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Two points of the boundary of toric geometry

Bernard Teissier

To Antonio Campillo, on the occasion of his 65th Birthday

Abstract This note presents two observations which have in common that they lie

at the boundary of toric geometry. The first one because it concerns the deformation

of affine toric varieties into non toric germs in order to understand how to avoid

some ramification problems arising in the study of local uniformization in positive

characteristic, and the second one because it uses limits of projective systems of

equivariant birational maps of toric varieties to study the space of additive preorders

on Zr for r ≥ 2.

1 Using toric degeneration to avoid wild ramification

In his book [1], Campillo introduces and studies a notion of characteristic exponents

for plane branches over an algebraically closed field of positive characteristic. One

of the definitions he gives is that the characteristic exponents are those of a plane

branch in characteristic zero having the same process of embedded resolution of sin-

gularities. His basic definition is given in terms of Hamburger-Noether expansion1

but we shall not go into this here. He then gives an example to show that even if

you do have a Puiseux-type parametrization for a branch in positive characteristic,

which is not always the case, the exponents you see in the parametrization are not

in general the characteristic exponents. His example (see [1, Chap. III, §5, Example

3.5.4]) is this:
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1 The Hamburger-Noether expansion is an algorithm extracting in any characteristic a description

of the resolution process by point blowing-ups from a parametric representation x(t),y(t).

1

http://arxiv.org/abs/1807.04187v1
bernard.teissier@imj-prg.fr


2 Bernard Teissier

Let p be a prime number. Let us choose a field k of characteristic p and consider the

plane branch defined parametrically by x = t p3
, y = t p3+p2

+ t p3+p2+p+1, and im-

plicitly by a unitary polynomial of degree p3 in y with coefficients in k[[x]]. Campillo

computes by a Hamburger-Noether expansion the characteristic exponents and finds

β0 = p3,β1 = p3 + p2,β2 = p3 + 2p2 + p,β3 = p3 + 2p2 + 2p+ 1. Note that there

are four characteristic exponents while the parametrization exhibits three exponents

in all. In [13, Remark 7.19], the author had computed directly from the parametriza-

tion the generators of the semigroup of values of the t-adic valuation of k[[t]] on

the subring k[[t p3
, t p3+p2

+ t p3+p2+p+1]] and found the numerical semigroup with

minimal system of generators:

Γ = 〈p3, p3 + p2, p4 + p3 + p2 + p, p5 + p4 + p3 + p2 + p+ 1〉.

We can verify that Campillo’s characteristic exponents and the generators of the

semigroup satisfy the classical relations of Zariski, in accordance with [1, Proposi-

tion 4.3.5].

This example is very interesting because it shows that in positive characteristic,

even if a Puiseux-type expansion exists, its exponents do not determine the resolu-

tion process. In thinking about resolution in positive characteristic, one should keep

away from ideas inspired by Puiseux exponents. The semigroup, however, does de-

termine the resolution process in all characteristics. It is shown in [13] and [15] that

in the case of analytically irreducible curves one can obtain embedded resolution

by studying the embedded resolution of the monomial curve corresponding to the

minimal system of generators of the numerical semigroup Γ of the values taken on

the algebra of the curve by its unique valuation. Another, more classical, reason is

that the semigroup determines the Puiseux exponents of the curve in characteristic

zero having the same resolution process, and therefore this resolution process (see

[1, Chap. IV, §3]).

The polynomial f (x,y) ∈ k[[x]][y] defining our plane branch can be obtained by

eliminating u2,u3 between three equations which are:

yp− xp+1− u2 = 0, u
p
2− xp(p+1)y− u3 = 0, u

p
3 − xp2(p+1)u2 = 0.

This makes it apparent that our plane branch is a flat deformation of the curve de-

fined by yp− xp+1, u
p
2− xp(p+1)y = 0, u

p
3 − xp2(p+1)u2 = 0, which is the monomial

curveCΓ in A4(k) given parametrically by x= t p3
,y= t p3+p2

,u2 = t p4+p3+p2+p,u3 =

t p5+p4+p3+p2+p+1. That is, the monomial curve whose affine algebra is the semi-

group algebra k[tΓ ]. The binomial equations correspond to a system of generators

of the arithmetical relations between the generators of the semigroup. Compare with

[15, Remark 7.19]; we have chosen here the canonical system of relations between

the generators of the semigroup, where all the exponents in the second monomial of

the equations except the exponent of x are < p.

Moreover, if we give to each of the variables x,y,u2,u3 a weight equal to the expo-

nent of t for this variable in the parametrization of CΓ , we see that to each binomial
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is added a term of higher weight. This is an overweight deformation of a prime

binomial ideal in the sense of [15, §3].

Eliminating u2 and u3 between the three equations gives the equation of our plane

curve with semigroup Γ :

(yp− xp+1)p2
− 2xp2(p+1)yp + x(p2+1)(p+1) = 0.

If p = 2 this reduces to (y2 − x3)4 − x15 = 0, which looks like it should be the

overweight deformation y2− x3− u2 = 0,u4
2− x15 = 0 of the monomial curve with

equations y2− x3 = 0,u4
2− x15 = 0. However, such is not the case because the two

binomials y2− x3,u4
2− x15 do not generate a prime ideal in k[[x,y,u2]]. One verifies

that u2
2− x6y is not in the ideal but its square is. The binomials do not define an

integral monomial curve, but in fact the non reduced curve given parametrically by

x = t8,y = t12,u2 = t30 with non coprime exponents, while we know that the semi-

group of our curve is Γ = 〈8,12,30,63〉. The equation of our plane curve is indeed

irreducible, but it is not an overweight deformation of a integral monomial curve

in A3(k). One has to embed our plane curve in A4(k) to view it as an overweight

deformation of a monomial curve.

The reader can verify that the same phenomenon occurs in any positive characteris-

tic. For p 6= 2 our curve looks like an overweight deformation of the curve in A3(k)

defined by the binomials yp− xp+1,up2

2 − 2xp2(p+1)yp but these binomials do not

generate a prime ideal: the binomial u
p
2 − 2xp(p+1)y is not in the ideal, but its p-th

power is by Fermat’s little theorem. So appearances can be deceptive also from the

equational viewpoint.

We expect the same result in characteristic zero, and this is true as soon as the

field k contains the p-th roots of 2. In this case, by (the proof of) [4, Theorem 2.1]

the ideal I generated by yp−xp+1,up2

2 −2xp2(p+1)yp is not prime because the lattice

L in Z3 generated by (−(p+1), p,0) and (−p2(p+1),−p, p2) is not saturated; the

vector w = (−p(p+1),−1, p) is not in L , but pw is. Here the argument is that if I

was a prime ideal, at least one of the factors of the product ∏ζ p=2(u
p
2−ζxp(p+1)y) =

u
p2

2 − 2xp2(p+1)yp should be in I, which is clearly impossible.

This raises the following question: Given an algebraically closed field k, assum-

ing that we have a Puiseux expansion x = tn,y = ∑ j a jt
j, a j ∈ k, can one predict,

from the set { j/a j 6= 0}, useful information about the semigroup of the correspond-

ing plane curve, even only a bound on the number of generators? More generally,

denoting by k[[tQ≥0 ]] the Hahn ring of series whose exponents are non negative ra-

tional numbers forming a well-ordered set, and given a series y(t) ∈ k[[tQ≥0 ]] which

is integral over k[[t]], can one deduce from the knowledge about the exponents and

coefficients of y(t) provided by the work of Kedlaya in [7] useful information about

the semigroup of the plane branch whose equation is the integral dependence rela-

tion?

This example has another interesting feature. We note that no linear projection of

our plane curve to a line in the plane can be tamely ramified. However, our curve is a

deformation of the monomial curve, for which the projection to the u3-axis is tamely
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ramified. More precisely, the inclusion of k-algebras k[u3]⊂ k[tΓ ] corresponding to

u3 7→ t p5+p4+p3+p2+p+1 gives rise to an extension Z ⊂ Z of value groups, for the

u3-adic and t-adic valuations respectively, whose index is p5 + p4+ p3 + p2+ p+1

and hence prime to p, while there is no residue field extension. This is related to

what we saw in the first part of this section; it is precisely the coordinate u3 missing

in A3(k) which provides the tame projection.

It is a general fact that if Γ ⊂ Zr is a finitely generated semigroup generating Zr as

a group, given a system of generators Γ = 〈γ1, . . . ,γN〉 and an algebraically closed

field k, there always exist r of the generators, say γi1 , . . . ,γir such that the inclusion

of k-algebras k[ui1 , . . . ,uir ] ⊂ k[tΓ ] defined by uiℓ 7→ tγiℓ defines a tame extension

of the fraction fields. In fact, the corresponding map π :Speck[tΓ ]→ Ar(k) is étale

on the torus of Speck[tΓ ]. Note that the subset {i1, . . . , ir} ⊂ {1, . . . ,N} depends in

general on the characteristic of the field k. This is immediately visible in the case of

a monomial curve, where the result follows directly from the fact that the generators

of the semigroup are coprime since the semigroup generates Z as a group.

In the general case, as explained in [15, Proof of Proposition 3.20 and Proof of

Proposition 7.4], modulo a Gale-type duality this fact is an avatar of the fact that

the relative torus SpecZ[tZr
] of SpecZ[tΓ ] is smooth over SpecZ while of course the

whole toric variety is not. This implies, for each prime number p, the non-vanishing

on the torus of certain jacobian determinants which are exactly those whose non

vanishing is needed to ensure the étaleness of the map π . We note that the map π is

not finite in general; it is finite if and only if the vectors γi1 , . . . ,γir generate the cone

of Rr generated by Γ .

More precisely, recall the description found in [13], before Prop. 6.2, of the jacobian

ideal of an r-dimensional affine toric variety defined by a prime binomial ideal P⊂
k[U1, . . . ,UN ]. The jacobian determinant JG,L′ of rank c = N− r of the generators

(Umℓ
− λℓU

nℓ)ℓ∈{1,...,L} of P, associated to a sequence G = (k1, . . . ,kc) of distinct

elements of {1, . . . ,N} and a subset L′ ⊆ {1, . . . ,L} of cardinality c, satisfies the

congruence

Uk1
. . .Ukc

.JG,L′ ≡
(

∏
ℓ∈L′

Umℓ)

DetG,L′(〈m− n〉) mod.P,

where
(

〈m− n〉
)

is the matrix of the vectors (mℓ− nℓ)ℓ∈{1,...,L}, and DetG,L′ indi-

cates the minor in question. If the field k is of characteristic p, choosing a minor

which is not divisible by p amounts to choosing r of the coordinates such that the

corresponding projection to Ar(k) of a certain binomial variety containing the toric

variety as one of its irreducible components (see [4, Corollary 2.3]) is étale outside

of the coordinate hyperplanes.

It is shown in [15, Proof of Proposition 3.20] that for any prime p there exist

minors DetG,L′(〈m− n〉) which are not divisible by p. As mentioned above, this is

the equational aspect of the smoothness over SpecZ of the torus SpecZ[tZr
] of the

affine toric variety over Z corresponding to the subsemigroup Γ of Zr.

The next step is to realize that an overweight deformation preserves the non van-

ishing. Let us illustrate this on our example:
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The jacobian matrix of our three binomial equations over a field of characteristic p

is




−xp 0 0 0

0 −xp(p+1) 0 0

0 0 −xp2(p+1) 0





We see that there is only one minor which is non zero on the torus, where x 6=
0, corresponding to the inclusion k[u3] ⊂ k[tΓ ]. After the overweight deformation

which produces our plane branch, the jacobian matrix becomes





−xp 0 −1 0

0 −xp(p+1) 0 −1

0 0 −xp2(p+1) 0





and we see that the same minor is 6= 0. The facts we have just mentioned imply

that for each characteristic p, some of these minors are non zero modulo p. But the

duality implies that if ui1 , . . . ,uir are the variables not involved in the derivations

producing one such minor, then the absolute value of this minor, which is not divisi-

ble by p, is the index of the extension of groups Zγi1⊕·· ·⊕Zγir ⊂Zr. This explains

the tameness result we have just seen, and also why it is preserved by overweight

deformation. In our example the matrix
(

〈m− n〉
)

after reduction modulo p is





−1 0 0 0

0 −1 0 0

0 0 −1 0





In conclusion the method which we can apply to our curve, which is that if we embed

it in the affine space spanned by the monomial curve associated to its semigroup,

in any characteristic we are certain to find a tame projection to a coordinate axis,

will work for any finitely generated semigroup Γ in Zr generating Zr as a group and

provide tame projections to Ar(k) of the affine toric variety Speck[tΓ ], which will

remain tame after an overweight deformation. In order to obtain tame projections for

the space whose valuation we want to uniformize, we have to first re-embed it in the

space where the associated toric variety lives so that it can appear as an overweight

deformation. This is an important element in the proof of local uniformization for

rational Abhyankar valuations (those with value group ZdimR) on equicharacteristic

excellent local domains R with an algebraically closed residue field given in [15].

The reason is that the local uniformization of Abhyankar valuations on an equichar-

acteristic excellent local domain with algebraically closed residue field can be re-

duced to that of rational valuations of complete local domains whose semigroup is

a finitely generated subsemigroup of Zr and then the complete local domain is an

overweight deformation of an affine toric variety by [15, Proposition 5.1].
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2 Additive preorders and orders on Zr and projective limits of

toric varieties

In this section the space of additive preorders on Zr with a topology defined by

Kuroda and Sikora (see [8], [11]) is presented as homeomorphic to the projective

limit of finite topological spaces which are spaces of orbits on toric varieties with

the topology induced by the Zariski topology, and the space of additive orders as

the closed subspace corresponding to the projective limit of the subsets of closed

points of the preceding finite topological spaces. We use this to give a toric proof

of a theorem of Sikora in [11] showing that the space of additive orders on Zr with

r ≥ 2 is homeomorphic to the Cantor set. The relation between toric geometry and

preorders on Zr is due to Ewald-Ishida in [3] where they build the analogue in

toric geometry of the Zariski-Riemann space of an algebraic variety. This relation

was later developed by Pedro González Pérez and the author in [5], which contains

in particular the results used here. In that text we quoted Sikora’s result without

realizing that we could give a direct proof in our framework. We begin with the:

Proposition 1. Let I be a directed partially ordered set and (bι ′,ι :Xι ′ → Xι for ι ′ >
ι) a projective system indexed by I of surjective continuous maps between finite

topological spaces. Then:

a) The projective limit X of the projective system, endowed with the projective limit

topology, is a quasi-compact space.

b) In each Xι consider the subset Dι of closed points, on which the induced topology

is discrete. If we assume that:

1. The maps bι ′,ι map each Dι ′ onto Dι in such a way that the inverse image in the

projective limit D of the Dι by the canonical map b∞,ι :D → Dι of any element

of a Dι is infinite.

2. There exists a map h: I→N\{0} such that h(ι ′)≥ h(ι) if ι ′ > ι and h−1([1,m])
is finite for all m ∈ N\ {0}, where [1,m] = {1, . . . ,m}.

Then D is closed in X and homeomorphic to the Cantor set.

Proof. Statement a) is classical, see [6, 2-14] and [11]. The compactness comes

from Tychonoff’s theorem and the definition of the projective limit topology. To

prove b) we begin by showing that D can be endowed with a metric compatible with

the projective limit topology. Given w,w′ ∈D with w 6= w′, define r(w,w′) to be the

smallest integer n such that b∞,ι(w) 6= b∞,ι(w
′) for some ι ∈ h−1([1,n]). This is the

smallest element in a non-empty set of integers since if w 6= w′, by definition of the

projective limit there is an index ι0 such that b∞,ι0
(w) 6= b∞,ι0

(w′). Thus, our set con-

tains h(ι0). It follows from the definition that given three different w,w′,w” we have

that r(w,w”) ≥min(r(w,w′),r(w′,w”)), and that r(w,w′) = r(w′,w). We can define

a distance on D by setting d(w,w) = 0 and d(w,w′) = r(w,w′)−1 for w′ 6= w. By

the definition of the projective limit topology on D we see that it is totally discon-

tinuous because the Dι are and that every ball B(w,η) = {w′/d(w′,w) ≤ η} is the

intersection
⋂

ι∈h−1([1,⌊η−1⌋]) b−1
∞,ι(w) of finitely many open sets . The first assump-

tion implies that every ball of positive radius centered in a point of D is infinite, so
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that D is perfect. Finally, our space D is a perfect compact and totally disconnected

metric space and thus homeomorphic to the Cantor set by [6, Corollary 2-98]. The

fact that D is closed in X follows from the fact that each Dι is closed in Xι .

Remark 1. In [6, Theorem 2-95] it is shown that a compact totally disconnected

metric space is homeomorphic to the projective limit of a projective system of fi-

nite discrete spaces. The authors then show that if two such spaces are perfect, the

projective systems can be chosen so that their projective limits are homeomorphic.

We recall some definitions and facts of toric geometry that are needed for our pur-

pose, referring to [2] for proofs. Let M = Zr be the lattice of integral points in Rr

and N = HomZ(M,Z) its dual, a lattice in NR = Řr. We assume that r ≥ 2.

A (finite) fan is a finite collection Σ = (σα )α∈A of rational polyhedral strictly

convex cones in NR such that if τ is a face of a σα ∈ Σ , then τ is a cone of the fan,

and the intersection σα ∩σβ of two cones of the fan is a face of each. A rational

polyhedral convex cone is by definition the cone positively generated by finitely

many vectors of the lattice N, called integral vectors. It is strictly convex if it does

not contain any non zero vector space. Given a rational polyhedral cone σ , its con-

vex dual σ̌ = {u ∈ Rr/ < u,v >≥ 0 ∀v ∈ σ}, where < u,v >= v(u) ∈ R, is again a

rational polyhedral convex cone, which is strictly convex if and only if the dimen-

sion of σ , that is, the dimension of the smallest vector subspace of Řr containing σ
is r. A refinement Σ ′ of a fan Σ is a fan such that every cone of Σ ′ is contained in a

cone of Σ and the union of the cones of Σ ′ is the same as that of Σ . We denote this

relation by Σ ′ ≺ Σ .

By a theorem of Gordan (see [2, Chap. V, §3, Lemma 3.4]), for every rational

strictly convex cone in NR the semigroup σ̌ ∩M is a finitely generated semigroup

generating M as a group. If we fix a field k the semigroup algebra k[t σ̌∩M] is finitely

generated and corresponds to an affine algebraic variety Tσ over k, which may be

singular but is normal because the semigroup σ̌ ∩M is saturated in the sense that if

for some k ∈ N>0 and m ∈ M we have km ∈ σ̌ ∩M, then m ∈ σ̌ ∩M. To each fan

Σ is associated a normal algebraic variety TΣ obtained by glueing up the affine toric

varieties Speck[t σ̌∩M], σ ∈ Σ , along the affine varieties corresponding to faces that

are the intersections of two cones of the fan. A refinement Σ ′ of a fan Σ gives rise

to a proper birational map TΣ ′ → TΣ .

Each toric variety admits a natural action of the torus T{0} = (k∗)r = (k−points of)

Speck[tM] which has a dense orbit corresponding to the cone σ = {0} of the fan.

There is an inclusion reversing bijection between the cones of the fan and the orbits

of the action of the torus on TΣ . In an affine chart Tσ , the traces of the orbits of the

torus action correspond to faces Fτ of the semigroup σ̌ ∩M: they are the intersec-

tions of the semigroup with the linear duals τ⊥ of the faces τ ⊂ σ . The monomial

ideal of k[t σ̌∩M] generated by the monomials tδ ;δ /∈ Fτ is prime and defines the clo-

sure of the orbit corresponding to τ . When it is of maximal dimension the cone σ
itself corresponds to the zero dimensional orbit in Tσ and all zero dimensional orbits

are obtained in this way. A prime monomial ideal of k[t σ̌∩M] defines the intersection

with Tσ of an irreducible subvariety invariant by the torus action.
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A preorder on M is a binary relation�with the properties that for any m,n,o∈M

either m� n or n� m and m� n� o implies m� o.

An additive preorder on M is a preorder � such that if m� m′ then m+ n� m′+ n

for all n ∈M. It is a fact (see [10], [8], [3]) that given any additive preorder� on M

there exist an integer s, 1≤ s≤ r and s vectors v1, . . . ,vs in NR such that

m� n if and only if (< m,v1 >,. . . ,< m,vs >)≤lex (< n,v1 >,. . . ,< n,vs >),

where lex means the lexicographic order. An additive order is an additive preorder

which is an order. This means that the vector subspace of NR generated by ν1, . . . ,νs

is not contained in any rational hyperplane.

In accordance with the notations of [5] we denote by w a typical element of ZR(Σ)
and by m�w n the corresponding binary relation on Zr. Following Ewald-Ishida in

[3] we define a topology on the set of additive preorders as follows :

Definition 1. Let σ be a rational polyhedral cone in NR. Define Uσ to be the set

of additive preorders w of M such that 0 �w σ̌ ∩M. The Uσ are a basis of open

sets for a topology on the set ZR(M) of additive preorders on M. Given a fan Σ the

union ZR(Σ) =
⋃

σ∈Σ Uσ ⊂ ZR(M) endowed with the induced topology is defined

by Ewald-Ishida as the Zariski-Riemann manifold of the fan Σ . By [3, Proposition

2.10], it depends only on the support |Σ | =
⋃

σ∈Σ σ and if we assume |Σ | = NR, it

is equal to ZR(M).

This topology is the same as the topology defined in [8] and [11], where a pre-

basis of open sets is as follows: given two elements a,b ∈M a set of the pre-basis

is the set Ua,b of preorders w for which a �w b. Indeed, to say that a preorder w

is in the intersection
⋂

i Uai,bi
of finitely many such sets is the same as saying that

σ̌ ∩M ⊂ {m ∈M/0 �w m} where σ ⊂ NR is the rational polyhedral cone dual to

the cone σ̌ in MR generated by the vectors bi− ai. If σ̌ = Rr, the intersection is the

trivial preorder, where all elements are equivalent.

Theorem 1. (Ewald-Ishida in [3, Theorem 2.4]) The space ZR(M) is quasi-compact,

and for any finite fan Σ the space ZR(Σ) is quasi-compact.

It is shown in [3, Proposition 2.6] that to any fan Σ and any preorder w ∈ ZR(Σ) we

can associate a cone σ ∈ Σ . It is the unique cone with the properties 0 �w σ̌ ∩M

and σ⊥∩M = {m ∈ σ̌ ∩M/m�w 0 and m�w 0}. Following Ewald-Ishida, we say

that w dominates σ . If w is an order, σ is of maximal dimension r.

It is not difficult to verify that if Σ ′ is a refinement of Σ we have ZR(Σ ′) = ZR(Σ)
and moreover, given w∈ ZR(Σ) the corresponding cones σ ′,σ verify σ ′⊂σ , so that

we have a torus-equivariant map Tσ ′→ Tσ of the corresponding toric affine varieties.

Given a fan Σ its finite refinements, typically denoted by Σ ′, form a directed

partially ordered set. It is partially ordered by the refinement relation Σ ′ ≺ Σ . It is

a directed set because any two finite fans with the same support have a common

finite refinement (see [9, Chap. III] or [2, Chap. VI]). We are going to study three

projective systems of sets indexed by it. The set {TΣ ′} of torus-invariant irreducible

subvarieties of TΣ ′ , with the topology induced by the Zariski topology, the set OΣ ′



Two points of the boundary of toric geometry 9

of the torus orbits of TΣ ′ , again endowed with the Zariski topology, and finally the

set of 0-dimensional orbits, which is the set of closed points of OΣ ′ . The first two

sets are in fact equal because a torus invariant irreducible subvariety of TΣ is the

closure of an orbit. This is the meaning of [5, Lemma 3.3]: a prime monomial ideal

of k[t σ̌∩M] is generated by the monomials that are not in a face of the semigroup,

and the Lemma states that faces are the τ⊥ ∩ σ̌ ∩M, where τ is a face of σ and so

corresponds to an orbit.

The sets {TΣ ′} = OΣ ′ are finite since our collection of cones in each Σ ′ is fi-

nite. The topology induced by the Zariski topology of TΣ ′ on {TΣ ′} is such that the

closure of an element of {TΣ ′} is the set of orbits contained in the closure of the

corresponding orbit of the torus action.

Thus, the closed points of {TΣ ′} are the zero dimensional orbits of the torus action

on TΣ ′ and are in bijective correspondence with the cones of maximal dimension of

Σ ′.
Given a refinement Σ ′ ≺ Σ , the corresponding proper birational equivariant map

TΣ ′ → TΣ maps surjectively {TΣ ′} to {TΣ} and zero dimensional orbits to zero di-

mensional orbits. The map induced on zero dimensional orbits is surjective because

every orbit contains zero dimensional orbits in its closure.

Given an additive preorder w ∈ ZR(Σ) it dominates a unique cone σ ′ in each

refinement Σ ′ of Σ and defines a unique torus-invariant irreducible subvariety of

TΣ ′ corresponding to the prime ideal of k[t σ̌ ′∩M] generated by the monomials whose

exponents are �w 0. This defines a map

Z : ZR(Σ)−→ lim←−
Σ ′≺Σ

{TΣ ′}.

We now quote two results from [5]:

Theorem 2. (González Pérez-Teissier in [5, Proposition 14.8])

For any finite fan Σ , the map Z is a homeomorphism between ZR(Σ) with its Ewald-

Ishida topology and lim←−Σ ′≺Σ
{TΣ ′} with the projective limit of the topologies induced

by the Zariski topology.

Corollary 1. (González Pérez-Teissier in [5, Section 13]) If |Σ | = NR the map Z

is a homeomorphism between the space ZR(M) of additive preorders on Zr and

lim←−Σ ′≺Σ
{TΣ ′} and induces a homeomorphism between the space of additive orders

on M and the projective limit of the discrete sets {TΣ ′}0 of 0-dimensional orbits.

Definition 2. The height h(Σ) of a finite fan Σ in NR is the maximum absolute

value of the coordinates of the primitive vectors in N generating the one-dimensional

cones of Σ . There are only finitely many fans of height bounded by a given integer.

We note that the fan consisting of the 2r quadrants of NR and their faces has height

one.

Let us show that we can apply Proposition 1 to obtain the conjunction of Sikora’s

result in [11, Proposition 1.7] and Ewald-Ishida’s in [3, Proposition 2.3]:
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Proposition 2. For r ≥ 2 the space of additive preorders on Zr is quasi-compact. It

contains as a closed subset the space of additive orders, which is homeomorphic to

the Cantor set.

Proof. To apply Proposition 1, our partially ordered directed set is the set of fi-

nite fans in NR with support NR. The set of additive preorders is quasi-compact by

Proposition 1. Concerning the set of orders, we apply the second part of the propo-

sition. Our discrete sets are the sets {TΣ ′}0 of zero dimensional torus orbits of the

toric varieties TΣ ′ . Each refinement of a cone of maximal dimension contains cones

of maximal dimension and since r ≥ 2 each cone σ ′ ∈ Σ ′ can be refined into in-

finitely many fans with support σ ′ which produce as many refinements of Σ ′. To see

this, one may use the fact that each cone of maximal dimension, given any integral

vector in its interior, can be refined into a fan whose cones are all regular and which

contains the cone generated by the given integral vector (see [9, Chap. III] or [2,

Chap. VI]). Our function h(Σ ′) is the height of definition 2 above, which has the re-

quired properties since h(Σ ′) ≥ h(Σ) if Σ ′ ≺ Σ because the one dimensional cones

of Σ are among those of Σ ′.

Remark 2. There are of course many metrics compatible with the topology of the

space of orders induced by that of ZR(M) and another one is provided following [8,

§1] and [11, Definition 1.2]: Let B(0,D) be the ball centered at 0 and with radius D

in Rr. Define the distance d̃(w,w′) to be 0 if w = w′ and otherwise 1
D

, where D is the

largest integer such that w and w′ induce the same order on Zr ∩B(0,D). It would

be interesting to verify directly, perhaps using Siegel’s Lemma (see [12]), that the

distances d(w,w′) and d̃(w,w′) define the same topology.

Remark 3. The homeomorphism Z of Theorem 2 is the toric avatar of Zariski’s

homeomorphism between the space of valuations of a field of algebraic functions

and the projective limit of the proper birational models of this field. As explained

in [5, §13] the space of orders is the analogue for the theory of preorders of zero

dimensional valuations in the theory of valuations.

Acknowledgements I am grateful to Hussein Mourtada for interesting discussions of the first

topic of this note and for calling my attention to the phenomenon described in the case p = 2.
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