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COMPONENTS OF THE HILBERT SCHEME OF SMOOTH PROJECTIVE
CURVES USING RULED SURFACES

YOUNGOOK CHOI, HRISTO ILIEV, AND SEONJA KIM

ABSTRACT. Let Id,g,r be the union of irreducible components of the Hilbert scheme whose

general points correspond to smooth irreducible non-degenerate curves of degree d and

genus g in Pr. We use families of curves on cones to show that under certain numeri-

cal assumptions for d, g and r, the scheme Id,g,r acquires generically smooth components

whose general points correspond to curves that are double covers of irrational curves. In

particular, in the case ρ(d, g, r) := g − (r + 1)(g − d + r) ≥ 0 we construct explicitly a

regular component that is different from the distinguished component of Id,g,r dominating

the moduli space Mg . Our result implies also that if g ≥ 57 then I 4g

3
,g,

g+1

2

has at least two

generically smooth components parametrizing linearly normal curves.

1. INTRODUCTION

Let Id,g,r be the union of irreducible components of the Hilbert scheme whose gen-

eral points correspond to smooth irreducible non-degenerate complex curves of degree d

and genus g in Pr. A component of Id,g,r is called regular if it is reduced and of expected

dimension λd,g,r := (r + 1)d − (r − 3)(g − 1). Otherwise it is called superabundant. For

ρ(d, g, r) := g − (r + 1)(g − d + r) ≥ 0, it is known that Id,g,r has the unique component

dominating Mg, see [18, p. 70]. It is usually referred to as the distinguished component.

Historically, Severi claimed in [23] that Id,g,r is irreducible if d ≥ g+ r. It was proved

that Id,g,r is irreducible if d ≥ g + r and r = 3, 4, see [11] and [12]. On the other hand, for

r ≥ 5 (and ρ(d, g, r) ≥ 0) there have been given several examples in which Id,g,r possesses

additional non-distinguished components ([20], [19], [6], [10], etc), but for none of them

it has been proven to be regular. Note that all these examples are given by non-linearly

normal curves. We remark that in [6] we showed the existence of a non-distinguished com-

ponent Dd,g,r of Id,g,r parameterizing curves that are double covers of irrational curves,

whereas all other known to us examples of reducible Hilbert schemes of curves have

used curves that are m-sheeted coverings of P1 with m ≥ 3.

2000 Mathematics Subject Classification. Primary 14C05; Secondary 14H10.

Key words and phrases. Hilbert scheme of curves, Brill-Noether theory, double covering.

The first author was supported by Basic Science Research Program through the National Research Foun-

dation of Korea(NRF) funded by the Ministry of Education(NRF-2016R1D1A3B03933342). The third au-

thor was supported by Basic Science Research Program through the National Research Foundation of Ko-

rea(NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03930844).
1

http://arxiv.org/abs/1807.05137v2


In [6, Question 4.7, p. 598] we asked about the possibility of Dd,g,r being reduced. In

the present paper we reconstruct this component under less constrains, this time using a

family of curves on cones, which are double coverings of hyperplane sections of the cones.

We construct and characterize the properties of Dd,g,r using tools from the theory of ruled

surfaces, while in [6] we only showed its existence using Brill-Noether theory of linear

series on curves. Our approach is motivated by the fact that for a given double covering

ϕ : X → Y the curves X and Y can be regarded as curves on the ruled surface S :=

P(ϕ∗OX), as we explain in section 2. It allows us to construct the additional component in

a more geometric way and to obtain its generic smoothness, which gives an affirmative

answer to the question raised in [6].

Our main result is as follows.

Theorem A. Assume that g and γ are integers with g ≥ 4γ − 2 ≥ 38. Let

d := 2g − 4γ + 2 and max

{

γ,
2(g − 1)

γ

}

≤ r ≤ R := g − 3γ + 2 .

Then the Hilbert scheme Id,g,r possesses a generically reduced component Dd,g,r for which

dimDd,g,r = λd,g,r + rγ − 2g + 2 .

Further, let Xr ⊂ Pr be a smooth curve corresponding to a general point of Dd,g,r.

(i) If r = R then XR is the intersection of a general quadric hypersurface with a cone over a

smooth curve Y of degree g − 2γ + 1 and genus γ in PR−1 and XR is embedded in PR by

the complete linear series |Rϕ| on XR, where Rϕ is the ramification divisor of the natural

projection morphism ϕ : XR → Y of degree 2 given by the ruling of cone;

(ii) If r < R then Xr is given by a general projection of some XR as in (i), that is, Xr is

embedded in Pr by a general linear subseries grd of |Rϕ|.

In our view, one of the interesting implications of Theorem A is that if r = 2(g−1)
γ

≥

γ ≥ 10 and d = 2g − 4γ + 2, then the scheme Id,g,r acquires a second regular component

in addition to its distinguished component dominating the moduli space Mg, see Corol-

lary 9. To our best knowledge, it is the first example in which simultaneous existence

of two distinct regular components of Id,g,r has been observed in the Brill-Noether case

ρ(d, g, r) ≥ 0. We remark also that in the case g = 6γ − 3 and r = R = 3γ − 1, the Hilbert

scheme I 4g
3
,g, g+1

2

has at least two generically smooth components parametrizing linearly

normal curves as it is explained in Remark 11.

The remaining sections of the paper are organized as follows. In section 2, we pro-

vide a motivation for the construction of the component described in Theorem A by re-

viewing the relations between double coverings of curves, ruled surfaces and their em-

beddings as cones. We also prove there several statements that will be used for the con-

struction of Dd,g,r in section 4. Possibly, some of them might be of independent interest.

In section 3 we briefly review several facts about the Gaussian map associated to linear
2



series on curves and prove a technical result facilitating the computation of the dimension

of the tangent space at a general point of Dd,g,r. In section 4 we give the proof of Theorem

A.

We work over C. We understand by curve a smooth integral projective algebraic

curve. We denote by L∨ the dual line bundle for a given line bundle L defined on an

algebraic variety X . As usual, ωX will stand for the canonical line bundle on X . We

denote by |L| the complete linear series P (H0(X,L)). When X is an object of a family,

we denote by [X ] the corresponding point of the Hilbert scheme representing the family.

Throughout the entire paper

d := 2g − 4γ + 2 and R := g − 3γ + 2 .

For definitions and properties of the objects not explicitly introduced in the paper refer to

[17] and [1].
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2. MOTIVATION AND PRELIMINARY RESULTS

Suppose that ϕ : X → Y is an m : 1 cover, m ≥ 2, where X and Y are smooth curves

of genus g and γ, correspondingly. As it is well known, the covering induces a short exact

sequence of vector bundles on Y

0 → OY
ϕ♯

−→ ϕ∗OX → E∨ → 0 ,

where E∨ is the so called Tschirnhausen module, see [21]. It is a rank (m− 1)-vector bundle

on Y . Since X and Y are curves over C, the exact sequence splits, i.e. ϕ∗OX
∼= OY ⊕ E∨.

According to [17, Ex. IV.2.6, p. 306], (detϕ∗OX)
2 ∼= OY (−B), where B is the branch

divisor of the covering. In particular, degB = 2(g − 1)− 2m(γ − 1).

We focus on the case m = 2. In such a case E must be a line bundle on Y and we can

assume that E = OY (E) for some divisor E on Y . Since

degB = − deg(detϕ∗OX)
2 = − deg(det(OY ⊕OY (−E)))2 = 2degE

it follows that degE = g − 2γ + 1.

Further we suppose that E is a nonspecial and very ample divisor on Y . Denote

by F the rank 2 vector bundle F := OY ⊕ OY (E) on Y and let S be the ruled surface

S := P(F) with natural projection f : S → Y . Since degE > 0, F0 := OY ⊕ OY (−E)

will be the normalization of the vector bundle F . As it is decomposable, f : S → Y has
3



two canonically determined sections. They are Y0 which corresponds to the short exact

sequence

0 → OY → OY ⊕OY (−E) → OY (−E) → 0 ,

and Y1 which corresponds to the short exact sequence

0 → OY → OY ⊕OY (E) → OY (E) → 0 .

The section Y0 is the section with minimal self-intersection on S and Y 2
0 = deg(OY (−E)) =

−g + 2γ − 1. As it well known, Pic(S) ∼= Z[Y0] ⊕ f ∗(Pic(Y )). For a divisor D on Y we

will denote by Df the divisor f ∗(D) on S. Also, we have for the section Y1 that Y 2
1 =

deg(OY (E)) = g − 2γ + 1 and it is not difficult to see that Y1 ∼ Y0 + Ef. In general,

cohomologies like hj(S,OS(nY0 + Df)) are calculated using the projection formula, see

[17, Ex. III.8.3, p. 253], as

hj(S,OS(nY0 +Df)) = hj(Y,Symn(F0)⊗OY (D)) ,

but since S is decomposable, i.e. F0 splits, the calculation reduces simply to

(1) hj(S,OS(nY0 +Df)) =

n
∑

k=0

hj(Y,OY (D − kE)) ,

see for example [14]. From here

(2) h0(S,OS(Y1)) = h0(S,OS(Y0 + Ef)) = h0(Y,OY (E)) + h0(Y,OY ) = g − 3γ + 3 .

Using [17, Ex. V.2.11 (a), p. 385], we obtain that the linear series |OS(Y1))| ≡ |OS(Y0+Ef))|

is base point free. Therefore it defines a morphism

Ψ := Ψ|OS(Y1))| : S → PR ,

where R = g − 3γ + 2. Since E is very ample, it follows by [14, Proposition 23, p. 38]

that Ψ is isomorphism away from Y0. Due to Y0 · Y1 = Y0 · (Y0 + Ef) = 0, the morphism Ψ

contracts the curve Y0 to a point. Therefore F := Ψ(S) ⊂ PR is a cone of degree

degF = Y1 · Y1 = (Y0 + Ef) · (Y0 + Ef) = degE = g − 2γ + 1

over the image of a smooth integral curve from the linear series |OS(Y0 + Ef))|.

By Bertini’s theorem, Ψ maps a general element of |OS(Y1))| to a smooth integral

curve of genus γ, degree g − 2γ + 1, which is further linearly normally embedded in

some hyperplane PR−1 of PR due to (2). A similar fact is true about a general element of

|OS(2Y1))|. Namely, a general C ∈ |OS(2Y1))| ≡ |OS(2Y0 + 2Ef))| is mapped by Ψ to a

smooth integral curve Ψ(C) of genus g, degree 2g − 4γ + 2 = d, which is linearly normal

in PR. Indeed, since Y0 ·Y1 = 0 and Ψ is isomorphism away from Y0, it follows by Bertini’s

theorem that Ψ(C) is smooth and integral. Its degree is degΨ(C) = 2Y1 · Y1 = 2g − 4γ + 2,

while by the adjunction formula

degC · (KS + C) = (2Y1) · (KS + 2Y1) = 2(2γ − 2) + 2g − 4γ + 2 = 2g − 2
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we get that its genus is g. Finally, to see that Ψ(C) ⊂ PR is linearly normal, consider the

exact sequence

0 → OS(−Y0 −Ef) → OS(Y0 + Ef) → OC(Y0 + Ef) → 0 .

It is sufficient to see that h1(S,OS(−Y0 − Ef)) = 0, which is not difficult to obtain using

the Serre duality.

The arguments above motivate the following statement.

Proposition 1. Assume that Y is a smooth curve of genus γ and E is a very ample non-special

divisor on Y of degree e. Let S := P(OY ⊕OY (−E)), Y0 be the section of minimal self-intersection

of the natural projection f : S → Y and Y1 ∈ |OS(Y0 + Ef)| be a smooth integral curve. Let

Ψ := Ψ|OS(Y0+Ef)| be the morphism induced by the complete linear series |OS(Y0 + Ef)|. Then:

(a) |OS(Y0 + Ef)| is base point free and of dimension e− γ + 1;

(b) Ψ is an isomorphism away from Y0 and contracts Y0 to a point in Pe−γ+1, in particular,

Ψ(S) is a cone over Ψ(Y1);

(c) for a general C ∈ |OS(2Y0 + 2Ef)|

(c.1) Ψ(C) is a linearly normal smooth irreducible curve of genus 2γ+ e−1 and degree 2e

in Pe−γ+1;

(c.2) the linear series |OC(Rϕ)| on C is traced by the linear series |OS(Y0 + Ef)| on S,

where Rϕ is the ramification divisor of the morphism ϕ : C → Y induced by the

ruling of S.

Proof. Statements (a), (b) and (c.1) are obtained by very similar arguments like those in

the discussion preceding the proposition. We only need to check (c.2). Recall that KS ∼

−2Y0 + (KY − E)f. On C we have KC − ϕ∗KY ∼ Rϕ, i.e. OC(Rϕ) = ωC ⊗ (ϕ∗ωY )
∨. The

canonical divisor KC on C is induced by the restriction of KS + C ∼ KS + (2Y0 + 2Ef) on

C. Similarly, the restriction of KS + Y1 ∼ KS + Y0 + Ef on Y1 induces KY1
. Therefore

Rϕ ∼ (KS + (2Y0 + 2Ef)− (KS + Y0 + Ef))|C ∼ (Y0 + Ef)|C .

By (a) and (c.1), h0(C,OC(Y0 + Ef|C)) = h0(S,OS(Y0 + Ef)) = e − γ + 2 . Therefore the

linear series |OS(Y0 + Ef)| on S induces the linear series |OC(Rϕ)| on C. �

Remark 2. When e = g−2γ+1 ≥ 2γ−1 and the divisor E on Y is very ample, where OY (−E)

is the Tschirnhausen module of a double covering X → Y , statement (c.2) implies that OC(Rϕ) is

very ample and h0(C,OC(Rϕ)) = g − 3γ + 3. It improves a similar claim proved in [6, Lemma

4.1] where it was assumed that g ≥ 6γ − 1.

Remark 3. Proposition 1 suggests how to give an alternative construction of the component

D2g−4γ+2,g,r constructed in [6, Theorem 4.3, p. 594]. For this take e = g − 2γ + 1 ≥ 2γ − 1 and

consider the family Z of surface scrolls F ⊂ PR, over a curve Y of genus γ, degF = deg Y = e =

g − 2γ + 1 with h0(F,OF (1)) = g − 3γ + 3 and h1(F,OF (1)) = γ. According to [3, Lemma 1,

p. 7] such a scroll is necessarily a cone, say F , over a projectively normal curve in PR−1 of genus
5



γ and degree e. Further, let F be the family of smooth curves in |OF (2)| on the cones F ⊂ PR

from the family Z . By a counting of the parameters on which the family Z depends, similar to the

one carried out in [3, Remark 2, p. 15] and [4, Proposition 7.1, p. 150],

dimZ =

+ 3γ − 3 : number of parameters of curves Y ∈ Mγ

+ γ : number of parameters of line bundles OY (E) ∈ Pic(Y ) of degree g − 2γ + 1 ≥

2γ − 1 necessary to fix the geometrically ruled surface P(OY ⊕OY (−E))

+ (R + 1)2 − 1 = dim(Aut(PR))

− ((g − 2γ + 1)− γ + 2) = dimGF , where GF is the subgroup of Aut(PR) fixing the

scroll F , see [4, Lemma 6.4, p. 148]

one finds that dimZ = 7(γ−1)−g+(R+1)2. On the other hand computing dim |OF (2)| using

(1) and the Riemann-Roch formula, we get easily dim |OF (2)| = 3g − 8γ + 5. Therefore for the

dimension of F we obtain

dimF = dimZ + dim |OF (2)| = 2g − γ − 2 + (g − 3γ + 3)2.

It is precisely the dimension of the component D2g−4γ+2,g,r constructed in [6, Theorem 4.3] when

r = R = g−3γ+2 and it improves the bound calculated in [6, Lemma 4.1] where it was assumed

that g ≥ 6γ − 1.

The above arguments do not imply yet that the family F gives rise to a compo-

nent of the Hilbert scheme Id,g,R. To prove this formally, we will compute in section 4

h0(C,NC/PR) for a general C ∈ F . For the purposes of that computation we need several

more formal statements about the normal bundles of curves on cones, which we prove

below.

Lemma 4. Let X be a smooth non-degenerate curve in Pr and let H be a hyperplane in Pr.

Assume that πp : X → H ⊂ Pr is a projection from a point p /∈ H ∪ X such that the image

Y := πp(X) is smooth in Pr−1. Then

(3) 0 → OX(Rπp)⊗OX(1) → NX/Pr → π∗
pNY/Pr−1 → 0 ,

where Rπp is the ramification divisor of the covering πp : X → Y .

Proof. Since πp : X → Pr−1 ⊂ Pr is a projection from a point p /∈ X , we have π∗
p(OY (1)) =

OX(1). For the curves X and Y we have the Euler sequences

0 → OX → ⊕r+1OX(1) → TPr|X → 0

and

0 → OY → ⊕rOY (1) → TPr−1|Y → 0

Pulling the second sequence to X via πp we obtain
6



0 0

↓ ↓

OX(1) ≃ ker(α)

↓ ↓

0 → OX → ⊕r+1OX(1) → TPr |X → 0

↓ ↓ ↓ α

0 → OX → π∗
p (⊕

r
1OY (1)) → π∗

p

(

TPr−1|Y

)

→ 0

↓

0

where α is the induced map between the restrictions of TPr |X and π∗
p

(

TPr−1|Y

)

and ker (α)

is its kernel. By the Snake lemma we obtain

0 → OX(1) → TPr |X → π∗
p

(

TPr−1|Y

)

→ 0 .

Further, using the normal bundle sequence for NX/Pr and NY/Pr−1 , we get the following

commutative diagram

0 0

↓ ↓

OX(1) ker(β)

↓ ↓

0 → TX → TPr|X → NX/Pr → 0

↓ ↓ ↓ β

0 → π∗
p(TY ) → π∗

p

(

TPr−1 |Y

)

→ π∗
p

(

NY/Pr−1

)

→ 0

↓ ↓

ORπp
0

↓

0

where β is the induced map between the normal bundles NX/Pr and π∗
p

(

NY/Pr−1

)

. Simi-

larly as before, by the Snake lemma we get ker β ∼= OX(Rπp)⊗OX(1), and thus we deduce

the short exact sequence

0 → OX(Rπp)⊗OX(1) → NX/Pr → π∗
pNY/Pr−1 → 0

�
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Corollary 5. Suppose that Y ⊂ Pr−1 ⊂ Pr, r ≥ 3, is a smooth non-degenerate curve of genus γ.

Let p ∈ Pr \Pr−1 be and arbitrary point. Consider the cone F ⊂ Pr over Y with vertex p. Suppose

that a curve X ⊂ F is cut by a general hypersurface Qm ⊂ PR of degree m, i.e. X ∈ |OF (m)| is

general. Let ϕ : X
m:1
−−→ Y be the m-sheeted covering map induced by the ruling of the cone. Then

there is an exact sequence

(4) 0 → OX(m) → NX/Pr → ϕ∗NY/Pr−1 → 0 .

Proof. The line bundle OX(Rϕ) associated to the ramification divisor Rϕ of the covering

ϕ : X → Y has the property OX(Rϕ) ≃ OX(m−1). To see this, recall that Rϕ ∼ KX−ϕ∗KY .

The canonical divisor KX on X is cut by the restriction of KF +X on X and KY is cut by

the restriction of KF + Y on Y . Therefore

KX − ϕ∗KY = (KF +X)|X − (KF + Y )|X ∼ (X − Y )|X ∼ (m− 1)Y |X .

Hence OX(Rϕ) ≃ OX(m− 1) and Lemma 4 yields the exact sequence (4). �

Corollary 6. Let X, Y ⊂ F ⊂ Pr be smooth curves on the cone F with vertex p as in Corollary

5, where r ≥ 6. Let W ⊂ Pr be a general projective subspace of Pr of dimension r − s− 1, where

5 ≤ s ≤ r − 1. Consider the projection πW : Pr \W → Ps with center W to a general projective

subspace of Pr of dimension s. Denote by Xs, Ys and Fs the images of X , Y and F under πW . Let

ϕs : Xs → Ys be the covering map induced by the ruling of Fs. Then

(5) 0 → OXs(m) → NXs/Ps → ϕ∗
sNYs/Ps−1 → 0 .

Proof. Since r ≥ s+1 ≥ 6, a general projective subspace of Pr of dimension r− s− 1 does

not meet the secant variety of F , which is of dimension at most 5. Therefore X , Y and F

are isomorphic to their images Xs, Ys and Fs. Also, the m : 1 covering ϕ : X → Y induced

by the ruling on F goes to an m : 1 covering ϕs : Xs → Ys induced by the ruling on Fs

such that πW |Y ◦ ϕ = ϕs ◦ πW |X . In particular, πW |X (Rϕ) = Rϕs . Thus the ramification

divisor Rϕs is linearly equivalent to a divisor cut on Xs by a hypersurface of degree m− 1

in Ps. Hence OXs(Rϕs) ≃ OXs(m− 1) and Lemma 4 gives the exact sequence (5). �

3. A SHORT NOTE ON THE GAUSSIAN MAP

Let Y be a smooth curve of genus γ and L and M be line bundles on Y . Let µL,M

(6) µL,M : H0(Y, L)⊗H0(Y,M) → H0(Y, L⊗M)

be the natural multiplication. The Gaussian map ΦL,M

ΦL,M : kerµL,M → H0(Y, L⊗M ⊗ ωY )

was introduced by Wahl in [24]. Locally, ΦL,M : s ⊗ t 7→ sdt− tds for sections s ∈ H0(L)

and t ∈ H0(M). It has been studied by a number of authors. We refer to [24] and [5] for its
8



precise definition and some properties. We recall only several notions that will be used in

Proposition 7 needed for the proof of Theorem A.

The notation R(L,M) is often used instead of ker µL,M for the map µL,M in (6).

When V ⊂ H0(Y, L) is a vector subspace and M = ωY , the map µL,M in (6) restricted

on V ⊗ H0(Y, ωY ) will be denoted by µV and the Gaussian map restricted on ker µV will

be denoted by ΦωY ,V .

The proposition that follows is formulated in the specific form in which it will be

used in the proof of Theorem A.

Proposition 7. Let Y be a smooth curve of general moduli of genus γ ≥ 10, and let E be a general

line bundle on Y of degree g − 2γ + 1 ≥ 2γ − 1. Let V ⊆ H0(Y,E) be general linear subspace of

dimension r = dimV ≥ max
{

γ, 2(g−1)
γ

}

. Consider the embedding Y ⊂ Pr−1 ≡ P(V ∨) given by

V . Then

• the restricted Gaussian mapping ΦωY ,V is surjective, and

• h0(NY/Pr−1(−1)) = dimV = r.

Proof. Denote by µ the cup-product map

µ : H0(Y,E)⊗H0(Y, ωY ) → H0(Y, ωY ⊗E) .

Since degE = g − 2γ + 1 ≥ 2γ − 1, so E is very ample, it follows by [16, Theorem (4.e.1)

and Theorem (4.e.4)] and [7] that µ is surjective.

The linear series determined by V is very ample since Y ∈ Mγ is general, γ ≥ 10

and V ⊂ H0(Y,E) is also general. Consider the restriction µV of µ to

µV : V ⊗H0(Y, ωY ) → H0(Y, ωY ⊗E) .

Let R(ωY , E) be the kernel of the map µ and consider the Gaussian map ΦωY ,E defined on

R(ωY , E)

ΦωY ,E : R(ωY , E) → H0(ω2
Y ⊗E) ,

and similarly its restriction ΦωY ,V defined on the kernel R(ωY , V ) of the map µV

(7) ΦωY ,V : R(ωY , V ) → H0(ω2
Y ⊗E) .

In the case of complete embedding, i.e. if V = H0(Y,E), the claim follows by [9, Proposi-

tion 1.2], where it is proven that

h0(NY/Pr−1(−1)) = h0(Y,E) + corank (ΦωY ,E) ,

and by [8, Proposition (2.9)], where it is proven that ΦωY ,E is surjective for γ ≥ 10 and

degE = g − 2γ + 1 ≥ 2γ − 1. In the case of incomplete embedding, i.e. if V ( H0(Y,E),

exactly the same argument as in the proof of [9, Proposition 1.2] shows that

(8) h0(NY/Pr−1(−1)) = dimV + corank (ΦωY ,V ) = r + corank (ΦωY ,V ) ,
9



provided that µV is surjective. This is what we will prove next.

Since µV is the restriction of µ to V ⊗H0(Y, ωY ), we have

ker µV = kerµ ∩
(

V ⊗H0(Y, ωY )
)

.

Due to γ ≤ dimV ≤ dimH0(Y,E), it follows from [2, Proposition 4.3] that

(9) dim
(

ker µ ∩
(

V ⊗H0(Y, ωY )
))

= max{0, dim (kerµ)− (h0(Y,E)− dimV )h0(Y, ωY )} .

Since µ is surjective, dim (ker µ) = (deg(E)− γ + 1)γ − (deg(E) + γ − 1) = (g − 3γ)(γ − 1).

By assumption r = dimV ≥ 2(g−1)
γ

, hence

dimker µ− (h0(Y,E)− dimV )γ = (γ − 1)(g − 3γ)− (g − 3γ + 2− r)γ

= γ − g + rγ > 0 .

By (9) we obtain

dimker µV = γ − g + rγ .

From here we get for the dimension of its image

dim (Im(µV )) = rγ − dimker µV = g − γ = h0(Y, ωY ⊗E) .

This shows that µV is surjective, which proves (8).

It remains to show that ΦωY ,V is surjective. According to [2, Theorem 4.1], the Gauss-

ian map ΦωY ,V is of maximal rank. Suppose that it is not surjective. Then it must be

injective and its image in H0(Y, ω2
Y ⊗ E) should be proper, hence

γ − g + rγ = dimker µV < h0(Y, ω2
Y ⊗E) = g + γ − 2 ,

which implies r < 2(g−1)
γ

. The last is impossible in view of the assumption that r =

dimV ≥ max
{

γ, 2(g−1)
γ

}

. Therefore, ΦωY ,V must be surjective and from (8) we conclude

also that h0(NY/Pr−1(−1)) = dimV = r. �

4. PROOF OF THEOREM A

Before demonstrating the proof of Theorem A we recall a few facts concerning the

Hilbert scheme of cones. Proposition 1 and the counting of the number of parameters

in Remark 3 gives the idea how to construct explicitly the component Dd,g,R. Recall that

d = 2g − 4γ + 2 and R = g − 3γ + 2.

Let γ ≥ 10 and g ≥ 4γ − 2 be integers. Consider the Hilbert scheme Id/2,γ,R−1

of smooth curves of degree d/2 and genus γ in PR−1. By [18, Theorem on p. 75] and

[22, Theorem on p. 26], Id/2,γ,R−1 is reduced and irreducible of dimension λd/2,γ,R−1 =

Rd/2 − (R − 4)(γ − 1). Denote by H(Id/2,γ,R−1) the family of cones in PR over curves

representing points of Id/2,γ,R−1. Since γ ≥ 10 it follows by [8, Proposition 2.1] that for a

general [Y ] ∈ Id/2,γ,R−1 the Gaussian map ΦωY ,OY (1) is surjective, hence by [8, Proposition
10



2.18] H(Id/2,γ,R−1) is a generically smooth component of the Hilbert scheme of surfaces of

degree d/2 in PR and

(10) dimH(Id/2,γ,R−1) = h0(Y,NY/PR−1) +R = λd/2,γ,R−1 +R .

First we give the proof of Theorem A in the case r = R.

Proposition 8. Suppose that γ ≥ 10 and g ≥ 4γ − 2. Let Fd,g,R be the family of curves C ⊂ PR

obtained as the intersection of a cone F and a general hypersurface of degree 2 in PR, where

[F ] ∈ H(Id/2,γ,R−1). Let Dd,g,R be the closure of the set of points in Id,g,R corresponding to curves

from the family Fd,g,R. Then

• Dd,g,R is a generically smooth irreducible component of Id,g,R, and

• dimDd,g,R = 2g − γ − 2 + (R + 1)2 = λd,g,R +Rγ − 2g + 2.

Proof. First we compute dimDd,g,R. For a general point [F ] ∈ H(Id/2,γ,R−1), the cone F

is projectively normal since it is a cone over a general curve Y from Id/2,γ,R−1, which is

projectively normal by [15, Theorem 1, p. 74]. Therefore the linear series |OF (2)| on F is

induced by |OPR(2)|. By equalities (10) and (1), h0(F,OF (2)) = 3g − 8γ + 6. Therefore

dimDd,g,R = dimH(Ig−2γ+1,γ,R−1) + h0(F,OF (2))− 1

= λd/2,γ,R−1 +R + 3g − 8γ + 5 .

Remark that since λd/2,γ,R−1 = Rd/2− (R−4)(γ−1) and λd,g,R = (R+1)d− (R−1)(g−1),

the expression for dimDd,g,R can also be written as

dimDd,g,R = λd,g,R +Rγ − 2g + 2 = (R + 1)2 + 2g − γ − 2 .

To prove that Dd,g,R is a generically smooth component of Id,g,R, it is sufficient to

show that for a general [X ] ∈ Dd,g,R we have h0(X,NX/Pr) = (R + 1)2 + 2g − γ − 2 =

dimDd,g,R. Since X ⊂ F is cut by a general quadratic hypersurface in PR, the ruling of F

induces a double covering ϕ : X → Y , where Y ⊂ F is cut by a general hyperplane in PR

and also [Y ] ∈ Id/2,γ,R−1 is general. It follows by Proposition 1 and Corollary 5 that

0 → OX(2) → NX/PR → ϕ∗NY/PR−1 → 0 .

Since degOX(2) = 2d = 4g − 8γ + 4 > 2g − 2 , the series |OX(2)| is nonspecial, hence

h1(X,OX(2)) = 0. Therefore, using projection formula, Leray’s isomorphism and ϕ∗OX =

OY +OY (−E), we get

h0(X,NX/PR) = h0(X,OX(2)) + h0(X,ϕ∗NY/PR−1)

= h0(X,OX(2)) + h0(Y,NY/PR−1) + h0(Y,NY/PR−1(−1))

= 3g − 8γ + 5 + λd/2,γ,R−1 +R

= dimDd,g,R .
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This implies that for a general [X ] ∈ Dd,g,R

dimDd,g,R = dimFd,g,R = h0(X,NX/PR) = dimT[X]Dd,g,R ,

therefore Dd,g,R is a generically smooth component of Id,g,R. �

Now we give the proof of Theorem A for max
{

γ, 2(g−1)
γ

}

≤ r < R.

Proof of Theorem A. Let Fd,g,r be the family of curves in Pr obtained from the family

Fd,g,R in Proposition 8 by a projection πW : PR → Pr with center W ⊂ PR, where W ∼=

PR−r−1 is general. Let Dd,g,r be the closure of the set of points in Id,g,r corresponding to

the curves from the family Fd,g,r. Since codim(W,PR) ≥ γ + 1 ≥ 10, a cone F and curves

X and Y as in the proof of Proposition 8 are isomorphic to their images Fr = πW (F ),

Xr = πW (X) and Yr = πW (Y ), correspondingly. Also, ϕr : Xr → Yr induced by ruling of

Fr is a double covering as in Corollary 6. Note that if p is the vertex of F then πW (p) is the

vertex of Fr. Therefore

(11) 0 → OXr(2) → NXr/Pr → ϕ∗
rNYr/Pr−1 → 0 .

The embedding of Yr ⊂ Pr−1 is incomplete, but since deg Yr = d/2 = g − 2γ + 1 ≥

2γ − 1, it follows by [22] that Id/2,γ,r−1 has a unique generically smooth component of

the expected dimension λd/2,γ,r−1. Therefore, for a general Yr ∈ Id/2,γ,r−1 (as in our

case), h1(Yr, NYr/Pr−1) = 0 or equivalently h0(Yr, NYr/Pr−1) = λd/2,γ,r−1. Then we can

compute h0(NXr/Pr) in a similar way as before. Since the projection πW is general and

r ≥ max
{

γ, 2(g−1)
γ

}

, it follows by Proposition 7 that h0(Yr, NYr/Pr−1(−1)) = r. Since

degOXr(2) = 2d > 2g − 2 we have h1(Xr,OXr(2)) = h1(X,OX(2)) = 0 . Using (11)

we find

h0(Xr, NXr/Pr) = h0(Xr,OXr(2)) + h0(Xr, ϕ
∗
rNYr/Pr−1)

= 2d− g + 1 + h0(Yr, NYr/Pr−1) + h0(Yr, NYr/Pr−1(−1))

= 4g − 8γ + 4− g + 1 + λg−2γ+1,γ,r−1 + r

= 3g − 8γ + 5 + r + (g − 2γ + 1)r − (r − 4)(γ − 1)

= (r + 3)g − (3r + 4)γ + 3r + 1 .

Let’s compute also the dimension of the family Fd,g,r. It is similar to the one carried out in

the proof of [6, Theorem 4.3]. Since the curves in Fd,g,r are obtained as generic projections

from PR to Pr, we have

dimFd,g,r = dimFd,g,R − dimAutPR + dimAutPr + dimGrass(r + 1, R+ 1)

= 2g − γ − 2 + (r + 1)2 + (r + 1)(R− r)

= 2g − γ − 2 + (r + 1)(g − 3γ + 2 + 1)

= (r + 3)g − (3r + 4)γ + 3r + 1 .
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Notice that this number is exactly equal to the one claimed in Theorem A since

λd,g,r + rγ − 2g + 2 = (r + 1)(2g − 4γ + 2)− (r − 3)(g − 1) + rγ − 2g + 2

= (r + 3)g − (3r + 4)γ + 3r + 1 .

Hence dimDd,g,r = dimFd,g,r = h0(Xr, NXr/Pr) = dimT[Xr]Dd,g,r, which completes the

proof of Theorem A. �

Corollary 9. If

(12) γ | 2(g − 1) and r :=
2(g − 1)

γ
≥ γ ≥ 10,

then Dd,g,r is a regular component of Id,g,r different from the distinguished one.

Proof. With the particular values of d = 2g − 4γ + 2 and r we have r = 2(g−1)
γ

≤ g−1
5

for

γ ≥ 10, hence 5r ≤ g − 1. From here it is easy to see that d − g − r ≥ g + 2 − 5r ≥ 3.

Therefore ρ(d, g, r) = g − (r + 1)(g − d + r) ≥ g > 0, hence the distinguished component

of Id,g,r dominating Mg exists. Apart from it, Theorem A guarantees the existence of the

regular component Dd,g,r which is apparently different from the distinguished one as the

former projects properly in Mg. �

Remark 10. It appears that the condition r ≥ 2(g−1)
γ

is essential for the family Fd,g,r giving rise

to a component of Id,g,r, because in such case r < 2(g−1)
γ

we have dimFd,g,r < λd,g,r. Notice also

that in such a case the Gaussian map in Proposition 7 is definitely not surjective.

Remark 11. In their paper [20] Mezzetti and Sacchiero constructed generically smooth irreducible

components of Id,g,r, denoted there Wm
d,g,r, whose general points are m− sheeted coverings of P1,

where m ≥ 3. In the case of g = 6γ − 3, we have d = 2g − 4γ + 2 = 8γ − 4 = 4
3
g, R =

g − 3γ + 2 = 3γ − 1 = g+1
2

, and the Hilbert scheme I 4g
3
,g, g+1

2

has two components parametrizing

linearly normal curves. One of them is the component D 4g
3
,g, g+1

2

, shown to exist in our Proposition

8, and the other one is the component Wm
d,g,r for m = 4, d = 4

3
g, and r = R = g+1

2
(it is easy

to check that the numerical conditions for the existence of W 4
4g
3
,g, g+1

2

are satisfied when γ ≥ 10).

Notice that since d − g − R = −γ < 0, the existence of these two components do not provide

a counterexample to Severi’s conjecture claiming that Id,g,r has a unique irreducible component

parametrizing linearly normal curves if d ≥ g + r.
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