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Loose edges
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Abstract

We consider formal power series in several variables with coefficients

in arbitrary field such that their Newton polyhedron has a loose edge. We

show that if the symbolic restriction of the power series f to such an edge

is a product of two coprime polynomials, then f factorizes in the ring of

power series.

1 Introduction

Notation. We denote by R≥0 (respectively R>0) the set of nonnegative (re-
spectively positive) real numbers. The symbol 〈·, ·〉 denotes the standard scalar
product. We use a multi-index notation xα := xα1

1 · · ·xαn
n for α = (α1, . . . , αn).

We start from a quick reminder of convex geometry.
Let f ∈ K[[x1, . . . , xn]], f =

∑
aαx

α be a nonzero power series. We define
the Newton polyhedron ∆(f) as the convex hull of the set {α : aα 6= 0}+ Rn

≥0.
The symbolic restriction of f to A ⊂ ∆(f) is defined as the power series

f |A =
∑

α∈A

aαx
α.

Given ∆ = ∆(f), for any ξ ∈ Rn
≥0 we call the set

∆ξ := { a ∈ ∆ : 〈ξ, a〉 = min
b∈∆

〈ξ, b〉 }

a face of ∆. A Newton polyhedron has a finite number of faces. A face ∆ξ

is compact if and only if ξ ∈ Rn
>0. A face of dimension 0 (respectively 1) is

called a vertex (respectively an edge). Following [4], we call a compact edge of
a Newton polyhedron a loose edge if it is not contained in any compact face of
dimension ≥ 2.

Several Newton polyhedra are drawn in the pictures that follow. The seg-
ments marked in blue are loose edges

Fig. 1 Fig. 2 Fig. 3

The Newton polyhedron in Figure 1 does not have any loose edge. This is
the typical situation.
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The Newton polyhedron in Figure 2 has a loose edge with the end point at
(0, 0, d). The Weierstrass polynomials f ∈ K[[x1, . . . , xn]][z] such that ∆(f) is of
this type were studied in [5] and in [6] where ∆(f) is called an orthant associated
polyhedron

In Figure 3 all compact edges are loose. A Newton polyhedron with this
property is called in [3] a polygonal Newton polyhedron. Notice that the term
polygonal Newton polyhedron can be a bit misleading since the union of compact
edges in Figure 3 is not homeomomorphic to any polygon.

Every compact edge of a plane Newton polyhedron is loose as illustrated in
Figure 4.

Fig. 4

Below are the main results of the paper.

Theorem 1.1. Let f ∈ K[[x1, . . . , xn]] be a formal power series with coefficients
in a field K. Assume that the Newton polyhedron ∆(f) has a loose edge E.
If f |E is a product of two relatively prime polynomials G and H, where G is
not divided by any variable, then there exist powers series g, h such that f = gh
and g|E1

= G, h|E2
= H for some E1, E2 such that E = E1 + E2.

In the above theorem E1 is a loose edge of ∆(g) parallel to E and E2 is a
compact face of ∆(h) which is a loose edge parallel to E or a vertex if H is a
monomial.

Corollary 1.2. Assume that the Newton polyhedron of f ∈ K[[x1, . . . , xn]] has
a loose edge and at least three vertices. Then f is not irreducible.

Corollary 1.3. Assume that the Newton polyhedron of f ∈ K[[x1, . . . , xn]] has
a loose edge E. If f is irreducible, then E is the only compact edge of ∆(f) and
f |E = cF k, where F is an irreducible polynomial. Moreover, if K is algebraically
closed, then f |E = (axα + bxβ)k with a primitive lattice vector α− β.

We will say that a segment E ⊂ R
n is descendant if E is parallel to some

vector c = (c1, . . . , cn) such that ci ≥ 0 for i = 1, . . . , n− 1 and cn < 0.

Theorem 1.4. Let f ∈ K[[x1, . . . , xn−1]][xn]. Assume that the Newton polyhe-
dron ∆(f) has a loose and descendant edge E. If f |E is a product of two rela-
tively prime polynomials G and H, where G is monic with respect to xn, then
there exist uniquely determined g, h ∈ K[[x1, . . . , xn−1]][xn] such that f = gh, g
is a monic polynomial with respect to xn and g|E1

= G, h|E2
= H for some E1,

E2 such that E = E1 + E2.

2



2 Proofs

At the beginning of this section we establish some results about loose edges.

Lemma 2.1. Let ∆ be a Newton polyhedron with a loose edge E that has ends
a, b ∈ R

n. Then for every c ∈ ∆ and every ξ ∈ R
n
≥0 such that 〈ξ, a〉 = 〈ξ, b〉

one has 〈ξ, c〉 ≥ 〈ξ, a〉.

Proof. Let V be the set of vertices of ∆. If V = {a, b} then Lemma 2.1 follows
easily. Hence in the rest of the proof assume that there exists a vertex of ∆
different from a or b and consider the function

ψ(ξ) = min
v∈V \{a,b}

〈ξ, v〉 − 〈ξ, a〉, ξ ∈ R
n
≥0.

Since the set of vertices is finite, this function is well defined and continuous.
Since E is a compact face of ∆, there exists ξ0 ∈ Rn

>0 such that 〈ξ0, a〉 =
〈ξ0, b〉 and 〈ξ0, c〉 > 〈ξ0, a〉 for all c ∈ ∆ \ E. This yields

ψ(ξ0) > 0.

Suppose that there exist c ∈ ∆ and ξ1 ∈ Rn
≥0 such that 〈ξ1, c〉 < 〈ξ1, a〉 =

〈ξ1, b〉. Since c = λ1v1 + · · · + λsvs + z, for some z ∈ R
n
≥0, v1, . . . , vs ∈ V and

λi ≥ 0 such that λ1+ · · ·+λs = 1, we get 〈ξ1, v〉 < 〈ξ1, a〉 for at least one vertex
v ∈ V . Thus

ψ(ξ1) < 0.

It follows from the above that there exist ξ in the segment, joining ξ0 and ξ1,
such that ψ(ξ) = 0. It means that there exists v ∈ V \ {a, b} such that 〈ξ, v〉 =
〈ξ, a〉 = 〈ξ, b〉 ≤ 〈ξ, d〉 for all d ∈ ∆. This implies that ∆ξ is a compact (since
ξ ∈ Rn

>0) face of dimension ≥ 2, which contains E.

Lemma 2.2. Let ∆ be a Newton polyhedron with a loose edge E that has end
points a = (a1, . . . , an), b = (b1, . . . , bn). If min(a1, b1) = · · · = min(an, bn) = 0,
then a and b are the only vertices of ∆.

Proof. By assumption there exist two nonempty and disjoint subsets A, B of the
set of indices {1, . . . , n} such that ai > 0 for i ∈ A, ai = 0 for i ∈ {1, . . . , n} \A,
bj > 0 for j ∈ B and bj = 0 for j ∈ {1, . . . , n} \B.

Let c = (c1, . . . , cn) be an arbitrary point of ∆ different from a and b. For any
i ∈ A, j ∈ B consider the vector ξij , which has only two nonzero entries: 1/ai at
place i and 1/bj at place j (i 6= j since A ∩B = ∅). Then 〈ξij , a〉 = 〈ξij , b〉 = 1
and 〈ξij , c〉 = ci/ai + cj/bj. By Lemma 2.1 we get ci/ai + cj/bj ≥ 1. It follows
that

min
i∈A

ci/ai +min
j∈B

cj/bj ≥ 1.

Choose constants λ ≥ 0, µ ≥ 0 such that λ ≤ mini∈A ci/ai, µ ≤ minj∈B cj/bj
and λ + µ = 1. Then c = λa + µb + z for some z ∈ Rn

≥0, hence c cannot be a
vertex of ∆.

3



Lemma 2.3. Let c ∈ Zn be a point with at least one positive and at least
one negative coordinate. Then there exists such a basis ξ1,. . . ,ξn of the vector
space Rn that ξi ∈ Nn for i = 1, . . . , n and 〈ξi, c〉 = 0 for i = 1, . . . , n− 1.

Proof. For any basis ξ1, . . . , ξn ofRn setw = (w1, . . . , wn) := (〈ξ1, c〉, . . . , 〈ξn, c〉).
By the hypothesis of the lemma, for the standard basis ξ1 = (1, 0, . . . , 0), . . . ,
ξn = (0, . . . , 0, 1) of Rn there exist wi, wj 6= 0 of opposite signs. We will gradu-
ally modify the standard basis until we reach a basis such that only one coordi-
nate of w is nonzero. Below we outline the algorithm.

1. If there are only two nonzero entries wj , wk of w and wj + wk = 0, then
replace ξk by ξk + ξj and stop.

2. Let j be the index such that |wj | = min{ |wi| : wi 6= 0, i ∈ {1. . . . , n} }.

(a) If there exists wk of sign opposite to this of wj , such that |wk| > |wj |,
then replace ξk by ξk + ξj ,

(b) otherwise if there are at least two entries wk, wl of sign opposite to
this of wj , then replace ξk by ξk + ξj ,

(c) otherwise set j := k and perform step (a).

3. Go to step 1.

After every loop of the above algorithm wk is replaced by wk + wj . Hence
the number

∑n
i=1

|wi| decreases and the algorithm must terminate.

We encourage the reader to apply the algorithm from the proof in a simple
case, for example for c = (2, 3,−4).

From now on up to the end of this section we fix a loose edge E. Let c
be a primitive lattice vector parallel to E. Applying Lemma 2.3 to c we find
n− 1 linearly independent vectors ξ1,. . . , ξn−1 ∈ Nn which are orthogonal to
E. For every monomial xα we set ω(xα) := (〈ξ1, α〉, . . . , 〈ξn−1, α〉). We call this
vector a weight of xα. Since ω(xαxβ) = ω(xα) + ω(xβ) for any monomials xα,
xβ , the ring K[x1, . . . , xn] turns into a graded ring

⊕
w∈Nn−1 Rw, where Rw is

spanned by monomials of weight w.
All monomials of Rw are of the form xa+ic where xa is a fixed monomial of

Rw and i is an integer. This shows that Rw is a finite dimensional vector space
over K since there is only a finite number of integers i such that all coordinates
of a+ ic are nonnegative. One can happen that dimRw = 0. Take for example
the weight ω(xα1

1 xα2

2 ) = 3α1 + 2α2. Then there is no monomial of weight 1,
hence R1 ⊂ K[x1, x2] is a zero-dimensional vector space.

Let M ⊂ Nn−1 be the set of weights satisfying the condition: z ∈ M if and
only if there exists α ∈ Zn such that ω(xα) = z and 〈ξ, α〉 ≥ 0 for all ξ ∈ Rn

≥0

which are orthogonal to E. Observe that M is closed under addition. Moreover
for any w ∈ N

n−1 such that dimRw > 0 we have w ∈M .

4



Lemma 2.4. Let w ∈ Nn−1 and z ∈M . Assume that Rw contains two coprime
monomials. Then

dimRw+z = dimRw + dimRz − 1.

Proof. For any v ∈ Nn−1 the dimension of the vector space Rv is equal to the
number of monomials xα such that ω(xα) = v, hence is equal to the number of
lattice points in the set

lv = {α ∈ R
n
≥0 : (〈ξ1, α〉, . . . , 〈ξn−1, α〉) = v }.

Notice that lv is the intersection of the straight line {a + tc : t ∈ R}, where
ω(xa) = v and c is a primitive lattice vector parallel to the edge E, with Rn

≥0.

By the assumption, Rw contains two coprime monomials xa and xb. Hence
min(a1, b1) = · · · = min(an, bn) = 0 which yields the partition of {1, . . . , n}
to three sets A = {i ∈ {1, . . . , n} : ai = 0, bi > 0}, B = {i ∈ {1, . . . , n} :
ai > 0, bi = 0} and C = {i ∈ {1, . . . , n} : ai = 0, bi = 0}. Since A and B
are nonempty, a and b are the endpoints of the segment lw. We may assume
without loss of generality that the vector c is pointed in the direction of b− a.
Then if dimRw = r+1, then the lattice points of lw are a, a+ c, . . . , b = a+ rc.

If the lattice points of lz are d, d + c, . . . , d + sc then the lattice points of
lw+z, are a + d, a + d + c, . . . , a + d + (r + s)c. (see Figure 5). This ends the
proof in the case dimRz > 0.

Now suppose that dimRz = 0. Let xd be any monomial with integer ex-
ponents such that ω(xd) = z. Replacing this monomial by xd+kc, for suitably
chosen integer k, we may assume that di0 < 0 for some i0 ∈ A and di+ci ≥ 0 for
all i ∈ A. By the assumption that z ∈M we get inequalities di0/ci0 − dj/cj ≥ 0
for j ∈ B. Hence dj ≥ 0 for all j ∈ B. By the same argument we have dj ≥ 0 for
j ∈ C. Notice that dj + cj < 0 for at least one j ∈ B, otherwise all exponents of
xd+c would be nonnegative. All this information implies that a+d+c, a+d+2c,
. . . , a+ d+ rc are the only lattice points of lw+z which finishes the proof.

a

a+ c

a+ rc

d

d+ c

d+ sc
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a+ d

a+ d+ c

a+ d+ (r + s)c

Fig. 5

Lemma 2.5. Let G ∈ Rw and H ∈ Rz be coprime polynomials. If G is not
divisible by any monomial then for every i ∈M

GRz+i +HRw+i = Rw+z+i.

Proof. Consider the following exact sequence

0 −→ Ri
Φ

−→ Rz+i ×Rw+i
Ψ
−→ Rw+z+i,

where Φ: η 7→ (ηH,−ηG) and Ψ: (ψ, ϕ) 7→ ψG + ϕH . The assumption on G
implies that Rw satisfies the hypothesis of Lemma 2.4. Hence we get dim ImΨ =
dimRz+i +dimRw+i − dimRi = dimRz+i +(dimRw +dimRi − 1)− dimRi =
dimRw + dimRz+i − 1 = dimRw+z+i, which implies that Ψ is surjective.

Proof of Theorem 1.1. Since all monomials of f |E have the same weight, it fol-
lows from the the equality f |E = GH that G ∈ Rw and H ∈ Rz for some w,
z ∈ Nn−1. Let xα be any monomial which appears with nonzero coefficient
in the power series f and xα0 be a fixed monomial of f |E . By Lemma 2.1
we have 〈ξ, α〉 ≥ 〈ξ, α0〉 for every ξ ∈ Rn

≥0 which is orthogonal to E. This

yields ω(xα−α0) ∈ M . Since ω(xα0) = w + z, we get f =
∑

i∈M fw+z+i, where
fw+z+i ∈ Rw+z+i.

Let gw := G and hz := H . Then fw+z = gwhz. Let us set M in degree-
lexicographic order. Using Lemma 2.5 we can find recursively gw+i ∈ Rw+i and
hz+i ∈ Rz+i such that

gwhz+i + hzgw+i = fw+z+i − Fi,

where
Fi =

∑

k+l=i,

k,l<i

gw+khz+l.

If g :=
∑

i∈M gw+i and h :=
∑

i∈M hz+i, then f = gh.

Let ξ = ξ1 + · · · + ξn−1. Then for E1 := ∆(g)ξ and E2 := ∆(h)ξ we have
g|E1

= gw, h|E2
= hz and E = E1 + E2.

6



Remark 2.6. The assumption of Theorem 1.1 that G is not divisible by any
variable cannot be omitted. Consider the power series f = (x23 + x1x2)(x3 +
x1x2). Its Newton polyhedron has a loose edge E with endpoints (1, 1, 1), (2, 2, 0)
and f |E = x1x2(x3 + x1x2). The irreducible factors of f are f1 = x23 + x1x2
and f2 = x3 +x1x2. Hence f cannot be a product of power series g, h such that
g|E1

= x2(x3 + x1x2) and h|E2
= x1.

Proof of Corollary 1.2. Assume that a = (a1, . . . , an), b = (b1, . . . , bn) are the
ends of a loose edge E of the Newton polyhedron ∆(f). Since ∆(f) has at
least three vertices, Lemma 2.2 implies that c = (min(a1, b1), . . . ,min(an, bn))
has at least one nonzero coordinate. The monomials xa and xb appear in the
polynomial f |E with nonzero coefficients and their greatest common divisor
equals xc. Thus x−c ·f |E is not divisible by any variable, so x−c ·f |E and xc are
relatively prime. Using Theorem 1.1 we obtain that f is not irreducible.

Lemma 2.7. Let G ∈ Rw and Hj ∈ Rzj for j = 1, 2. Assume that for every
i ∈M

GRzj+i +HjRw+i = Rw+zj+i

for j = 1, 2. Then for every i ∈M

GRz1+z2+i +H1H2Rw+i = Rw+z1+z2+i.

Proof. By assumptions of the lemma we get

GRz1+z2+i +H1H2Rw+i = G(Rz1+z2+i +H1Rz2+i) +H1H2Rw+i

= GRz1+z2+i +H1(GRz2+i +H2Rw+i)

= GRz1+z2+i +H1Rw+z2+i = Rw+z1+z2+i .

Assume that E is a descendant loose edge. By definition, there exists a
lattice vector c = (c1, . . . , cn) parallel to E such that ci ≥ 0 for i = 1, . . . , n− 1
and cn < 0. Let R′

w := Rw ∩ K[x1, . . . , xn−1] for w ∈ Nn−1. Since every line
parallel to E intersects Rn−1 × {0} transversely, the dimension of R′

w is 0 or 1.
We claim that for every w ∈ M , z ∈ Nn−1, 0 6= H ∈ R′

z and ψ ∈ R′
w+z one

has ψ/H ∈ R′
w. To prove this claim it is enough to consider H = xα ∈ R′

z and
ψ = xβ ∈ R′

w+z. Then ω(xβ−α) = w. Denote vi := ei −
ci
cn
en ∈ Rn

≥0, where
e1, . . . , en is the standard basis of Rn. Since every vector vi is orthogonal to
E and w ∈ M , we have 0 ≤ 〈vi, β − α〉 = βi − αi for i = 1, . . . , n − 1. Thus
ψ/H = xβ−α is a monomial with nonnegative exponents.

Lemma 2.8. Let G ∈ Rw and H ∈ Rz be coprime polynomials. If G is monic
with respect to xn, then for every i ∈M

GRz+i +HRw+i = Rw+z+i. (1)

7



Proof. First, we prove (1) in the special case G = xn and H ∈ R′
z.

Every F ∈ Rw+z+i can be written in the form F = xnφ + ψ where φ, ψ are
polynomials and ψ does not depend on xn. Then φ ∈ Rz+i and ψ = Hψ′ where
ψ′ = ψ/H ∈ R′

w+i. This gives (1) in the special case. All remaining cases follow
from Lemma 2.5 and Lemma 2.7.

Proof of Theorem 1.4. Proceeding as in the proof of Theorem 1.1, but using
Lemma 2.8 instead of Lemma 2.5 we obtain g, h ∈ K[[x1, . . . , xn−1, xn]] such that
f = gh, g|E1

= G and h|E2
= H for some segments E1, E2, where E = E1+E2.

The assumptions that the loose edge E is descendant and the polynomial G is
monic with respect to xn imply that the Newton polyhedron of g has a vertex
(0, . . . , 0, d) for some positive integer d. Therefore g(0, . . . , 0, xn) = vxdn for
some v ∈ K[[xn]] such that v(0) 6= 0. It means that g fulfills assumptions of
the Weierstrass Preparation Theorem, which implies that g = uĝ, where u is a
power series such that u(0) 6= 0 and ĝ ∈ K[[x1, . . . , xn−1]][xn] is a Weierstrass
polynomial. Putting g = ĝ and h = uh we get f = gh. Since we can also obtain
h using the polynomial division of f by g in the ring K[[x1, . . . , xn−1]][xn], we
conclude that h is a polynomial with respect to xn.

3 Relation with known results

Corollary 1.3 generalizes to n > 2 variables the following well-known fact.

Theorem 3.1. Assume that a power series f ∈ C[[x, y]] written as a sum of
homogeneous polynomials f = fd + fd+1 + . . . , where the subindex means the
degree, is irreducible. Then fd is a power of a linear form.

Below we quote some notations of [1] and Lemma A1 of that paper.

Let K be a field and fix a weight ω(xiyj) := ni +mj for n,m ∈ N. Given
0 6= F ∈ K[[x, y]], we will consider its decomposition in ω-quasihomogeneous
forms

F (x, y) = Fa+b(x, y) + Fa+b+1(x, y) + . . . ,

where the subindex means the ω-weight.

Theorem 3.2. Asume that Fa+b(x, y) = fa(x, y)gb(x, y), where fa, gb ∈ K[x, y]
are quasihomogeneous and coprime. Then, there exist

f, g ∈ K[[X,Y ]], f = fa + fa+1 + . . . , g = gb + gb+1 + . . .

such that F = fg. Moreover if fa is an irreducible polynomial, then f is an
irreducible power series.

Theorem 1.1 can be seen as a generalization of this results.

Corollary 1.3 generalizes the following result of [2]

8



Theorem 3.3. If φ ∈ C{x1, . . . , xn} is irreducible and has a polygonal Newton
polyhedron ∆(φ), then the polyhedron ∆(φ) has only one compact edge E and
the polynomial φ|E is a power of an irreducible polynomial.

The term polygonal Newton polyhedron in the statement of the above the-
orem is used for Newton polyhedra such that all their compact edges are loose.

Theorem 1.4 generalizes the main result of [6] quoted below.

Theorem 3.4. Let P (Z) ∈ k[[x1, . . . , xn]][Z] be a monic Weierstrass polyno-
mial. Assume that P(Z) has an orthant associated polyhedron and that P |Γ ∈
k[x1, . . . , xn, Z] is the product of two coprime monic polynomials S1, S2 ∈
k[x1, . . . , xn, Z], respectively, of degree d1 and d2. Then there exist two monic
polynomials P1, P2 ∈ k[[x1, . . . , xn]][Z], respectively, of degrees d1 and d2 in Z
such that
i) P = P1P2,
ii) there is at least one i ∈ {1, 2} such that Pi has an orthant associated
polyhedron and if Γi denotes the compact face of ∆(Pi) containing the points
(0, . . . , 0, di), then Pi|Γi

= Si and Γi is parallel to Γ.

The term orthant asociated polyhedron in the statement of the above theorem
means a Newton polyhedron that has a loose edge with endpoint (0, . . . , 0, d).
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