha are Oa,A–flat modules for all a ∈ A. A Hopf sheaf H is
faithful if the canonical morphism OA → H is injective — in other words, H(U) is
a faithful representation of OA(U).

As a summary we write down explicitly the conditions of a Hopf sheaf on an
abelian variety A.

Summary 6.59. Let A be an abelian variety. A commutative Hopf sheaf on A is
a sextuple (H,∆H, εH, µH, uH, σH), where (H, µH, uH) is a sheaf of quasi-coherent
commutative OA–algebras (i.e. H ∈ QA -alg) with multiplication µH unit uH, and
∆H : H → H ⊠̃ H, εH : H → skysc0(k), σH : −H → H are morphisms of sheaves
satisfying the following additional conditions:

(1) The triple (H,∆H, εH) is a comonoid in
(
QA -alg, ⊠̃ , I

⊠̃
= skysc0(k)

)
;

(2) ∆H : H → H ⊠̃ H and εH : H → skysc0(k) are morphisms of QA -alg, that is:

(a) The morphism ∆H is such that the following diagrams are commutative:

H
∆H

''◆◆
◆◆◆

◆◆◆
◆◆◆

◆

H⊗A H

µH

88♣♣♣♣♣♣♣♣♣♣♣♣

∆H⊗A∆H

��

H ⊠̃ H

(H ⊠̃ H)⊗A (H ⊠̃ H)
ζH,H,H,H

// (H⊗A H) ⊠̃ (H⊗A H)

µH ⊠̃ µH

OO

I⊗A

∆⊗A //

uH

��

I⊗A
⊠̃ I⊗A

uH ⊠̃ uH

��

H
∆H // H ⊠̃ H

(b) The morphism εH is such that the following diagrams are commutative:

H⊗A H

εH

��

µH // H

εH

��

I
⊠̃
⊗A I

⊠̃ µI
˜
⊠

// I
⊠̃

I⊗A

εI⊗A //

uH

��

I
⊠̃

id

��

H
εH

// I
⊠̃
.
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(3) The antipode σH : −H → H is a morphism in QA -mod — recall that −H =
op∗(H) where op∗ is the functor in A -mod given by push-forward (or pull-back) by

a 7→ −a : A
op
→ A. Moreover, the antipode map, fits in the commutative diagrams

(6.4), (6.5).

If moreover H is a flat OA–module, then we say that the sextuple is a flat
commutative Hopf sheaf ; if OA → H is an injective morphism, then the sextuple is
a faithful commutative Hopf sheaf.

Given the abelian variety A we define the category of Hopf sheaves in the natural
manner.

Definition 6.60. If A is a given abelian variety and H, K are flat commutative
Hopf sheaves, a morphism from H into K is simply a morphism of bimonoids in the
duoidal category (QA -mod,⊗A, I⊗A

, ⊠̃ , I
⊠̃
). Explicitly it is a morphism of sheaves

F : H → K of OA-algebras, with the additional property that the diagrams below
commute:

H
F //

∆H

��

K

∆K

��

H ⊠̃ H
F ⊠̃ F // K ⊠̃ K

H
F //

εH
  
❆❆

❆❆
❆❆

❆❆
K

εK
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

I
⊠̃

We call HQA -alg (resp. HQAf -alg) the category whose objects are the commuta-
tive Hopf sheaves (resp. faithful commutative Hopf sheaves) on A and whose arrows
are the morphisms of Hopf sheaves.

Remark 6.61. In the context considered above, the following two assertions can
be proved.

(1) In the case that the antipode σH exists for the bimonoid H, then it is unique
— for example, this can be proved using the equivalence given by Theorem 6.62
below and the fact that the inverse morphism of a group scheme is unique.

(2) If F : H → K is a morphism of Hopf sheaves, then σK◦ (−F ) = F ◦σH. In other
words, a morphism of sheaves that are Hopf sheaves and that preserve the bimonoid
structure, automatically preserves the antipode. The proof of this assertion is a
consequence of (1).

The close relationship between the affine extensions of an abelian variety A and
the commutative Hopf sheaves on A is expressed in the theorem that follows.

Theorem 6.62. Let A be an abelian variety, and GE |
aff
A and HQAf -alg the

categories of affine extensions of A and faithful commutative Hopf sheaves of A
respectively. Then, P : GE |

aff
A → (HQAf -alg)

op and Spec : (HQAf -alg)
op →

GE |
aff
A constitute an adjoint equivalence between GE |

aff
A and HQAf -alg.

Proof. If q : G → A is an affine extension, then q is a surjective morphism and
therefore the sheaf P(q) (see Definition 6.30) is a faithful sheaf of commutative OA–
algebras. On the other hand, by Theorem 6.18 the inverse morphism ιG : G → G
verifies the commutative diagrams (6.2) and (6.3). It follows by construction that
σH = P(ιG) satisfies commutative diagrams (6.4) and (6.5) for H = P(q). Indeed,
it is easy to check that P(γ̃q,q) = γ̃H,H and P(γq,q) = γH,H (see Remark 6.17 and
Proposition 6.57), thus applying the functor P to the diagrams (6.2) and (6.3) we
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obtain the diagrams (6.4) and (6.5). Since P takes affine morphisms of monoids to
sheaves of bimonoids, it follows that P(q) is a faithful commutative Hopf sheaf.

Conversely, if H ∈ HQAf -alg, with antipode σH, then SpecH: q : M → A is a
bimonoid in Sch |

sqc
A, with q a faithful affine morphism (of monoid schemes), by

Theorem 6.51. Moreover, applying Spec to the commutative diagrams (6.4) and
(6.5), we deduce that ιq = Spec(σH) : q → −q satisfies the commutative diagrams
(6.2) and (6.3). In other words, M is a group scheme and q an affine extension of
A (see Remark 2.16). �

Notation 6.63. The following notation will be used in the future. Assume that
q : G→ A is an affine extension, then P(q) the associated Hopf sheaf of A -alg will
be denoted as Hq := P(q).

Notice that Theorem 6.62 implies in particular the following result.

Corollary 6.64. Let H be a commutative Hopf sheaf on the abelian variety A.
Then H is a flat sheaf if and only if H is faithful, if and only if the unit morphism
uH is monic.

Proof. Indeed, since a flat morphism of schemes f : X → Y , with Y Nœtherian is
dominant, it follows from Proposition 6.34 that a flat commutative Hopf sheaf H is
faithful. Conversely, if H is faithful, Theorem 6.62 implies that Spec(H): q : G→ A
is an affine extension, and therefore a flat morphism by Theorem 2.9.

Finally, notice that the unit morphism uH is monic if and only if OA(U)→ H(U)
is an inclusion for any (affine) open subset U ⊂ A. �

Examples 6.65. (1) LetH be an affine group scheme, and consider the correspond-

ing affine extension 1 // H
id // H // 0 // 0 . Then H is the Hopf algebra

k[H ] seen as a sheaf on {∗} = Spec(k).

Conversely, given a Hopf algebra R, then R can be seen as a Hopf sheaf on
{∗} = Spec(k), and the affine group scheme Spec(R) induces the affine extension

1 // Spec(R)
id // Spec(R) // 0 // 0 .

(2) If A is an abelian variety, then the structure sheaf OA is a faithful commutative

Hopf sheaf on A; it corresponds to the trivial extension 0 // 0 // A
id // A // 0 .

(3) More generally, if R is a Hopf algebra then R = R ⊗k OA is a flat Hopf sheaf;
R corresponds to the direct product:

Spec(R)×A : 1 // Spec(R) // Spec(R)×A
p2 // A // 0 .

Remark 6.66. (1) Since an affine extension S : 1 // H // G
q

// A // 0
is of finite type if and only if H is of finite type (as follows from descent theory,
see [14, Proposition 2.6.5] and [32, Prop. 2.7.1]), it follows that G if of finite type if
and only if H(U) is a finitely generated OA(U)–algebra for any affine open subset
U ⊂ A.

(2) If H is a faithful commutative Hopf sheaf on A, then G = Spec(H) is an anti-
affine group scheme if and only if H(A) = k. Indeed, if q : G→ A is the associated
morphism of quasi-compact group schemes, then H(A) = q∗(OG)(A) = OG(G).
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6.7. Hopf ideals and affine subextensions.

In this section we present the expected generalizations on the relationship be-
tween ideals of a Hopf algebra H and closed subgroups of the affine algebraic group
Spec(H), to the context of Hopf sheaves and affine extensions.

We begin by recalling some definitions and known results concerning the corre-
spondence between closed subschemes of X and quasi-coherent sheaves of ideals on
OX (see for example [34, Proposition II.5.9] or [30, §4]).

Remark 6.67. Let X be a k–scheme and (i, i#) : Y ⊆ X , a closed subscheme.
Then we have a short exact sequence of quasi-coherent sheaves of k–algebras

(6.6) 0 // IX|Y
// OX

i# // i∗(OY ) // 0,

were IX|Y is a sheaf of ideals in OX . In this manner we obtain a bijective corre-
spondence between quasi-coherent sheaves of ideals of OX and closed subschemes
of X . The inverse map — that we call V —, sends an ideal I ⊆ OX into the closed
subscheme of X given by Supp(OX/I).

In the case of schemes over a k-scheme S, we can push forward the short exact
sequence (6.6), provided that we impose additional conditions on Y and X .

Definition 6.68. Let (x : X → S) ∈ Sch |
psqc

S. We define C(x) as the poset of
closed subschemes of X in Sch |

psqc
S — that is, we consider y : Y → S ∈ Sch |

psqc
S

with (i, i#) : y → x a closed subscheme.

If F ∈ QS -alg, we define II(F) as the poset of quasi-coherent sheaves of ideals
of F .

Lemma 6.69. Let (x : X → S) ∈ Sch |
psqc

S and F ∈ QS -alg. Then:

(1) If (y : Y → S) ∈ C(x), then the sequence in the category QS -mod:

0 // x∗
(
IX|Y

)
// P(x)

P(i)
// P(y) // 0,

is exact.

(2) The map I : C(x) → II
(
P(x)

)
given by I(y) = x∗(IX|Y ) is a contravariant

functor between the domain and codomain posets.

(3) The map V : II(F) → C
(
Spec(F)

)
given by V(I) = Spec(F/I) ⊂ Spec(F) is

a contravariant functor between the domain and codomain posets — recall that in
this context Spec(F) is a k-scheme that is affine over S, with P

(
Spec(F)

)
∼= F .

(4) If (y : Y → S) ∈ C(x), then y ∼= VI(y) = Spec
(
P(x)/x∗(IX|Y )

)
. If I ∈ II(F),

then P(V(I)) ∼= F/I.

Proof. This is an easy exercise and its proof is therefore omitted. �

Definition 6.70. Let H be a commutative flat Hopf sheaf on A. A subsheaf I ⊂ H
is a sheaf of Hopf ideals if there exists a pair (K, F ) where K is a Hopf sheaf and
F : H → K is a surjective morphism of Hopf sheaves with Ker(F ) = I — recall
that in this case K ∼= H/I.

We say that a sheaf of Hopf ideals I ⊂ H is faithful if K = H/I is a faithful
Hopf sheaf.
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Remark 6.71. By definition, a sheaf of Hopf ideals is faithful if and only if I(U)∩
O(U) = {0} for all open subset U ⊂ A.

Proposition 6.72. If H is a commutative flat Hopf sheaf of A, then a subsheaf
I ⊂ H in A -mod is a sheaf of Hopf ideals if and only if the following conditions
hold:

(i) The subsheaf I ⊂ H is a quasi-coherent sheaf of ideals;
(ii) Let inc : I → H be the inclusion morphism and consider inc ⊠̃ id+ id ⊠̃ inc :
I ⊠̃ H+H ⊠̃ I → H ⊠̃ H. Then the morphism ∆◦ inc : I → H ⊠̃ H factors
as in the diagram below:

H
∆ // H ⊠̃ H

I

inc

OO

∆|
I // I ⊠̃ H +H ⊠̃ I,

inc ⊠̃ id+ id ⊠̃ inc

OO

(iii) I ⊂ Ker(εH).

Proof. Assume that I is a sheaf of Hopf ideals, i.e. I = Ker(F ) for some morphism
of Hopf sheaves F : H → K. From the flatness hypothesis it follows that I is
an ideal of the sheaf of algebras H. Also from the flatness it follows that in the
monoidal abelian category (QA -alg, ⊠̃ ),

(6.7) Ker(F ⊠̃ F ) = I ⊠̃ H+H ⊠̃ I,

and therefore (ii) is verified (since F is a morphism of Hopf sheaves). The proof of
assertion (iii) is trivial.

For the converse, assume that I satisfies conditions (i)–(iii) and call F : H →
H/I = K. Then K is a sheaf of algebras, with product µK and unit uK induced by
µH and uH.

It follows from the equality (6.7) that the map (F ⊠̃ F )◦∆ factors through K
and induces a morphism of sheaves ∆K : K → (H ⊠̃ H)/(I ⊠̃ H+H ⊠̃ I) ∼= K ⊠̃ K.

From condition (iii) we deduce that εH : H → skysc0(k) induces a morphism
εK : K → skysc0(k). On the other hand, since −K = (−H)/(−I), it is clear that
σH : −H → H induces a morphism σK : −K → K.

Finally, it is clear that, by construction, the morphisms ∆K, εK and σK satisfy
the required commutative diagrams for (K,∆K, εK, µK, uK, σK) to be a commutative
Hopf sheaf. �

Proposition 6.73. Let S : 1 // H // G
q

// A // 0 be an affine extension

and let H = q∗
(
OG

)
be the (faithful, commutative) Hopf sheaf associated to S.

Then the poset of closed sub-extensions of S is op-equivalent to the poset of faithful
Hopf ideals of H.

Proof. Let T : 1 // H ′ // G′ q
// A // 0 be a closed sub-extension of S

and consider IG′ ⊂ OG, the subsheaf of ideals associated toG′. Clearly q∗(IG′) ⊂ H
is a subsheaf of ideals. On the other hand, if we denote by inc : G′ → G the
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canonical inclusion, then we have a commutative diagram of sheaves ofOG–modules

OG
m#

//

��

m∗

(
OG×G

)
= m∗

(
OG ⊠OG

)

��

inc∗
(
OG′

) inc∗m
#

G′
// inc∗

(
(mG′)∗

(
OG′×G′

))
= inc∗

(
(mG′)∗

(
OG′ ⊠OG′

))

where the vertical arrows are the canonical projections induced by the inclusions
G′ →֒ G and G′×G′ →֒ G×G. Since IG′×G′ = IG′ ⊠OG+OG ⊠ IG′ , it follows that
OG′ ⊠OG′ = (OG ⊠OG)/

(
IG′ ⊠OG + OG ⊠ IG′

)
. Hence, m∗(IG′) ⊂ IG′ ⊠OG +

OG ⊠ IG′ .

Also, it is easy to show that IG′ ⊂ Ker(εG). From the functorial properties of
q∗, it follows that q∗(IG′) is a sheaf of Hopf ideals and, T being a sub-extension,
q∗(IG′) is faithful.

Conversely, given a faithful sheaf of Hopf ideals I ⊂ H, let

T : 1 // Spec
(
H/I

)
0

// Spec
(
H/I

)
// A // 0

be the affine extension associated to the Hopf sheaf H/I. If U ⊂ A is an affine open
subset, then the canonical projectionH(U)→ (H/I)(U) induces a closed immersion
Spec

(
(H/I)(U)

)
→ Spec

(
H(U)

)
. Therefore, T is a closed sub-extension of S. �

7. The category Rep(S) as a category of sheaves

If G is an affine group scheme, it is well known that the category of its (left) ra-
tional representations and the category of (right) k[G]–comodules are equivalent —
in the usual notations: Rep(G) ∼= k[G]

M. One can also consider the anti-equivalence
between the category of vector spaces and the category of symmetric algebras (given
by V 7→ OV (V ) = S(V ∨), the symmetric algebra generated by the dual V ∨) in order
to produce an anti-equivalence between Rep(G) and the category of kG–comodule
symmetric algebras. On the other hand, it is also well known that the category of
vector bundles over a scheme T is equivalent to the category of locally free, coher-
ent, sheaves of OT –modules, see for example [59, Chapter 13] (see also Proposition
7.5).

In view of the previous remarks, the objective of this section is two-fold:

In the light of Theorem 6.62 (and in the nomenclature of Definition 3.41 and
Remark 3.42), given an affine extension q : G→ A we want to establish an equiv-
alence Rep0(q)

∼=
(
HqM

)
fin
, the category of locally free, coherent sheaves that are

Hq–comodules, were Hq = q∗
(
OG

)
is the Hopf sheaf associated to q. Moreover,

we want to extend this equivalence to the graded setting — which involves the en-
largement of the category HqM to an (enriched) category with graded morphisms.

On the other hand, we also want to generalize Mumford’s equivalence betweenG–
linearized line bundles and G–linearized invertible sheaves to our context. Whereas
the notion of G–linearized sheaf is well established (see [57, Tag 03LE] and [44, page
30]), we need (again) to develop the notions of graded morphisms between G–
linearized sheaves and of homogeneous sheaves, in order to construct a replacement
for HVBgr(A) (see Definition 3.18).
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7.1. The category of comodules of a Hopf sheaf.

In this section we consider the usual morphisms of sheaves in A -mod that cor-
respond with Rep0(q). In the next Section 7.2, we extend the equivalence given
below in Proposition 7.5, to categories with graded morphisms (see Lemma 7.22)
in order to obtain Rep(q).

We begin by writing down the definition of comodule algebra for a sheaf of bi-
monoids in the duoidal category (QA -mod,⊗A, I⊗A

, ⊠̃ , I
⊠̃
) — or more particularly

for a Hopf sheaf — as considered in Section 6.2, in particular definitions 6.24 and
6.27.

Remark 7.1. Consider a bimonoid B = (B, µB, uB,∆B, εB) in the duoidal category
(QA -mod,⊗A, I⊗A

, ⊠̃ , I
⊠̃
).

(1) A left B–comodule is a pair (F , χ), with F ∈ QA -mod and χ : F → B ⊠̃ F a
morphism of sheaves, that satisfies the corresponding commutative diagrams (as in
Definition 6.24).

(2) A morphism of left B–comodules is a morphism ψ :M→M′ ∈ QA -mod such
that the diagram

M
ψ

//

χ

��

M′

χ′

��

B ⊠̃ M
idB ⊠̃ ψ

// B ⊠̃ M′

is commutative.

(3) The category B
M of left B–comodules has as objects the B–comodules and as

arrows HomBM(M,M′) the morphisms of B–comodules.

(4) If we take two B–comodules (with respect to the ⊠̃ monoidal structure)M,M′

their productM⊗AM′ is also a B–comodule. In other words B
MA -mod is a ⊗A–

monoidal category with unit OA, that is viewed as an object of BM via the structure

OA
s# // OA ⊠̃ OA

uB ⊠̃ id
// B ⊠̃ OA (see Proposition 6.26).

(5) A right B–comodule algebra is a right B–comodule (F , χF ) such that (F , µF , uF) ∈
QA -alg and χF ∈ HomA -alg(F ,F ⊠̃ B) with the adequate algebra structure in
F ⊠̃ B (see Proposition 6.26 and Definition 6.27).

In explicit terms, we ask the diagrams below to commute — we are using the
notations of definitions 6.27 and 6.42:

OA
s# //

uF

��

OA ⊠̃ OA

uF ⊠̃ uB

��

F
χ
F // F ⊠̃ B.
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(F ⊠̃ B)⊗A (F ⊠̃ B)
ζF,B,F,B

// (F ⊗A F) ⊠̃ (B ⊗A B)

id ⊠̃ µB

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙

F⊗AF

χ
F
⊗AχF

66♠♠♠♠♠♠♠♠♠♠♠♠♠

µF

��

χ
F⊗AF

// (F ⊗A F) ⊠̃ B

µF ⊠̃ id
��

F
χ

// F ⊠̃ B

(6) A morphism of left B–comodule algebras from F to F ′ is a morphism f ∈
HomBMA -mod

(F ,F ′) that is also a morphism in HomA -alg(F ,F
′).

(7) We denote the category of left (resp. right) B–comodule algebras as B
MQA -alg

(resp. MB
QA -alg).

As expected, the adjunction between P and Spec gives a correspondence between
actions of bimonoids b : M → A and structures of P(b)-comodule algebras (see
Theorem 6.46 and Proposition 6.49).

Proposition 7.2. Let b :M → A ∈ Sch |
qc
A be a bimonoid, x : X → A ∈ Sch |

qc
A

and aX an action of b on x (see Definition 6.24 and Example 6.25). Then P(aX)
endows P(x) with a structure of P(b)–comodule algebra.

Conversely, let B ∈ QA -alg be a bimonoid, F ∈ QA -alg and χ : F → B ⊠̃ F
a B–comodule algebra. Then Spec(χ)◦ηSpec(B) ×̃ Spec(F) : Spec(B) ×̃Spec(F) →

Spec(F) is an Spec(B)–action — recall that Aff
(
Spec(B) ×̃Spec(F)

)
= Spec(B ⊠̃ F).

In particular, P induces an (op)-equivalence between the following two categories:

(i) b− Sch |
aff
A, with objects the pairs (x, aX) where x : X → A ∈ Sch |

aff
A and aX

is a b–action on x, and with arrows the b–equivariant morphisms;

(ii) P(b)
MQA -alg, the category of quasi-coherent P(b)–comodule algebras.

Under this equivalence, flat P(b)–comodules correspond to flat b–objects.

Proof. The proof is straightforward and therefore, it is omitted. �

Our objective is to combine Proposition 7.2 with the well known (monoidal)
equivalences between the category of vector bundles over A, the category of locally
free sheaves of OA–mod, of finite rank, and the category of the symmetric algebras
generated by these sheaves, in order to describe the category Rep0(q), where q :
G→ A is an affine extension, as a category of sheaves with additional structure.

Remark 7.3. (1) Recall that if F ∈ QT -mod, then one can consider the Hadamard
monoidal structure ⊗T and construct S(F), the symmetric algebra generated by F .

(2) It is well known that if F ∈ QS -mod is moreover a locally free sheaf of finite
rank rkF = n, then F is a coherent sheaf and Spec

(
S(F)

)
is a vector bundle over

T of rank n. Notice also that S(F) is a flat sheaf.

(3) Conversely, if π : E → T is a vector bundle of rank n, then P(E) is a
symmetric algebra generated by a locally free sheaf of OT –modules, of rank n.
Namely, P(π) = S

(
Γ∨
E

)
, where ΓE is the sheaf of sections of the vector bundle E,

ΓE(U) = Γ(E,U) = {s : U → E : π◦u = idU}.
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In this way, the restriction of the functors Spec and P gives a monoidal equiva-
lence between VB0(T ) and ST-alg, the category of sheaves ofOT –module symmetric
algebras generated by locally free sheaves of finite rank.

(4) Taking into account the previous remark, we can produce another useful equiv-
alence of categories: if we denote by ClfT -mod the category of (necessarily co-
herent) locally free sheaves of OT –modules, of finite rank, then the functor VB :
ClfT -mod → VB0(T ), given by VB(F) = Spec

(
S(F∨)

)
and VB(f : F → F ′) =

Spec
(
S(f∨)

)
: S(F ′∨)→ S(F∨) is an equivalence of categories.

Definition 7.4. Let A be an abelian variety. If B is a bimonoid in QA -mod, we
denote B

Mfin the category of left B–comodules with support on locally free sheaves
of OA–modules, of finite rank.

We denote B
MSA-alg ⊂ B

MQA -alg the full subcategory of symmetric algebras
generated by the locally free B–comodules of finite rank — notice that if F ∈ B

Mfin,
then the B–comodule structure on F induces a B–comodule structure on S(F) in
a natural way.

We are now in condition to present our first result concerning the equivalence
of the category of representations of an affine extension q : G → A with some
categories of Hq–comodules.

Proposition 7.5. Let S: q : G→ A be an affine extension. Then:

(1) the equivalence of Proposition 7.2 restricts to a monoidal (op)-equivalence be-
tween Rep0(S) and

HqMSA-alg, where Hq denotes as usual the sheaf of Hopf algebras
associated to q;

(2) the equivalence VB : ClfA -mod→ VB0(A) induces an equivalence of categories,
that we also denote VB : HqMfin → Rep0(S).

Proof. The proof of (1) is a straightforward consequence of propositions 3.47 and
7.2, and hence it is omitted.

In order to prove (2), we first observe that if (F , χF) ∈ HqMfin, then Spec
(
S(F)

)
=

pE : E → A supports a S–module structure a : q ×̃ pE → pE — notice that we
are not applying the functor VB. It follows that p∨E : E∨ → A is a S–module, and
hence P(E∨) is a Hq–comodule algebra. But by construction, P(E∨) = S(F∨) and
the corresponding Hq–coaction being linear, it restricts to a coaction χHq

: F∨ →
Hq ⊠̃ F∨.

It is easy to see that the functor “take dual” induces an equivalence ·∨ : BMfin →
B
Mfin. The proof of (2) is now straightforward, since VB(F) = Spec

(
S(F∨)

)
. �

If S: q : G → A is an affine extension, in view of Proposition 7.5, it makes
sense to define a category of “infinite dimensional” S–modules either as a certain
full subcategory of HqMQA -alg containing HqMSA-alg or as a full subcategory of
HqMQA -mod containing HqMfin.

As proposed by V. Drinfeld in [25] (in the context of the definition of an infinite
dimensional vector bundle”), we take the second approach and consider the full
subcategory of HqMQA -mod with objects the quasi-coherent, flat sheaves of Hq–
comodules, that we denote HqMQAp -mod, as a replacement for VB0(A) – recall
that if F is a coherent flat sheaf of OA–modules, then F is locally free (see [56,
Proposition 2]).
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7.2. Homogeneous sheaves on an abelian variety.

In this section we define the category of homogeneous sheaves on an abelian
variety A. We fix the following notation: if T is a k–scheme and F ∈ A -mod, we
define FT = F ⊠OT ∈ AT -mod — recall that AT = A×T . Then FT = p∗1F⊗OA×T

p∗2(OT ) = p∗1F ⊗OA×T
OA×T = p∗1F , where p1 : AT → A and p2 : AT → T are the

canonical projections.

Definition 7.6. (1) If A is an abelian variety and F ,G ∈ A -mod, we define the
functor of graded morphisms Homgr(F ,G) : Sch

op → Sets as follows: for T ∈ Schop

an element of the set Homgr(F ,G)(T ) is a pair (f, ℓ), with ℓ ∈ A(T ) and f ∈
HomAT -mod(t

∗
ℓFT ,GT ) — recall that the translation tℓ : AT → AT is a morphism

of T –schemes and that f is a morphism of sheaves of AT –modules.

For an arrow j : T ′ → T the functor is defined as follows:

Homgr(F ,G)(j) : Homgr(F ,G)(T )→ Homgr(F ,G)(T
′)

is given by Homgr(F ,G)(j)(f, ℓ) =
(
(idA×j)∗f, ℓ◦ j

)
— notice that ℓ◦j ∈ A(T ′) and

that since p1◦ tℓ◦ (idA×j) = p′1◦ tℓ◦ j , then (idA×j)∗f ∈ HomsATmod(t
∗
ℓ◦ jFT ′ ,GT ′).

(2) If (f, ℓ) ∈ Homgr(F ,G)(T ), then the element ℓ ∈ A(T ) is called the degree of
(f, ℓ).

The degree maps d(T ) : Homgr(F ,G)(T ) → A(T ), d(f, ℓ) = ℓ, conform — by
definition — a natural transformation, that is also called the degree map.

(3) We call Hom0(F ,G) the subfunctor of Homgr(F ,G) given by the elements of
degree zero: i.e. the set Hom0(F ,G)(T ) = {(f, 0) : (f, 0) ∈ Homgr(F ,G)(T )} with
f ∈ HomAT -mod

(
FT ,GT

)
.

Definition 7.7. Let A be an abelian variety and F ,G, E ∈ A -mod. We define a
natural transformation ◦ : Homgr(G, E) × Homgr(F ,G) ⇒ Homgr(F , E) as follows:
given a k–scheme T and (f, ℓ) ∈ Homgr(F ,G)(T ), (g, b) ∈ Homgr(G, E), then f :
t∗ℓFT → GT and t∗bf : t∗ℓ+bFT → t∗bGT . Hence, we can define (g, b)◦ (f, ℓ) :=
(g◦ t∗bf, ℓ+ b) ∈ Homgr(F , E).

Remark 7.8. It follows by definition that the degree map satisfies the following
compatibility condition with the composition defined above.

Homgr(G, E) ×Homgr(F ,G)
◦ //

d×d

��

Homgr(F , E)

d

��

A×A
s // A

Notation 7.9. (1) We denote Endgr(F) := Homgr(F ,F); notice that Endgr(F)
with the composition of graded morphisms is a monoid functor, with unit eEndgr(F)(T ) =
(idFT

, 0).

(2) The group functor Autgr(F) is the unit subfunctor of Endgr(F); that is, the
subgroup functor of Endgr(F) given (for each scheme T ) by the pairs (f, ℓ) such
that f : t∗ℓFT → FT is an isomorphism.

(3) We also consider the functor on monoids End0(F) = Hom0(F ,F), and the
functor on groups Aut0(F) given by the pull back of the inclusions Autgr(F) ⊂
Endgr(F) and End0(F) ⊂ Endgr(F) — therefore, Aut0(F) is the subfunctor of
Autgr(F) given by the elements of degree zero.
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As in the case of vector bundles, it is easy to see that the morphism of degree
zero between two sheaves F ,G are in bijection with the morphisms of sheaves of
OA–modules between F and G.

Remark 7.10. Let F ,G ∈ A -mod. Then the functor Hom0(F ,G) is represented
by the k-vector space HomA -mod(F ,G). In particular, End0(F) is a smooth scheme
on monoids. Indeed, the k–vector space HomA -mod(F ,G) represents the functor
T 7→ HomAT -mod(FT ,GT ).

Definition 7.11. As in Definition 3.18, we consider the monoidal category V =
Func(Schop, Sets) and we define the V–categoryAgr -mod, that is called the category
of sheaves on A with graded morphisms, with objects the sheaves of OA–modules
and with hom-object Homgr(F ,G) ∈ V , with composition defined as above. In
other words, for F and G sheaves on A, HomAgr -mod(F ,G) = Homgr(F ,G).

We define the full subcategory QAgr -mod ⊂ Agr -mod of quasi-coherent sheaves
of OA–modules with graded morphisms with objects the quasi-coherent sheaves of
OA–modules.

Similarly, we define the subcategory QAgr -alg of quasi-coherent sheaves of OA–
algebras with graded morphisms by taking as objects the quasi–coherent sheaves of
OA–algebras, and if F ,G are two objects, then HomAgr -alg(F ,G) is the subfunctor
of Homgr(F ,G) given by (f, ℓ) ∈ HomAgr -alg(F ,G) if f : t∗ℓFT → GT is a morphism
of OAT

–algebras (over the T –scheme AT ).

Remark 7.12. Call A0 -mod ⊆ Agr -mod the wide subcategory of Agr -mod with
morphisms between F ,G the functor Hom0(F ,G). It is clear that the usual category
A -mod = OA −mod is equivalent to A0 -mod (see Remark 7.10). Similarly for the
analogous situation but in QA -mod and QA -alg with respect to QA0 -mod and
QA0 -alg.

Clearly, End0(F) is the kernel of the morphism of functors on monoids d :
Endgr(F)→ A, and Aut0(F) the kernel of d : Autgr(F)→ A.

Remark 7.13. As in the case of vector bundles, if F ,F ′ ∈ Agr -mod, then Homgr(F ,F ′)
is a fpqc sheaf.

In particular, when we deal with locally free sheaves of finite rank we have the
following equivalence result:

Lemma 7.14. In the above situation, the equivalence VB : ClfA -mod → VB0(A)
extends to an equivalence VBgr : ClfAgr -mod→ VBgr(A).

Proof. Fist, we observe that if F ∈ ClfA -mod and T is a k–scheme, then
VB(FT ) ∼= VB(F)T . Indeed,

Spec
(
S
(
(FT )

∨
))

= Spec
(
S
(
(p∗1F)

∨
))

= Spec
(
S
(
p∗1(F

∨)
))

= p∗1
(
Spec

(
S(F∨)

))
,

where the second of the above chain of equalities is due to the commutation of
pullback with duals and the third by the commutation of base change with Spec
(see [2] and [59][Thm. 17.1.3, Ex. 17.1.F)] respectively). In other words,

VB(FT ) ∼= VB(F)T =
(
πF × id : VB(F)× T → A× T

)
.
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Next we show that for all F ∈ ClfA -mod and b ∈ A(T ) we have the commutation
relation VB

(
t∗b(FT )

)
∼= t∗b VB(F)T :

VB(t∗bFT ) = Spec
(
t∗bS

(
F∨
T

))
= t∗b

(
Spec

(
S
(
(p∗1F)

∨
)))

=

t∗b VB(FT ) =
(
t∗b VB(F)

)
T
,

where we used again the commutation of duals and pullback for locally free shaves.

Once we have the identifications above, it is clear that the equivalence VB :
ClfA -mod→ VB0(A) induces a natural isomorphism between the functors Homgr(F ,G)
and Homgr

(
VB(F),VB(G)

)
.

Indeed, if T is a k–scheme, then the family of bijections (indexed on ℓ ∈ A(T ))
given by

HomAT -mod

(
t∗ℓ (FT ),GT

)
→ Hom0

(
VB

(
t∗ℓFT

)
,VB(GT )

)
= Hom0

(
t∗ℓ
(
VB(F)T

)
,VB(G)T

)
,

combine into a bijection
{
(f, ℓ) : f ∈ Hom

AT -mod

(
t∗ℓ (FT ),GT

)
, ℓ ∈ A(T )

}
→ Homgr

(
VB(F),VB(G)

)
.

The family of bijections above (indexed on T ) conform the seeked natural trans-
formations. �

Remark 7.15. As an immediate consequence of Lemma 7.14, we have that if
F ∈ ClfA -mod, then Autgr(F) is a smooth group scheme of finite type and the
degree map d : Autgr(F)→ A is an affine morphism of group schemes, with kernel
Aut0(F), since Autgr(F) ∼= Autgr

(
VB(F)

)
.

It is an open question whether Autgr(F) is a group scheme or not if F ∈
QA -mod. However, we have the following description.

Lemma 7.16. Let A be an abelian variety and F ∈ A -mod. Then Aut0(F) is a
smooth affine group scheme, and the degree map d : Autgr(F)→ A is a morphism
of fpqc sheaves, with kernel Aut0(F).

Proof. Recall that End0(F) is a smooth monoid (see Remark 7.10), and that
Aut0(F) is its unit group. It follows from [23, II.3.7] that End0(F) is the limit in
the category of monoid schemes of a family Mi of finite type; therefore, Aut0(F)
is the limit of the unit groups G(Mi). Since G(Mi) ⊂ Mi is open by [23, II.3.6], it
follows that Aut0(F) is an open subscheme of End0(F).

It is clear that Autgr(F) is a sheaf for the fpqc topology (e.g. by descent for
morphisms). Moreover, Aut0(F) is a subsheaf and the quotient morphism π :
Autgr(F)→ Autgr(F)/Aut0(F) is a torsor under Aut0(F), in view of [23, III.4.1.8].
Now is clear that d factorizes through π. �

Definition 7.17. Let A be an abelian variety. A sheaf F ∈ Agr -mod is homoge-
neous if the degree map d : Autgr(F)→ A surjective in the fpqc topology.

In view of Lemma 7.16, it follows that the Autgr(F) is a quasi-compact group
scheme, the sequence

Autgr(F) : 1 // Aut0(F) // Autgr(F)
d // A // 0

is an affine extension. In particular d is a quasi-compact, faithfully flat morphism
of group schemes.
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Example 7.18. (1) Clearly, the structure sheaf OA is homogeneous.

(2) It is clear that under the equivalence VBgr : ClfAgr -mod→ VBgr(A), homoge-
neous sheaves correspond to homogeneous vector bundles (see Remark 7.15).

Definition 7.19. We define Ah -mod, the category of homogeneous sheaves on A,
as the full subcategory of A -mod with objects the homogeneous sheaves on A.
Similarly, we define the category QAh -mod of homogeneous quasi-coherent sheaves
of OA–modules as the full subcategory of QA -mod with objects the homogeneous,
quasi-coherent sheaves on A, and ClfAh -mod ⊂ QAh -mod the full subcategory of
locally free, homogeneous, sheaves of finite rank. We denote QAh -alg the category
of homogeneous quasi-coherent sheaves of OA–algebras.

As in Definition 3.18 we define the V–categoriesAh,gr -mod, QAh,gr -mod, ClfAh,gr -mod,
Ah,gr -alg andQAh,gr -alg as the full subcategories ofAgr -mod, QAgr -mod, ClfAgr -mod,
Agr -alg and QAgr -alg where on each situation the objects are limited to the ho-
mogeneous sheaves.

Lemma 7.20. Let F ,F ′ ∈ Ah,gr -mod be two homogeneous sheaves. Then the

homogeneous vector bundle RHom0(F ,F ′) = Autgr(F ′)×Aut0(F
′) Hom0(F ,F ′) repre-

sents Homgr(F ,F ′).

Moreover, RHom0(F ,F ′)
∼= LHom0(F ,F ′) = Autgr(F) ×Aut0(F) Hom0(F ,F ′) ∈

HVB0(A).

Proof. We replicate the proof of Lemma 3.24.

Let ϕ : Autgr(F ′)×Hom0(F ,F ′)→ Homgr(F ,F ′) the morphism of fpqc sheaves
given by composition. Then clearly ϕ is Aut0(F)–invariant, and therefore induces
a morphism of fpqc sheaves φ : RHom0(F ,F ′) → Homgr(F ,F ′).

Let y1 : T → Autgr(F ′)×Hom0(F ,F ′) and y2 : T → Autgr(F ′)× Hom0(F ,F ′)
be such that ϕ(T )(y1) = ϕ(T )(y2) ∈ Homgr(F ,F ′)(T ). Define fj := p1(T )(yj) ∈
Autgr(F ′)(T ), ℓj := d◦p1(T )(yj) ∈ A(T ), gj := p2(T )(yj) ∈ Hom0(F ,F ′)(T ) and
ϕ(T )(yj) = (fj◦ gj, ℓj) ∈ Homgr(F ,F ′)(T ), for j = 1, 2.

By hypothesis we have ℓ1 = ℓ2 and f1◦g1 = f2◦g2, but since the fj ’s are invert-

ible, we get g2 = f−1
2 ◦f1◦g1, and obviously f2 = f1◦ (f

−1
2 ◦f1)

−1 with f−1
2 ◦f1 ∈

Aut0(F ′)(T ).

On the other hand, given (f, ℓ) ∈ Homgr(F ,F ′)(T ), since the sequence

1→ Aut0(F
′)→ Autgr(F

′)→ A→ 0

is exact there exist h : T ′ → T fpqc and g : T ′ → Autgr(F ′) such that d◦ g =
ℓ◦h = ℓ|

T ′ . In particular, g : t∗ℓ|
T ′
FT ′ → FT ′ is invertible, therefore f◦g−1 ∈

Hom0(F ,F ′)(T ′), g ∈ Autgr(F ′)(T ′) and ϕ(g, f◦g−1) = (f, ℓ)|
T ′ , showing that ϕ is

locally surjective. Since both sides are sheaves on the fpqc topology, they turn out to
be isomorphic and RHom0(F ,F ′) represents the functor Homgr(F ,F

′) (see Lemma
3.24). The claim for LHom0(F ,F ′) follows in a similar way. The isomorphism of
representing schemes is now obvious. �

Remark 7.21. Let FAh -mod be a homogeneous sheaf. Then Autgr(F) is a quasi
compact group scheme and form the proof of Lemma 7.20 above we deduce that
LHom0(F ,F ′) represents the functor Homgr(F ,F ′), regardless on whether F ′ is ho-
mogeneous or not. Similarly if F ′ is homogeneous, then RHom0(F ,F ′) represents
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the functor Homgr(F ,F ′), regardless on whether F is homogeneous or not. The
existence of a geometric structure for Homgr(F ,F ′) when neither of the sheaves is
homogeneous (i.e. the representability of this functor) remains open.

We finish this paragraph studying the relationship between homogeneous vector
bundles and homogeneous sheaves — in particular, we present the correspondence
between homogeneous vector bundles and homogeneous locally free sheaves of finite
rank as an equivalence of categories.

Lemma 7.22. In the above situation, the equivalence VB : ClfA -mod → VB0(A)
restricts to an equivalence VB |

Clf
Ah -mod : ClfAh -mod → HVB0(A). Moreover,

VB |
ClfAh -mod

extends (as an equivalence) to VBgr : ClfAh,gr -mod→ HVBgr(A).

Proof. The result follows immediately from Lemma 7.16 and Remark 7.15. �

Corollary 7.23. A vector bundle E → A is homogeneous if and only if P(E) ∈
C SA-alg is homogeneous, and this happens if and only if its corresponding coherent,
locally free sheaf FE is homogeneous.

In particular, if H is a flat Hopf sheaf, then any coherent H–comodule is homo-
geneous.

Proof. This a direct consequence of Lemma 7.22 and Proposition 7.5. �

7.3. Linearization of sheaves.

We begin by recalling the definition of the category of G–linearized sheaves
(see [44, page 30] and [57, Tag 03LE]). We work over schemes defined over k and
the sheaves will be in general quasi–coherent OX–modules but the definitions can
be performed for general OX–modules.

Let G be a group scheme with m, eG the multiplication and the unit of the group,
assume X a G–scheme with an action a : G×X → X .

In order to simplify notations, we display the following (rather obvious) commu-
tation relations:

(1) a◦ (idG×a) = a◦ (m × idX) : G × G × X → X and a◦ (eG × idX) = p2 :
Spec(k)×X → X (that is, a is an action).

(2) a◦p23 = p2◦ (idG×a) : G×G×X → X , where pij : X1×X2×X3 → Xi×Xj

denotes the canonical projection.
(3) p2◦ (idG×p2) = p2◦ (m× idX) = p3 : G×G×X → X and p2◦ (eG× idX) =

p2 : Spec(k)×X → X (that is, the canonical projection p2 is trivial action).

Definition 7.24. Let G be a group scheme, X a G–scheme and F a sheaf of
OX -modules; denote the G–action of G on X by a : G×X → X .

A G–linearization of the sheaf F (or a linearization compatible with the action
a : G×X → X) is an isomorphism of sheaves ofOG×X–modules Φ : a∗(F)→ p∗2(F)
such that:
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(1) The diagram below is commutative:

(idG×a)∗a∗(F) = (m× idX)∗a∗(F)

(idG ×a)∗(Φ)

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

(m×idX)∗(Φ)
// (m× idX)∗p∗2(F) = p∗3(F) = p∗23p

∗
2(F)

(idG×a)∗p∗2(F) = p∗23a
∗(F)

p∗23(Φ)

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

(2) The pullback by the morphism of schemes eG× idX : Spec(k)×X → G×X of
the diagram Φ : a∗(F)→ p∗2(F) yields (eG × idX)∗(Φ) = id : F → F .

Remark 7.25. Conditions (1) and (2) of Definition 7.24 are the same than the
“cocycle condition” stated originally in GIT [44, §1.3].

Next we define the category of G–linearized sheaves for a G–scheme X with a
fixed action a : G×X → X .

Definition 7.26. If a : G × X → X is an action of the group scheme G on
the scheme X , define G-QX -mod, the category of G–linearized sheaves for the
G–scheme X , as having:

(1) as objects: the pairs (F ,Φ), where F is a sheaf of quasi-coherentOX–modules
and Φ a linearization of F as defined above;

(2) as morphisms: the morphisms from (F ,Φ) to (F ′,Φ′), are the morphisms
f ∈ HomQX -mod(F ,F ′) such that the following diagram is commutative

a∗(F)
Φ //

a∗(f)

��

p∗2(F)

p∗2(f)

��

a∗(F ′)
Φ′

// p∗2(F
′).

Definition 7.27. Let S: q : G→ A be an affine extension. Then G acts on A by
aq = s◦ (q× idA) : G×A→ A. An S–linearized sheaf or q–linearized sheaf is a pair
(F ,Φ), where F a quasi-coherent sheaf of OA–modules and Φ : a∗q(F) → p∗2(F) is
a G–linearization compatible with aq.

Given two q–linearized sheaves F ,F ′, then a morphism of q–linearized sheaves
is a morphism f : F → F ′ of G–linearized sheaves with respect to aq.

The category q-QA -mod of quasi-coherent q–linearized sheaves has as objects
the quasi-coherent q–linearized sheaves, as morphisms Homq-QA -mod(F ,F ′) the
morphisms of q–linearized sheaves. We denote q-ClfA -mod ⊂ q-QA -mod the full
subcategory with objects the locally free sheaves of finite rank.

Remark 7.28. Let S: q : G→ A be an affine extension.

(1) It is easy to see that kernels, images, cokernels of homomorphisms of q-linearized
sheaves as well as tensor products and symmetric powers (for the Hadamard monoidal
structure ⊗A) of q-linearized sheaves inherit q-linearizations in a natural way.

(2) Clearly, if F ∈ Clf A -mod is q–linearized, F∨ inherits a q-linearization in a natural
way.
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(3) If X is a G–scheme of finite type and f : X → A is a G–equivariant mor-
phism, then a q–linearization on F ∈ QA -mod induces a G–linearization on f∗F ∈
QX -mod (see [35, p. 94]).

(4) A direct generalization of the considerations in [44, §1.3] shows that a q–
linearization in F ∈ Q SA-alg induces a G–action a : G × Spec(F) → Spec(F),
such that the following diagram is commutative

G× Spec(F)
a //

q×π

��

Spec(F)

π

��

A×A
s // A

In other words, a q–linearization of F induces on Spec(F) a structure of q–module in
the duoidal category (Sch |qcA, ×̃, I×̃,×A, I×A

) — that is, an action a : q ×̃Spec(F)→
Spec(F).

Conversely, if x : X → A is a q–module, then the action a : q ×̃ x→ x induces a
q–linearization on P(x).

In [35, p. 94] the reader will find a proof (where G is assumed of finite type) that
is valid in our context.

(5) In particular, we deduce from (2) and (4) that if a sheaf F ∈ ClfA -mod admits
a q–linearization, then it induces a structure of q-module on VB(F). Conversely,
if (π : E → A) ∈ Rep0(S), then the action a : q ×̃π → π induces a q–linearization
on P(π). It is easy to show that if f ∈ Homq-ClfA -mod(F ,G), then VB(f) ∈
Hom0

(
VB(F),VB(G)

)
, and that we have an equivalence between q-ClfA -mod and

Rep0(S).

We proceed now to establish the notion of graded morphisms of S–linearized
sheaves. Before doing so, it is convenient to set some equalities between different
pull-backs involved it the mentioned definition.

Remark 7.29. (1) Let S: q : G → A be an affine extension and F ∈ QA -mod
a quasi-coherent sheaf of OA–modules. Let T be a k–scheme and ℓ : T → A a
T –point. From the equalities of morphisms G×A× T → A:

p1◦ (aq × idT ) = aq◦p12

p1◦p23 = p2◦p12

p2◦p12(idG×tℓ) = p1◦p23◦ (idG×tℓ) = p1◦ tℓ◦p23

and the equality

tℓ◦ (aq × idT ) = (aq × idT )◦ (idG×tℓ) : G×A× T → AT = A× T

we deduce — in the same order — the following equalities of sheaves of OG×A×T –
modules (recall that FT = p∗1F):

(7.1)

(aq × idT )
∗(FT ) = p∗12(a

∗
qF) = a∗q(F)T

p∗23(FT ) = p∗12
(
p∗2(F)

)

p∗23(tℓ)
∗(FT ) = (idG×tℓ)

∗p∗23(FT ) = (idG×tℓ)
∗p∗12

(
p∗2(F)

)

(aq × idT )
∗t∗ℓ (FT ) = (idG×tℓ)

∗
(
(a∗qF)T

)
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(2) In the situation above, suppose now that F is linearized with respect to aq,
and consider the action aq × idT : G × A × T → A × T . Then the linearization
map Φ : a∗qF → p∗2F ∈ OG×A induces (by applying p∗12) a linearization map on
FT ∈ QAT−mod given as: p∗12Φ : (aq × idT )

∗FT → p∗23FT . In what follows we
will sometimes write ΦF instead of just Φ, specially if there is more than one sheaf
under consideration.

If we take a T –point ℓ : T → A, and apply to the above linearization for FT , the
functor (idG×tℓ)∗ we obtain a linearization for t∗ℓFT ∈ QAT -mod as:

(idG×tℓ)
∗p∗12(ΦF ) : (aq × idT )

∗(tℓ)
∗(FT )→ p∗23(tℓ)

∗(FT ).

This is an easy consequence of the formulæ established just above.

Definition 7.30. Let S: q : G→ A be an affine extension and F ,F ′ ∈ QAgr -mod
two q–linearized sheaves. The functor of graded morphisms of q–linearized sheaves
is the subfunctor Homq-QAgr -mod(F ,F

′) ⊂ Homgr(F ,F
′) given as follows: (f, ℓ) ∈

Homgr(F ,F ′)(T ) belongs to Homq-QAgr -mod(F ,F ′)(T ) if the following diagram of
sheaves on the T –scheme G×A× T is commutative

(aq × idT )
∗t∗ℓ (FT )

(idG ×tℓ)
∗p∗12(ΦF )

//

(aq×idT )∗(f)

��

p∗23t
∗
ℓ (FT )

p∗23(f)

��

(aq × idT )
∗(F ′

T )
p∗12ΦF′

// p∗23(F
′
T )

where we used the equalities (7.1).

Definition 7.31. Let S: q : G → A be an affine extension. The (enriched) cate-
gory q-QAgr -mod of q–linearized (or S–linearized) sheaves with graded morphisms
has as objects the S–linearized sheaves and as morphisms the functor of graded
morphisms of S–linearized sheaves.

We finish this section by showing the relationship between the concepts of ho-
mogeneous and S–linearized shaves.

Lemma 7.32. Let S: q : G→ A be an affine extension and F a S–linearized sheaf.
Then F is homogeneous.

Conversely, let F ∈ Ah -mod be a homogeneous sheaf. Then F admits an
Autgr(F)–linearization.

Proof. If ℓ ∈ A(T ) then there exists a fpqc morphism f : T ′ → T and g ∈ G(T ′)
such that q◦g = ℓ◦f . Let aT : G×A× T → A× T and aT ′ : G×A× T ′ → A× T ′

be the actions induced by aq. Then the linearization Φ : a∗q(F)
∼= p∗2(F) ∈ OG×A

induces a G–linearization

Ψ : a∗T ′(FT ′) ∼= p∗23(FT ′) ∈ OG×A×T ′

via the G–equivariant morphism p2◦ (idA×f) : A×T ′ → A — here we use remarks
7.29 (2) and 7.28(3)).
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Now consider the following commutative diagram of T ′–schemes:

(7.2)

A× T ′

tℓ◦f

��

A× T ′
(g◦p2,idA×T ′)

//

idA×T ′ //

tℓ◦f //

G×A× T ′

p23
55❧❧❧❧❧❧❧❧❧❧

aT ′ ))❘❘
❘❘❘

❘❘❘
❘❘❘

A× T ′

It follows from diagram (7.2) that Ψ : a∗T ′FT ′ → p∗23FT ′ induces an isomorphism

ψ : (g◦p2, idA×T ′)∗a∗T ′FT ′ ∼= t∗a◦σFT ′ → (g◦p2, idA×T ′)∗p∗23FT ′ ∼= FT ′ .

It follows that (ψ, ℓ◦f) ∈ Autgr(F)(T ′) and is such that d(ψ, ℓ◦f) = ℓ◦f . We
deduce that d is surjective in the fpqc topology, and therefore F is homogeneous.

In order to prove the converse, assume that F ∈ QA -mod is homogeneous. Then
Autgr(F) is an affine extension of A. In particular, d : Autgr(F) → A is a fpqc
morphism, and it follows from the homogeneity applied to the Autgr(F)–point d
that there exists an isomorphism ϕ : t∗dFAutgr(F)

∼= FAutgr(F).

Let σ : Autgr(F) × A → A × Autgr(F) be the switch morphism. Then ad =
p1◦ td◦σ : Autgr(F) × A → A. Since FAutgr(F) = p∗1F ∈ QAAutgr(F) -mod, it

follows that Ψ = σ∗ϕ : a∗dF → p∗2F ∈ Q
(
Autgr(F) × A) -mod is the seeked d–

linearization. �

7.4. The category of sheaf representations of an affine extension.

Definition 7.33. Let S: q : G → A be an affine extension of the abelian variety
A.

(1) The category q-QAp,gr -mod (or S-QAp,gr -mod) of sheaf representations of
S is the full subcategory of QAh,gr -mod(S) with objects the quasi-coherent, flat
S–linearized sheaves — recall that, by Lemma 7.32), the S–linearized sheaves are
homogeneous.

(2) We denote as q-ClfAgr -mod ⊂ S-QAp,gr -mod the full subcategory of coherent,
flat (necessarily locally free) sheaves — in other words, the objects of q-ClfAgr -mod
are the sheaf representations that are locally free, of finite rank. We will denote
also S-ClfAgr -mod = q-ClfAgr -mod.

(3) The subcategory q-QAp -mod ⊂ S-QAp,gr -mod is defined by taking as mor-
phisms the pairs (f, 0) ∈ HomS-QAp,gr -mod(S)(F ,G) belonging to Hom0(F ,G). We
will also denote S-QAp -mod = q-QAp -mod.

(4) The subcategory q-ClfA -mod = S-ClfA -mod ⊂ q-QAp -mod is defined as the
full subcategory of coherent sheaf representations (i.e. locally free of finite rank) of
S with morphisms the pairs (f, 0). Notice that q-ClfA -mod can be seen also as a
subcategory of q-ClfAgr -mod.

Definition 7.34. A S–sheaf representation F is rational if there exists a filtered
system of coherent subrepresentations Fα ⊂ Fβ ⊂ F , of finite rank nα, such that
F ∼= colimαFα. In relation with the categories considered in Definition 7.33 when
we restrict the objects to the rational sheaves, we add the prefix r to the notations
e.g. we write rq-QAp,gr -mod, etc.
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Theorem 7.35. Let S: q : G → A be an affine extension. Then the equiva-
lence of categories VBgr : ClfAgr -mod → HVBgr(A) (see Lemma 7.22) induces an
equivalence S-ClfAgr -mod ∼= Rep(S).

Proof. By Remark 7.28, we have that VBClfA -mod → HVB0(A) induces an
equivalence S-ClfA -mod ∼= Rep0(S). Hence, we only need to show that if F ,F ′ ∈
S-ClfA -mod are q–linearized sheaves, then VBgr : Homgr(F ,F ′)→ Homgr

(
VB(F),VB(F ′)

)

restricts to a bijection HomS-ClfAgr -mod(F ,F ′)→ HomRep(S)

(
VB(F),VB(F ′)

)
.

Denote (π : F → A) := VB(F) and (π′ : F ′ → A) := VB(F ′). Let T be a k–
scheme and (f, ℓ) ∈ Homgr(F, F

′)(T ). Let aF : G ×̃F → F and aF ′ : G ×̃F ′ → F ′

be the q-actions on VB(F) and VB(F ′) induced by ΦF and ΦF ′ , the q–linearizations
on F and F ′ respectively. Consider the morphisms aq,T = aq × idT : G × AT =
G × A × T → AT = A × T , aF,T = a1 × idT : G × FT = G × F × T → AT and
πT = π × idT : FT → AT . Then, from the cartesian diagram of T –schemes

G× FT

idG ×πT

��

aF,T
// FT

πT

��

G×AT
aq,T

// AT

where πT = π× idT , we deduce that (f, ℓ) is G–equivariant if the following diagram
of T -schemes is commutative:

(7.3)

G× FT

aF,T

��

idG ×f
// G× F ′

T

aF ′,T

��

FT
f

//

πT

��

F ′
T

πT

��

AT
tℓ // AT

where we consider the T -structure given by projection on the last coordinate.

Taking into account that tℓ◦ (π × idT ) = (π′ × idT )◦f , we deduce that the com-
mutativity of Diagram (7.3) is equivalent to the commutativity of the diagram:

(aq × idT )
∗t∗ℓ (FT )

(idG ×tℓ)
∗p∗12(Φ

∨
F )

//

(aq×idT )∗(f̃)

��

p∗23t
∗
ℓ (FT )

p∗23(f̃)

��

(aq × idT )
∗(F ′

T )
p∗12(Φ

∨
F′ )

// p∗23(F
′
T )

where VB(f̃ , ℓ) = (f, ℓ). In other words, (f̃ , ℓ) ∈ HomS-ClfAgr -mod(F ,F ′). �

Combining Proposition 7.5 and Theorem 7.35, we get the following:

Corollary 7.36. Let S: q : G → A be an affine extension and Hq its asso-
ciated Hopf sheaf. Then the equivalences VB : HqMfin → Rep0(S) and VBgr :
ClfAh,gr -mod→ HVBgr(A) induce equivalences

HqMfin
∼= Rep(S) ∼= S-ClfA -mod . �
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We would like to extend now the equivalence HqMfin
∼= q-ClfA -mod to the

category of rational sheaf representations. First, we need to establish the notion of
rational comodule.

Definition 7.37. LetH be a Hopf sheaf on the abelian variety A. A H–comodule
F is rational if there exists a filtered system of coherent flat sub-comodules Fα ⊂
Fβ ⊂ F , of finite rank nα, such that F is the filtered union of the subsheaves Fα;
that is, F = colimα Fα.

Notice that since the limit of flat modules is flat, a rational H–comodule is
necessarily flat.

We denote by H
MrAgr -mod ⊂ H

MAgr -mod the full category of rationalH–comodules,

and by H
MrA -mod ⊂ H

MrAgr -mod the wide subcategory with the same objects and

morphisms Ker d, where d : HMAgr -mod → A is the degree map. In other words,

HomHMrA -mod
(F ,G)(T ) =

{
(f, 0) : (f, 0) ∈ HomHMAgr -mod

(F ,G)(T )
}
.

Proposition 7.38. Let S: q : G→ A be an affine extension and Hq the associated
Hopf sheaf. If (F ,ΦF ) ∈ q-QAp -mod, then F admits a structure of (rational)
Hq-comodule.

Conversely, if (F , χF) ∈ HqMrA -mod then F admits a structure of (rational) S–
sheaf representation.

Proof. Let (F ,ΦF ) ∈ q-QAp -mod, and (Fα, φα = φ|
a∗
qFα

) be a filtered system

of coherent S–sheaf subrepresentations with colimFα = ∪Fα = F and (aq)α :
G×Spec

(
S(F∨

α )
)
→ Spec

(
S(F∨

α )
)
the associated S–action (see Theorem 7.35). By

Proposition 7.5, (aq)α induces a structure of Hq–comodule χFα
: Fα → Hq ⊠̃ Fα ⊂

Hq ⊠̃ F . Since this association is of functorial nature, it follows that is Fα ⊂ Fβ,
then χFα

= χFβ
|
Fα

. It follows that the family χFα
induces a structure of Hq–

comodule χF : F = colimFα → Hq ⊠̃ F , such that χF |Fα
= χFα

.

The proof of the converse is similar and therefore is omitted. �
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