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ON A GENERALIZED CANONICAL BUNDLE FORMULA AND

GENERALIZED ADJUNCTION

STEFANO FILIPAZZI

Abstract. In this note, we extend the theories of the canonical bundle formula and

adjunction to the case of generalized pairs. As an application, we study a particular

case of a conjecture by Prokhorov and Shokurov.
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1. Introduction

Recently, Birkar and Zhang introduced the notion of generalized pair [8]. This kind of
pair arises naturally in certain situations, such as the canonical bundle formula [27, 3,
18], and adjunction theory [27, 3, 5]. Furthermore, generalized pairs play an important
role in recent developments, such as the study of the Iitaka fibration [8], and the proof of
the BAB conjecture [5, 7].

Among the techniques in birational geometry, adjunction theory is one of the most
powerful tools. It relates the geometry and the singularities of the ambient variety to
those of appropriate subvarieties. We call adjunction the process of inferring statements
about a subvariety from some knowledge of the ambient variety, while the inverse and
usually more complicated process is called inversion of adjunction. The most satisfactory
formulation of this theory in the case of pairs is the following, due to Hacon [21].

Theorem 1.1 ([21, Theorem 0.1]). Let W be a log canonical center of a pair (X,∆ =
∑

δi∆i) where 0 ≤ δi ≤ 1. Then (X,∆) is log canonical in a neighborhood of W if and
only if (W,B(W ;X,∆)) is log canonical.

In the case that W has codimension 1, the statement takes the following simpler form,
originally due to Kawakita [26].

Theorem 1.2 ([26]). Let (X,S +B) be a log pair such that S is a reduced divisor which
has no common component with the support of B, let Sν denote the normalization of S,
and let Bν denote the different of B on Sν. Then (X,S + B) is log canonical near S if
and only if (Sν , Bν) is log canonical.
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In the setup of generalized pairs, Birkar has a version of divisorial inversion of adjunc-
tion under some technical conditions.

Theorem 1.3 (Lemma 3.2, [5]). Let (X ′, B′ +M ′) be a Q-factorial generalized pair with
data X → X ′ and M . Assume S ′ is a component of B′ with coefficient 1, and that
(X ′, S ′) is plt. Let

KS′ +BS′ +MS′ = (KX′ +B′ +M ′)|S′

be given by generalized adjunction. If (S ′, BS′ +MS′) is generalized log canonical, then
(X ′, B′ +M ′) is generalized log canonical near S ′.

The purpose of this work is to improve the statement of Theorem 1.3 and broaden
the current knowledge of inversion of adjunction in the setup of generalized pairs. As
the work of Birkar and Zhang does not consider adjunction for generalized log canonical
centers of higher codimension [8], a relevant part of this note is to develop an appropriate
theory in such setup.

In analogy to the work of Kawamata and Ambro [27, 3], we first define generalized
adjunction in the case of fibrations. Indeed, the canonical bundle formula is the key
tool to define adjunction on higher codimensional centers. In particular, we prove the
following, which partly answers a question posed by Di Cerbo and Svaldi [12, Remark
7.4].

Theorem 1.4. Let (X ′, B′ +M ′) be a projective generalized sub-pair with data X → X ′

and M . Assume that B′, M ′ and M are Q-divisors. Let f : X ′ → Z ′ be a contraction
such that KX′ +B′ +M ′ ∼Q,f 0. Also, let (X ′, B′ +M ′) be generalized log canonical over
the generic point of Z ′. Then, the b-divisor MZ′ is Q-Cartier and b-nef.

The key step towards the proof of Theorem 1.4 is the partial version given in Theorem
4.12. The main tool in the proof of the latter is the weak semi-stable reduction introduced
by Abramovich and Karu [25, 1].

A suitable theory for a generalized canonical bundle formula allows us to move our
focus to higher codimensional generalized log canonical centers. First, we introduce an
appropriate definition of adjunction in this setup. The main idea is the following: let
W ′ be a generalized log canonical center of a generalized pair (X ′, B′ +M ′), and fix a
generalized log canonical place E ⊂ X on a higher birational model. Thus, E inherits
a structure of generalized pair from divisorial generalized adjunction on X . Then, we
consider the fiber space E → W ′ and induce a generalized pair structure on W ′. In par-
ticular, the following result can be seen as a generalization of Kawamata’s subadjunction
[27].

Theorem 1.5. Let (X ′, B′ +M ′) be a generalized pair with data X → X ′→ V and M .
Let B′, M ′ and M be Q-divisors. Assume (X ′, B′ +M ′) is generalized log canonical, and
fix an exceptional generalized log canonical centerW ′ ⊂ X ′. Assume thatW ′ is projective.
Then, W ′ is normal, and it admits a structure of generalized pair (W ′,BW ′ +MW ′). In
particular, the b-divisor MW ′ is a b-nef Q-Cartier b-divisor, and (W ′,BW ′ + MW ′) is
generalized klt.

Once generalized adjunction is established, we focus on generalized inversion of ad-
junction. Following ideas of Hacon [21], we prove the following.

Theorem 1.6. Let (X ′, B′ +M ′) be a projective generalized pair with data X → X ′ and
M . Assume that B′, M and M ′ are Q-divisors. Let W ′ be a generalized log canonical
center of (X ′, B′+M ′) with normalizationW ν. Assume that a structure of generalized pair
(W ν ,BW ν +MW ν ) is induced on the normalization W ν of W ′. Then, (W ν ,BW ν +MW ν )
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is generalized log canonical if and only if (X ′, B′ +M ′) is generalized log canonical in a
neighborhood of W ′.

Here, the main ingredients are the MMP and Kawamata–Viehweg vanishing. In par-
ticular, Birkar and Zhang have developed an MMP in the setup of generalized pairs [8],
and we apply such machinery to our particular case. In general, the statements concern-
ing adjunction theory are proved by considering a suitable higher model of the starting
variety, where the divisors carrying discrepancy at most −1 have (close to) simple normal
crossing configuration. Once such a convenient arrangement is reached, the negativity
lemma and Kawamata–Viehweg vanishing apply. In the first formulations, the higher
model is a log resolution [31, cf. Theorem 5.50], and subsequently, the notion of dlt
model took place [21]. In this note, we introduce an appropriate generalization of the
latter.

Finally, we discuss some applications of the generalized canonical bundle formula to a
famous conjecture by Prokhorov and Shokurov [35, Conjecture 7.13]. We prove some in-
ductive statements, which allow reducing parts of the conjecture to some particular cases.
This leads to some progress towards the conjecture for fibrations of relative dimension 2.

Theorem 1.7. Let (X,B) be a sub-pair, with coeff(B) ∈ Q. Let f : X → Z be a
projective surjective morphism of normal varieties with connected fibers. Assume KX +
B ∼Q,f 0, and (X,B) is klt over the generic point of Z. If the geometric generic fiber Xη

is a surface not isomorphic to P2, then the b-divisor MY is b-semi-ample.

The proof of Theorem 1.7 relies on work of Shokurov and Prokhorov, who considered
the case of relative dimension 1 [35, Theorem 8.1], and work of Fujino, who proved the
statement when the fibers are surfaces of Kodaira dimension 0 [14]. Thus, excluding P2,
we are left with considering fibrations whose geometric generic fiber, up to taking the
minimal resolution, admits a morphism to a curve. Under this condition, we are able to
perform an inductive argument.

Under certain technical conditions, we can formulate Theorem 1.7 to also address the
case when the geometric generic fiber is P2. In particular, if the generic fiber (Xη, Bη) is
not terminal, its terminalization is a pair (X ′

η, B
′
η) such that X ′

η admits a morphism to a
curve, and B′

η ≥ 0. Thus, we can apply the strategy illustrated above. For the reader’s
convenience, we include this alternative version of Theorem 1.7 as a separate statement.

Theorem 1.8. Let (X,B) be a sub-pair, with coeff(B) ∈ Q. Let f : X → Z be a
projective surjective morphism of normal varieties with connected fibers and dimX −
dimZ = 2. Assume KX +B ∼Q,f 0, and (X,B) is klt but not terminal over the generic
point of Z. Then, the b-divisor MY is b-semi-ample.

After reviewing some facts about generalized pairs, we introduce the notion of weak
generalized dlt model, which carries analogs to most of the good properties of dlt models
[30, cf. Definitions and Notation 1.9]. In Theorem 3.2 we prove that such models exist.
Then, we switch the focus to the generalized canonical bundle formula. Once it is estab-
lished, we apply this machinery to the study of generalized adjunction and inversion of
adjunction. We conclude discussing some applications to the conjecture by Prokhorov
and Shokurov.
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fited from several discussions with Joaqúın Moraga and Roberto Svaldi. He would also
like to thank Tommaso de Fernex and Karl Schwede for helpful conversations. He is also
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2. Some notions about generalized pairs

Throughout this paper, we will work over an algebraically closed field of characteristic
0. In this section, we review some notions about generalized pairs. To start, we recall
the definition of pair and generalized pair.

Definition 2.1. A generalized (sub)-pair is the datum of a normal variety X ′, equipped
with projective morphisms X → X ′ → V , where f : X → X ′ is birational and X is
normal, an R-(sub)-boundary B′, and an R-Cartier divisor M on X which is nef over V
and such that KX′ + B′ +M ′ is R-Cartier, where M ′ := f∗M . We call B′ the boundary
part, and M ′ the nef part.

Remark 2.2. We have boundary and moduli b-divisors BX′ and MX′ naturally associ-
ated to a generalized pair. Their traces on a higher model X̃ are denoted by BX′,X̃ and
MX′,X̃ respectively. In particular, the moduli part is the R-Cartier b-divisor associated

to M , denoted by M . We say it descends to X̃ whenever MX′ = MX′,X̃ .

Remark 2.3. We recover the usual notion of (sub)-pair in the caseX = X ′,M =M ′ = 0.
Also, the variety V in Definition 2.1 is introduced to work in the relative setting. As it
does not contribute to the singularities of the generalized pair, unless otherwise stated,
we will consider the absolute case V = SpecC, and we will omit it in the notation. Notice
that, if V = Spec(C), X and X ′ are projective varieties.

Now, consider a generalized pair (X ′, B′+M ′) with data f : X → X ′→ V and M . Fix
a divisor E over X ′. As we are free to replace X with a higher model, we may assume
that E is a divisor on X itself. Then, we can write

KX +B +M = f ∗(KX′ +B′ +M ′),

where B is implicitly defined by the above equation and the choice f∗KX = KX′. Then,
the generalized discrepancy aE(X

′, B′ +M ′) of E with respect to (X ′, B′ +M ′) is −bE ,
where bE is the coefficient of E in B. We say that (X ′, B′ + M ′) is generalized log
canonical, in short glc, (respectively generalized Kawamata log terminal, in short gklt) if
aE(X

′, B′ +M ′) ≥ −1 (respectively aE(X
′, B′ +M ′) > −1) for any such E.

A subvariety W ′ ⊂ X ′ is called generalized non-klt center if there is a log resolution of
(X ′, B′+M ′) whereM descends, which we may assume to be f : X → X ′ itself, such that
B =

∑

biBi and max{bi|f(Bi) =W ′} ≥ 1. We sayW ′ is a generalized log canonical center
if max{bi|f(Bi) = W ′} = 1. In this situation, (X ′, B′ +M ′) is generalized log canonical
in a neighborhood of the generic point of W ′ [28, cf. Proposition 17.1.1]. Any divisor
E with aE(X

′, B′ +M ′) ≤ −1 dominating a generalized non-klt (log canonical) center
W ′ is called generalized non-klt (log canonical) place. We say that W ′ is an exceptional
generalized log canonical center if it is a generalized log canonical center admitting just
one generalized log canonical place EW ′ and such that the image of any other generalized
non-klt place is disjoint from W ′.

We say that (X ′, B′+M ′) is generalized dlt if (X ′, B′) is dlt, and every generalized non-
klt center of (X ′, B′+M ′) is a non-klt center of (X ′, B′). If, in addition, every connected
component of ⌊B′⌋ is irreducible, we say (X ′, B′ +M ′) is generalized plt. Notice that a
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generalized pair might be generalized dlt but not generalized log canonical, as the moduli
part may introduce deeper singularities over higher codimensional strata of ⌊B′⌋. On the
other hand, if (X ′, B′ +M ′) is generalized plt, then it is generalized log canonical.

Remark 2.4. In the case of usual pairs, i.e., X = X ′, M = M ′ = 0, the notion of
generalized discrepancy recovers the classic notion of discrepancy and the corresponding
measures of singularities.

Let (X ′, B′ +M ′) be a generalized pair with data X ′ → X → V and M . Let D′ be an
effective R-divisor on X ′ and N an R-Cartier divisor on X that is nef over V . Further,
assume that D′ +N ′ is R-Cartier, where N ′ denotes the pushforward of N to X ′. Then,
the generalized log canonical threshold of D′ +N ′ with respect to (X ′, B′ +M ′) is defined
as

glct(KX′ +B′ +M ′;D′ +N ′) := sup{t | KX′ +B′ +M ′ + t(D′ +N ′) is glc},

where (X ′, B′ + M ′ + t(D′ + N ′)) is considered as a generalized pair with boundary
part B′ + tP ′ and moduli part M ′ + tN ′. If the above set is empty, then we define the
generalized log canonical threshold to be −∞. Observe that glct(KX′ +B′+M ′;D′+N ′)
is non-negative provided that KX′ + B′ + M ′ is generalized log canonical. Moreover,
glct(KX′ +B′+M ′;D′+N ′) is infinite if and only if N descends on X ′ and D′ is trivial.

We can now review the notion of generalized adjunction, first introduced in [8]. Fix a
generalized pair (X ′, B′+M ′) with data f : X → X ′→ V andM . Let S ′ be an irreducible
component of B′ of coefficient one, and denote by Sν its normalization. Up to replacing
X with a higher model, we may also assume that X is a log resolution of (X ′, B′). Denote
by g : S → Sν the induced morphism, where S represents the strict transform of S ′ on
X .

As usual, we write

KX +B +M = f ∗(KX′ +B′ +M ′).

Then, we set

KS +BS +MS := (KX +B +M)|S,

where BS := (B − S)|S and MS := M |S. Define BSν := g∗BS, and MSν := g∗MS . By
construction, we get

KSν +BSν +MSν = (KX′ +B′ +M ′)|Sν .

We refer to such operation as generalized divisorial adjunction. As discussed in [8, Defini-
tion 4.7], in the case (X ′, B′+M ′) is generalized log canonical, the divisor BSν is effective
on Sν , and therefore (Sν , BSν +MSν ) is a generalized pair with data g : S → Sν and MS .

As mentioned in the introduction, generalized pairs arise naturally in the context of
the canonical bundle formula. Such construction was first introduced by Kawamata [27],
and then widely studied by Ambro [3], and Fujino and Mori [18]. We will just recall
the main features of the so-called adjunction for fiber spaces, and refer to [5] for a more
complete exposition.

Let (X,B) be a sub-pair, and let f : X → Z be a contraction (i.e., a projective mor-
phism such that f∗OX = OZ), where dimZ > 0. Assume that (X,B) is sub-log canonical
near the generic fiber of f , and that KX +B ∼R,f 0. For each prime divisor D on Z, let
tD be the log canonical threshold of f ∗D with respect to (X,B) over the generic point of
D. As Z is normal, it is smooth along the generic point ηD of D; therefore, f ∗D is well
defined in a neighborhood of ηD, and the definition of tD is well posed.

Then, set BZ :=
∑

bDD, where bD := 1 − tD. Notice that bD = 0 for all but finitely
many prime divisors on Z. By assumption, we can find an R-Cartier divisor LZ such
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that KX +B ∼R f
∗LZ . Define MZ := LZ − (KZ +BZ). Thus, we have

KX +B ∼R f
∗(KZ +BZ +MZ).

As LZ is defined just up to R-linear equivalence, so is MZ . On the other hand, BZ is an
honest R-divisor on Z.

Taking higher models X ′ and Z ′ of X and Z respectively, one can induce divisors BZ′

and MZ′ on Z ′. These agree with BZ and MZ under pushforward, thus defining Weil
b-divisors BZ and MZ . In particular, if Z ′ is sufficiently high, MZ′ is pseudoeffective.
Furthermore, under certain natural conditions, the b-divisor MZ is a b-nef Q-Cartier
b-divisor [5, cf. Theorem 3.6].

3. Weak generalized dlt models

In this section, we introduce suitable modifications of a given generalized pair. In order
to do so, we need to recall the corresponding construction in the case of usual pairs. We
refer to [30] for a more detailed discussion of the topic. The results of this sections hold
for arbitrary generalized pairs (X ′, B′ +M ′) with data X → X ′ → V and M , without
the assumption V = Spec(C).

Let (X,∆) be a pair, and let fm : Xm → X be a proper birational morphism whose ex-
ceptional locus Ex(fm) is purely divisorial. Let {Ei}

n
i=1 denote the set of irreducible

exceptional divisors, and let {ai}
n
i=1 denote the corresponding discrepancies. Define

∆m := (fm)−1
∗ (∆ ∧ Supp(∆)) +

∑

ai≤−1Ei, where the symbol ∧ denotes the follow-

ing operation. Given two divisors D1 =
∑n

i=1 diPi and D2 =
∑n

i=1 eiPi, we define
D1 ∧ D2 :=

∑n
i=1min{di, ei}Pi. Then, (Xm,∆m) is a minimal dlt model of (X,∆) if

it is a dlt pair and the discrepancy of every fm-exceptional divisor is at most −1. The
existence of such models is due to Hacon.

Theorem 3.1 ([30, Theorem 3.1]). Let (X,∆) be a pair such that X is quasi-projective,
∆ a boundary, and KX + ∆ a Q-Cartier divisor. Then (X,∆) admits a Q-factorial
minimal dlt model fm : (Xm,∆m) → (X,∆).

In the setup of generalized pairs, we prove the following, which is a generalization of
Theorem 3.1.

Theorem 3.2. Let (X ′, B′ + M ′) be a generalized pair with data X → X ′→ V and
M . Then, there exists a Q-factorial model fm : Xm → X ′ such that every fm-exceptional
divisor has generalized discrepancy with respect to (X ′, B′+M ′) at most −1. Furthermore,
the pair (Xm, Bm) is dlt, where Bm := (fm)−1

∗ (B ∧ Supp(B)) +Em, and Em denotes the
reduced fm-exceptional divisor.

Remark 3.3. The construction in Theorem 3.2 produces a generalized pair (Xm, Bm +
Mm) with data X → Xm→ V and M 1. By construction, the singularities of (Xm, Bm+
Mm) are milder than the ones of (X ′, B′ +M ′). Nevertheless, the construction does not
guarantee that (Xm, Bm +Mm) is generalized dlt. Therefore, we call (Xm, Bm +Mm) a
weak generalized dlt model for (X ′, B′ +M ′).

Proof. Let f : X → X ′ be a log resolution of (X,B) where M descends. Also, assume it
is obtained by blowing up loci of codimension at least two. In this way, there exists an
effective and f -exceptional divisor C such that −C is f -ample.

Set {B′} := B′ − ⌊B′⌋, and define B via the identity

KX +B +M = f ∗(KX′ +B′ +M ′).

1In general, we need to replace the X and M appearing in the statement of the theorem with higher

models for X → Xm to be a morphism. This is clear from the proof.
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Then, we can decompose B as B = f−1
∗ {B′}+E+ + F −G, where E+ denotes the (non

necessarily f -exceptional) divisors with generalized discrepancy at most −1, F the sum
of all f -exceptional divisors with generalized discrepancy in (−1, 0], and G the sum of all
f -exceptional divisors with positive generalized discrepancy. Also, define E := redE+.

Let H ′ be a sufficiently ample divisor on X ′. Then, for all ǫ, µ, ν ∈ R, we have

(1) E+(1+ν)F +µ(−C+f ∗H ′)+M = (1− ǫµ)E+(1+ν)F +µ(ǫE−C+f ∗H ′)+M.

If 0 < ǫ ≪ 1 and µ > 0, both µ(−C + f ∗H ′) +M and µ(ǫE − C + f ∗H ′) +M are
ample over X ′, hence R-linearly equivalent over X ′ to divisors H1,µ and H2,µ such that
B +H1,µ +H2,µ has simple normal crossing support, and ⌊H1,µ⌋ = ⌊H2,µ⌋ = 0.

Thus, if 0 < µ < 1 and 0 < ν ≪ 1, the pair

(X, f−1
∗ {B′}+ (1− ǫµ)E + (1 + ν)F +H2,µ)

is klt. By [9], it has a Q-factorial minimal model over X ′

fm
ǫ,µ,ν : (X

m
ǫ,µ,ν ,∆

m
ǫ,µ,ν) → X ′.

In virtue of identity (1), fm
ǫ,µ,ν is also a minimal model for the pair

(X, f−1
∗ {B′}+ E + (1 + ν)F +H1,µ).

As the dlt property is preserved under steps of the MMP [31, Corollary 3.44], the resulting
model is dlt as well. Hence, the pair (Xm

ǫ,µ,ν, B
m
ǫ,µ,ν) is dlt, where B

m
ǫ,µ,ν denotes the strict

transform of f−1
∗ {B′}+ E + F on Xm

ǫ,µ,ν.
Now, let Γm

ǫ,µ,ν be the strict transform on Xm
ǫ,µ,ν of any other divisor Γ on X . Then,

define
N := KXm

ǫ,µ,ν
+Bm

ǫ,µ,ν + νFm
ǫ,µ,ν +Hm

1,ǫ,µ,ν ∼R KXm
ǫ,µ,ν

+∆m
ǫ,µ,ν ,

and

T := KXm
ǫ,µ,ν

+Bm
ǫ,µ,ν + (E+ −E)mǫ,µ,ν −Gm

ǫ,µ,ν +Mm
ǫ,µ,ν ∼R (fm

ǫ,µ,ν)
∗(KX′ +B′ +M ′).

The first one is fm
ǫ,µ,ν-nef, while the latter one is fm

ǫ,µ,ν-trivial. Their difference can be
written as

T −N ∼R,fm
ǫ,µ,ν

µCm + (E+ − E)mǫ,µ,ν −Gm
ǫ,µ,ν − νFm

ǫ,µ,ν =: Dm
ǫ,µ,ν.

In particular, −Dm
ǫ,µ,ν is fm

ǫ,µ,ν-nef and fm
ǫ,µ,ν exceptional. Therefore, by the negativity

lemma [31, Lemma 3.39], Dm
ǫ,µ,ν is effective.

As C, E+ −E, F and G are independent of ǫ, µ, ν, if we choose 0 < µ ≪ ν ≪ 1, both
Gm

ǫ,µ,ν and νFm
ǫ,µ,ν vanish 2, as F and G are contracted by the MMP. Thus, we perform

such a choice of coefficients, and we drop the dependence from ǫ, µ, ν in our notation.
Then, the generalized pair (Xm, Bm+Mm) with data X→ Xm → V and M satisfies the
claimed conditions. �

In the case the input of Theorem 3.2 is generalized log canonical, then the generalized
pair (Xm, Bm+Mm) is the crepant pullback of (X ′, B′+M ′), and is therefore generalized
log canonical. Thus, we can talk about generalized dlt model, and we make this definition
more precise with the following statement.

Corollary 3.4 ([5, cf. 2.6.(2)]). Let (X ′, B′ +M ′) be a generalized pair with data X →
X ′→ V and M . Assume (X ′, B′ +M ′) is generalized log canonical. Then (X ′, B′ +M ′)
admits a Q-factorial weak generalized dlt model (Xm, Bm +Mm) such that KX′ + B′ +
M ′ = (fm)∗(KX′ + B′ +M ′). We will call (Xm, Bm +Mm) a generalized dlt model for
(X ′, B′ +M ′).

2As µ ≪ ν, the contribution of µCm is negligible in order to determine effective and anti-effective

parts of Dm

ǫ,µ,ν
. Since Dm

ǫ,µ,ν
≥ 0, then Gm

ǫ,µ,ν
and Fm

ǫ,µ,ν
are forced to be 0.
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In some situations, it is useful to extract certain divisors on a weak generalized dlt
model. The following proposition makes this precise [8, cf. Lemma 4.5].

Proposition 3.5. Let (X ′, B′ +M ′) be a generalized pair with data X → X ′→ V and
M . Let W ′ ⊂ X ′ be a generalized log canonical center of (X ′, B′ +M ′), and let P be a
generalized log canonical place with center W ′. Then, there exists a weak generalized dlt
model (Xm, Bm +Mm) such that P is a divisor on Xm.

Proof. In case W ′ is a divisor, the statement is trivial. Therefore, we can assume that
P is exceptional over X ′. Without loss of generality, we may assume that P appears
on X , and that f : X → X ′ is a log resolution of (X ′, B′). Define Γ′ := B′ ∧ Supp(B′),
and Γ := f−1

∗ Γ′. Denote by E the exceptional divisor with reduced structure, and set
∆ := Γ + E.

Then, we have

KX +∆+M ∼R,f A− C,

where A ≥ 0 is supported on the exceptional divisors with generalized discrepancy strictly
greater than −1, and C ≥ 0 is supported on the divisors with generalized discrepancy
strictly less than −1. Notice that C may have components that are not exceptional over
X ′. Now, run the (KX + ∆ +M)-MMP over X ′ with scaling of an ample divisor [8, p.
17]. After finitely many steps, we reach a model X ′′ such that KX′′ + ∆′′ +M ′′ is limit
of divisors that are movable over X ′. Thus, it intersects non-negatively the very general
curves over X ′ of any divisor that is exceptional for X ′′ → X ′. Then, the same holds
true for A′′ − C ′′. Therefore, by [6, Lemma 3.3], A′′ = 0. Hence, X ′′ → X ′ extracts just
divisors of generalized discrepancy at most −1. Now, as (X ′, B′ +M ′) is generalized log
canonical in a neighborhood U ′ of the generic point of W ′, over U ′ we just performed the
proof of [8, Lemma 4.5]. That is, we extracted a prescribed set of divisors with negative
generalized discrepancies. In particular, we have not contracted P .

Now, let (X ′′, B′′ + M ′′) be the trace of the generalized pair (X ′, B′ + M ′) on X ′′.
By construction, it is a generalized pair, as B′′ ≥ 0. Let (Xm, Bm +Mm) be a weak
generalized dlt model of (X ′′, B′′ +M ′′). Then, (Xm, Bm +Mm) satisfies the claimed
properties. �

4. Towards a generalized canonical bundle formula

As first noticed by Kawamata [27], and then studied by Ambro [3], the canonical
bundle formula is needed to formulate an adjunction theory for higher codimensional log
canonical centers. Thus, in order to generalize the ideas developed in [8] and [5], we need
to extend the machinery of fiber space adjunction to generalized pairs.

Let (X ′, B′+M ′) be a generalized sub-pair with data X → X ′ andM . Let f : X ′ → Z ′

be a contraction where dimZ ′ > 0. Assume that (X ′, B′ +M ′) is generalized sub-log
canonical near the generic fiber of f , and KX′ + B′ +M ′ ∼R,f 0. For any prime divisor
D′ on Z ′, let tD′ be the generalized log canonical threshold of f ∗D′ with respect to
(X ′, B′+M ′) over the generic point of D′. Then, set BZ′ :=

∑

bD′D′, where bD′ := 1−tD′ .
By construction, there is an R-Cartier divisor LZ′ such that KX′ + B′ +M ′ ∼R f ∗LZ′ .
Define MZ′ := LZ′ − (KZ′ +BZ′). Hence, we can write

KX′ +B′ +M ′ ∼R f
∗(KZ′ +BZ′ +MZ′).

We refer to this operation as generalized adjunction for fiber spaces.

Remark 4.1. As in the case of the usual adjunction for fiber spaces, BZ′ is a well defined
and uniquely determined divisor, while MZ′ is defined up to R-linear equivalence.
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Now, let X̃ and Z̃ be higher birational models of X ′ and Z ′ respectively, and assume
we have a commutative diagram of morphisms as follows

X̃ X ′

Z̃ Z ′

φ

g f

ψ

We denote by M̃ the trace of the moduli part on X̃. As usual, define B̃ via the identity

KX̃ + B̃ + M̃ = φ∗(KX′ +B′ +M ′).

Furthermore, set LZ̃ := ψ∗LZ′. With this piece of data, we can define divisors BZ̃ and
MZ̃ such that

KX̃ + B̃ + M̃ ∼R g
∗(KZ̃ +BZ̃ +MZ̃),

BZ′ = ψ∗BZ̃ and MZ′ = ψ∗MZ̃ . In this way, Weil b-divisors BZ′ and MZ′ are defined.

We write BZ′,Z̃ and MZ′,Z̃ for the traces of BZ′ and MZ′ on any higher model Z̃.
Now, in the same fashion as the classic theory, we would like to establish properties

of the b-divisors BZ′ and MZ′ . Before doing so, we need to recall a few more technical
ingredients.

Given an R-Weil b-divisor D on X , we can define an associated b-divisorial sheaf
OX(D) as follows. For every open set U ⊂ X , we define Γ(U,OX(D)) as the set of
rational functions α ∈ k(X) such that multE(div(α) + D) ≥ 0 for every valuation E
whose center satisfies cX(E) ∩ U 6= ∅.

Recall that a b-divisor D is called b-nef/S (b-free/S, b-semi-ample/S, b-big/S) if there
exists a birational morphism X → X ′ such that D = DX , and DX is nef (free, semi-
ample, big) relatively to the morphism X → S.

Let (X ′, B′ +M ′) be a generalized sub-pair with data X → X ′ and M . We denote by
KX′ and MX′ the canonical b-divisor of X ′ and the moduli b-divisor respectively. We
define the generalized discrepancy b-divisor as

A(X ′, B′ +M ′) := KX′ +MX′ −KX′ +B′ +M ′,

where the overline symbol denotes the R-Cartier b-divisor associated to an R-Cartier
divisor. We will write just A if there will be no ambiguity. We also set

A∗(X ′, B′ +M ′) := A(X ′, B′ +M ′) +
∑

aE(X′,B′+M ′)=−1

E.

Remark 4.2. If X ′′ is a model where M descends, then the b-divisors A(X ′, B′ +M ′)
and A∗(X ′, B′ +M ′) agree with the usual b-divisors A(X ′′,BX′′) and A∗(X ′′,BX′′) on
all the models X ′′′ over X ′′ [2, cf. pp. 5-6].

As explained in [2, Remark 2.2] and [29, Definition 8.4.2], the b-divisors A and A∗

are important to use Hodge theoretic techniques to investigate b-nefness and b-semi-
ampleness of the moduli b-divisor MX′ . In particular, they impose certain conditions
that guarantee that a specific vector bundle is a line bundle. For similar reasons, such
conditions are needed in this work.

Remark 4.3. As the moduli part MX descends to some model X , the boundary part
BZ′ satisfies similar properties as in the classical theory. In particular, the finite base
change property still holds [3, Theorem 3.2].

More precisely, let α : Y ′ → X ′ be a generically finite map from a normal projective
variety Y ′. Also, let Y be a higher model of Y ′ admitting a morphism β : Y → X . Denote
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by ϕ the morphism ϕ : Y → Y ′. Let KY +BY := β∗(KX +B) be the crepant pullback of
KX + B to Y . Also, denote MY := β∗M . Then, define BY ′ := ϕ∗BY and MY ′ := ϕ∗MY .
Thus, we induced a structure of generalized sub-pair on Y ′.

Now, let γ : W ′ → Z ′ be the normalization of Z ′ in Y ′. Denote by BW ′ and MW ′ the
boundary and moduli parts induced on W ′ by Y ′ → W ′. Then, we have KW ′ + BW ′ =
γ∗(KZ′ +BZ′), and MW ′ = γ∗MZ′.

In particular, in order to prove that the moduli b-divisor MZ′ induced by a fibration
X ′ → Z ′ is a Cartier b-divisor, we are free to replace X ′ → Z ′ with a fibration induced
by generically finite base change. Furthermore, the same reduction applies when we want
to show b-nefness or b-semi-ampleness [33, Example 1.4.4.(ii)], [19, Theorem 1.20].

Now, we recall two natural constructions that arise in view of Remark 4.3.

Definition 4.4. Let f : X → Z be a contraction, and let (X,B) be a sub-pair. We say
that the morphism f is prepared if the following properties are satisfied:

• X and Z are smooth;
• there is a simple normal crossing divisor Σ ⊂ Z such that g : X → Z is smooth
over Z \ Σ;

• Supp(B) + g∗Σ has simple normal crossing support; and
• B is relatively simple normal crossing over Z \ Σ.

Equivalently, we call the above properties standard normal crossing assumptions [29,
Definition 8.3.6].

Now, we will make use of some constructions related to toric and toroidal geometry.
We refer to [25, 1] for the key definitions and properties. We will recall just the facts that
we will explicitly use.

Definition 4.5. Let f : X → Y be a toroidal morphism. We say that X has good
horizontal divisors if at every point x ∈ X we can find a local model of the form

Xσ = Xσ′ × Al,

where the horizontal divisors in X \ UX through x are exactly the pullbacks of the coor-
dinate hyperplanes in Al.

Definition 4.6. A toroidal morphism f : X → Y with good horizontal divisors is called
weakly semi-stable if

• the morphism f is equidimensional;
• all the fibers of f are reduced; and
• Y is non-singular.

If also X is non-singular, we say that the morphism f : X → Y is semi-stable.

Now, we include a technical statement that will be useful in the following.

Proposition 4.7. Let f : X → Z be a morphism of projective varieties, M be an R-
Cartier divisor on X, and H be an ample divisor on Z. If M is nef on X and relatively
semi-ample over Z, then M + ǫf ∗H is semi-ample for any ǫ > 0.

Proof. First, assume that M is relatively ample over Z. Then, for l ≫ 1, M + lf ∗H is
ample, as H is ample on Z, and M ample over Z. Then, as M is nef, kM + (M + lf ∗H)
is ample for any k > 0. As we can choose the real numbers l and k so that the ratio l

k+1

equals any given ǫ > 0, the claim follows.
Now, consider the general setup of the statement. As M is relatively samiample, there

exists a morphism g : X → Y over Z, such that M ∼R,Z g∗N , where N is ample over
Z [22, p. 22]. Without loss of generality, we may assume that g is surjective. Also,
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up to twisting N by the pullback of an R-Cartier divisor on Z, we may assume that
M ∼R g

∗N . Then, by [33, Example 1.4.4.(ii)], N is also nef. Hence, by the previous step,
N + ǫh∗H is semi-ample for any ǫ > 0, where h denotes the morphism h : Y → Z. As
M + ǫf ∗H ∼R g

∗(N + ǫh∗H), the claim follows. �

Before proving Theorem 4.12, we need to introduce a new description of the construc-
tion of boundary and moduli parts in the setup of generalized pairs.

Remark 4.8. Let (X ′, B′+M ′) be a generalized sub-pair with data X → X ′ andM . Let
f : X ′ → Z ′ be contraction, where dimZ ′ > 0. Assume that (X ′, B′ +M ′) is generalized
sub-log canonical near the generic fiber of f , and that KX′ + B′ +M ′ ∼R,f 0. Then, we
can define b-divisors BZ′ and MZ′ on Z ′. In order to do so, we are free to replace X ′

and Z ′ with higher models X ′′ and Z. We may assume that the morphism g : X ′′ → Z
is prepared, and that M descends onto X . Denote by Σ ⊂ Z the simple normal crossing
divisor as in the definition of prepared morphism. For notation’s sake, we may write
X ′′ = X .

Now, assume M is relatively semi-ample over Z, and that rk f∗OX′(⌈A∗(X ′, B′ +
M ′)⌉) = 1. Furthermore, let M and B be Q-divisors. Fix an ample Q-divisor H on Z.
As M is relatively semi-ample, by Proposition 4.7, for any rational number ǫ > 0, the Q-
linear series |M+ǫg∗H|Q is basepoint-free. Then, the generalized pair (X,B+(M+ǫg∗H))
with data id : X → X satisfies the same properties as (X,B +M). Notice that we have
not changed the boundary part, which is still B, while we have perturbed the moduli
part, which is M + ǫg∗H .

By definition, the nef part of a generalized pair does not contribute to the singularities
once it descends. Thus, as both M and M + ǫg∗M descend to X , (X,B + M) and
(X,B + (M + ǫg∗H)) have the same generalized discrepancies. Therefore, the boundary
b-divisors that they induce over Z ′, denoted by BZ′ and Bǫ

Z′ respectively, are equal. The
moduli b-divisors are related by the identity

Mǫ
Z′ = MZ′ + ǫH.

Therefore, we have

(2) MZ′ = lim
ǫ→0

Mǫ
Z′ .

AsMZ′ being a Q-Cartier b-divisor is equivalent toKZ′+BZ′ having the same property,
we can investigate this aspect through (X,B+(M+ǫg∗H)). Henceforth, unless otherwise
stated, we fix a rational number ǫ > 0.

As |M + ǫg∗H|Q is basepoint-free, we can take a general element 0 ≤ A ∼Q M + ǫg∗H
such that SuppA is smooth, B+g∗Σ+A has simple normal crossing support, and (X,B+
A) is sub-log canonical over the generic point of Z. Also, we have rk g∗OX(⌈A

∗(X,B +
A)⌉) = 1. By the classic theory of adjunction for fiber spaces [2, 29, 17], it induces b-
divisors BA

Z′ and MA
Z′ on Z ′. By construction, BA

Z′ ≥ Bǫ
Z′ and MA

Z′ ≤ Mǫ
Z′. Furthermore,

since we may assume that the coefficients of A are small enough, the fact that the divisor
B + g∗Σ + A has simple normal crossing support implies that the multiplicities of BA

Z′

and Bǫ
Z′ are the same along the prime divisors in Σ.

Now, fix a prime divisor P ⊂ Z that is not supported on Σ. We can assume that
A meets g−1(P ) transversally. Thus, g is prepared for (X,B + A) over a neighborhood
of ηP . Furthermore, as A is horizontal over Z, we have that BA

Z′,Z = Bǫ
Z′,Z along ηP .

As for any choice of A the difference Bǫ
Z′,Z −BA

Z′,Z is supported on finitely many prime

divisors, we may find A1, . . . , Al ∈ |M + ǫg∗H|Q such that Bǫ
Z′,Z = min1≤i≤l B

Ai

Z′,Z . This

is equivalent to Mǫ
Z′,Z = max1≤i≤l M

Ai

Z′,Z .
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While for a fixed model Z we can recover Bǫ
Z′,Z and Mǫ

Z′,Z with finitely many choices of
0 ≤ A ∼Q M + ǫg∗H , in general, we need infinitely many to recover the whole b-divisors.
In particular, we have

Bǫ
Z′ = inf

0≤A∼QM+ǫg∗H
BA

Z′, Mǫ
Z′ = sup

0≤A∼QM+ǫg∗H
MA

Z′.

Notice that, although the traces of MZ′ , Mǫ
Z′ and MA

Z′ are well defined just up to Q-
linear equivalence, we can treat those as honest divisors once we fix representatives of
the classes KZ′ + BZ′ +MZ′ and H . Furthermore, as M + ǫg∗H is semi-ample, we can
restrict the infimum to the A’s such that (X,B+A) is sub-log canonical over the generic
point of Z ′. Call such class Ξ.

Notice that, if M is semi-ample, we can take ǫ = 0 in the above discussion.
In general, we are interested in proving that MZ′ is a b-nef Q-Cartier b-divisor. As

BZ′ = Bǫ
Z′, we can reduce the analysis to the case when M is semi-ample on X . By the

same argument, if we know that KZ′ + BZ′ is Q-Cartier, MZ′ and all Mǫ
Z′ descend to

the same model. Thus, in virtue of equation (2), MZ′ is b-nef if so is Mǫ
Z′ for any ǫ > 0.

Hence, also b-nefness can be reduced to the case when M is semi-ample.

Now, we need to introduce some terminology.

Definition 4.9. Let D be a b-divisor over X . We say that D is almost b-nef if the
following holds: for every higher models X ′ and X ′′ of X where the traces of D are
R-Cartier, with morphism f : X ′′ → X ′, we have DX′′ ≤ f ∗DX′ .

The perspective in Remark 4.8 allows us to prove the following key statement.

Proposition 4.10. Let (X ′, B′+M ′) be a projective generalized sub-pair with data X →
X ′ and M . Assume that B′, M ′ and M are Q-divisors. Let f : X ′ → Z ′ be a contraction
such that KX′+B′+M ′ ∼Q,f 0 andM is semi-ample. Also, let (X ′, B′+M ′) be generalized
sub-log canonical over the generic point of Z ′, with rk f∗OX′(⌈A∗(X ′, B′ +M ′)⌉) = 1.
Then, the b-divisor MZ′ is almost b-nef.

Proof. Fix two smooth models Ẑ and Z̃ of Z ′, and assume we have a morphism φ : Ẑ → Z̃.
Also, let Ξ be as in Remark 4.8. By the classic theory of the canonical bundle formula
and the negativity lemma [2, 17], for every A ∈ Ξ, we have MA

Z′,Ẑ
≤ φ∗MA

Z′,Z̃
. Then, by

Remark 4.8, we have

MZ′,Ẑ = sup
A∈Ξ

MA
Z′,Ẑ

≤ sup
A∈Ξ

φ∗MA
Z′,Z̃

≤ φ∗ sup
A∈Ξ

MA
Z′,Z̃

= φ∗MZ′,Z̃ .

This proves the claim. �

Remark 4.11. In case (X ′, B′+M ′) is generalized klt over the generic point of Z ′, by [4,
Theorem 3.3], each MA

Z′ is b-nef and b-good. In particular, we have that MZ′ dominates
a b-nef and b-good divisor.

Now, we are ready to address the first result towards a generalized canonical bundle
formula.

Theorem 4.12. Let (X ′, B′+M ′) be a projective generalized sub-pair with data X → X ′

andM . Assume that B′, M ′ andM are Q-divisors. Let f : X ′ → Z ′ be a contraction such
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that KX′+B′+M ′ ∼Q,f 0 and M is relatively semi-ample over Z ′. Also, let (X ′, B′+M ′)
be generalized sub-log canonical over the generic point of Z ′, with rk f∗OX′(⌈A∗(X ′, B′ +
M ′)⌉) = 1. Then, the b-divisor MZ′ is Q-Cartier and b-nef.

For the reader’s convenience, we will split it into two statements.

Theorem 4.13. Let (X ′, B′+M ′) be a projective generalized sub-pair with data X → X ′

andM . Assume that B′, M ′ andM are Q-divisors. Let f : X ′ → Z ′ be a contraction such
that KX′+B′+M ′ ∼Q,f 0 and M is relatively semi-ample over Z ′. Also, let (X ′, B′+M ′)
be generalized sub-log canonical over the generic point of Z ′, with rk f∗OX′(⌈A∗(X ′, B′ +
M ′)⌉) = 1. Then, the b-divisor MZ′ is Q-Cartier. In particular, if (X,B) → Z is weakly
semi-stable with good horizontal divisors, MZ′ descends onto Z.

Proof. By Remark 4.3 and [25, Theorem 9.5], we may assume that Z is projective and
g : (X,B) → Z is weakly semi-stable with good horizontal divisors. Let Σ := Z \ UZ be
the toroidal divisor on the base. Up to adding to B the pullback of a divisor supported
on Σ, we may assume Σ = BZ′,Z . Also, by the discussion in Remark 4.8, we may assume
that M is semi-ample.

Notice that, by weak semi-stability, all the fibers are reduced and semi-log canonical
[25, p. 90]. Indeed, as X is Gorenstein, so are the fibers. In particular, they are S2.
Then, the constraint on codimension 1 singularities is local in nature [22, Chapter 3].
More precisely, it can be checked after completion of the local rings. Similarly, the
computation of discrepancies is local in nature as well [11, cf. Remark 4.6].

Now, by [13, Lemma 3.1], for the computation of lctηP (X, 0; g
∗P ) we may assume that

Z is a curve. Therefore, by inversion of adjunction, we have that lctηP (X, 0; g
∗P ) = 1

for every prime divisor P ⊂ Z. Furthermore, by the assumption of Bh being good,
we have that Bh does not contribute to the computation of BZ′,Z . Indeed, locally, a
fiber (Xz, Supp(B

h)z) can be thought as Yz × (Al, D), where Yz is semi-log canonical

and D =
∑l

i=1Di is the union of the coordinate hyperplanes in Al. By induction on

l, Yz × (D1,
∑l

i=2Di ∩ D1) is semi-log canonical, and by inversion of adjunction so is
Yz × (Al, D). Therefore, we have that (Xz, Supp(B

h)z) is semi-log canonical. As Bh ≤
Supp(Bh), by inversion of adjunction we have lctηP (X,B

h; g∗P ) = 1. Therefore, we
conclude Bv ≤ g∗Σ.

Let π : Z ′′ → Z be a birational morphism such that Z ′′ is smooth, and π−1(Σ) is simple
normal crossing. Also, we define X ′′ := X ×Z Z

′′. Then, by [25, Lemma 8.3] and the
discussion [25, p. 59], the morphism h : (X ′′, B′′) → Z ′′ is weakly semi-stable with good
horizontal divisors.

By the above arguments, it follows that Bv ≤ g∗Σ. Hence, we have the inequality

KX +B ≤ KX/Z +Bh + g∗(KZ + Σ).

Considering the pullback via φ : X ′′ → X , we obtain

(3) KX′′ +B′′ ≤ KX′′/Z′′ + (B′′)h + h∗(KZ′′ + Σ′′),

where Σ′′ denotes the log-pullback of Σ to Z ′′. Notice that, by the geometric assumptions,
(B′′)h = φ∗Bh. Our goal is to show Σ′′ = BZ′,Z′′. By Proposition 4.10, we have BZ′,Z′′ ≥
Σ′′. Notice that BZ′,Z′′ is computed via the singularities of KX′′ +B′′. By inequality (3),
BZ′,Z′′ ≤ Γ′′, where Γ′′ is the boundary on Z ′′ induced by the singularities of (X ′′, (B′′)h+
h∗(Σ′′)). As h : (X ′′, (B′′)h) → Z ′′ is weakly semi-stable with good horizontal divisors, we
have Γ′′ = Σ′′. This concludes the proof. �

Remark 4.14. Recall that the pushforward of a nef divisor under a birational morphism
of normal surfaces is nef. Furthermore, on a normal projective surface S, the maximum
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M of finitely many nef divisorsM1, . . . ,Mk is nef. Indeed, fix an irreducible curve C ⊂ S.
Then, fix i ∈ {1, . . . , k} such that multC M = multC Mi. Then, we can writeM =Mi+E,
where E ≥ 0 and C 6⊂ Supp(E). Then, we have M · C =Mi · C + E · C ≥Mi · C ≥ 0.

Then, by Remark 4.8, it follows that, in the setup of Theorem 4.13, if Z ′ is a surface,
MZ′,Z is nef for every model Z → Z ′.

Theorem 4.15. Let (X ′, B′+M ′) be a projective generalized sub-pair with data X → X ′

andM . Assume that B′, M ′ andM are Q-divisors. Let f : X ′ → Z ′ be a contraction such
that KX′+B′+M ′ ∼Q,f 0 and M is relatively semi-ample over Z ′. Also, let (X ′, B′+M ′)
be generalized sub-log canonical over the generic point of Z ′, with rk f∗OX′(⌈A∗(X ′, B′ +
M ′)⌉) = 1. Then, the b-divisor MZ′ is b-nef.

Proof. By Theorem 4.13, we know that MZ′ is a Q-Cartier b-divisor. Assume by contra-
diction that MZ′ is not b-nef. Then, for every model Z where MZ′ descends, there is a
curve C ⊂ Z such that MZ′,Z · C < 0.

Without loss of generality, we may assume that Z is smooth. Furthermore, by the
projection formula for cycles and by blowing up the singular points of C, we may assume
that C is smooth.

Now, let π : Z ′′ → Z be the blow-up of Z along C. By the projection formula, every
curve C ′′ ⊂ π−1(C) that dominates C is such that MZ′,Z′′ · C ′′ < 0. Let S ′′ ⊂ Z ′′ be
a smooth surface obtained by general hyperplane cuts. Then, by [13, Lemma 3.1], we
have MZ′,Z′′|S′′ = MS′′,S′′, where MS′′ is the moduli b-divisor of the induced fibration
with base S ′′. By the positivity of S ′′, there exists C ′′ as above with C ′′ ⊂ S ′′. On the
other hand, by Remark 4.14, MS′′,S′′ is nef. Thus, we get a contradiction, and the claim
follows. �

We conclude considering the relation between the singularities of the source of the
fibration and the ones of the generalized pair induced on the base. In doing so, we follow
ideas of Ambro [3, Proposition 3.4], [2, Theorem 3.1].

Proposition 4.16. Let (X ′, B′ +M ′) be a generalized sub-pair with data X → X ′ and
M . Let f : X ′ → Z ′ be a contraction such that KX′ +B′+M ′ ∼R,f 0 and (X ′, B′+M ′) is
generalized sub-log canonical over the generic point of Z ′. Assume that a generalized pair
structure (Z ′,BZ′ +MZ′) is induced on Z ′. Furthermore, let g : X → Z be a birational
model of f : X ′ → Z ′ such that MZ′ descends to Z, and M descends to X. Then,
(Z,BZ′,Z) is sub-log canonical in a neighborhood of z ∈ Z if and only if (X,B) is sub-log
canonical in a neighborhood of g−1(z). Furthermore, if (X ′, B′ +M ′) is generalized klt
over the generic point of Z ′, (Z,BZ′,Z) is sub-klt in a neighborhood of z ∈ Z if and only
if (X,B) is sub-klt in a neighborhood of g−1(z).

Proof. The proof of [3, Proposition 3.4] goes through verbatim. �

Remark 4.17. As BX′ and BZ′ both descend to X and Z respectively, in the statement
of Proposition 4.16, we can equivalently replace sub-klt and sub-log canonical with their
generalized versions.

5. The case of effective boundary

In this section, under the assumption that B′ is effective over the generic point of Z ′,
we weaken some conditions of Theorem 4.12. The constraint on the horizontal part of B′

is due to results used in the proofs, such as [4, Theorem 0.1] and the MMP [9]. We start
with a technical statement.

Lemma 5.1. Let (X ′, B′
X′ + M ′

X′) be a generalized pair with data X and MX . Let
f : X ′ → Z ′ be a contraction such that KX′ +B′

X′ +M ′
X′ ∼R,f 0. Also let Y ′ be a variety
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such that there exist contractions g : X ′ → Y ′ and h : Y ′ → Z ′ satisfying f = h ◦ g. Let
BZ′ and BY ′ be the boundary b-divisors induced on Z ′ and Y ′ by f and g respectively.
Also, denote by DZ′ the boundary b-divisor induced on Z ′ by h and KY ′+BY ′,Y ′+MY ′,Y ′.
Assume that MY ′ is a Cartier b-divisor. Then, we have BZ′ = DZ′.

Proof. Since we are comparing b-divisors, we are free to replace each variety with a higher
model. Thus, we can replace X ′, Y ′ and Z ′ with models such that:

• the moduli b-divisors MX′ and MY ′ descend onto X and Y respectively. We will
denote their traces by MX and MY ;

• the morphisms X → Z, X → Y and Y → Z are all prepared. By abusing
notation, we will still denote those as f , g and h respectively.

For ease of notation, we will write BX = BX′,X , BY = BY ′,Y , BZ = BZ′,Z and DZ =
DZ′,Z . Let P be a prime divisor in Z. We have to compare multP BZ and multP DZ .

Let R1, . . . , Rk be the prime divisors in X that dominate P . Similarly, denote by
Q1, . . . , Ql the prime divisors in Y dominating P . Notice that g(Ri) is not necessarily a
divisor; in case it is, we have g(Ri) = Qj(i) for some 1 ≤ j(i) ≤ l.

By [3, Remark 3.1.4], the components of BX that dominate Z do not contribute to

the computations. Thus, we may assume BX =
∑k

i=1 biRi over ηP , the generic point of

P . We can write f ∗P =
∑k

i=1 p
iRi, g

∗Qj =
∑k

i=1 q
i
jRi, and h∗P =

∑l
j=1 r

jQj . Since

f ∗ = g∗ ◦ h∗, we get pi =
∑l

j=1 r
jqij.

For the formula used in the following computations, we refer to [3, Remark 3.1.4]. We
have

multP BZ = max
i

bi + pi − 1

pi
= max

i

bi +
∑

rjqij − 1
∑

rjqij
,

and

multQj
BY = max

i|g(Ri)=Qj

bi + qij − 1

qij
.

This implies the following formula

multP DZ = max
j

multQj
BY + rj − 1

rj
= max

j
max

i|g(Ri)=Qj

bi + rjqij − 1

rjqij
.

Now, we may assume that multP BZ is computed by R1, and that g(R1) = Q1. Thus,
we have q1j = 0 if j 6= 1. Therefore, we have

multP BZ =
b1 + r1q11 − 1

r1q11
≤ max

j
max

i|g(Ri)=Qj

bi + rjqij − 1

rjqij
= multP DZ .

As already mentioned, if g(Ri) is a divisor, then qij = 0 if j 6= j(i). Thus, we have

multP DZ = max
j

max
i|g(Ri)=Qj

bi + rjqij − 1

rjqij
= max

i|g(Ri) divisor

bi + rj(i)qij(i) − 1

rj(i)qij(i)

= max
i|g(Ri) divisor

bi +
∑

rjqij − 1
∑

rjqij
≤ max

i

bi +
∑

rjqij − 1
∑

rjqij
= multP BZ .

Hence, as multP DZ = multP BZ and P is arbitrary, we conclude that BZ′ = DZ′. �

Before proving Theorem 1.4, we deal with a particular case of it.

Lemma 5.2. Let X ′ be a projective Q-factorial klt variety, and let (X ′, B′ +M ′) be a
generalized sub-pair with data X → X ′ and M . Assume that B′, M ′ and M are Q-
divisors. Let f : X ′ → Z ′ be a contraction to a projective variety Z ′ such that KX′ +B′+

15



M ′ ∼Q,f 0, ρ(X ′/Z ′) = 1 andM ′ is relatively ample. Also, let (X ′, B′+M ′) be generalized
log canonical over the generic point of Z ′. Then, the b-divisor MZ′ is Q-Cartier and b-nef.

Proof. Since X ′ is Q-factorial and klt, and (X ′, B′+M ′) is generalized log canonical over
ηZ′, for any rational number 0 < ǫ ≪ 1 the generalized pair (X ′, (1 − ǫ)(B′ +M ′)) with
data X and (1− ǫ)M is generalized klt over ηZ′. Since ρ(X ′/Z ′) = 1, (B′)h is either 0 or
relatively ample. Let H be an ample divisor on Z ′ such that f ∗H + (B′)h +M ′ is ample.
Also, write π : X → X ′, and fix an effective and π-exceptional divisor E such that −E is
π-ample. Finally, we have π∗M ′ =M − F , where F ≥ 0 is π-exceptional.

Let Bǫ be defined by the identity

KX +Bǫ + (1− ǫ)M = π∗(KX′ + (1− ǫ)(B′)h + (B′)v + (1− ǫ)M ′),

and set B := B0. Then, for rational numbers 0 < δ ≪ ǫ≪ 1, we have

KX +B +M ∼Q,Z′ KX + (Bǫ + δE − ǫF ) + ((1− ǫ)M + ǫπ∗(M ′ + (B′)h + f ∗H)− δE).

Since (X ′, (1− ǫ)(B′+M ′)) is generalized klt over ηZ′ and 0 < δ = δ(ǫ) ≪ ǫ, the sub-pair
(X,Bǫ + δE − ǫF ) is sub-klt over ηZ′. Furthermore, as π∗(M ′ + B′ + f ∗H) − δE) is
ample by construction, then so is M + ǫπ∗(M ′ +B′ + f ∗H)− δE). Finally, we have that
π∗(Bǫ + δE − ǫF ) is effective over ηZ′.

Therefore, the generalized sub-pair

(X, (Bǫ + δE − ǫF ) + ((1− ǫ)M + ǫπ∗(M ′ +B′ + f ∗H)− δE))

satisfies the hypotheses of Theorem 4.12. This provides b-divisors Bǫ
Z′ and Mǫ

Z′ . As
Supp(B) ∪ Supp(E) ∪ Supp(F ) is independent of ǫ, by the proof of Theorem 4.12, the
b-divisors Mǫ

Z′ descend to the same higher model of Z ′ for all 0 < ǫ ≪ 1. Thus, as the
b-divisors BZ′ and MZ′ induced by (X,B +M) satisfy

BZ′ = lim
ǫ→0

Bǫ
Z′, MZ′ = lim

ǫ→0
Mǫ

Z′ ,

we conclude that MZ′ is Q-Cartier and b-nef. �

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We will prove the statement by induction on the relative dimension
of the fibration. Since Z ′ is proper, by Remark 4.3 and Chow’s lemma, we may assume
that Z ′ is projective. By Theorem 3.2, we may assume that X ′ is Q-factorial, and that
(X ′, (B′)h) is dlt. Notice that Theorem 3.2 applies, as we can pull back divisors from
Z ′ to guarantee that B′ is effective. Let X ′

ηZ′
be the geometric generic fiber. Then, by

assumption, (X ′
ηZ′
, B′

ηZ′
) is dlt. Notice that, as B′ is effective over the generic point of Z ′,

the technical assumptions regarding rk f∗OX′(⌈A∗(X ′, B′ +M ′)⌉) = 1 are automatically
satisfied [2, Remark 2.2].

Assume M ′ is numerically trivial along X ′
ηZ′

. Then, by [20, Theorem 1.2], we have

KX′

η
Z′

+ B′
ηZ′

∼Q M ′
ηZ′

∼Q 0. Therefore, there is a dense open subset U ′ ⊂ Z ′ such

that M ′|X′

U′
∼Q,U ′ 0, where X ′

U ′ denotes the inverse image of U ′ in X ′. Let XU ′ be the

inverse image of U ′ in X . Write α : X → X ′. By the negativity lemma, M = α∗M ′ −E,
where E ≥ 0 is α-exceptional. As M ′

U ′ is trivial along the fibers of X ′
U ′ → U ′ and M is

nef, E does not dominate Z ′. Therefore, up to shrinking U ′, we have that M is trivial
over U ′. Now, by Remark 4.3, we may assume that X → Z ′ is weakly semi-stable. We
have M ∼Q,Z′ F , where F is exceptional over Z ′. As the morphism X → Z ′ is flat, the
image in Z ′ of each component of F is a divisor. Thus, up to replacing F in its Q-linear
equivalence over Z ′, we may assume that F ≥ 0 and that F is very exceptional over
Z ′ [6, Definition 3.1]. Then, by [6, Lemma 3.3], we have F = 0. Thus, it follows that
M ∼Q,Z′ 0. Therefore, we can apply the classic theory [2, 17].
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Hence, we may assume that M ′
ηZ′

is not numerically trivial. In particular, KX′ + (B′)h

is not pseudo-effective over Z ′. So, we can run a (KX′ + (B′)h)-MMP relative to Z ′

with scaling of an ample divisor. Since (X ′, (B′)h) is dlt and KX′ + (B′)h is not pseudo-
effective over Z ′, this terminates with a Mori fiber space g : X ′′ → Y over Z ′ [9]. Then,
we can apply Lemma 5.2 to g : X ′′ → Y and (X ′′, B′′ +M ′′), as M ′′ is ample over Y by
construction. We induce a generalized pair (Y,BY +MY ) on Y .

In case dimY = dimZ ′, Y → Z ′ is birational, and we are done. In particular, this
proves the case when dimX ′ − dimZ ′ = 1. Thus, we may assume that dimZ ′ < dimY .
Notice that Y → Z ′ has connected fibers. Then, by construction and Proposition 4.16,
the generalized pair (Y,BY +MY ) and the fibration Y → Z ′ satisfy the hypotheses of the
statement with smaller relative dimension. By the inductive hypothesis, the statement
applies and provides a Q-Cartier b-nef b-divisor on Z ′. By Lemma 5.1, it is the same
b-divisor induced by (X,B +M). This proves the inductive step. �

As an immediate consequence, we recover a result due to Chen and Zhang [10]. The
idea to apply Theorem 1.4 to the following setup was suggested by Jingjun Han.

Corollary 5.3 ([10, Main Theorem]). Let (X,B) be a projective log canonical pair such
that −(KX + B) is nef. Let f : X → Y be a surjective morphism, where Y is projective
and KY is Q-Cartier. Then −KY is pseudo-effective.

Proof. Define M := −(KX + B). Then, the generalized pair (X,B +M) is generalized
log canonical. Let g : X → Z and h : Z → Y be the morphisms induced by the Stein
factorization of f .

Then, by Theorem 1.4, (X,B +M) induces a generalized log canonical pair (Z,BZ +
MZ) on Z. Set BZ := BZ,Z and MZ := MZ,Z . Since KX + B + M ∼Q 0, we have
KZ +BZ +MZ ∼Q 0.

Now, since h is finite, by the Riemann-Hurwitz formula, we have h∗KY = KZ − R,
where R ≥ 0. Thus, we get

−KZ +R ∼Q BZ +MZ +R.

As BZ ≥ 0 and MZ is pseudo-effective, −KZ +R is pseudo-effective. Thus, as h is finite,
we can apply [19, Theorem 1.20] to −KY + tA for A ample on Y and 0 < t ≪ 1 to
conclude that −KY is pseudo-effective. �

Now, using ideas of Fujino and Gongyo [17], we study the relation between the gen-
eralized pair induced on Z ′ by (X ′, B′ +M ′) and the one induced by a generalized log
canonical center of (X ′, B′ +M ′) dominating Z ′.

Theorem 5.4. Let (X ′, B′ +M ′) be a projective generalized sub-pair with data X → X ′

and M . Assume that B′, M ′ and M are Q-divisors. Let f : X ′ → Z ′ be a contraction
such that KX′ + B′ +M ′ ∼Q,f 0. Also, let (X ′, B′ +M ′) be generalized log canonical
and generalized dlt over the generic point of Z ′. Then, for any generalized log canonical
center W ′ of (X ′, B′ +M ′) dominating Z ′, we have MZ′ = MW ′

Z′ and BZ′ = BW ′

Z′ , where
these are the b-divisors induced on Z ′ by X ′ and W ′ respectively.

Remark 5.5. In the setup of Theorem 5.4,W ′ is a stratum of (B′)h, and therefore inherits
a structure of generalized pair (W ′, BW ′ +MW ′) by repeated divisorial adjunction. By
[8, Definition 4.7], (W ′, BW ′ +MW ′) is generalized log canonical over the generic point of
Z ′. Also, notice that W ′ → Z ′ may not have connected fibers. Therefore, by comparing
the b-divisors induced by X ′ and W ′, we implicitly allow generically finite base changes,
which are allowed by Remark 4.3.
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Proof. First, we reduce to the case when W ′ is a divisor. Fix a generalized log canonical
center W ′ as in the statement and let W ′ = P ′

1 ∩ . . . ∩ P ′
k, where each P ′

i is a prime
component of (B′)h of coefficient 1. Further assume that the statement is true if dimX ′−
dimW ′ = 1. In particular, we have that (X ′, B′ +M ′) and (P ′

1, BP ′

1
+MP ′

1
) induce the

same b-divisors. Let P ′
1,k the restriction of P ′

k to P
′
1. Up to pulling back divisors from Z to

guarantee (B′)v ≥ 0, we can take a weak generalized dlt model P1 of (P
′
1, BP ′

1
+MP ′

1
). Up

to considering the Stein factorization of P1 → Z ′, (P1, BP1
+MP1

) satisfies the hypotheses
of the statement. Here (P1, BP1

+MP1
) denotes the trace of (P ′

1, BP ′

1
+MP ′

1
) on P1. Let

P1,2 be the strict transform of P ′
1,2 to P1. Now, since we are assuming the statement

in case of generalized log canonical centers of codimension 1, we have that P1 and P1,2

induce the same b-divisors on the base. On the other hand, the generalized pair structure
induced on P1,2 by (P1, BP1

+MP1
) agrees with the one induced by (X ′, B′+M ′) on P ′

1,2.
Therefore, X ′ and P ′

1,2 induce the same b-divisors on the base. Repeating this argument
k − 1 times, we get the claimed reduction.

From now on, we may assume that W ′ is a prime divisor such that multW ′(B′)h = 1.
Up to pulling back some effective divisors on Z ′ to guarantee that (B′)v ≥ 0, we can
apply Theorem 3.2. Thus, we may assume that X ′ is Q-factorial and that (X ′, (B′)h) is
dlt. Let W ′ → Y ′ be the Stein factorization of W ′ → Z ′.

By a generically finite base change T → Z ′ factoring through Y ′, we may assume that
the following properties hold [17, cf. proof of Theorem 1.1]:

• V ′, the normalization of the main component of X ′ ×Z′ T , has a semi-stable
resolution in codimension 1 [2, see Theorem 4.3]. Call the latter V . Let (V ′, BV ′+
MV ′) be the generalized sub-pair induced by (X ′, B′ +M ′). We may assume that
V is also a semi-stable resolution of a suitable higher model of (X,B), a higher
model of X ′ where M descends. Therefore, we may assume that the moduli
b-divisor MV ′ descends to V . We will write MV := MV ′,V ; and

• there are a fibration U → T and a generalized sub-pair (U,BU + MU) induced
by W ′ → Z and (W ′,BW ′ + MW ′). By construction, U maps birationally onto
a prime divisor Γ′ ⊂ V ′ such that multΓ′ BV ′ = 1. Notice that, by construction,
the generalized sub-pair structure induced by (V ′,BV ′ +MV ′) on Γ′ agrees with
(U,BU +MU).

Now, let BT and Bmin
T the boundary divisors induced by V ′ → T and U → T respec-

tively. Analogously, we have moduli divisors MT and Mmin
T . By construction [17, cf.

proof of Theorem 1.1], we have

KT +BT +MT ∼Q KT +Bmin
T +Mmin

T .

Then, to conclude, it suffices to show BT = Bmin
T .

Taking hyperplane sections, we may assume that T is a curve. Therefore, π : (V,BV ) →
T is semi-stable. Thus, Supp(BV ) ∪ π

∗Q is a reduced simple normal crossing divisor for
every Q ∈ T . In particular, there is a finite set Σ ⊂ T such that

BT =
∑

P∈Σ

(1− bP )P, Bmin
T =

∑

P∈Σ

(1− bmin
P )P

and all the singular fibers of π : V → T are mapped to Σ.
Let E = {Ei}

l
i=1 the set of prime divisors on V such that π(Ei) ∈ Σ and

multEi
(BV +

∑

P∈Σ

bPπ
∗P )≥0 < 1.
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Fix a rational number 0 < ǫ ≪ 1. Then, (V, (BV +
∑

P∈Σ bPπ
∗P )≥0 + ǫ

∑

Ei) is dlt.
Notice that we have

KV + (BV +
∑

P∈Σ

bPπ
∗P )≥0 + ǫ

∑

Ei +MV ∼Q,T −(BV +
∑

P∈Σ

bPπ
∗P )≤0 + ǫ

∑

Ei =: E.

By [8], we can run a (KV + (BV +
∑

P∈Σ bPπ
∗P )≥0 + ǫ

∑

Ei +MV )-MMP with scaling
of an ample divisor. Notice that every component of E that dominates T is exceptional
over V ′, and is not contained in the relative movable cone over V ′ [15, Definition 2.1].
So, if there are components of E dominating T , we first run an MMP on KV + (BV +
∑

P∈Σ bPπ
∗P )≥0 + ǫ

∑

Ei +MV relative to V ′ with scaling of an ample divisor H .
Assume by contradiction that this MMP does not terminate. Let λ ≥ 0 be the limit

of the coefficients used in the scaling by H . If λ > 0, then the MMP is an MMP for
KV +(BV +

∑

P∈Σ bPπ
∗P )≥0+ǫ

∑

Ei+MV +λH . Since (V, (BV +
∑

P∈Σ bPπ
∗P )≥0+ǫ

∑

Ei)
is dlt and λH +MV is ample, we get a contradiction by [15, Theorem 2.3]. If λ = 0, we
have that KVj

+ (BV +
∑

P∈Σ bPπ
∗P )≥0

j + ǫ
∑

Ei)j +MVj
+ λjHj + Gj is ample, where

Vj is the j-th model in the MMP and Gj is an ample divisor on Vj . We can choose the
divisors Gj such that the sequence of strict transforms on V converges to 0 in N1(V/V ′).
Since limλj = λ = 0, we get that KV + (BV +

∑

P∈Σ bPπ
∗P )≥0 + ǫ

∑

Ei +MV is limit
of divisors movable over V ′, and hence movable. This provides a contradiction. By
repeatedly applying [32, Lemma 2.9] at each step of the MMP, it follows that all the
components of E dominating T are contracted.

Thus, after running an MMP over V ′, we get to a model V ′′. Since the MMP just
run is an MMP for KV + (BV +

∑

P∈Σ bPπ
∗P )≥0 + ǫ

∑

Ei +MV + σH for some σ >
0, we can turn M + σH into a boundary and conclude that V ′′ is a Q-factorial klt
variety and (V ′′, ((BV +

∑

P∈Σ bPπ
∗P )≥0)′′ + (ǫ

∑

Ei)
′′) is dlt. Thus, we can run an

MMP for KV ′′ + ((BV +
∑

P∈Σ bPπ
∗P )≥0)′′ + (ǫ

∑

Ei)
′′ +MV ′′ relative to T with scaling

of an ample divisor. Notice that E ′′, the image of E on V ′′, is vertical over T and
Supp(E ′′) contains no fiber. Therefore, E ′′ is not in the relative movable cone over
T . By a similar argument as before, the MMP terminates, and contracts all of E ′′.
Call V̂ the final model. By construction, Ê = 0. In particular, this guarantees that
(BV̂ +

∑

P∈Σ bP π̂
∗P )≥0 = BV̂ +

∑

P∈Σ bP π̂
∗P . Also, by similar observations as before, we

have that (V̂ , BV̂ +
∑

P∈Σ bP π̂
∗P ) is dlt and V̂ is Q-factorial. Furthermore, (V̂ , BV̂ +MV̂ )

is the trace of the generalized pair (V̂ ,BV̂ +MV̂ ). Finally, notice that just the components
of E are contracted in this step. In particular, the strict transform of Γ′ is not contracted
and it is normal, as (V̂ , BV̂ +

∑

P∈Σ bP π̂
∗P ) is dlt.

Let Γ̂ be the strict transform of Γ on V̂ . By construction, the generalized pair
(Γ̂, BΓ̂ +MΓ̂) induced on it by (V̂ , BV̂ +MV̂ ) is crepant to (U,BU +MU ). Thus, the

generalized pair (Γ̂,∆Γ̂ +MΓ̂) induced on it by (V̂ , BV̂ +
∑

P∈Σ bP π̂
∗P +MV̂ ) is crepant

to (U,BU +
∑

P∈Σ bPπ
∗
UP +MU). Here π̂ and πU denote the morphisms to T from V̂ and

U respectively.
By construction, we have

BV̂ +
∑

P∈Σ

bP π̂
∗P ≥

∑

P∈Σ

π̂∗P.

Thus, (V̂ , BV̂ +
∑

P∈Σ bP π̂
∗P +MV̂ ) is generalized log canonical, while the generalized

pair (V̂ , BV̂ +
∑

P∈Σ(bP + δ)π̂∗P +MV̂ ) is not generalized log canonical along the divisor
∑

P∈Σ π̂
∗P for any δ > 0. Since V̂ is Q-factorial and (V̂ , Γ̂) is plt, we can apply [5, Lemma

3.2]. In particular, the generalized pair induced by (V̂ , BV̂ +
∑

P∈Σ(bP + δ)π̂∗P +MV̂ )
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on Γ̂ is not generalized log canonical along
∑

P∈Σ π̂
∗P ∩ Γ̂. Since (Γ̂,∆Γ̂+MΓ̂) is crepant

to (U,BU +
∑

P∈Σ bPπ
∗
UP +MU ), we have bP = bmin

P , which completes the proof. �

6. Generalized adjunction

In this section, we use the machinery developed for fiber spaces to define adjunction for
higher codimensional generalized log canonical centers. The results of this sections hold
for arbitrary generalized pairs (X ′, B′ +M ′) with data X → X ′ → V and M , without
the assumption V = Spec(C).

As in the classic case, given a generalized log canonical center W ′ ⊂ X ′, the idea
is to extract a generalized log canonical place E dominating W ′. Then, one can apply
generalized divisorial adjunction on E and apply the generalized canonical bundle formula
to the morphism E → W ′. This leads to the following definition of generalized adjunction
in arbitrary codimension.

Definition 6.1. Let (X ′, B′ +M ′) be a generalized pair with data X → X ′→ V and
M . Let W ′ be a generalized log canonical center. Fix a corresponding generalized log
canonical place E. We may assume that E is a smooth divisor on X . Then, we have
an induced morphism E → W ν , where W ν denotes the normalization of W ′. We define
b-divisors BW ν and MW ν as the boundary and moduli part of fiber space adjunction for
(E,BE +ME) over W

ν.

Remark 6.2. In case W ′ is not an exceptional generalized log canonical center, one has
to prove that the definition does not depend on the choice of E. Furthermore, one needs
to check that the induced morphism E → W ν generically has connected fibers. We will
address this in Remark 6.3 and Theorem 6.7, giving a positive answer.

Remark 6.3. In case M ′ descends in a neighborhood of W ′, it does not contribute
to the singularities along W ′, and generalized adjunction coincides with the usual one.
Therefore, Definition 6.1 is well posed if W ′ is any generalized log canonical center with
M relatively trivial over W ′.

Remark 6.4. In case W ′ is a divisor, this definition coincides with the divisorial gener-
alized adjunction introduced by Birkar and Zhang [8, Definition 4.7].

Remark 6.5. IfM ′,M and B′ areQ-divisors, BW ν is defined via log canonical thresholds
of Q-divisors. These are rational numbers. Then, in this case, BW ν and MW ν are
automatically Q-Weil b-divisors.

Now, we would like to study the properties of the b-divisors BW ν and MW ν . In
particular, we would like to show that a structure of a generalized pair is induced on W ν .
Going in this direction, we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. As generalized adjunction is known in caseW ′ is a divisor, we may
assume codimW ′ ≥ 2. Let E be the generalized log canonical place corresponding to W ′.
Without loss of generality, we may assume that f : X → X ′ is a log resolution, and E is
a divisor on X . Generalized divisorial adjunction provides us with a generalized sub-pair
(E,BE +ME), where the moduli part descends to E. Then, as W ′ is an exceptional
center, (E,BE) is sub-klt over the generic point of W ′. Furthermore, by assumption,
(X ′, B′ +M ′) is generalized log canonical. Therefore, we can apply [8, Lemma 4.5] to
extract just E over ηW ′. Call this model X ′′, and denote the image of E by E ′′. Then,
BE′′ is effective.

Now, we check that the technical conditions needed to apply the canonical bundle
formula are satisfied. By assumption, up to shrinking X ′ to a neighborhood of W ′, we
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have B = E +∆, where ⌊∆⌋ ≤ 0. Then, we can write ∆ in a unique way as ∆ = Γ−A,
where Γ ≥ 0, ⌊Γ⌋ = 0, and A ≥ 0 is integral and f -exceptional. Consider the short exact
sequence

0 → OX(A−E) → OX(A) → OE(A|E) → 0.

Then, the corresponding long exact sequence of higher direct images provides us with

OX′
∼= f∗OX(A) → f∗OE(A|E) → R1f∗OX(A−E) = 0,

where the latter element vanishes by [31, Corollary 2.68] applied to

A− E ∼Q KX + Γ +M − f ∗(KX′ +B′ +M ′).

This forces the chain of equalities

(4) (fE)∗OE(A|E) = OW ν = OW ′,

where fE denotes the restriction of f to E, and OW ν , the structure sheaf of the normal-
ization of W ′, is seen as a sheaf of OW ′-modules. Thus, W ′ is normal.

Now, we can apply Theorem 1.4, which guarantees that (W ′,BW ′ +MW ′) is a gener-
alized sub-pair. Furthermore, by Proposition 4.16, it is generalized sub-klt.

We are left with showing that BW ′,W ′ is effective. As argued in [29, proof of Theorem
8.6.1], this follows by equation (4) and [29, Theorem 8.3.7]. �

Now, we would like to address the case when W ′ is not an exceptional generalized log
canonical center. To do so, we need the following result about tie breaking for generalized
pairs. The statement is a slight generalization of [29, Proposition 8.7.1].

Proposition 6.6. Let (X ′, B′ +M ′) be a generalized klt pair with data X → X ′ → V
and M . Assume that B′, M ′ and M are Q-divisors. Let D′ be an effective Q-Cartier
divisor on X ′ and N a Q-Cartier divisor on X that is nef over V . Further, assume
that D′ + N ′ is Q-Cartier, where N ′ denotes the pushforward of N to X ′. Assume that
the generalized pair (X ′, B′ + D′ +M ′ + N ′) with data X ′ → X → V and M + N is
generalized log canonical. Let W ′ ⊂ X ′ be a minimal generalized log canonical center
of (X ′, B′ + D′ +M ′ + N ′). Then, there exist an effective Q-Cartier divisor P ′ and a
rational number 0 < ǫ≪ 1 such that W ′ is an exceptional generalized log canonical center
of (X ′, B′ + P ′ +M ′ + (1− ǫ)(D′ +N ′)).

Proof. The proof of [29, Proposition 8.7.1] goes through almost verbatim. Therefore, we
just point the relevant changes in the proof. Without loss of generality, we may assume
that f : X → X ′ is a log resolution of (X ′, B′ +D′). Then, we may write

(5) f ∗(KX′ + B′ +M ′ = KX +
∑

biEi +M, and f ∗(D′ +N ′) =
∑

aiEi +N.

After redefining ai and bi in the proof of [29, Proposition 8.7.1] with the ones in equation
(5), the proof of [29, Proposition 8.7.1] goes through. Notice that the roles of X and X ′

are flipped in the notation of [29, Proposition 8.7.1]. �

Theorem 6.7. Let (X ′, B′+M ′) be a projective generalized pair with data X → X ′→ V
and M . Assume that X ′ is a Q-factorial klt variety. Let B′, M ′ and M be Q-divisors.
Let W ′ be a generalized log canonical center, and W ν its normalization. Assume that W ′

is projective. Then, Definition 6.1 is well posed, and the induced moduli b-divisor MW ν

is b-Cartier and b-nef. Furthermore, BW ν ,W ν is effective.

Proof. By assumption, (X ′, B′+M ′) is generalized log canonical in a neighborhood U ′ of
ηW ′. Furthermore, for every 0 < ǫ ≪ 1, the generalized pair (X ′, (1− ǫ)(B′ +M ′)) with
data X → X ′ → V and (1− ǫ)M is generalized klt in an open set containing the generic
point of W ′. Up to shrinking U ′, we may assume that W ′ ∩ U ′ is a minimal generalized
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log canonical center, and that the restriction of (X ′, B′ +M ′) to U ′ is generalized log
canonical. Then, on the open set U ′, we can apply Proposition 6.6. In particular, there
exist 0 < δ ≪ 1 and an effective divisor P ′ such thatW ′∩U ′ is an exceptional generalized
log canonical center for the restriction of (X ′, (1 − δ)(B′ +M ′) + P ′) to U ′. Let E be
the corresponding generalized log canonical place. Notice that E is also a generalized log
canonical place for (X ′, B′ +M ′).

Let X ′′ → X ′ be a weak generalized dlt of (X ′, (1 − δ)(B′ +M ′) + P ′), and let E ′′

denote the trace of E on X ′′. Notice that, by construction, E ′′ is normal. Since W ′ is
exceptional for (X ′, (1−δ)(B′+M ′)+P ′) along U ′, we can apply the proof of Theorem 1.5.
In particular, it follows that W ′∩U ′ is normal and that the induced morphism E ′′ → W ′

is a contraction over W ′ ∩U ′. Let W ′′ denote the Stein factorization of E ′′ → W ′. Then,
we have W ′′ = W ν .

Now, letXm → X be a weak generalized dlt model of (X ′, B′+M ′). By Proposition 3.5,
we may assume that E appears as a divisor on Xm. Let Em denote the trace of E on Xm,
and let (Em, BEm+MMm) denote the generalized pair induced by generalized adjunction.
Notice that Em and E ′′ are normal and birational to each other. Furthermore, they both
admit a morphism to W ν . Since E ′′ → W ν is a contraction, by taking a common
resolution of Em and E ′′, we obtain that Em →W ν is a contraction.

Let (Xm, Bm+Mm) denote the pair obtained by taking the weak generalized dlt model,
and let (Xm, Bm+∆m+Mm) denote the trace of (X ′, B′+M ′) on Xm. Notice that ∆≥0.
Let (Em, BEm +MEm denote the generalized pair induced by (Xm, Bm +∆m +Mm) by
generalized adjunction. Since Em appears with coefficient 1 in Bm, (Xm, Bm) is dlt, by
[8, Remark 4.8] it follows that BEm ≥ 0. Then, we can apply Theorem 1.4 and define a
structure (W ν ,BW ν +MW ν ) of generalized sub-pair on W ν. Since BEm ≥ 0, it follows
that BW ν ,W ν ≥ 0.

Now, we are left with showing that the generalized pair structure (W ν ,BW ν +MWnu)
is intrinsic. Let Em

1 , . . . , E
m
l , where l ≥ 2, be the distinct generalized log canonical places

with center W ′ appearing in Xm, with Em = Em
1 . By the choice of Xm, (Xm, Bm) is dlt

over U ′. By the connectedness principle [31, Corollary 5.49], the locus Em
1 ∪ . . . ∪ Em

l is
connected over the generic point of W ′. Let Wm

i be the Stein factorization of Em
i → W ′.

While Wm
1 = W ν , it may be that Wm

i → W ν is a finite morphism for i ≥ 2. Thus,
each Em

i induces a generalized pair structure on a finite cover of W ν . In the spirit of
Remark 5.5, we can compare these generalized pair structures after a generically finite
base change. By abuse of language, we omit the base change and talk about generalized
pair structures induced on W ν .

Fix Em
k for some 1 ≤ k ≤ l, and denote by (Em

k , BEm
k
+MEm

k
) the generalized pair

induced by divisorial adjunction. Then, (Ek, BEk
+MEk

) is generalized log canonical and
generalized dlt over the generic point of W ′. Now, by Theorem 5.4, the generalized pair
induced by (Em

k , BEm
k
+MEm

k
) on W ν is the same as the one induced by a generalized log

canonical center F of (Ek, BEk
+MEk

) that dominates W ν . By the construction of Xν ,
every such F arises as the intersection of some of the Em

i ’s.
Thus, if Em

k ∩ Em
j 6= ∅, (Em

k , BEm
k
+MEm

k
) and (Em

j , BEm
j
+MEm

j
) induce the same

b-divisors on W ν . As Em
1 ∪ . . . ∪ Em

l is connected over the generic point of W ′, by
transitivity, we conclude that all the Em

i ’s induce the same b-divisors. �

We conclude discussing inversion of adjunction in the setup of generalized pairs. The
strategy follows the lines of [21].

Proof of Theorem 1.6. The “only if” direction follows immediately by divisorial adjunc-
tion applied to a generalized log canonical place, and Proposition 4.16. Thus, we are left
with proving the “if” part. Proceeding by contradiction, henceforth we will assume that
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(W ν ,BW ν +MW ν) is generalized log canonical, while (X ′, B′+M ′) is not generalized log
canonical near W ′.

Let (Xm, Bm +Mm) be a Q-factorial weak generalized dlt model for (X ′, B′ +M ′).
By Proposition 3.5, we may assume that there is a generalized log canonical place Sm

corresponding to W ′. Set Σm := (E+ − E)m, and Γm := Bm − Sm. As in the proof of
Theorem 3.2, E+ denotes the divisors on X of generalized discrepancy at most −1, and
E := redE+.

By the proofs of Theorem 3.4 and Proposition 3.5, there is a big divisor Lm with the
following property: for any t > 0 we can find a divisor Θm

t ∼R Γm + tLm +Mm such that
(Xm, Sm + Θm

t ) is plt. Up to twisting Lm by an ample divisor, we may assume that we
can run the relative (KXm +Bm +Mm)-MMP over X ′ with scaling of Lm.

Let φi : X
m
i 99K Xm

i+1 be the sequence of flips and divisorial contractions, and let
µi : X

m
i → X ′ and µ̄i : S

m
i → S ′ be the induced morphisms. Then, there is a sequence of

non-negative rational numbers {si}i≥0 such that si ≥ si+1, and either sN+1 = 0 for some
N ∈ N, or limi→+∞ si = 0. Furthermore, the divisor KXm

i
+ Sm

i +Γm
i +Mm

i + sLm
i is nef

over X ′ for all si ≥ s ≥ si+1. As the plt property is preserved by steps of the MMP [31,
Corollary 3.44], the pair (Xm

i , S
m
i +Θm

t,i) is plt if t < si.
By standard arguments, we may assume that φi is a flip for i ≥ i0, for some i0 ∈ N.

In addition, by the arguments in the proofs of Step 1 and Step 2 of [16, 4.2.1], we may
assume that Sm

i 99K Sm
i+1 is an isomorphism in codimension 1 for all i ≥ i0.

Now, assume that for some i ≥ 0 we have Sm
i ∩ Σm

i 6= ∅. Then, we can write

µ∗
i (KX′ +B′ +M ′)|Sm

i
= KSm

i
+BSm

i
+MSm

i
,

and (BSm
i
)>1 6= 0. In particular, (Sm

i , BSm
i
+MSm

i
) is not generalized log canonical. Con-

sider the induced fibration Sm
i → W ν . Then, by Proposition 4.16 and the construction

of generalized adjunction, (W ν ,BW ν + MW ν) is not generalized log canonical. This is
a contradiction. Notice that, as in the proof of Theorem 6.7, we are abusing notation,
as Sm

i → W ν may not have connected fibers. On the other hand, this is not a problem,
since a generalized sub-pair is generalized sub-log canonical if and only if the generalized
sub-pair induced by a generically finite base change is sub-log canonical [31, Proposition
5.20].

Thus, we may assume that Sm
i ∩Σm

i = ∅ for all i ≥ 0. For any integer k ≫ 0 such that
kΣm is an integral divisor, pick i ≥ i0 such that si >

1
k
≥ si+1. Then,

Lm
i − kΣm

i − Sm
i ∼Q,µi

KXm
i
+Θ 1

k
,i + (k − 1)

(

KXm
i
+ Sm

i + Γm
i +Mm

i +
1

k
Lm
i

)

.

The pair (Xm
i ,Θ 1

k
,i) is klt, while KXm

i
+ Sm

i + Γm
i + Mm

i + 1
k
Lm
i is µi-nef. Hence, by

the relative version of Kawamata–Viehweg vanishing [31, cf. proof of Corollary 2.68 and
Theorem 2.70], we have R1µi,∗OXm

i
(Lm

i − kΣm
i − Sm

i ) = 0. This implies that there is a
surjection

(6) µi,∗OXm
i
(Lm

i − kΣm
i ) → µ̄i,∗OSm

i
(Lm

i − kΣm
i ) = µ̄i,∗OSm

i
(Lm

i ) → 0,

where the equality µ̄i,∗OSm
i
(Lm

i − kΣm
i ) = µ̄i,∗OSm

i
(Lm

i ) follows from the fact that Sm
i ∩

Σm
i = ∅. On the other hand, for k ≫ 0 the subsheaves

µi0,∗OXm
i0
(Lm

i0
− kΣm

i0
) ⊂ µi0,∗OXm

i0
(Lm

i0
)

are contained in Iµi0
(Σm

i0
) ·µi0,∗OXm

i0
(Lm

i0 ). Since we are assuming that (X ′, B′+M ′) is not

generalized log canonical aroundW ′, we have W ′∩µi0(Σ
m
i0
) 6= ∅. Thus, the restrictions to

W ′ of the local sections of µi0,∗OXm
i0
(Lm

i0
−kΣm

i0
) vanish along the intersectionW ′∩µi0(Σ

m
i0
).
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Consequently, the morphism

(7) µi0,∗OXm
i0
(Lm

i0
− kΣm

i0
) → µ̄i0,∗OSm

i0
(Lm

i0
)

is not surjective.
Now, since for i ≥ i0 all the maps Xm

i0
99K Xm

i and Sm
i0

99K Sm
i are isomorphisms

in codimension 1, we have equalities µi,∗OXm
i
(Lm

i − kΣm
i ) = µi0,∗OXm

i0
(Lm

i0
− kΣm

i0
), and

µ̄i,∗OSm
i
(Lm

i ) = µ̄i0,∗OSm
i0
(Lm

i0
). Thus, equation (7) is equivalent to saying that

µi,∗OXm
i
(Lm

i − kΣm
i ) → µ̄i,∗OSm

i
(Lm

i )

is not surjective. This contradicts equation (6), and concludes the proof. �

7. Applications to a conjecture of Prokhorov and Shokurov

Now, we would like to discuss a possible application of the canonical bundle formula
for generalized pairs. In particular, we are interested in the connections with a conjecture
by Prokhorov and Shokurov [35, Conjecture 7.13]. We start by recalling its statement.

Conjecture 7.1 ([35, Conjecture 7.13]). Let (X,B) be a sub-pair, and assume that B is
a Q-divisor. Let f : X → Z be a contraction such that KX + B ∼Q,f 0. Also, let (X,B)
be klt over the generic point of Z. Then, we have:

(i) MZ is b-semi-ample;
(ii) let Xη be the generic fiber of f . Then I0(KXη

+ Bη) ∼ 0, where I0 depends only
on dimXη and the multiplicities of Bh; and

(iii) MZ is effectively b-semi-ample. There exists a positive integer I1 depending only
on the dimension of X and the horizontal multiplicities of B (a finite set of rational
numbers) such that I1MZ is very b-semi-ample; that is, I1MZ = L, where L is a
basepoint-free divisor on some birational model of Z.

In view of the recent developments, we propose the following generalization of Conjec-
ture 7.1.

Conjecture 7.2. Let (X ′, B′ +M ′) be a generalized sub-pair with data X → X ′ and M .
Assume that B′, M ′ and M are Q-divisors. Let f : X ′ → Z ′ be a contraction such that
KX′ +B′ +M ′ ∼Q,f 0. Assume that M is semi-ample, and let c be the minimum positive
integer such that |cM | is basepoint-free. Also, let (X ′, B′ +M ′) be generalized klt over
the generic point of Z ′. Then, we have:

(i) MZ′ is b-semi-ample;
(ii) let X ′

η be the generic fiber of f . Then I0(KX′

η
+B′

η +M ′
η) ∼ 0, where I0 depends

only on dimX ′
η, the multiplicities of Bh and c, and we are free to replace the

representative of M ′ in its Q-linear equivalence class; and
(iii) MZ is effectively b-semi-ample. There exists a positive integer I1 depending only

on the dimension of X ′, the horizontal multiplicities of B and c (a finite set of
rational numbers) such that I1MZ′ is very b-semi-ample; that is, I1MZ′ = L,
where L is a basepoint-free divisor on some birational model of Z ′.

In the hope of a possible inductive approach, it is important to relate the two conjec-
tures.

Theorem 7.3. If Conjecture 7.1 is true in relative dimension n, then so is Conjecture 7.2.
More precisely, each part of Conjecture 7.1 implies the corresponding part of Conjecture
7.2.
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Proof. Throughout the proof, we fix the relative dimension of the fibrations. Also, let
(X ′, B′ +M ′) be as in Conjecture 7.2.

Now, assume that part (i) of Conjecture 7.1 holds. Let Z be a higher model of Z ′ where
MZ′ descends. We may also assume that |MZ′,Z|Q is resolved, that is |MZ′,Z|Q = |L|Q+F ,
where |L|Q is a basepoint-free Q-linear series and F ≥ 0. Notice that, by Remark 4.11,
we know that |MZ′,Z|Q 6= ∅. Arguing by contradiction, we have F 6= 0. Let P be a
prime divisor contained in the support of F . By Remark 4.8, there is 0 ≤ A ∼Q M such
that multP MZ′ = multP MA

Z′. Up to replacing Z with a higher model, we may assume
that MA

Z′ descends to Z. By assumption, |MA
Z′,Z |Q is basepoint-free. By construction,

MZ′,Z = MA
Z′,Z +E, where E ≥ 0 and multP E = 0. Thus, |MZ′,Z |Q is free at the generic

point of P , which is the required contradiction.
Now, assume that part (ii) of Conjecture 7.1 holds. By assumption, we may write

KX′ + B′ +M ′ ∼Q KX′ + B′ + A′, where A′ is horizontal over Z ′, irreducible, and with
coefficient 1

c
. Thus, part (ii) of Conjecture 7.2 follows.

Now, we are left with showing that part (iii) of Conjecture 7.2 holds if we assume part
(iii) of Conjecture 7.1. Notice that the arguments in [13, Section 3] go through verbatim
in the setup of generalized pairs. Therefore, we can reduce to the case when the base
Z ′ is a smooth curve. Let I be the integer guaranteed by part (iii) of Conjecture 7.1,
where we allow coeff(B′

η) ∪ {1
c
} as the set of coefficients. Then, by Remark 4.8 IMZ′,Z′

is integral. Thus, it suffices to show it is basepoint-free.
By Remark 4.8, for every point P ∈ Z ′, there is A ∼c M such that IMZ′,Z′ = IMA

Z′,Z′+
∑k

i=1 niPi, where P 6= Pi for all i and ni ∈ N. Since IMA
Z′,Z′ is basepoint-free, IMZ′,Z′ is

free at P . As P is arbitrary, the claim follows. �

As an immediate corollary, we have the following.

Corollary 7.4. Conjecture 7.2 holds true if the relative dimension is 1.

Proof. It follows immediately from Theorem 7.3 and [35, Theorem 8.1]. �

Now, we are ready to show how to use Corollary 7.4 in order to prove certain cases of
Conjecture 7.1.

Proof of Theorem 1.7. Up to replacing Z with a higher model and X with the normaliza-
tion of the fiber product, by Chow’s lemma, we may assume that Z is quasi-projective.
Then, by [24], we may assume that Z is projective. Let Xη be the geometric generic
fiber. Then, it admits a minimal resolution X ′ → Xη. Notice that X ′ is not isomorphic
to P2. This morphism is defined over a finite extension of K(Z). Therefore, up to a
generically finite base change of Z, we may assume that the minimal resolution of Xη is
defined over K(Z). Thus, we can replace X with the corresponding blow-up resolving
the generic fiber. Notice that in this process, Bh remains effective. Thus, from now on,
we may assume that Xη is smooth.

By the assumptions of the theorem, we have that the Kodaira dimension of the generic
fiber satisfies κ(Xη) ≤ 0. In case κ(Xη) = 0, we have Bh = 0, and the statement follows
from work of Fujino [14, Lemma 4.1, Corollary 6.4].

Therefore, we may assume κ(Xη) < 0, and that Xη is not isomorphic to P2. Hence,
either the minimal model of the geometric generic fiber Xη is a minimal ruled surface
over a curve [31, Theorem 1.29], or Xη maps to the blow-up of P2 at one point. In both
cases, the geometric generic fiber admits a morphism to a curve. Thus, up to a base
change of the fibration by a generically finite morphism, we may assume that the generic
fiber itself admits a morphism to a curve. In particular, we have a commutative diagram
of rational maps
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X Y

Z

g

f
h

where g and h are actual morphisms over an open subset of Z. Thus, up to taking
birational modifications of X and Y that are isomorphism over the generic point of Z, we
may assume that g and h are morphisms. Then, up to taking the normalization of Y in
Z, we may assume that g and h have connected fibers. Notice that, by construction, the
relative dimensions of g and h are both 1, and the generic fibers are smooth. Furthermore,
the generic fiber of g is rational.

In order to better understand the above picture, we consider the general fibers. As
all three morphisms have smooth generic fibers, the general fibers are smooth as well.
We denote them by F , G and H respectively. The curve G is isomorphic to P1, and is
contained in the surface F . Since F is general, the sub-klt sub-pair (X,B) induces a sub-
klt sub-pair (F,BF ) [34, Corollary 9.5.6]. Since B is effective along Xη, BF is effective
too, and (F,BF ) is klt. In particular, we have KF +BF ∼Q 0. As we have the morphism
F → H , we can apply the canonical bundle formula in this setup. It will produce an
effective boundary divisor BH and a nef divisor MH such that KH + BH +MH ∼Q 0.
This implies that the genus of H , and hence of the generic fiber of h, is either 0 or 1.

Notice that, to obtain the morphism X → Y , we did not blow up any horizontal stra-
tum, as the morphism of generic fibers was well defined up to a base change. Therefore,
in the new model X , the divisor B is effective over a dense open set of Z. Then, by
Corollary 7.4, the moduli b-divisor MY is b-semi-ample. Also, by Proposition 4.16, the
boundary part BY,Y is effective, and (Y,BY,Y +MY,Y ) is generalized klt over the generic
point of Z. Therefore, we can apply Corollary 7.4 to the fibration Y → Z. Furthermore,
by Lemma 5.1, the moduli, and boundary b-divisors induced by Y → Z and by X → Z
agree. Therefore, we conclude that MZ is b-semi-ample. �

Remark 7.5. The proof of Theorem 1.7 does not imply effective b-semi-ampleness, be-
cause in the course of the proof we replaced the base of the fibration with a generically
finite cover. One would need a bound on the degree of the cover in order to achieve
effectivity.

Proof of Theorem 1.8. Let Bh denote the horizontal part of B. Let (Xm,∆m) be a Q-
factorial dlt model of (X,Bh), and let Bm the log-pullback of B to Xm. Since (X,B) is
klt over the generic point of Z, we have that (Xm, (Bm)h) is klt. Then, let X ′ → Xm

be a terminalization of (Xm, (Bm)h). Let B′ denote the log-pullback of B to X ′. Notice
that, by construction, we have (B′)h ≥ 0.

Since (X,B) is not terminal, the morphism X ′
η → Xη is not an isomophism. In

particular, Xη is not isomorphic to P2. Therefore, Theorem 1.7 applies to (X ′, B′) → Z,
and the claim follows. �

The approach in Theorem 1.7 suggests that the proof of part (i) of Conjecture 7.1 can
be reduced to two extreme cases: Mori fiber spaces, and cases when Xη is Calabi–Yau.
If we use techniques from the MMP, we avoid generically finite base changes, and we can
also address part (iii) of Conjecture 7.1.

Theorem 7.6. Fix a natural number n. Assume that part (i) (or (iii)) of Conjecture 7.1
is true if the relative dimension is strictly less than n. Then, part (i) (respectively (iii))
of Conjecture 7.1 in relative dimension n can be reduced to the two following cases:
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• f : X → Z is a KX-Mori fiber space; or
• KX ∼Q,Z 0, and Bh = 0.

Proof. As argued in the proof of Theorem 1.7, we may assume that the varieties involved
are projective. By [30, Theorem 3.1], we can assume that X is Q-factorial, and (X,Bh) is
klt. Thus, we can run aKX-MMP over Z with the scaling of an ample divisor. Notice that
there are two cases: either Bh = 0 or Bh > 0. In the former case, the MMP terminates
with a good minimal model for KX by [6, Theorem 1.4] and [23, Theorem 1.1]. In the
latter case, the MMP terminates with a Mori fiber space by [9]. Call g : X ′ → Z the final
model reached by the MMP, and let (X ′, B′) be the sub-pair induced by (X,B).

First, assume that X ′ is a good minimal model for X . Then, KX′ ∼Q,Z 0. Since
KX′ +B′ ∼Q,g 0 and Bh = 0, it follows that B′ is the pullback of a divisor on Z.

Now, assume that the MMP terminates with a Mori fiber space h : X ′ → Y . If Y is
birational to Z, we are done. Hence, we may assume that dimX ′ − dimY < n. Then,
the fibration (X ′, B′) → Y satisfies the conditions of Conjecture 7.1 for a smaller relative
dimension. By assumption, a generalized pair structure (Y,BY +MY ) is induced on Y ,
where MY is b-semi-ample (respectively effectively b-semi-ample). Thus, we can apply
the lower dimensional case of Conjecture 7.2, which holds by Theorem 7.3, to the fibration
Y → Z, and induce a generalized pair structure (Z,BZ + MZ) on Z, where MZ is b-
semi-ample (respectively effectively b-semi-ample). By Lemma 5.1, the generalized pair
(Z,BZ + MZ) induced this way is the same as the one induced by (X,B). Thus, the
claim follows. �
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