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MULTIPARAMETER PERTURBATION THEORY OF MATRICES AND

LINEAR OPERATORS

ADAM PARUSIŃSKI AND GUILLAUME ROND

Abstract. We show that a normal matrix A with coefficients in C[[X]], X = (X1, . . . , Xn),
can be diagonalized, provided the discriminant ∆A of its characteristic polynomial is a
monomial times a unit. The proof is an adaptation of our proof of the Abhyankar-Jung
Theorem. As a corollary we obtain the singular value decomposition for an arbitrary matrix
A with coefficient in C[[X]] under a similar assumption on ∆AA∗ and ∆A∗A.

We also show real versions of these results, i.e. for coefficients in R[[X]], and deduce
several results on multiparameter perturbation theory for normal matrices with real analytic,
quasi-analytic, or Nash coefficients.

1. Introduction

The classical problem of perturbation theory of linear operators can be stated as follows.
Given a family of linear operators or matrices depending on parameters, with what regularity
can we parameterize the eigenvalues and the eigenvectors?

This problem was first considered for families depending on one parameter. For the analytic
dependence the classical results are due to Rellich [21, 22, 23], and Kato [13]. For instance, by
[13] the eigenvalues, eigenprojections, and eigennilpotents of a holomorphic curve of (n× n)-
matrices are holomorphic in a complement of a discrete set with at most algebraic singularities.
By [22] the eigenvalues and eigenvectors of a real analytic curve of Hermitian matrices admit
real analytic parametrization.

More recently, the multiparameter case has been considered, first by Kurdyka and Paunescu
[14] for real symmetric and antisymmetric matrices depending analytically on real parame-
ters, and then for normal matrices by Rainer [18], [19] depending again on real parameters.
The main results of [14], [18] and [19] state that the eigenvalues and eigenspaces depend
analytically on the parameters after blowings-up in the parameter space. Note that for nor-
mal matrices this generalizes also the classical one-parameter case (there are no nontrivial
blowings-up of one dimensional nonsingular space). For a review of both classical and more
recent results see [18] and [20].

In this paper we show, in Theorem 2.5, that the families of normal matrices depending
on a formal multiparameter can be diagonalized formally under a simple assumption that
the discriminant of its characteristic polynomial (or the square-free form of the characteristic
polynomial in general) equals a monomial times a unit. Of course, by the resolution of
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singularities, one can make the discriminant normal crossings by blowings-up and thus recover
easily the results of [14], [18], and [19], see Section 5.

As a simple corollary of the main result we obtain in Section 3 similar results for the singular
value decomposition of families of arbitrary, not necessarily normal, matrices. Again, by the
resolution of singularities, we can make the discriminant of the family normal crossings by
blowings-up. This way we obtain a global version of the singular value decomposition theorem
after blowings-up in both the real case and the complex one.

Our choice of the formal dependence on parameters is caused by the method of proof that
is purely algebraic, but it implies analogous results for many Henselian subrings of the ring of
formal power series, see Section 4, in particular, for the analytic, quasi-analytic, and algebraic
power series (i.e. Nash function germs). The assumption that the rings are Henselian can not
be dropped, if we want to study the eigenvalues in terms of the coefficients of the matrix, or
its characteristic polynomial, we need the Implicit Function Theorem.

All these results are of local nature. In the last section we give a simple example of a
global statement of a family of matrices defined on an open set U that can be diagonalized
globally on U . This is true under the assumption that the discriminant of its characteristic
polynomial is locally normal crossings at every point of U and that U is simply connected
(see Theorem 6.1). We do not know a fully satisfactory general global theorem and we would
like to state it as an open problem.

Another novelty of this paper is the method of proof. Recall that in [14] the authors
first reparameterize (by blowing-up) the parameter space in order to get the eigenvalues
real analytic. Then they solve linear equations describing the eigenspaces corresponding to
irreducible factors of the characteristic polynomial. This requires to resolve the ideal defined
by all the minors of the associated matrices. A similar approach is adapted in [18] and
[19]. First the eigenvalues are made analytic by blowings-up and then further blowings-up
are necessary, for instance to make the coefficients of matrices and their differences normal
crossing.

Our approach is different. We adapt the algorithm of the proof of Abhyankar-Jung Theorem
of [17], and use a version of Hensel’s Lemma to handle directly the matrices (and hence
implicitly the eigenvalues and eigenspaces at the same time). This simplifies the proof and
avoids unnecessary blowings-up. We note that we cannot deduce our result directly from the
Abhyankar-Jung Theorem. Indeed, even under the assumption that the discriminant of the
characteristic polynomial is a monomial times a unit, the Abhyankar-Jung Theorem implies
only that its roots, that is the eigenvalues of the matrix, are fractional power series of the
parameters, that is the power series with positive rational exponents.

In a recent paper, Grandjean [9] shows results similar to these of [14], [18] and [19] but by a
different approach. Similarly to our strategy, he does not treat the eigenvalues first. Otherwise
his approach is quite different. He considers the eigenspaces defined on the complement of the
discriminant locus, denoted DA, and constructs an ideal sheaf FA with the following property.
If FA is principal then the eigenspaces extend to DA. The construction of the ideal sheaf FA

is quite involved, we refer the reader to [9] for details.
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1.1. Notation and conventions. For a commutative ring R and positive integers p and q,
we denote by Matp,q(R) the set of matrices with entries in R with p rows and q columns.
When p and q are equal to a same integer d, we denote this set by Matd(R).

Let X = (X1, . . . ,Xn) represent an n-tuple of indeterminates. These indeterminates will
be replaced by real variables in some cases. We denote by K[X] (resp. K[[X]], resp. K{X})
the ring of polynomials (resp. formal power series, resp. convergent power series) in X1, . . . ,
Xn.

We say that f ∈ C[[X]] is a monomial times unit if f = Xαa(X) = Xα1

1 · · ·Xαn
n a(X) with

a(0) 6= 0.
For a matrix A = A(X) ∈ Matd(C[[X]]), we denote by A∗ its adjoint, i.e. if the entries of

A(X) are the series

ai,j(X) =
∑

α∈Nn

ai,j,αX
α

then A∗(X) is the matrix whose entries are the bi,j(X) defined by

bi,j(X) = aj,i(X) =
∑

α∈Nn

aj,i,αX
α.

A matrix A ∈ Matd(C[[X]]) is called normal if AA∗ = A∗A and unitary if AA∗ = A∗A =
Id. The set of unitary matrices is denoted by Ud(C[[X]]).

For a matrix A ∈ Matd(C[[X]]), we denote by PA(Z) = Zd + c1(X)Zd−1 + · · ·+ cd(X) its
characteristic polynomial and by ∆A ∈ C[[X]] the first nonzero generalized discriminant of
PA(Z). Let us recall that ∆A equals

∑

r1<···<rl

∏

i<j;i,j∈{r1,...,rl}

(ξi − ξj)
2

where the ξi are the roots of PA(Z) in an algebraic closure of C((X)) and l is the number of
such distinct roots. Since ∆A is symmetric in the ξi it is a polynomial in the ck. Let us notice
that

(1) ∆A = µ1 . . . µl∆
′
A

where the µi are the multiplicities of the distinct roots of PA and ∆′
A is the discriminant of

the reduced (i.e. square-free) form (PA)red of its characteristic polynomial. One can look at
[27, Appendix IV] or [16, Appendix B] for more properties of these generalized discriminants
or subdiscriminants), and to [25] or [1] for an effective way of computing them.

2. Reduction of normal matrices

2.1. A version of Hensel’s Lemma for normal matrices. We begin by stating and prov-
ing the main technical tool for the reduction of normal matrices. This result is a strengthened
version of Cohn’s version of Hensel’s Lemma (see [6, Lemma 1]).

Lemma 2.1. Let A(X) ∈ Matd(C[[X]]) be a normal matrix. Assume that A(0) =

(
Bo

1 0
0 Bo

2

)
,

with Bo
i ∈ Matdi(C), d = d1 + d2, and such that the characteristic polynomials of Bo

1 and Bo
2
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are coprime.
Then there is a unitary matrix U ∈ Ud(C[[X]]), U(0) = Id, such that

U−1AU =

(
B1 0
0 B2

)
,(2)

and Bi(0) = Bo
i , i = 1, 2.

Proof. Consider

Ψ = (Ψ1,Ψ2,Ψ3,Ψ4) :

Ud(C[[X]]) ×Matd1(C[[X]]) ×Matd2(C[[X]]) ×Matd2,d1(C[[X]]) → Matd(C[[X]]),

defined by

(U, Y1, Y2, Y3) → U

(
Bo

1 + Y1 0
Y3 Bo

2 + Y2

)
U∗ =

(
T1 T4

T3 T2

)
.(3)

where Ψi(U, Y1, Y2, Y3) = Ti, i = 1, 2, 3, 4.
Recall that a tangent vector at Id to Ud(C[[X]]) is a matrix u that is skew-hermitian u = −u

∗.
We shall write it as

u =

(
z1 x

−x
∗

z2

)
.(4)

The differential of Ψ at (Id, 0, 0, 0) on the vector (u,y1,y2,y3) is given by

dΨi(u,y1,y2,y3) = yi + ziB
o
i −Bo

i zi, i = 1, 2(5)

dΨ3(u,y1,y2,y3) = y3 − x
∗Bo

1 +Bo
2x

∗,(6)

dΨ4(u,y1,y2,y3) = xBo
2 −Bo

1x.(7)

This differential is a linear epimorphism thanks to Lemma 2.4, that we state and prove below,
due to Cohn [6], see also [26]. Therefore, we may apply the Implicit Function Theorem (IFT).
More precisely, we apply the IFT to the following map of finitely dimensional manifolds

Ψ|M : M := Ud(C)×Matd1(C)×Matd2(C)×Matd2,d1(C) → Matd(C),

that by Lemma 2.4 is a submersion at (Id, 0, 0, 0). Note that the unitary group Ud(C) is not
a complex manifold but only a nonsingular real algebraic variety. Therefore, it is convenient
to work in the Nash real algebraic set-up. By the Nash IFT, see e.g. Corollary 2.9.8 of [5],

there exist open sets U ⊂ M , V ⊂ R
2d2 = Matd(C), with (Id, 0, 0, 0) ∈ U and Ψ(Id, 0, 0, 0) =

A(0) ∈ V, and local Nash diffeomorphisms

θ1 : U ′ ⊂ R
N −→ U , θ1(0) = (Id, 0, 0, 0)

θ2 : V −→ V ′ ⊂ R
2d2 , θ2(A(0)) = 0

such that θ2 ◦ Ψ|M ◦ θ1(t1, . . . , tN ) = (t1, . . . , t2d2). Here N is the dimension of M as a real

manifold, i.e. N = d2 + 2d21 + 2d22 + 2d1d2. The condition that θi are Nash diffeomorphisms
means that their components are given by algebraic power series with real coefficients.
Now we have that A(X) = A(0) +A(X) where A(0) = 0. Therefore θ2(A(X)) is well defined
and

θ2(A(0) +A(X)) = (t1(X), . . . , t2d2(X))
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where the ti(X) are real (formal) power series vanishing at 0. Let us choose freely real (formal)
power series t2d2+1(X), . . . , tN (X) vanishing at 0. We set

(U(X), Y1(X), Y2(X), Y3(X)) = θ1(t1(X), . . . , tN (X)).

This is well defined since the ti(X) are power series vanishing at 0. Then we have

Ψ(U(X), Y1(X), Y2(X), Y3(X)) = A(X)

and (U(0), Y1(0), Y2(0), Y3(0)) = (Id, 0, 0, 0).

This means that there are matrices B1 = Bo
1 + Y1(X), B2 = Bo

2 + Y2(X), B3 = Y3(X) such
that

U−1AU =

(
B1 0
B3 B2

)
.(8)

The matrix on the right-hand side is normal and block triangular. Therefore it is block
diagonal. This ends the proof of lemma. �

Remark 2.2. Lemma 2.1 remains valid if we replace C[[X]] by any subring containing the
ring of algebraic power series and stable under composition with algebraic power series.

Remark 2.3. The matrix U is not unique since N > 2d2.

Lemma 2.4. [6, Lemma 2.3][26] Let R be an unitary commutative ring, A ∈ Matp(R),
B ∈ Matq(R), C ∈ Matp,q(R), such that PA and PB are coprime, i.e. there exist polynomials
U and V such that UPA + V PB = 1. Then there is a matrix M ∈ Matp,q(R) such that
AM −MB = C.

Proof. By assumption there exist polynomials U and V such that UPA + V PB = 1. Set
Q = V PB . Then Q(A) = Ip and Q(B) = 0. Let us write Q(T ) =

∑r
i=0 qiT

i and set

M =
∑r

i=1 qi
∑i−1

k=0A
kCBi−k−1. Then

AM −MB = A
r∑

i=1

qi

i−1∑

k=0

AkCBi−k−1 −
r∑

i=1

qi

i−1∑

k=0

AkCBi−k−1B =

=

r∑

i=0

qiA
iC − C

r∑

i=0

qiB
i = Q(A)C − CQ(B) = C.

�

2.2. Complex normal matrices.

Theorem 2.5. Let A(X) = (ai,j)i,j=1,...,d ∈ Matd(C[[X]]) be normal and suppose that
∆A = Xα1

1 · · ·Xαn
n g(X) with g(0) 6= 0. Then there is a unitary matrix U ∈ Ud(C[[X]]) such

that

U(X)−1A(X)U(X) = D(X),

where D(X) is a diagonal matrix with entries in C[[X]].
If, moreover, the last nonzero coefficient of PA is a monomial times a unit, then the nonzero

entries of D(X) are also of the form a monomial times a unit Xαa(X) and their exponents
α ∈ N

n are well ordered.



6 ADAM PARUSIŃSKI AND GUILLAUME ROND

Proof of Theorem 2.5. We prove Theorem 2.5 by induction on d. Thus we suppose that
the theorem holds for matrices of order less than d. Our proof follows closely the proof of
Abhyankar-Jung Theorem given in [17], that is algorithmic and based on Theorem 1.1 of
[17]. The analog of this theorem for our set-up is Proposition 2.7. For its proof we will need
the following easy generalization of Theorem 1.1 of [17] to the case of matrices with a not
necessarily reduced characteristic polynomial.

Proposition 2.6. Let P (Z) = Zd + c2(X)Zd−2 + · · · + cd(X) ∈ C[[X]][Z] and suppose that
there is ci 6≡ 0. If the discriminant ∆ of (P )red equals a monomial times a unit, then the

ideal (c
d!/i
i (X))i=2,...,d ⊂ C[[X]] is principal and generated by a monomial.

Proof. By the Abhyankar-Jung Theorem, see e.g. [17], there is q ∈ N
n, qi ≥ 1 for all i, such

that the roots of Pred are in C[[X1/q ]] and moreover their differences are fractional monomials.
The set of these roots (without multiplicities) coincides with the set of roots of P . Then we
argue as in the proof of Proposition 4.1 of [17]. �

We note that the exponents make the c
d!/i
i (X) for i = 2, . . . , d homogeneous of the same

degree as functions of the roots of P . In the case of the characteristic polynomial of a matrix,
these coefficients will become homogeneous of the same degree in terms of the entries of the
matrix.

Proposition 2.6 implies easily its analog for normal matrices.

Proposition 2.7. Suppose that the assumptions of Theorem 2.5 are satisfied and that, more-
over, A is nonzero and Tr(A(X)) = 0. Then the ideal (aij)i,j=1,...,d ⊂ C[[X]] is principal and
generated by a monomial.

Proof. We denote by PA(Z) = Zd + c2(X)Zd−2 + · · · + cd(X) ∈ C[[X]][Z] the characteristic
polynomial of A(X). Since Tr(A(X)) = 0 we have that c1(X) = 0. Since A(X) is nonzero,

one of the ci is nonzero. Therefore, by Proposition 2.6 and (1), the ideal (c
d!/i
i (X))i=2,...,d is

principal and generated by a monomial. This is still the case if we divide A by the maximal
monomial that divides all entries of A. Thus we may assume that no monomial (that is not
constant) divides A. If A(0) = 0 then there is j such that all the coefficients ci(X) of PA are
divisible Xj . Therefore, for normal matrices, by Lemma 2.8, A|Xj=0 = 0, that means that all

entries of A are divisible by Xj , a contradiction. Thus A(0) 6= 0 that ends the proof. �

Lemma 2.8. Let A(X) ∈ Matd(C[[X]]) be normal. If every coefficient of PA is zero: ci(X) =
0, i = 1, . . . , d, then A = 0.

Proof. Induction on the number of variables n. The case n = 0 is obvious since the matrix
A(0) is normal.
Suppose ci(X) = 0 for i = 1, . . . , d. Consider A1 = A|X1=0. By the inductive assumption
A1 ≡ 0, that is every entry of A is divisible by X1. If A 6= 0 then we divide it by the maximal
power Xm

1 that divides all coefficients of A. The resulting matrix, that we denote by Ã, is

normal and the coefficients of its characteristic polynomial PÃ are c̃i(X) = X−im
1 ci(X) =

0. This is impossible because then PÃ1
= 0 and Ã1 6= 0, that contradicts the inductive

assumption. �

Now we can finish the proof of Theorem 2.5. We suppose that A is nonzero and make
a sequence of reductions simplifying the form of A(X). First we note that we may assume
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Tr(A(X)) = 0. Indeed, we may replace A(X) by Â(X) = A − Tr(A(X))Id. Then we may
apply Proposition 2.7 and hence, after dividing A by the maximal monomial that divides all
entries of A, assume that A(0) 6= 0.

Thus suppose A(0) 6= 0 and Tr(A(X)) = 0. Denote by P o(Z) the characteristic polynomial
of A(0). Since A(0) is normal, nonzero, of trace zero, it has at least two distinct eigenvalues.
Therefore, after a unitary change of coordinates, we may assume that A(0) is block diagonal

A(0) =

(
Bo

1 0
0 Bo

2

)
,(9)

with Bo
i ∈ Matdi(C), d = d1 + d2, and with the resultant of the characteristic polynomials

of Bo
1 and Bo

2 nonzero. By Lemma 2.1 there is a unitary matrix U ∈ Ud(C[[X]]), U(0) = Id,
such that

U−1AU =

(
B1 0
0 B2

)
,(10)

and Bi(0) = Bo
i , i = 1, 2.

Note that the matrices Bi satisfying the formula (10) have to be normal since A is normal.
Moreover, PU−1AU = PA = PB1

PB2
. This shows that the discriminants of (PB1

)red and
(PB2

)red divide the ∆A and hence we may apply to B1 and B2 the inductive assumption.
For the last claim we note that the extra assumption implies that each nonzero eigenvalue

of A is a monomial times a unit. Moreover the assumption on the discriminant implies the
same for all nonzero differences of the eigenvalues. Therefore by [2, Lemma 4.7], the exponents
of these monomials are well ordered. The proof of Theorem 2.5 is now complete. �

2.3. Real normal matrices. This is the real counterpart of Theorem 2.5.

Theorem 2.9. Let A(X) ∈ Matd(R[[X]]) be normal and suppose that ∆A = Xα1

1 · · ·Xαn
n g(X)

with g(0) 6= 0. Then there exists an orthogonal matrix O ∈ Matd(R[[X]]) such that

O(X)−1 · A(X) · O(X) =




C1(X)
. . . 0

Cs(X)
λ2s+1(X)

0
. . .

λd(X)



,(11)

where s ≥ 0, λ2s+1(X), . . . , λd(X) ∈ R[[X]] and the Ci(X) are (2× 2)-matrices of the form
[

a(X) b(X)
−b(X) a(X)

]
(12)

for some a(X), b(X) ∈ R[[X]]. If A(X) is symmetric we may assume that s = 0, i.e.
O(X)−1 ·A(X) ·O(X) is diagonal.

If, moreover, the last nonzero coefficient of PA is a monomial times a unit, then the nonzero
entries of O(X)−1 ·A(X) ·O(X) are of the form a monomial times a unit Xαa(X) and their
exponents α ∈ N

n are well ordered.
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Proof. This corollary follows from Theorem 2.5 by a classical argument.
By Theorem 2.5 there exists an orthonormal basis of eigenvectors of A(X) in C[[X]]d such

that the corresponding eigenvalues are

λ1(X), λ1(X), . . . , λs(X), λs(X), λ2s+1(X), . . . , λd(X),

where λi(X) ∈ C[[X]]\R[[X]] for i ≤ s, λi(X) ∈ R[[X]] for i ≥ 2s + 1 and a(X) denotes the
power series whose coefficients are the conjugates of a(X).
If vi(X) ∈ C[[X]]d is an eigenvector associated to λi(X) /∈ R[[X]] then vi(X) is an eigenvector
associated to λi(X). So we can assume that A(X) has an orthonormal basis of eigenvectors
of the form v1, v1, v2, v2, . . . , vs, vs, v2s+1, . . . , vd where v2s+1, . . . , vd ∈ R[[X]]d. Now let
us define

u1 =
v1 + v1√

2
, u2 = i

v1 − v1√
2

, . . . , u2s−1 =
vs + vs√

2
, u2s = i

vs − vs√
2

and

u2s+1 = v2s+1, . . . , ud = vd.

The vectors ui are real and form an orthonormal basis. We have that

A(X)u2k−1 = A(X)
vk + vk√

2
=

1√
2
(λkvk + λkvk) =

=
1√
2
(
1√
2
λk(u2k−1 − iu2k) +

1√
2
λk(u2k−1 + iu2k)) =

λk + λk

2
u2k−1 + i

λk − λk

2
u2k

and

A(X)u2k = i
λk − λk

2
u2k−1 +

λk + λk

2
u2k.

Therefore in the basis u1, . . .ud the matrix has the form (11).
If A(X) is symmetric then the matrix (11) is also symmetric and hence the matrices Ci(X)

are symmetric. Therefore we may assume that s = 0. �

3. Singular value decomposition

Let A ∈ Matm,d(C). It is well known (cf. [8]) that

A = UDV −1,(13)

for some unitary matrices V ∈ Um(C), U ∈ Ud(C), and a (rectangular) diagonal matrix D
with real nonnegative coefficients. The diagonal elements of D are the nonnegative square
roots of the eigenvalues of A∗A; they are called singular values of A. If A is real then V and U
can be chosen orthogonal. The decomposition (13) is called the singular value decomposition
(SVD) of A.

Let A ∈ Matm,d(C[[X]]). Note that

(14) if A∗Au = λu then (AA∗)Au = λAu.

Similarly, if AA∗v = λv then (A∗A)A∗v = λA∗v. Therefore the matrices A∗A and AA∗

over the field of formal power series C((X)) have the same nonzero eigenvalues with the same
multiplicities. In what follows we suppose m ≤ d. Then PA∗A = Zd−mPAA∗ .
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Theorem 3.1. Let A = A(X) ∈ Matm,d(C[[X]]), m ≤ d, and suppose that ∆A∗A =
Xα1

1 · · ·Xαn
n g(X) with g(0) 6= 0. Then there are unitary matrices V ∈ Um(C[[X]]), U ∈

Ud(C[[X]]) such that
D = V (X)−1A(X)U(X)

is (rectangular) diagonal.
If A = A(X) ∈ Matm,d(R[[X]]) then U and V can be chosen real (that is orthogonal) so

that V (X)−1A(X)U(X) is block diagonal as in (11).

Proof. We apply Theorem 2.5 to A∗A and AA∗. Thus there are U1 ∈ Ud(C[[X]]), U2 ∈
Um(C[[X]]) such that D1 = U−1

1 A∗AU1 and D2 = U−1
2 AA∗U2 are diagonal. If A(X) is real

then A∗A and AA∗ are symmetric so we may assume by Theorem 2.9 that U1 and U2 are
orthogonal.

Set Â = U−1
2 AU1. Then

Â∗Â = (U−1
2 AU1)

∗U−1
2 AU1 = U−1

1 A∗AU1 = D1

ÂÂ∗ = U−1
2 AU1(U

−1
2 AU1)

∗ = U−1
2 AA∗U2 = D2.

Thus by replacing A by Â we may assume that both A∗A and AA∗ are diagonal and we
denote them by D1 and D2 respectively.

There is a one-to-one correspondence between the nonzero entries of D1 and D2, that is
the eigenvalues of A∗A and AA∗. Let us order these eigenvalues (arbitrarily)

λ1(X), . . . , λr(X).(15)

By permuting the canonical bases of C[[X]]m and C[[X]]d we may assume that the entries on
the diagonals of A∗A and AA∗ appear in the order of (15) (with the multiplicities), completed
by zeros.

Since A sends the eigenspace of λ of A∗A to the eigenspace of λ of AA∗, A is block (rect-
angular) diagonal in these new bases, with square matrices Aλ on the diagonal corresponding
to each λ 6= 0. By symmetry A∗ is also block diagonal in these new bases with the square
matrices A∗

λ for each λ 6= 0. Since A∗
λAλ = AλA

∗
λ = λI, the matrix Aλ is normal. Thus The-

orem 2.5 shows that there exist unitary matrices U ′ and V ′ such that V ′−1AU ′ is diagonal.
Similarly, by Theorem 2.9 we conclude the real case. �

Example 3.2. Consider square matrices of order 1, that is d = m = 1, and identify such
a matrix with its entry a(X) ∈ C[[X]]. Then the assumption on the discriminant is always
satisfied. Let us write

a(X) = a1(X) + ia2(X), a1(X), a2(X) ∈ R[[X]].

A unitary 1× 1-matrix corresponds to a series u(X) = u1(X) + iu2(X) with u1(X), u2(X) ∈
R[[X]] such that u21 + u22 = 1. It is not possible in general to find unitary u and v such that
v(X)a(X)u(X) ∈ R[[X]] and hence in Theorem 3.1 we cannot assume that the entries of D
are real power series. Indeed, since all matrices of order 1 commute it is sufficient to consider
the condition a(X)u(X) ∈ R[[X]] that is equivalent to

a1u2 + a2u1 = 0.

But if gcd(a1, a2) = 1, for instance a1(X) = X1, a2(X) = X2, then X1|u1 and X2|u2 and
hence we see that u(0) = 0 that contradicts u21 + u22 = 1.
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A similar example in the real case, with A being a block of the form (12) and a(X) = X1,
b(X) = X2, shows that we cannot require D to be diagonal in the real case. Indeed, in this
case the (double) eigenvalue of A∗A is a2(X) + b2(X) and it is not the square of an element
of R[[X]].

Theorem 3.3. Suppose in addition to the assumption of Theorem 3.1 that the last nonzero

coefficient of the characteristic polynomial of ∆A∗A is of the form Xβ1

1 · · ·Xβn
n h(X) with

h(0) 6= 0. Then, in the conclusion of Theorem 3.1, both in the real and the complex case, we
may require that V (X)−1A(X)U(X) is (rectangular) diagonal with the entries on the diagonal
in R[[X]].

Moreover the nonzero entries of V (X)−1A(X)U(X) are of the form a monomial times a
unit Xαa(X) (we may additionally require that a(0) > 0) and their exponents α ∈ N

n are
well ordered.

Proof. By the extra assumption each nonzero eigenvalue of A∗A is a monomial times a unit.
The assumption on the discriminant implies the same for all nonzero differences of the eigen-
values. Therefore by [2, Lemma 4.7], the exponents of these monomials are well ordered.

In the complex case by Theorem 3.1 we may assume A diagonal. Thus it suffices to consider
A of order 1 with the entry a(X). Write a(X) = a1(X) + ia2(X) with ai(X) ∈ R[[X]].
By assumption, |a|2 = λ = Xβh(X) , h(0) 6= 0, where λ is an eigenvalue of A∗A. If
a21(X) + a22(X) is a monomial times a unit, then the ideal (a1(X), a2(X)) is generated by a
monomial, (a1(X), a2(X)) = Xγ(ã1(X), ã2(X)), 2γ = β and ã21(0) + ã22(0) 6= 0. Thus

a(X)u(X) = Xγ(ã21 + ã22)
1/2

with u(X) = ã1−iã2
(ã2

1
+ã2

2
)1/2

.

Let us now show the real case. It suffices to consider A of the form given by (12). By
assumption, a(X)2 + b(X)2 is a monomial times a unit and this is possible only if the ideal
(a(X), b(X)) is generated by a monomial, (a(X), b(X)) = Xγ(a0(X), b0(X)) and a20(0) +
b0(0)

2 6= 0. Then
[

a b
−b a

]
1

(a20 + b20)
1/2

[
a0 −b0
b0 a0

]
= Xγ

[
(a20 + b20)

1/2 0

0 (a20 + b20)
1/2

]

�

4. The case of a Henselian local ring

Let K = R or C. For every integer n ∈ N, we consider a subring of K[[X1, . . . ,Xn]], denoted
by K{{X1, . . . ,Xn}}. For a subrings, we consider the following properties:

(P1) K{{X1, . . . ,Xn}} contains K[X1, . . . ,Xn],

(P2) K{{X1, . . . ,Xn}} is a Henselian local ring with maximal ideal generated by the Xi

(P3) K{{X1, . . . ,Xn}} ∩ (Xi)K[[X1, . . . ,Xn]] = (Xi)K{{X}} for every i = 1, . . . , n

Let us stress the fact that a ring K{{X}} satisfying (P1), (P2), (P3) is not necessarily
Noetherian.
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The ring of algebraic K〈X〉 or convergent power series K{X} over K satisfy (P1), (P2),
(P3). In fact any ring satisfying (P1), (P2), (P3) has to contain the ring of algebraic power
series. The ring of germs of K-valued functions defined in a given quasianalytic class (i.e.
satisfying (3.1) - (3.6) of [4]) also satisfies (P1), (P2), (P3).
Moreover we have the following lemma:

Lemma 4.1. Let K{{X}} be a ring satisfying (P1), (P2), (P3). Let f1, . . . , fp ∈ K{{X}} be
vanishing at 0, and let g(Y ) ∈ K〈Y1, . . . , Yp〉. Then

g(f1, . . . , fp) ∈ K{{X}}.
Proof. Since K〈Y 〉 is the Henselization of K[Y ], we can write

g(Y ) = q0(Y ) +
m∑

i=1

qi(Y )gi(Y )

where the qi are polynomials and the gi are series of K〈Y 〉, gi(0) = 0, satisfying the Implicit
Function Theorem. That is, for every i = 1, . . . ,m, there is a polynomial Pi(Y, T ) ∈ K[Y, T ]
such that

Pi(0, 0) = 0,
∂Pi

∂T
(0, 0) 6= 0

and Pi(Y, gi(Y )) = 0. Let us set f = (f1, . . . , fp) and

Fi(X,T ) = Pi(f(X), T ) ∈ K{{X}}[T ].
We have

Fi(0, 0) = 0,
∂Fi

∂T
(0, 0) 6= 0.

Thus Fi = 0 has a unique solution in K[[X]] (and even in K{{X}}) vanishing at 0. But
gi(f1, . . . , fp) is clearly this solution, hence gi(f1, . . . , fp) ∈ K{{X}}. Therefore g(f1, . . . , fp) ∈
K{{X}}. �

We remark that the only tools we use for the proofs of Theorems 2.5, 2.9, 3.1 are the facts
that the ring of formal power series is stable by division by coordinates, the Implicit Function
Theorem (via Lemma 2.1 which is equivalent to the Henselian property), and the fact that
the ring of formal power series contains the ring of algebraic power series and is stable under
composition with algebraic power series (via Lemma 2.1 ; see Remark 2.2). Therefore, we
obtain the following:

Theorem 4.2. Theorems 2.5 (for K = C), 2.9 (for K = R), and 3.1 remain valid if we
replace K[[X]] by a ring K{{X}} satisfying (P1), (P2), (P3).

5. Rectilinearization of the discriminant

Often the discriminant ∆A does not satisfy the assumption of Theorem 2.5, that is it is not
a monomial times a unit. Then, in general, it is not possible to describe the eigenvalues and
eigenvectors of A as (even fractional) power series of X. But this property can be recovered by
making the discriminant ∆A normal crossings by means of blowings-up. This involves a change
of the intederminates X1, . . . ,Xn understood now as variables or local coordinates. Note that
in the previous sections all the algebraic operations concerned the matrices themselves and
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not the intederminates X1, . . . ,Xn. To stress this difference we will say that we work now in
the geometric case

In particular, in the complex case, such a change of local coordinates may affect the other
assumption of Theorem 2.5, A being normal. Consider, for instance, the following simple
example.

Example 5.1. ([14] Example 6.1.) The eigenvalues of the real symmetric matrix

A =

[
X2

1 X1X2

X1X2 X2
2

]

are 0 and X2
1 +X2

2 but the eigenvectors of A cannot be chosen as power series in X1,X2. The
discriminant ∆A = (X2

1 +X2
2 )

2 does not satisfy the assumption of Theorem 2.5.
Nevertheless, after a complex change of variables Y1 = X1 + iX2, Y2 = X1 − iX2 the

discriminant ∆A becomes a monomial Y 2
1 Y

2
2 . But in these new variables the matrix A is no

longer normal, since this change of variables does not commute with the complex conjugation.

The above phenomenon does not appear if the change of local coordinates is real. Therefore,
in the normal case we need to work in the real geometric case. We begin by this case.

Let M a real manifold belonging to one of the following categories: real analytic, real Nash,
or defined in a given quasianalytic class. In general, the Nash functions are (real or complex)
analytic functions satisfying locally algebraic equations, see e.g [5] for the real case. Thus
f : (Kn, 0) → K is the germ of a Nash function if and only if its Taylor series is an algebraic
power series. By a quasianalytic class we mean a class of germs of functions satisfying (3.1)
- (3.6) of [4].

We denote by OM the sheaf of complex-valued regular (in the given category) functions on
M . Let p ∈ M and let f ∈ OM,p. We say that f is normal crossings at p if there is a system
of local coordinates at p such that f is equal, in these coordinates, to a monomial times a
unit.

Theorem 5.2 (Compare Theorem 6.2 of [14]). Let M be a manifold defined in one of the
following categories:

(i) real analytic;
(ii) real Nash;
(iii) defined in a given quasianalytic class (i.e. satisfying (3.1) - (3.6) of [4]).

Let A ∈ Matm,d(OM (M)) and let K be a compact subset of M . Then there exist a neigh-
borhood Ω of K and the composite of a finite sequence of blowings-up with smooth centers
π : U −→ Ω, such that locally on U

(a) if A is a complex normal matrix, then A ◦ π satisfies the conclusion of Theorem 2.5;
(b) if A is a real normal matrix, then A ◦ π satisfies the conclusion of Theorem 2.9;
(c) if A is not necessarily a square matrix, then A◦π satisfies the conclusion of Theorems

3.1 and 3.3.

Proof. It suffices to apply the resolution of singularities, [12] in the Nash case, [2] in the
analytic case, [4] in the quasianalytic case, to f := ∆A in the cases (a) and (b), and to
f := ∆A∗A in the case (c). Then f becomes normal crossing, that is locally a monomial times
a unit, and we conclude by Theorem 4.2. �
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Remark 5.3. In the analytic and Nash cases, if A ∈ Matm,d(OM ) then there exists a globally

defined, locally finite composition of blowings-up with nonsingular centers π : M̃ → M , such
that (a), (b) and (c) are satisfied. Indeed this follows from [12] and [3, Section 13].

Now we consider the complex geometric case. Let M a complex manifold belonging either
to the complex analytic category, or the complex Nash category. We denote by OM the
sheaf of complex-valued regular (in the given category) functions on M . Let p ∈ M and let
f ∈ OM,p. As in the real case, we say that f is normal crossings at p if there is a system
of local complex coordinates at p such that f is equal, in these coordinates, to a monomial
times a unit.

Theorem 5.4. Let M be a manifold defined in the complex analytic or Nash category.
Let A ∈ Matm,d(OM ). Then there exists a locally finite composition of blowings-up with

nonsingular centers π : M̃ → M , such that the following holds:

For every p ∈ M̃ , there are an open neighborhood of p, Up ⊂ M̃ , and invertible matrices
V ∈ Matm(O

M̃
(Up)), U ∈ Matd(OM̃

(Up)), such that V (A ◦ π)U is rectangular diagonal.

Proof. Indeed in Theorem 3.1, the indeterminates X can be replaced by complex variables
(but here the matrices U(X) and V (X) are no longer unitary since the Xi are complex
variables). Therefore the proof of Theorem 5.4 is identical to the proof of Theorem 5.2 cases
(a) and (b). �

6. The global affine case

Let U be an open set of Rn. We denote by O(U) the ring of complex valued Nash functions
on U , i.e. the ring of real-analytic functions on U that are algebraic over C[X1, . . . ,Xn]. For
every point x ∈ U , we denote by O(U)x the localization of O(U) at the maximal ideal defining

x, i.e. the ideal mx := (X1 − x1, . . . ,Xn − xn). The completion of O(U)x, denoted by Ôx,
depends only on x and not on U and is isomorphic to C[[X1, . . . ,Xn]]. The theorem below
can be compared to Theorem 6.2 of [14], but note that the latter one is only local.

Theorem 6.1. Let U be a non-empty simply connected semialgebraic open subset of R
n.

Let the matrix A ∈ Matd(O(U)) be normal and suppose that ∆A is normal crossings on U .
Then:

i) the eigenvalues of A are in O(U). Let us denote by λ1, . . . , λs these distinct eigen-
values;

ii) there are Nash vector sub-bundles Mi of O(U)d such that

O(U)d = M1 ⊕ · · · ⊕Ms;

iii) for every u ∈ Mi, Au = λiu.

Proof. We have that PA ∈ O(U)[Z]. For every x ∈ U and Q(Z) ∈ O(U)[Z] let us denote by

Qx the image of Q in Ôx[Z]. By assumption ∆Ax is normal crossings for every x ∈ U .
By Theorem 4.2, locally at every point of U , the eigenvalues of A can be represented

by Nash functions, and therefore, since U is simply connected, they are well-defined global
functions of O(U). Let us denote these distinct eigenvalues by λ1,. . . , λs for s ≤ d. We set

Mi = Ker(λiId −A) for i = 1, . . . , s
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where λiId−A is seen as a morphism defined on O(U)d. Thus the Mi are sub-O(U)-modules
of O(U)d.

For an O(U)-module M , let us denote by Mx the O(U)x-module O(U)xM , and by M̂x

the Ôx-module ÔxM . By flatness of O(U) −→ O(U)x and O(U)x −→ Ô(U)x, we have that

Mix is the kernel of λiId −A seen as a morphism defined on O(U)dx, and M̂ix is the kernel of

λiId −A seen as a morphism defined on Ôd
x (see [15, Theorem 7.6]).

By Theorem 2.5, for every x ∈ U , we have that

M̂1x ⊕ · · · ⊕ M̂sx = Ôd
x.

Now let us set

N = O(U)d/(M1 + · · ·+Ms).

By assumption for every x ∈ U , we have that N̂x = 0. Because O(U) is Noetherian (see
[24, Théorème 2.1]), O(U)x is Noetherian. So since N is finitely generated the morphism

Nx −→ N̂x is injective (see [15, Theorem 8.11]). Therefore Nx = 0 for every x ∈ U .
Thus for every x ∈ U , Ann(N) 6⊂ mx where

Ann(N) = {f ∈ O(U) | fN = 0}

is the annihilator ideal of N . Since the maximal ideals of O(U) are exactly the ideals mx for
x ∈ U (see [5, Lemma 8.6.3]), Ann(N) is not a proper ideal of O(U), i.e. Ann(N) = O(U),
and O(U)d = M1 ⊕ · · · ⊕Ms.

For every x, we have that Mix/mxMix is a C-vector space of dimension ni,x that may depend
on x (this vector space is included in the eigenspace of A(x) corresponding to the eigenvalue
λi(x) - this inclusion may be strict since there may be another λj such that λj(x) = λi(x)).
So by Nakayama’s Lemma every set of ni,x elements of Mi whose images form a C-basis of
Mix/mxMix is a minimal set of generators of Mix. Therefore they make also a minimal set of
generators of the Frac(O(U))-vector space Ker(λiId−A) where λiId−A is seen as a morphism
defined on (Frac(O(U)))d. In particular ni,x is the dimension of the Frac(O(U))-vector space
Ker(λiId −A) and it is independent of x.
Now let u1, . . . , uni ∈ Mi be vectors whose images in Mix/mxMix form a basis of Mix/mxMix.
We can write

uj = (uj,1, . . . , uj,d)

where the uj,k are Nash functions on U . So there is a ni × ni minor δ of the matrix (uj,k)
that does not vanish at x, and hence there is a neighborhood V of x in U such that for every
x̃ ∈ V , δ(x̃) 6= 0 and the images of u1, . . . , uni form a basis of Mix̃/mx̃Mix̃. We define the
morphism of O(V )-modules

Φ : O(V )d −→ Mi(V )

by Φ(a1, . . . , ad) =
∑ni

j=1 ajuj. Since the uj generate the stalks Mix for every x ∈ V , Φx :

O(V )dx −→ Mix is an isomorphism for every x ∈ V so Φ is an isomorphism by [11, Proposition
II.1.1]. Hence Mi is a Nash sub-bundle of dimension ni.

�
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