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Abstract

We investigate connections between Lipschitz geometry of real algebraic varieties and
properties of their arc spaces. For this purpose we develop motivic integration in the real
algebraic set-up. We construct a motivic measure on the space of real analytic arcs. We
use this measure to define a real motivic integral which admits a change of variables
formula not only for the birational but also for generically one-to-one Nash maps.

As a consequence we obtain an inverse mapping theorem which holds for continu-
ous rational maps and, more generally, for generically arc-analytic maps. These maps
appeared recently in the classification of singularities of real analytic function germs.

Finally, as an application, we characterize in terms of the motivic measure, germs of
arc-analytic homeomorphism between real algebraic varieties which are bi-Lipschitz for
the inner metric.
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1 Introduction

In this paper we establish relations between the arc space and the Lipschitz geometry of a
singular real algebraic variety.

The interest in the Lipschitz geometry of real analytic and algebraic spaces emerged
in the 70’s of the last century by a conjecture of Siebenmann and Sullivan: there are only
countably many local Lipschitz structures on real analytic spaces. Subsequently the Lip-
schitz geometry of real and complex algebraic singularities attracted much attention and
various methods have been developed to study it: stratification theory [33, 37], L-regular
decompositions [23, 38, 25, 42], Lipschitz triangulations [46], non-archimedean geometry
[16], and recently, in the complex case, resolution and low dimensional topology [4]. In
the algebraic case Siebenmann and Sullivan’s conjecture was proved in [36]. The general
analytic case was solved in [47].

In this paper we study various versions of Lipschitz inverse mapping theorems, with
respect to the inner distance, for homeomorphisms f : X — Y between (possibly singular)
real algebraic set germs. Recall that a connected real algebraic, and more generally a con-
nected semialgebraic, subset X c RV is path-connected (by rectifiable curves), so we have
an inner distance on X, defined by the infimum over the length of rectifiable curves joining
two given points in X.

We assume that the homeomorphism f is semialgebraic and generically arc-analytic.
For instance the recently studied continuous rational maps [21, 20, 19] are of this type.

Arc-analytic mappings were introduced to real algebraic geometry in [22]. Those are the
mappings sending by composition real analytic arcs to real analytic arcs. It was shown in
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[2,39] that the semialgebraic arc-analytic mappings coincide with the blow-Nash mappings.
Moreover, by [41], real algebraic sets admit algebraic stratifications with local semialgebraic
arc-analytic triviality along each stratum.

What we prove can be stated informally as follows: if f~! is Lipschitz, then so is f itself.
The problem is non-trivial even when the germs (X, x) and (Y, y) are non-singular [14].
When these germs are singular, then the problem is much more delicate. In fact we have
to assume that the motivic measures of the real analytic arcs drawn on (X, x) and (Y, y) are
equal.

Developing a rigorous theory of motivic measure on the space of real analytic arcs for
real algebraic sets is another main goal of this paper.

We state below a concise version of our main results. For more precise and more general
statements see Theorems 4.13 and 5.10.

Theorem. Let f : (X,x) — (Y,y) be the germ of a semialgebraic generically arc-analytic home-
omorphism between two real algebraic set germs, that are of pure dimension' d. Assume that the
motivic measures of the real analytic arcs centered at x in X and of the real analytic arcs centered at
yin Y are equal (see Section 3 for the definition of the motivic measure). Then

1. If the Jacobian determinant of f is bounded from below then it is bounded from above and f~!
is generically arc-analytic.

2. If the inverse f~' of f is Lipschitz with respect to the inner distance then so is f.

The proof of this theorem is based on motivic integration. Recall that in the case of
complex algebraic varieties, motivic integration was introduced by M. Kontsevitch for non-
singular varieties in order to avoid the use of p-adic integrals. Then the theory was devel-
opped and extended to the singular case in [10, 1, 11, 28]. The motivic measure is defined on
the space of formal arcs drawn on an algebraic variety and takes values in a Grothendieck
ring which encodes all the additive invariants of the underlying category. One main ingredi-
ent consists in reducing the study to truncated arcs in order to work with finite dimensional
spaces. Notice that since the seminal paper of Nash [35], it has been established that the arc
space of a variety encodes a great deal of information about its singularities.

In the real algebraic set-up, arguments coming from motivic integration were used in
[18, 12, 8, 9] to study and classify the singularities of real algebraic function germs.

In the present paper we construct a motivic measure and a motivic integral for possibly
singular real algebraic varieties. Similarly to the complex case, the motivic integral comes
together with a change of variables formula which is convenient to do actual computations
in terms of resolution of singularities. In our real algebraic set-up this formula holds for
generically one-to-one Nash maps and not merely for the birational ones.

A first difference of the present construction compared to the complex one, is that we
work with real analytic arcs and not with all formal arcs. However, thanks to Artin ap-
proximation theorem, this difference is minor. More importantly, it is not possible to follow
exactly the construction of the motivic measure in the complex case because of several ad-
ditional difficulties arising from the absence in the real set-up of the Nullstellensatz and of
the theorem of Chevalley (the image of a Zariski-constructible set by a regular mapping is
Zariski-constructible).

IFor ease of reading, in the introduction we avoid varieties admitting points which have a structure of smooth
submanifold of smaller dimension as in the handle of the Whitney umbrella {x? = z)*} c R3.
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The real motivic measure and the real motivic integral are constructed and studied in
Section 3.

2 Geometric framework

Throughout this paper, we say that a subset X ¢ RY is an algebraic set if it is closed for the
Zariski topology, i.e. X may be described as the intersection of the zero sets of polynomials
with real coefficients. We denote by I(X) the ideal of R[x/, ..., x 5] consisting of the polyno-
mials vanishing on X. By noetherianity, we may always assume that the above intersection
is indexed by a finite set’ and that I(X) = (f}, ..., f,) is finitely generated. The dimension
dim X of X is the dimension of the ring P(X) = R[x, ..., xy]/I(X) of polynomial functions
on X.

The ring R(X) of regular functions on X is given by the localization of P(X) with respect
to the multiplicative set {h € P(X), h~1(0) = @}. Regular maps are the morphisms of real
algebraic sets.

Unless otherwise stated, we will always use the Euclidean topology and not the Zariski
one (for instance for the notions of homeomorphism, map germ or closure).

We say that a d-dimensional algebraic set X is non-singular at x € X if there exist
g1s---»&N—a € I(X) and an Euclidean open neighborhood U of x in RN such that U n X =

UnV(g,....8n_y) and rank <%(x)> = N —d. Then there exists an open semialgebraic
j

neighborhood of x in ¥ which is a d-dimensional Nash submanifold. Notice that the con-
verse doesn’t hold [6, Example 3.3.12.b.]. We denote by Reg(X) the set of non-singular points
of X. We denote by X;,, = X \Reg(X) the set of singular points of X, it is an algebraic subset
of strictly smaller dimension, see [6, Proposition 3.3.14].

A semialgebraic subset of RY is the projection of an algebraic subset of RN+ for some
m € Ny (. Actually, by a result of Motzkin [34], we may always assume that m = 1. Equiva-
lently, asubset.S ¢ R is semialgebraicif and only if there exist polynomials f;, g; , ..., s, €
R[x{, ..., xn] such that l

r

s=1J {x RV, £i(x)=0, ,(x)> 0,....g, (x) > 0}.

i=1

Notice that semialgebraic sets are closed under union, intersection and cartesian product.
They are also closed under projection by the Tarski-Seidenberg Theorem. A function is
semialgebraic if so is its graph.

We refer the reader to [6] for more details on real algebraic geometry.

Let X be a non-singular real algebraic set and f : X — R. We say that f is a Nash
function if it is C* and semialgebraic. Since a semialgebraic function satisfies a non-trivial
polynomial equation and since a smooth function satisfying a non-trivial real analytic equa-
tion is real analytic [29, 45, 5], we obtain that f is Nash if and only if f is real analytic and
satisfies a non-trivial polynomial equation.

A subset of a real analytic variety is said to be arc-symmetric in the sense of [22] if, given
a real analytic arc, either the arc is entirely included in the set or it meets the set at isolated

2Actually, noticing that f; == f,=0& f 12 + 4 fs2 =0, we may always describe a real algebraic set as the
zero-set of only one polynomial.
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points only. We are going to work with a slightly different notion defined in [40]. We define
AS™N as the boolean algebra generated by semialgebraic® arc-symmetric subsets of PY. We
set

AS= | AsM.

NeNy,

Formally, a subset A C P} is an AS-set if it is semialgebraic and if, given a real analytic
arcy : (-1,1) - [FD”’{ such that y(—1,0) C A, there exists € > 0 such that y(0, ¢) C A.

Notice that closed .AS-subsets of P} are exactly the closed sets of a noetherian topology.

For more on arc-symmetric and AS sets we refer the reader to [26].

One important property of the AS sets that we rely on throughout this paper is that
it admits an additive invariant richer than the Euler characteristic with compact support,
namely the virtual Poincaré polynomial presented later in Section 3.2. This is in contrast
to the semialgebraic sets, for which, by a theorem of R. Quarez [44], every additive home-
omorphism invariant of semialgebraic sets factorises through the Euler characteristic with
compact support.

Let E, B, F be three AS-sets. We say that p : E — B is an AS piecewise trivial fibration
with fiber F if there exists a finite partition B = UB; into AS-sets such that p~!(B;) ~ B; X F
where ~ means bijection with AS-graph.

Notice that, thanks to the noetherianity of the .AS-topology, if p : E — Bislocally trivial
with fiber F for the AS-topology?, then it is an AS piecewise trivial fibration.

3 Real motivic integration

This section is devoted to the construction of a real motivic measure. Notice that a first step
in this direction was done by R. Quarez in [44] using the Euler characteristic with compact
support for semialgebraic sets. The measure constructed in this section takes advantage of
the AS-machinery in order to use the virtual Poincaré polynomial which is a real analogue
of the Hodge-Deligne polynomial in real algebraic geometry. This additive invariant is
richer than the Euler characteristic since it encodes, for example, the dimension.

Since real algebraic geometry is quite different from complex algebraic geometry as there
is, for example, no Nullstellensatz or Chevalley’s theorem, the classical construction of the
motivic measure does not work as it is in this real context and it is necessary to carefully
handle these differences.

3.1 Real arcs and jets

We follow the notations of [8, §2.4].

Definition 3.1. The space of real analytic arcs on R" is defined as

LRY) = {y : (R,0) > RN, y real analytic}

3 A subset of PY is semialgebraic if it is for PY seen as an algebraic subset of some R, or, equivalently, if the
intersection of the set with each canonical affine chart is semialgebraic.
4j.e. for every x € B there is U C B an .AS-open subset containing x such that p~!(U) ~ U x F.
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Definition 3.2. For n € Ny, the space of n-jets on R" is defined as
L,RY) = LRN)/~,

where y, ~, v, © 7, =y, mod "1

Notation 3.3. For m > n, we consider the following truncation maps:

z, . LRY) = £, (RY)

and
" L, RY) > £,(RY).

Definition 3.4. For an algebraic set X ¢ R, we define the space of real analytic arcs on X
as
LX) ={y € LRV, Vf € I(X), f(y(1)) =0}

and the space of n-jets on X as
L,X)={y € L,RY),Vf eIX), fr®)=0 mod "'},
The truncation maps induce the maps
7, 1 LX) = L,(X)

and
o LX) = L,(X).

Remark 3.5. Notice that £,(X)is areal algebraic variety. Indeed, let f € I(X)and qy, ... ,a, €
RY, then we have the following expansion

fag+ayt+ - +a, " = Pl(ay. ....a,) + P/ (ap. ....a)t + - + Pl (ap, ... .a, )" + -

where the coefficients Pl.f are polynomials. Hence £, (X) is the algebraic subset of RN ("+1)

defined as the zero-set of the polynomials Pif for f e I(X)and i € {0, ...,n}.
In the same way, we may think of £(X) as an infinite-dimensional algebraic variety.

Remark 3.6. When X is non-singular the following equality holds:
L,(X) = m,(L(X))

Indeed, using Hensel’s lemma, we may always lift an n-jet to a formal arc on X and then use
Artin approximation theorem to find an analytic arc whose expansion coincides up to the
degree n+ 1. However this equality doesn’t hold anymore when X is singular as highlighted
in [8, Example 2.30]. Hence it is necessary to distinguish the space £,(X) of n-jets on X and
the space z,(L(X)) € L,(X) of n-jets on X which may be lifted to real analytic arcs on X.
We have the following exact statement.

Proposition 3.7 ([8, Proposition 2.31]). Let X be an algebraic subset of RN. Then the following
are equivalent :
(i) X is non-singular.
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(ii)) Vn € Nyq, @, © L(X) = L,(X) is surjective.
(iii) Vn € Ny, ™1 1 L, 1(X) — L,(X) is surjective.

Proposition 3.8 ([8, Proposition 2.33]). Let X be a d-dimensional algebraic subset of R™ . Then
(1) For m > n, the dimensions of the fibers of ”'rlnlnm(L(X)) D 7y, (L(X)) = 7, (L(X)) are smaller
than or equal to (m — n)d.

(2) The fiber (75,'1”1)_1 () of i 1 L,1(X) = L,(X) is either empty or isomorphic to Tyz(gf)X.

Theorem 3.9 (A motivic corollary of Greenberg Theorem). Let X C RY an algebraic subset.
There exists ¢ € Ny (depending only on 1(X)) such that

Vn € Ny, 7,(L(X)) = 7" (L.,(X))

Proof. Assume that I(X) = (fy, ..., fy)-

By the main theorem of [15], there exist N € N,, I € N, and ¢ € N, (depending only
on the ideal of R{t}[xy,...,xy] generated by f; € R[x;,....,xy] C R{t}[x,...,xy]) such
that Vv > N, Vy € R{t}V, if f,(y(1)) = -+ = f,(y(t)) =0 mod ¥, then there exists n € R{t}V

such that #(t) = y(r) mod IHJ_U and fi(n(®) = - = f;(n(®)) = 0.
Fix ¢ = max (I(c + 2), N). We are going to prove that
Vn € Ny, 7,(L(X)) = 7" (L.,(X))

It is enough to prove that 7¢"(L,.,(X)) C 7,(L(X)) forn > 1.

Letn > 1. Let # € L,,(X). Then there exists y € R{t}" such that y(t) = 7(f) mod *"+!
and

[iy@) == f(y@®)=0 mod r"*!
cn+l

Notice that cn 4+ 1 > N so that there exists n € R{t}" such that 5(f) = y(f) mod ATJ_G
and fi(n(1) = - = f,(n@)) = 0.

Since

[cn +1 J
—-o>n
l

we have that z¢"(7) = x,,(n) € x,(L(X)). [ |

Remark 3.10. By Tarski-Seidenberg theorem, z,(L(X)) = zS"(L,,(X)) is semialgebraic as
the projection of an algebraic set. However, z,(£(X)) may not be AS (and thus not Zariski-
constructible) as shown in [8, Example 2.32].

This is a major difference with the complex case where z,(£(X)) is Zariski-constructible
by Chevalley theorem as the projection of a complex algebraic variety.

Definition 3.11. Let X be an algebraic subset of RN. We define the ideal Hy of R[x, ..., xy]
by
Hy= Y Ao fnead(Fioee Fyg) 2 TX)

S1oes S N—g €1(X)

where
e d=dimX
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* A(fy,..., fn_q) is the ideal generated by the N — d minors of the Jacobian matrix
o
ox; )i=1,..N—d
j=1,....,N

* (fis-sfrnea) s X)) = {g €R[xy, ..., xx], gI(X) C (f}, ... fn_q)} is the ideal quotient
of the ideal (f|, ..., fy_g) by the ideal I(X)

Remark 3.12. By [8, Lemma 4.1], V(H) = Xp,-
Definition 3.13. Let X C R" be an algebraic subset and e € N5, We set

LOX)={y € L(X),3n € Hy, h(y#))#£0 mod 1*+'}
Remark 3.14. From now on, we set

L(Xng) = {r € LRY), Yh € Hy, h(y(1)) =0}

and
L,(Xgn) = {r € L,RY), Vh € Hy, h(y())=0 mod 1"*'}.

Notice that
{r € LRY),Yh € Hy, h(y(1)) = 0} = {y € LRY), Vf € I(X,), f(r(1)) =0}
but be careful that
{r e £,RN),Vhe Hy, h(y())=0 mod 1"}
#{r € L,RY),Vf € I(Xgyp), () =0 mod "'}

Notice also that since the proof of Greenberg Theorem 3.9 is algebraic, it holds for £(X )
(just use the ideal Hy in the proof).

Remark 3.15. LX) =| | J £90X) |J £LXqing)

eeN5q

The following proposition is a real version of [10, Lemma 4.1]. Its proof is quite similar
to the one of [8, Lemma 4.5].

Proposition 3.16. Let X be a d-dimensional algebraic subset of RN and e € N. Then, forn > e,
(i) z, (LOX)) € AS
(ii) "™ ¢ ;e (LX) - 7, (LX) is an AS piecewise trivial fibration with fiber RY.

Proof. By [8, Lemma 4.7], £9(X) is covered by finitely many sets of the form
Apps = {r € LRN), (hd)(y()) £ 0 mod 1°*!}

where f = (f}, ..., fy_q) € I(X)N~?,5isa N—d minor of the Jacobian matrix (%). C Ned
i= -

and h € ((f,.., fn_g) : 1(X)). Moreover,
LX)N Ag s ={r € LRN), fir®)) == fn_qr®) =0, (h&)(¥(1)) Z0 mod r**'},
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so that LX) = LX) N (] Apps = | (L0 N Ags).
finite finite
For e’ < e, we set

of,

Af pseo = {y € Ag 5. 0rd, 8(y(1) = €, ord, §'(y(1)) > €, for all N — d minor & of <a—f’>}
s, h, -

j

in order to refine the above cover: £ (X) = U (LX) N Agpser)-
finite
Fix some set A = A ;, 5 »NL(X). Notice thatif z,(y) € z,(A)and if z,,, () € 7,1 (LE(X))
is in the preimage of x,,(y) by z"*! then x,., (1) € 7,,,,(A).
Indeed, n € L(X) so fi(n) = -+ = fy_q(n) = 0 and since z,(n) = =z,(y), we also get that
(h8)(n()) 20 mod ¢+1, ord, 8(n(1)) = €’ and ord, & (n(t)) > '
Hence it is enough to prove the lemma for zrr"l“ Ty (A) = 7, (A).

We are first going to prove that the fibers of z"*! : x,,,(A) — x,(A) are d-dimensional
affine subspaces of RN . We can reorder the coordinates so that § is the determinant of the

j
matrix P such that PA = (6Iy_y . W)and Vy € A, W(y(#)) =0 mod .
Fix y € A. The elements of the fiber of z,, ;(A) = 7,(A) over z,(y), y € A, are exactly the

first N — d columns of A = (%). Then, similarly to the proof of [8, Lemma 4.5], there is a

g (r@ + "))

for v € R{t}? such that f(y(¢) + "*1v(t)) = 0.
Using Taylor expansion, this last condition becomes

f @) + " A O + 2D = 0
Or equivalently, since y € A,
A OV + 2D () =0
Multiplying by r~"~1=¢' P, we get
= (8GO s W () V(D) + 117 () = 0

Notice that ord,(6(y(1)) = ¢’. Hence, by Hensel’s lemma and Artin approximation theorem,
the sought fiber is the set of
i (y(t)) + t""'lvo

with v satisfying the linear system induced by

= (8GN y_gs W(())vg =0 mod 1

Let v, be a solution, then its first N — d coefficients are expressed as linear combinations
of the last d. Therefore each fiber of n}’q’“ : 7,1(A) = 7,(A) is a d-dimensional affine sub-
space of RV,
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By Greenberg Theorem 3.9, there is a ¢ € N such that z.,(A) is an AS-set. Then z,(A)
is an AS-set as the image of z;" : z.,(A) — x,(A) whose fibers have odd Euler characteristic
with compact support, see [40, Theorem 4.3].

Finally, notice that z,,,(A) C 7,(A) X RN and that z"*! : x,,(A) - 7,(A) is simply the
first projection. Then, according to the following lemma, nﬁ“ : 7y (A) = m(A)is an AS
piecewise trivial fibration. [ |

Lemma 3.17. Let A be an AS-set, Q ¢ A X RN be an AS-set and = : Q — A be the natural
projection.

Assume that for all x € A, the fiber Q, = n~1(x) is a d-dimensional affine subspace of RN

Then w : Q — Aisan AS piecewise trivial fibration.

Proof. Up to embedding the space of d-dimensional affine subspaces of RY into the space
of d + 1-dimensional vector suspaces of RV*!, we may assume that the fibers are linear sub-
spaces.

Denote by G = Gy, the Grassmannian of d-dimensional linear subspaces of RY and let
E — G be the tautological bundle; i.e. for g € G, the fiber E, is the subspace given by g.

We are first going to prove that the following set is AS,
A={(x,8) € AXG, Q =E,}.

Identifying G with the set of symmetric idempotent (N X N)-matrices of trace d, see [6, Proof
of Theorem 3.4.4], fori = 1, ..., N we define the regular map w; : G - R" as the projection
to the coordinates corresponding to the ith-column of such matrices. Then E, is linearly
spanned by (w,(g)). Hence L; = {(v,8) € RN X G, v = w,(g)} is AS. Thus

{(x,0,8) € AXRN X G, v=w;(g) €Q} = @XG)N(AX L))

is AS and its projection
X;={(x,8) € AX G, wi(g) € Q,}

is also AS as the image of an .AS-set by an injective AS-map, see [40, Theorem 4.5].
Then A = (), X is AS as claimed.

Let xo € A. Fix a coordinate system on R" such that Q, = {x44; = -~ = x5y =0} and

fix the projection A : RN — R? defined by A(x,, ..., xy) = (x|, ..., X,). Letw : A — IR(Z/) be
such that the coordinates of w(x, g) are the d-minors of (A(w,-(g))) _n- Then

i=1,.
Ay={(x.9) €A A:Q — R is of rank d }
is an AS-set as the complement of ®~1(0). Therefore

Ag={x€ A, A:Q — R?isof rankd}
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is AS as the image of the AS-set A by the projection to the first factor which is an injective
AS-map.
Thus ®(x, v) = (x, A(v)) is a bijection whose graph is AS.

ﬂ_l(Ao) AO X Rd
\ A

A

Consequently 7 : Q — A is locally trivial for the AS-topology and hence it is an .AS piece-
wise trivial fibration. [ ]

3.2 The Grothendieck ring of AS-sets

Definition 3.18. Let K((AS) be the free abelian group generated by [X], X € AS, modulo
(i) Let X,Y € AS. If there is a bijection X — Y with AS-graph, then [X] = [Y];
(ii)) If Y C X are two AS-sets, then [X] =[X \ Y]+ [Y].
We put a ring structure on Ky(AS) by adding the following relation:
(i) If X,Y € AS, then [X X Y] = [X][Y].

Notation 3.19. Weset 0 = [@], | = [pt] and L = [R].
Remark 3.20. Notice that 0 is the unit of the addition and 1 the unit of the multiplication.

Remark 3.21. If p : E — Bis an AS piecewise trivial fibration with fiber F, then
[E] = [B]LF]
Definition 3.22. We set M = K,(AS) [L7].

The authors of [31] proved there exists a unique additive (and multiplicative) invariant
of real algebraic varieties up to biregular morphisms which coincides with the Poincaré
polynomial for compact non-singular varieties. This construction relies on the weak fac-
torization theorem. Then G. Fichou [12] extended this construction to .AS-sets up Nash
isomorphisms.

Next, in [32], they gave a new construction of the virtual Poincaré polynomial, related
to the weight filtration they introduced in real algebraic geometry. They proved it is an
invariant of .AS-sets up to homeomorphism with AS-graph. Actually, using the additivity,
they proved it is an invariant of .AS-sets up to .AS-bijections (see [9, Remark 4.15]).

Theorem 3.23 ([31, 12, 32]). There is a unique ring morphism f : Ky(AS) — Z[u] such that if X
compact and non-singular then

AUXD) = ) dim Hy(X, Z)u'.

i>0

We say that ([ X]) is the virtual Poincaré polynomial of X.
Moreover, if X # @, deg f(X) = dim X and the leading coefficient of f(X) is positive.
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Theorem 3.24 ([13, Theorem 1.16]). The virtual Poincaré polynomial is a ring isomorphism
B i Ko(AS)— Z[ul.

Remark 3.25. The virtual Poincaré polynomial induces a ring isomorphism
M- Zuu .

Definition 3.26. We define the ring M as the completion of M with respect to the ring
filtration® defined by the following subgroups induced by dimension

F"M = ([SIL™,i—dim .S > m)
ie. .
M= timM [ Frpg.
—
Proposition 3.27. The virtual Poincaré polynomial induces a ring isomorphism
p i M- Z[ul[u"].
Proof. We have to prove that

lim Z[u, u '/ FrZlu,u"] = Z[ul[u™"]

m

where F"Z[u,u™"] = { f € Z[u,u™"],deg f < —m).
For n < m, we define

Pon Z[u,u‘l]/}'mZ[u, ull - Z[u, u_l]/f”Z[u, u ']

by
Z akuk|—> Z akuk
k=—m+1 k=—n+1
and
Pt ZI[w'] > Zlu,u™ '/ FZ[u,u™"]
by
Z akuk|—> Z akuk
k=—c0 k=—m+1

By construction,

](iﬂZ[u, u_l]/]:mZ[u,u_l] = {(fm) e H Z[u,u‘l]/]:mz[u’ ', n<m= Ponn(f) = fn}

m meZ

The morphism
@ Zul[u"'] = l(igz[u,u_l]/]'—mZ[u,u_l]

defined by f ~ (p,,(f)) ez is an isomorphism. [ ]

Sie. F"™IM C F"Mand F"M - F"M C F"*" M. The last condition induces a ring structure on the group

o~

M.
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Definition 3.28. For @ € M, we define the virtual dimension of @ by dim @ = m where m is
the only integer such that « € 77" M \ F~"*I M.

Proposition 3.29. dim« = deg(f(a))

Remark 3.30. Notice that for x € M, (x + F"M),, defines a basis of open neighborhoods.
This topology coincides with the one induced by the non-archimedean norm || - || : M - R
defined by [|a|| = ¢%™@. The completion M is exactly the topological completion with
respect to this non-archimedean norm. Particularly,

* Let(a,) € M, thena, - 0in M ifand only if dim(a,) - —o0.

* Let(a,) € M, then ), a, converges in M if and only if ¢, — 0in M.

¢ The following equality holds in M:

(69
-1 L7 =1
i=0

Definition 3.31. We define an order on M as follows. For a,b e M\, we set a < b if and
only if either b = a or the leading coefficient of the virtual Poincaré polynomial g(b — a) is
positive.

Remark 3.32. Notice that this real setting has good algebraic properties compared to its
complex counterpart:

* Ky(AS) is an integral domain whereas K(Vare) is not [43]. Indeed, there is no zero di-
visor in K,(AS) whereas the class of the affine line is a zero divisor of K,(Var¢) [7] [30].
Notice that in particular Ky(Varc) - M¢ = Ky(Vare) [Lg'| is not injective.

* The natural map M — M is injective. Indeed its kernel is N, 7™M and the virtual
Poincaré polynomial allows us to conclude: if @ € N, F" M, then, forallm € Z, dega < —m

and hence a = 0. In the complex case, it is not known whether M¢ — M\C is injective.

3.3 Real motivic measure

M. Kontsevitch introduced motivic integration in the non-singular case where the measur-
able sets were the cylinders by using the fact that they are stable. Still in the non-singular
case, V. Batyrev [1, §6] enlarged the collection of measurable sets: a subset of the arc space
is measurable if it may be approximated by stable sets.

Concerning the singular case, J. Denef and F. Loeser [10] defined a measure and a first
family of measurable sets including cylinders. Then, in [11, Appendix], they used the tools
they developped in the singular case to adapt the definition of V. Batyrev to the singular
case. See also [28].

From now on we assume that X is a d-dimensional algebraic subset of RV,

Definition 3.33. A subset A C £(X) is said to be stable at level n if:

e Form > n, z,(A) is an AS-subset of L,,(X);

o Form>n, A=n1(x,(A);

o Form>n, z™" : &, (A) - x,(A) is an AS piecewise trivial fibration with fiber R¥.
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Remark 3.34. Notice that, for the two first points, it is enough to verify that z,,(A) € AS and
that A = 7 '(,(A)) only for n. Indeed, then, for m > n, x,,(A) = (z™)~!(x,(A)) is an AS-set
as inverse image of an AS-set by a projection.

Then the following proposition holds (notice that the condition A = 77.";1 (r,,(A)) is quite
important).

Proposition 3.35. If A, B are stable subsets of L(X), then AU B, An Band A\ B are stable too.
Remark 3.36. Notice that £(X) may not be stable when X is singular.

Definition 3.37. For A C £(X) a stable set, we define its measure by

[7,(A)]
H(A) = L+

eM,n>1.

Definition 3.38. The virtual dimension of a stable set is
dim(A) = dim(z,,(A)) — (n+ 1)d, n>> 1.
Remark 3.39. Notice that the previous definitions don’t depend on n for n big enough.

Remark 3.40. Notice that dim(A) = dim(u(A)) where the second dimension is the one intro-
duced in Definition 3.28.

Definition 3.41. A subset A C £(X) is measurable if, for every m € Z_,, there exist
* astableset A,, C L(X);

* asequence of stable sets (C,,; C L(X));50

such that B

® Vi, dimC,; <m;

* AAA,, CUC,,;

Then we define the measure of A by u(A) = ml_i)ryoo u(A,).

Proposition 3.42. The previous limit is well defined in M and doesn’t depend on the choices.
The proof of the above Proposition, presented below, relies on the following two lemmas.

Lemma 3.43. Let (A))en,, be a decreasing sequence of non-empty AS-sets

A1 DAZ D e

A #2.

iEN

Then

Proof. Recall that 77 denotes the smallest closed AS-set containing A. We have the fol-
lowing sequence which stabilizes by noetherianity of the .AS-topology:

—AS _ —AS —AS AS
AT DA T DDA = Ay =

Recall that AS-sets are exactly the constructible subsets of projective spaces for the AS-
topology whose closed sets are the semialgebraic arc-symmetric sets in the sense of [22].
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Hence A; = Ui (U; N V;) where U, is AS-open, V; is AS-closed and U; N V; # @. We
——AS
may assume that the V;’s are irreducible (up to spliting them) and that U;nV, =V, (up
—AS
to replacing V; by U;nV; ). Hence we obtain the following decomposition as a union of

—AS
finitely many irreducible closed subsets A, = UV (it is not necessarily the irreducible
decomposition since we may have V; C V).

Fix Z an AS-irreducible subset of A_kAS. By the previous discussion, for I > k, there
exists U; an open dense .AS-subset of Z such that U, C A;.

By [40, Remark 2.7], dim(Z \U;) < dim U, so that Z\ U, is a closed subset of Z with empty
interior for the Euclidean topology. From Baire theorem, we deduce that the Euclidean
interior of U5, Z \ U, is empty. Hence n;,, U, is non-empty. [ |

The following lemma is an adaptation to the real context of [1, Theorem 6.6].
Lemma 3.44. Let A C L(X) be a stable set and (Cy);en_, be a family of stable sets such that
ac g
ieNsq

Then there exists | € Ny such that

i
aclq
i=0

Proof. Without loss of generality, we may assume that C; C A (up to replacing C; by C; n A).
Set D; = A\ (C, U - UC;) so that we get a decreasing sequence of stable sets

D13D23D3D"'

(l bi=o

i€N5

satisfying

Assume by contradiction that A may not be covered by finitely many C;, then
Vie Ny, D; # @

Now assume that A is stable at level n and that D; is stable at level n; > n. Then #,(D,) =
T, (m,,(Dy)) € AS as the image of an AS-set by a regular map whose fibers have odd Euler
characteristic with compact support, see [40, Theorem 4.3]. Hence, by Lemma 3.43,

B,= () m(D)#@

i€N5

Choose u, € B,,.
Now set

Byi= (] muD)#2
i€N5
As before each #,,, (D;) is a non-empty .AS-set. Notice that (zr,’q’+1 )~!(u,) is a non-empty AS-
subset of £, ;(X). Then, by Lemma 3.43, B,,; N (7[2+1)_1(un) # @. This way, there exists
Upy € B,y such that 7w, ) = u,.

Therefore, we may inductively construct a sequence (u,, € £,,(X)), . such that:

>
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° umeBmz ﬂ ﬁm(Di);é@;

i€Nsg
. Jr$+l(um+1) =u,.

This defines an element u € £(X) such that for all m > n, z,,(u) € B,,. Hence for i € N,
z, W) € B, C x, (D)). Since D; is stable at level n;, u € x,'(x, (D;)) = D;.
Therefore u € (| D; which is a contradiction. [ |

Proof of Proposition 3.42. We first prove that the limit is well defined. Let A,,,C,,; be as in
the definition. Then for m;,m, € Z_,

A, AA, C U (Cpy i U Cp )

i€Ny
By Lemma 3.44, there exists I € N such that

1

Ap AA, C L%(cml,,. UG,
=

hence dim(A,, AA,, ) < max(m,m,). Thus u(A,,) is a Cauchy sequence and its limit is well

defined in the completion M.

We now check that the limit doesn’t depend on the choices. Let A;n , Cr’n ; be another
choice of data for the measurability of A. Fix m € Z_, then

Ap4) c | ] @,uc)

i€Nsg

By Lemma 3.44, there exists I € N such that
!
AnbAL |, ue)
i=0

Hence dim(AmAAfﬂ) <mand lim wu(A4,)= lim y(A:n). [ |
m——0o0 m——0o0

Proposition 3.45. If A, B are measurable subsets of L(X), then AUB, ANB and A\ B are measurable
too.

Proof. Assume that A and B are measurable, respectively with the data A,,, C,, ;and B,,, D,,, ;.

® A U B is measurable since

(AUB)A(A, UB,) c | J(C,,uD,)

¢ In order to prove that A \ B is measurable, we may use the previous point and assume
that B C A up to replacing A by A U B. Similarly, we may assume that B,, C A,,. Then

(A\ B)A4,\ B, c | JC,,uD,,
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¢ Using both previous points, we obtain that AnNB = (AUB)\(((AU B) \ A)U ((AuU B)\ B))
is measurable.

|
Proposition 3.46. The measure is additive on disjoint unions:
H(A U B) = u(A) + u(B)
Proof. According to the previous proof we have
uAUB) = lim (u(A,)+ u(B,) - u(A, N B,))
and
0=u(ANB)= lim u(A, N B,)
m—oo
Hence
uAUB) = lim u(A,)+ lim u(B,,) = u(A) + u(B)
|

Proposition 3.47. Let (B,),en,, be a sequence of measurable sets with diim B, — —oo.
Then B = UB, is measurable and

u(B) = nETmu<U Bk)-

k<n

Furthermore, if the sets B, are pairwise disjoint, then

H(B) = iﬂ(Bk)-

n=0

Proof. By Definition 3.41 for each n € N, and m € Z_ there are stable sets A, ,, and C, ,, ;,
dimC, ,,; < msuch that

n,m,i

B,AA,,, < | JCpmi-
i

Form € Z_j choose N € N5 such that if n > N then dim B, < m.

Note that then dim A4, ,, < m. Let usset A,, = U Ay - Then
k<N

UB.a4, c|JCumiu [ Ann
n n,i

n>N

This shows that B is measurable. The other properties follows easily. [ |
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3.4 Measurability of the cylinders

Lemma 3.48. Let X be a d-dimensional algebraic subset of RN. Let S C X be an algebraic subset
of X with dim § < d. For every e € Ny, there exists N € N such that

Vi,n € Nyg, n>i > N = dim (7, (77" (£(5)))) <+ Dd —e—1
where 7, denotes the n-th truncation map for X
Vn € Ny, m, : LX) > L,(X)
and where L(S) C L(X) and Vi € N5, L;(S) C L;(X).
Proof. By Greenberg Theorem 3.9 applied to .S, there exists ¢ € N, such that
7o (73 (Lee(S))) = 7, (L(S))
Let N =ceand n > N. By 3.8.(1) applied to
5 (22 (£08)) = 7, (22 (£(9)

we get that
dim (7, (7! (L(S)))) < dim (7, (7' (Lee(S)))) + (n—e)d

But
7 (17, (Lee(S))) = me (L(S)
so that (see [8, Proposition 2.33.(i)])

dim (7, (77! (Lee(S)))) S e+ D@ - D+(n—e)d=m+1)—e—1

ce

Now if n > i > N(= ce), the result derives from the inclusion

7, (77 (L£:9))) € 7y (7)) (Lee(S)))

Definition 3.49. Let X C RY be an algebraic subset. For i € N, we set

Ci(X) = LOX)\ L7V,
Remark 3.50. C;(X) = {y € L(X), Vh € Hy, ord, hoy > i, 3h € Hy, ord, hoy =i}
Proposition 3.51. For i € Ny, C;(X) is stable and

lim dimC,(X) = —c0

i—+o00

Proof. Fix some i € N, . First, C;(X) is stable at level i since the £©(X) are stable by Propo-
sition 3.16.
Notice that 7;_; (C;(X)) C £;_;(X ). Hence

Ci(X) € 7 (i (C(X)) € 77! (Li21 (X ging))
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and then
m(Ci(X)) C 7 (x)) (Lim1(Xing))) -

As explained in Remark 3.14, we may apply Greenberg Theorem 3.9 to Hy so that
Lemma 3.48 holds for X,.
Hence, forall e € N> o, there exists N € N so that for i > N we have

dim (7,(Cy(X))) — (i + D)d < dim (7; (27 (£,1(Xging)))) — (i + Dd < —e
u

Corollary 3.52. A subset A C L(X) is measurable if and only if Ve > 0, AN L) (X) is measurable.

Proof. By Proposition 3.16 every £(¢)(X) is stable and therefore if A is measurable so is every
AN LOX).
Suppose now that Ve > N, An L©)(X) is measurable. Then so are A N C;(X) fori > N.
Hence
A=(AnLMoO)u (] (AnCx)
i>N
is measurable by Proposition 3.47. [ |

Definition 3.53. A cylinder at level n is a subset A ¢ £(X) of the form
A=x1C)
for C an AS-subset of £,(X).

Remark 3.54. A cylinder at level n is a cylinder at level m for m > n. Indeed x,, = z'ox,, so
that 7-1(C) = 7! ((x™~'(C)) where (z™)~!(C) € AS as the inverse image of an AS-set by
a projection.

The following result derives from Proposition 3.16.
Proposition 3.55. If X is non-singular, a cylinder of L(X) is stable.

Proposition 3.56. A cylinder A C L(X) is measurable and
— T (m)
WA= tim u (A0 L7))

Proof. By Proposition 3.51, we may construct by induction an increasingmap ¢ : N,y — Ny
such that
i > @(s)=>dimCy(X) < —s

Letm € Z_,. Set A,, = An LP=™)(X). Then A,, is stable by Proposition 3.16 and

ADA, = A\LOX) = Anx ! (Loyem X)) € | GO
i2p(—m)

where C;(X) is stable with dim C;(X) < m. Hence A is measurable and

= 1 (p(m))
WA= tim p (A0 LO (X))
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The second part of the statement derives from the fact that (u (AN L™(X))), s

already a Cauchy sequence. Assume that 4 is a cylinder at level s then A n L™ (X) is stable
at level max(m, s). Indeed fix k € Ny . Then, for n > m" > m > max(ep(k), s), we get

i (A0 L' X)) = (A0 L™ X)) = [ (40 £00)] m (AnL™X)]

[L—(n+Dd [ —(n+Dd
[nn <A n L<’"’>(X)) \z, (AN E('”)(X))]
= e FkMm
L—(+Dd

[ |

Corollary 3.57. For Y C X an algebraic subset, set
LX,Y)={r e LX), y(0)eY}

then
* L(X,Y)is a measurable subset of L(X);
* in particular, L(X) is measurable.
Proof. Indeed, L(X) = z; I(X)and £(X,Y) = g 1(Y) are cylinders. [}

Corollary 3.58. If Y C X is an algebraic subset with dimY < dim X, then L(Y) C L(X) is
measurable of measure 0:

Heox) (L(Y) =0

Proof. Notice that £(Y) is a countable intersection of cylinders:

Ly= () =L, (7))

neNy
Then n;l(ﬁn(Y)) is measurable as a cylinder and

dim g (z;1(L,(Y))) < (n+ 1)(dimY — dim X)—— —oo

3.5 Motivic integral and the change of variables formula

Definition 3.59. Let X ¢ RN be an algebraic subset. Let A C £(X) be a measurable set. Let
a : A = NygU {oo} be such that each fiber is measurable and (a1 (c0)) = 0. We say that
L~ is integrable if the following sequence converges in M:

/ L™ =Y p(a” ()L™
A n>0

Definition 3.60. We say that a semialgebraic map 6 : M — X between semialgebraic sets
is generically one-to-one if there exists a semialgebraic set S C X satisfying dim(S) < dim(X),
dim (¢71(S)) <dim(M)and Vp € X \ S, #57!(p) = 1.
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Definition 3.61. Let ¢ : M — X be a Nash map between a d-dimensional non-singular
algebraic set M and an algebraic subset X C RN . For a real analyticarcy : (R,0) - M, we
set

ord, jac,(y(t)) = min {ord, 8(y(1)), ¥ d-minor of Jac, },

where the Jacobian matrix Jac, is defined using a local system of coordinates around y(0)
in M.

The following lemma is a generalization of Denef-Loeser change of variables key lemma
[10, Lemma 3.4] to generically one-to-one Nash maps in the real context.

Lemma 3.62 ([8, Lemma 4.5]). Let 6 : M — X be a proper generically one-to-one Nash map
where M is a non-singular d-dimensional algebraic subset of R? and X a d-dimensional algebraic
subset of RN . For e, e’ € Ny and n € Ny, set

Beo = {v € LM, ord, jac, () = . 0,(1) € L0 Begry =17, (Bee)

where o, : LIM) — L(X) is induced by o.
Then for n > max(2e, ') the following holds:

(i) Giveny € A, and 6 € L(X) with ,(y) = 6 mod "*! there exists a unique n € L(M)
such that 6*(}7) = 6 and n=y mod tn—€+1.

(ii) Let y,n € LM). Ify € A,y and o,(y) = o,(7) mod t"+! then y = n mod "~*! and
ne Ae,e"

(iii) The set A is a union of fibers of o,

e .n

(1v) 0. (Be ) is an AS-set and o, n , ¢ Do = Cun(Ber ) is an AS piecewise trivial
fibration with fiber R®. ’

Lemma 3.63. Let 6 : X — Y be a Nash map between algebraic sets. If A ¢ L(Y) is a cylinder then
671(A) C L(X) is also a cylinder.

Proof. Assume that A = 7rn‘1(C) where C is an AS-subset of £,(Y). Then we have the fol-
lowing commutative diagram:

LX) —Z = £(Y)

L,(X) ——> L,(Y)

Notice that ¢, is polynomial and thus its graph is \AS so that the inverse image of an AS-set
by o,, is also an AS-set. Hence 6 1(A) = (o, 1(C)) where 6_1(C) is AS. [}
Proposition 3.64. Let 0 : M — X be a proper generically one-to-one Nash map where M is a
non-singular d-dimensional algebraic subset of RP and X a d-dimensional algebraic subset of RN .
If A c L(X) is a measurable subset, then the inverse image a*‘l(A) is also measurable.
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Proof. Let

y

Za
S =06"1(X,, US)UZ,

sing
where S C X is as in Definition 3.60 and X is the critical set of 6. Notice that the Zariski-
closure of a semialgebraic set doesn’t change its dimension. Therefore £(S”) is a measurable

subset of £(M) with measure 0.
Hence 6;1 (A) is measurable if and only if O'*_I(A) \ L(S") is measurable and then

p(671(A) = u (o7 (A)\ L(S))

Since A is measurable, there exists A,, and C,,; as in Definition 3.41. Hence for all m €

Z<0/
;' (a4, | o' (C)
and
M (e N LESN) A (07 A\ L6SN) € [ (071 \ £S5N)

By Lemma 3.63 the sets 6 !(4,,) and ¢ '(C,, ;) are cylinders, therefore they are stable sets
by Proposition 3.55 since M is non-singular.
By definition of S’,
LD\ LS | A

ee!
By Lemma 3.44, there exists k such that
L\ LsHc | A

ee’<k

Thus, by Lemma 3.62, dim (6 '(C,, ) \ £(S")) < k + m.
This allows one to prove that 6!(4) \ £(S’) is measurable by shifting the index m in
). [

Proposition 3.65. Let 6 : M — X be a proper generically one-to-one Nash map where M is a
non-singular d-dimensional algebraic subset of RP and X a d-dimensional algebraic subset of RN .
If A C L(M) is a measurable subset, then the image o, (A) is also measurable.

Proof. We use the same S’ as in the proof of Proposition 3.64. Then £(S’) and o, (£(S"))
have measure 0 so that it is enough to prove that o, (4 \ £(S")) is measurable.

Lemma 3.66. There exists k such that for every stable set B C L(M) \ L(S"), c,(B) is stable and
dim (0,(B)) < dim(B) — k.

Proof. By definition of S’ and Lemma 3.44, there exists k such that

Bc LM\ LSHc | A

ee/<k

Then the lemma derives from Lemma 3.62. [ ]
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Assume that A is measurable with the data A4, C,,; then
AMA, c|]c,,
so that
(A\ LS DAMA, N\ LS € | Ci \ £(57)

and
o, (A\ L(S")Ac, (A, \ L(S) C o, ((A \ L(S")NA(A,, \ 5(5'))) C U O (Cm,i \ E(S’))

Then we may conclude using Lemma 3.66. [ |

Theorem 3.67. Let 6 : M — X be a proper generically one-to-one Nash map where M is a non-
singular d-dimensional algebraic subset of RP and X a d-dimensional algebraic subset of RN .

Let A C L(X) be a measurable set. Let a : A — N5y U {00} be such that L=* is integrable.

Then L=(@°0x+ord a) js integrable on o' (A) and

/ L™ dupx) = / |]‘_(‘M*Jrord’jac")d#L(M)
AnIm(c,) o7 1(4)

where o, : LIM) — L(X) is induced by o.

Proof. Set p = aoo, + ord, jac,. By Proposition 3.64, o 1(A) and the fibers of aoc, are mea-
surable.

Notice that

n

B (n) = |_| ((@oc,)'(n = e) n (ord, jac,)"'(e) N 6 '(4))

e=0

so that the fibers of # are measurable.

As in the proof of Proposition 3.64, up to replacing o '(A) by 671(A) \ £(S’), we may
assume that

o' | A

ee’<k
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Using Lemma 3.62, we obtain

/l l_(a°6*+0rd’jacﬁ)dﬂ£(M): 2 /l [L—(aoa*+ord,jaca)dM£(M)
o, (A) e.e'<k o, (A)ﬂAe’e/

Y Yu(rec(AnA, . ac0,(r)=n—e)L™"

e,e' <k n>e

2 2 H (J/ EAN 6*(Ae,e’)’ aly)=n— 6) ﬂ_—(n—e)

e,e/ <k n>e

Z Z H (}’ EAN G*(Ae,e’)’ a(y) = l’l) L=

e,e/ <k n>0

> D u(reAnc, (B, aly)=n)L™"

n>0e,e’ <k

=Y u(r € AnIm(s,), a(y) =n)L™"

n>0

= / L™ %dprx)
AnIm(o,)

Notice that Im(c,,) is measurable by Proposition 3.65. [ |

4 An inverse mapping theorem for blow-Nash maps

4.1 Blow-Nash and generically arc-analytic maps

Definition 4.1 ([22, Définition 4.1]). Let X and Y be two real algebraic sets. We say that
f X — Y is arc-analytic if for every real analytic arc y : (-1,1) - X the composition
foy : (-=1,1) - Y is also real analytic.

Definition 4.2 ([8, Definition 2.22]). Let X and Y be two algebraic sets. We say that the map
f X — Y is generically arc-analytic if there exists an algebraic subset .S C X satisfying
dim § < dim X and such thatif y : (—1,1) —» X is a real analytic arc not entirely included in
S, then the composition foy : (=1,1) — Y is also real analytic.

Definition 4.3. Let X and Y be two algebraic sets. We say that f : X — Y is blow-Nash if
f is semialgebraic and if there exists a finite sequence of algebraic blowings-up with non-
singular centers ¢ : M — X such that foo : M — Y is real analytic (and hence Nash).

Lemma 4.4 ([8, Lemma 2.27]). Let f : X — Y be a semialgebraic map between two real algebraic
sets. Then f : X — Y is blow-Nash if and only if f is generically arc-analytic.

Remark 4.5. In the non-singular case, the previous lemma derives from [2] or [39].

Assumption 4.6. For the rest of this section we assume that X ¢ RN and Y ¢ RM are two
d-dimensional algebraic sets and that / : X — Y is blow-Nash. Since f is, in particular,
semialgebraic, it is real analytic in the complement of an algebraic subset .S of X of dimen-
sion < d. We may choose § sufficiently big so that .S contains the singular set of X and
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the non-analyticity set of f. Because f is blow-Nash we may suppose, moreover, that f is
analytic on every analytic arc y not included entirely in S. Then for every y € L(X) \ L(S),
foy € L(Y).

We say that such f is generically of maximal rank if the Jacobian matrix of f is of rank d
on a dense semialgebraic subset of X \ S

Lety € L(X) \ L(S). Then the limit of tangent spaces T, X exists in the Grassmannian
Gy 4 of d-dimensional linear subspaces of R". After a linear change of coordinates we may
assume that this limit is equal to RY ¢ RN. Then (xy, ..., x,) is a local system of coordinates
atevery y(t),1 # 0. Fix J = {jj|, ..., j,) with 1 < j; < -+ < j; < M. Then, for # 0,

dfjl A A dfjd(y(t)) =n;E dx; A - Adxy,

where #,(#) is a semialgebraic function, well-defined for # # 0. Indeed, let ', C RN+M
denote the graph of f and let T, Reg(I's) = Gy u 4 be the Gauss map. Itis semialgebraic,
see e.g. [6, Proposition 3.4.7], [23]. Denote by I’:} the closure of its image and by # 7 I':} —
I'; the induced projection. Then y lifts to a semialgebraic arcy in l?fJ The limits lim,_, o+ y(?)
and lim,_,o- ¥() exist, and as follows from Proposition 4.10 they coincide.

Denote by E — Gy, )4 the tautological bundle. Thus each fiber of E — Gy, 4 is
a d-dimensional vector subspace of R¥+*M. We denote by (x|, ..., Xy, f1, --- f»r) the linear
coordinates in R¥*M_ Then the restriction of alternating d-forms to each V¢ € Gy, p 4
gives an identity

dfj, A Adf;, =,V dxg A Adxy

that defines a semialgebraic function #;(V;) on Gy, 4 with values in R U {+o0}. Then
ny;@) = n;(7(@). As follows from Proposition 4.10, #,(¢) is meromorphic and ord, n; € Z U
{o0]}.

The following notion generalizes the order defined in Definition 3.61.

Definition 4.7. The order of the Jacobian determinant of f along y is defined as
ord,jacf(y) = mJin{ordt ny®}.

If #(t) = 0 then we define its order as +oo.

Definition 4.8. We say that the Jacobian determinant of f is bounded from above (resp. below)
if there exists S C X as in 4.6 such that for every y € L(X) \ L(S), ord, jac,(y) = O (resp.
ord, jac;(y) < 0).

4.2 Resolution diagram of f

Letg : M — X beaNash map where M is a non-singular algebraic set and X is an algebraic
subset of RY. Denote by O,, the sheaf of Nash functions on M.

Assume that dim M = dim X = d. Then the Jacobian sheaf J, of g is the sheaf of O,-ideals
generated, in a local system of coordinates zi, ..., z; on M, by

0<gil,...,gid>
Jo=( ———=.1<ij<<ig<N).

a(Zl, ,Zd)
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Let D = uD; C M be a divisor with normal crossings. We say that a local system of
coordinates z,, ..., z; at p € M is compatible with D if D at p is the zero set of a monomial
inz;orpég& D.

Proposition 4.9. Let g : M — X be as in the previous definition. Then there exists c © M — M
the composition of a sequence of blowings-up with smooth algebraic centers and an algebraic divisor
with simple normal crossings D = UD; C M such that in any local Nash system of coordinates
compatible with D, J,,, is generated by a monomial.

Proof. First we fix a regular (in the algebraic sense) differential form w,, of degree d on M
which is not identically zero on every component of M.

There exists a sequence of blowings-up whose Jacobian determinant is a normal crossing
divisor and such that the compositions with the coefficients of w,, are also normal crossings,
see for instance [3, Theorem 1.10]. Then the zero set of the pullback of w,, is a divisor with
simple normal crossings.

Up to composing with blowings-up, this allows us to assume that the zero set of w,,,
denoted by Z(w),), is a divisor with simple normal crossings.

Since M, and hence Z(w,,), is affine there is a regular function ¢ on M such that Z(w,,) C
div ¢. By performing additional blowings-up we may assume that div(e) is a divisor with
normal crossings.

For I = {ij,...,iz} € {1,....,N}, let z; : X — RY be defined by z;(x;,...,xy) =
(x,,---»x;,). We consider the algebraic differential form w; = z*(dx;, A - Adx; ). Then

(pg*wl =hjoy,

where A} is a Nash function on M. By [9, Proposition 2.11], we may find a finite composition
of blowings-up ¢ : M — M, with smooth algebraic centers, such that h;oc is locally a
monomial times a Nash unit. More precisely, let D M be the union of ¢~ !(div @) and the
exceptional divisor of 6. We may suppose that D is with simple normal crossings and hence
hjoo equals a monomial times a Nash unit, in any local system of coordinates compatible
with D.

Let zy, ..., z; be such a local system of coordinates and let § = goo. Then
. a(gil,u-,gid)d _lh s e (2)d
wy=—-—-"dz= o wy = z%u(z)dz,
& @r o(zy, ..., 24) ¢ M

where u is a unit.

We may apply the above procedure to all w; and their differences. Then, by [48, Begin-
ning of the proof of Proposition 2.1], see also [2, Lemma 6.5], we conclude that the ideal
generated by such §*w; is, locally, principal and generated by a monomial. [ |

Let p : T' - X be a composition of finitely many algebraic blowings-up such that
q= fop: T - YisNashand ¢ : M — I be an algebraic resolution of I such that 7,
(resp. J,0,) is locally generated by a monomial. Notice that M is a non-singular real alge-
braic variety and that fopoc is Nash. Note that if M is not connected then J,,, can vanish
identically on a connected component of M if and only if f is not generically of maximal
rank.
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Wecallp : T' » X and 6 : M — T satisfying the above properties a resolution diagram
of f. By Hironaka’s desingularisation theorem and Proposition 4.9, such a diagram always
exists but is not unique.

2)

By choosing the algebraic subset .S ¢ X bigger (but still with dim S < d) we may assume
that (poo), induces a bijection L(M) \ L(S") — L(X) \ L(S), where S’ = (poc)~!(.S). Note
that dim.S” < d. Thus the diagram (2) induces a diagram

LIM)\ L(S)

LX)\ L(S) 7 LY)

where we denote f, = (goc),0(pos); .
Now we show how to compute the order of the Jacobian determinant of f along y using
a resolution diagram.

Proposition 4.10. Let y € L(X)\ L(S) and let 7 = (poa);l(y). Then
3) ord, jac ;(y) = ord, jac,,(7 (1)) — ord, jac o, (7(1)).
Proof. The result derives from the chain rule which holds outside .S. [ |

Corollary 4.11. Suppose that f is generically of maximal rank. Then the Jacobian determinant of f
is bounded from above, resp. from below, if and only if at every point of M a local generator of J,,
divides a local generator of J,.,, resp. a local generator of J,,,, divides a local generator of J,q,-

Remark 4.12. We deduce from the previous corollary that if one of the conditions of Defi-
nition 4.8 is satisfied for one .S, then it holds for every .S.

4.3 An inverse mapping theorem

Theorem 4.13. Let f : (X,x) — (Y, ) be a germ of semialgebraic homeomorphism between real
algebraic sets. Assume that p, x\(L(X, x)) = pra) (LY, y)).

If f is generically arc-analytic and if the Jacobian determinant of f is bounded from below, then the
inverse map f~' 1 Y — X is also generically arc-analytic and the Jacobian of f is bounded from
above.
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Remark 4.14. Notice that arc-analyticity is an open condition for semialgebraic continuous
maps (See [27, Theorem 3.1] where it is not necessary to assume that f is bounded, up to
composing f with a real analytic diffeomorphism ¢ : R — (-1, 1)). Hence, since the above
statement is local, it is enough to use real analytic arcs centered at x for the arc-analyticity
condition.

The same holds for the boundedness of the Jacobian of f: we assume that the arcs of
Definition 4.8 or Corollary 4.11 are centered at x.

Proof of Theorem 4.13. We have the commutative diagram (2). Notice that E = (poo)~1(0) is
algebraic since poo is regular. By Theorem 3.67,

e ((roo).201. E9) = [ L,
(po0),(L(M ,E))

— / m_ordfjacp°”dM£(M)
L(M,E)

= X #eon (LM, E) 1 (ord, jacye,) ™ () ) L7

n>0

Thus
oo (100, (LML EN) P17 = 33 s, (LM, E) 1 (0rd,jacye,) ™ () 170+
i>0 i20 n>0

= Z teony (v € LIM, E), ord, jac,q,(y(t) < n) L™

n>0

Similarly

Heery ((go0) (L(M, E))) Z L~ = Z teon (v € LIM, E), ord, jac,,,(y(1) < n) L™"

i>0 n>0

Hence

(M) ((900). (LM, E))) = prix) ((poo) (LM, E)))) Y L™

i>0
= ¥, (secn (r € £ E), 0rd, jacug(r 1) < 1) = sgqan, (v € LM, E), 01d, jac o (1) < n) )L™

n>0

Since we may lift a real analytic arc non-entirely included in the exceptional locus by poo,
we have

Heoxy ((p0) (LM, E))) = ppixy (L(X, X))
so that
(e ((400) (LM E)) = npox (LX . x)) DL
i>0

= Z (ML(M) (v € LM, E), ord, jac,,,(y(1)) < n) = prap (v € LIM, E), ord, jac,o,(y(1)) < n) )[L‘”

n>0
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Since M[:(Y)(E(Y’ y)) = ML',(X)(E(X’ x)), we obtain

(M) ((00) (LM, E))) = tpery (LY, y)) D L

i>0

= X (oo (v € L. E), 0rd, jacgu, (1) < 1) = gy (v € LM, E), 0rdy jacoq (r(1) < n) )L™

n>0

Since M is non-singular, we may simply write
(Hee ((@o0) (LM, E))) = ppoy (LY, y)) DL
i>0
= 2 ( [r € L,(M, E), ord, jac,o,(y(1)) < n| — [y € L,(M, E), ord, jac ., (7(1)) < ] )|]_—(n+2)d

n>0

Since the Jacobian determinant f is bounded from below, using Proposition 4.10, we get
that each summand of the RHS is positive or zero (in the sense of Definition 3.31) because
the leading coefficient of the virtual Poincaré polynomial of a non-empty .AS-set is positive:

(Heey ((@o0) (LM, E))) = ppayy (LY, y)) DL

i>0

= Z ( [{y € L,(M, E), ord, jac ., (r(1) < n} \ {y € L,(M, E), ord, jac,.,(y(1) < n}] )[L_(”+2)d

n>0

Moreover, the LHS is negative or zero since (go0),.(L(M, E)) C L(Y, ).

Assume that f is not bounded from above, then at least one of the summand of the RHS
is positive so that we obtain a contradiction. This proves that f is bounded from above.

Furthermore, since the RHS is zero, we obtain that
4) He) ((qo0) (LM, E))) = ppyy (LY, )

We are now going to prove that f~! is generically arc-analytic so that it is blow-Nash.
Assume by contradiction there exists y € L(Y, y) not entirely included in f(S) U Y,
which may not be lifted by goc. Nevertheless, by [8, Proposition 2.21],

(go0) () = Y cite, 120

i>0

and ‘_
(qoo) ™ (1) = Y, di(=1)3, 1 <0,

i>0

By assumption (goo) 1 (y(1)) is not analytic so that either these expansions don't coincide
or they have a non-integer exponent.

1. We first treat the latter case. Assume that

m
(go0) () = Y et +etd + o 120 m< T <m+ 1 c#0.
i=0
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Since (goo)™! : Y \ f(S) = M is continuous and subanalytic, it is locally Holder so
that there exists N € N, satisfying for all real analytic arc 5(r) not entirely included
in f(S)UY.

sing”
n@® =y modtN = (qoe) ' (1)) = (goo) ' (y(1)) mod "*!.

Thus 7! (zx (7)) € LY, )\ (g00).(L(M, E)).

Notice that 7! (7y(y)) is measurable as a cylinder. Let p : ¥ — Y be a resolution
of Y. Since y is not entirely included in the singular set of Y, there exists a unique
real analytic arc 7 on M such that y = poy. Let e = ord, jac,(7(1)) and e’ be such that

y € LE(Y). We may assume that N > max(e’, 2¢). Then, by Lemma 3.62 and since ¥
is non-singular,

ey (73 (N D)) = ey (23! (2n@)) L7
= [zn (73! (ap(®)))] L AHDI=e
#0

Since 73! (7x5()) € LY., ) \ (¢06),(L(M, E)), we obtain that

u (LY, )\ (qo0), (LM, E))) #0

which contradicts (4).

. We now assume that

m—1

7H0) = (goo) T (1) = Y et + et 4, 120

i=0
and 1
77(0) = (qo0) ' (r() = Y, et +dt" + -+, 1 <0
i=0
with ¢ # d.

Notice that (goo)(y*(1)) are analytic so that y(r) = (foqoo)(y(t)) = (fogoo)(y~(1)).
Since f is ahomeomorphism, we get (goo)(y T (#)) = (goo)(y~(1)). Since this real analytic
arc is not entirely included in S, it may be uniquely lifted by goo so that y*(r) = y~(¢).
Hence ¢ = d and we obtain a contradiction.

Thus, forall y € L(Y,y) \ L(f(S)uU Yiing) there exists y € L(M, E) such that (goo)(7(?)) =

y(). Then f~(y(t)) = (poo)(7(?)) which is real analytic. Therefore f~! is generically arc-
analytic and so blow-Nash. [ |

Remark 4.15. Notice that, in the above proof, we do not need a homeomorphism f : X - Y

but only a homeomorphism of f : Reg(X) — Reg(Y).

Under the assumptions of the previous theorem, we derive the following corollary from

Lemma 4.4.
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Corollary 4.16. Let f : (X,x) — (Y,y) be a semialgebraic homeomorphism germ between real
algebraic sets with dim X = dim Y. Assume moreover that ppx)(L(X, X)) = pr (LY, ).

If f is blow-Nash and if the Jacobian determinant of f is bounded from below, then the inverse f~!
is also blow-Nash and the Jacobian determinant of f is bounded from above.

Remark 4.17. Notice that in the previous results we don’t assume that X = Y contrary to
[8, Main Theorem 3.5].

Theorem 4.18. Let f : (X, x) — (Y, y) be a semialgebraic homeomorphism germ between algebraic
sets with dim X = dimY. If f is generically arc-analytic and if the Jacobian determinant of f is
bounded from below, then p,(x)(L(X, X)) = ppy (LY, ).

Proof. Following the beginning of the proof of Theorem 4.13, we obtain :

(”ﬁ(Y) (LY, y) - Heix) (L(X, x))) Z L~

i>0
> (#rery ((900) (LM, E))) — ppx) (L(X, X)) Z L
i>0
= 2 (ML(M) (v € LM, E), ord, jac,,,(y(1)) < n) = prp) (v € LM, E), ord, jac,,,(y(1)) < n) )[L_”
n>0

=0

5 An inverse mapping theorem for inner-Lipschitz maps

5.1 Inner distance

Let X be a connected semialgebraic subset of RY equipped with the standard Euclidean
distance. We denote by dy the inner (also called geodesic) distance in X. By definition, for
p,q € X, the inner distance dy(p, ¢) is the infimum over the length of all rectifiable curves
joining p to ¢ in X. By [24], dx(p, g) is the infimum over the length of continuous semialge-
braic curves in X joining p and g. It is proven in [24] that d y can be approximated uniformly
by subanalytic distances.

We recall some results from [24], based on [23]. Let € > 0, we say that a connected
semialgebraic set I' ¢ RY is K -regular if for any p, ¢ € I we have

dr(p,q) < (1+¢)|p—ql.

We state now a semialgebraic version of [24, Proposition 3].

Proposition 5.1. Let X C RY be a semialgebraic set and e > 0. Then there exists a finite decompo-
sition X = J ), ', such that:

1. each T, is a semialgebraic connected analytic submanifold of RN,

2. each T, is K, -reqular.



32 Arc spaces, motivic measure and Lipschitz geometry

Remark 5.2. Given a finite family of semialgebraic sets X, i € I, we can find a decompo-
sition satisfying the above conditions and such that for any i € I, v € V, we have: either
cX,orT',nX; =40.

Fora C' map f : X’ - RM defined on a submanifold X’ of RN we denote by D,/ :
T,X - RM its differential at p € X’. Then the norm of D, f is defined by

ID,fIl =sup {|D,f(v)| : vET, |v|]=1}.

Lemma 5.3. Assume that f, : T, — RM isa C'-map, such that for any p € T, we have || D, f, || <
L. Then f, is (1+¢)L-Lipschitz with respect to the Euclidean distance, hence it extends continuously

on T, to a Lipschitz map with the same constant.

Proof. Let p,q € T, and €’ > ¢, then, by [24], there exists a C 1-semialgebraic arc A : [0,1] —
I, such that p = 4(0), ¢ = A(1) of the length |A| < (1 + £")|p — q|. It follows that

1/, = f(@| < LIAl < (1 +€)LIp—ql.

We obtain the conclusion passing to the limit ¢/ — .
Notice that, on any metric space, a Lipschitz mapping extends continuously to the clo-
sure with the same Lipschitz constant. [ |

Let X and Y be locally closed connected semialgebraic subsets respectively of R and
RM. They are equipped with the inner distances dy and dy, respectively. Let

f:X->Y

be a continuous semialgebraic map. Then there exists a semialgebraic set X’ C X, which is
open and dense in X, such that the connected components of X’ are analytic submanifolds
of RN, possibly of different dimensions. Moreover f restricted to each connected compo-
nent of X’ is analytic.

Proposition 5.4. The following conditions are equivalent:

(i) dy(f(p), f(@)) < Ldx(p,q) for any p,q € X,
(ii) |ID,f1l £ L forany p € X'.

Proof. The implication 5.4.(i) = 5.4.(ii) is obvious since at a smooth point p € X, the inner
and Euclidean distances are asymptotically equal.

To prove the converse let us fix p,q € X. For any € > 0 there exists a continuous semi-
algebraic arc 4 : [0,1] — X such that p = A(0), ¢ = A(1) of the length |A| < (1 + €)dx(p, q).
By Proposition 5.1 there exists a finite decomposition X’ = J ., I, into K,-regular semi-
algebraic connected analytic submanifolds of RY. Let X" = |, I', be the union of those
I, which are open in X’. Note that X" is dense in X”. It follows that X ¢ |J T, Since
the arc A is semialgebraic there exists a finite sequence 0 =, < -+ < t;, = 1 such that each
At tiqD C F_V for some v € V’'. By Lemma 5.3 the length of f(A([t;,7;,,])) is bounded by
1+ &)|Alt;, ti41DI. Hence

k—1 k—1

LFCAQ0, 1) = D 1F At tiy DI (L +OL Y 1At iy DI < (1 4+ ) LIAL

i=0 i=0
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Thus
dy(f(p), f(@) < |f(AJ0, 1) < (1 + &) LAl £ (1 + 5)2LdX(P’ q)

We conclude by taking the limit as £ — 0. [ |

5.2 An inverse mapping theorem

We suppose now that f : X — Y satisfies Assumption 4.6. Thus it is a blow-Nash map
between two real algebraic sets of dimension d. Let y € L£(X) \ L(S). Let us adapt the
notation introduced in the paragraph after Assumption 4.6. In particular we assume that
the limit of tangent spaces T,;) X in the Grassmannian G 4 is equal to R? c R". Then, for
everyi=1,...,dandeveryj=1,.... M

af;

n;,; (1) ox,

is semialgebraic. Thus the order of #; ;(f), as t — 0% is a well defined rational number (or
+o0 if f; vanishes identically on y).

Definition 5.5. The order of the Jacobian matrix of f along y is defined as
ord; o+ Jac(y(1) = minford, g+ 1; ;).

Remark 5.6. The above notion shouldn’t be confused with the order of the Jacobian deter-
minant defined in Definition 4.7.

Remark 5.7. It is likely that #, ;(7) is actually meromorphic and it is not necessary, in the
above definition, to restrict to  — 0*. We leave it as an open problem.

Definition 5.8. We say that the Jacobian matrix of f is bounded from above if there is an .S such
that for every y € L(X) \ L(S), ord,_o+ Jac(y(2)) > 0.

One may show again that if the above condition is satisfied for one .S they are satisfied
for every S.
The following result follows from Proposition 5.4.

Proposition 5.9. Let f : (X,x) — (Y,y) be a semialgebraic homeomorphism germ between two
real algebraic set germs with dim(X, x) = dim(Y, y). Then f : Reg(X) — Reg(Y) is inner Lipschitz
iff the Jacobian matrix of f is bounded from above.

Theorem 5.10. Let f : (X, x) — (Y, y) be a semialgebraic homeomorphism germ between two real
algebraic set germs with dim(X, x) = dim(Y, y). Assume that p,x)(L(X, X)) = pron (LY, p). If

f is generically arc-analytic and f~' : Reg(Y) — Reg(X) is inner Lipschitz, then f~' : Y — X is

also generically arc-analytic and f : Reg(X) — Reg(Y) is inner Lipschitz.

Remark 5.11. Notice that both previous results involve the closure of the regular parts of

the algebraic sets. The obtained sets Reg(X) and Reg(Y) do not contain any part of smaller
dimension but they still may not be smooth submanifolds.

For instance, for the Whitney umbrella X = {x? = zy?}, Reg(X) consists in the canopy (i.e.
the z > 0 part of X). Therefore Reg(X) is singular along the half-axis {(0,0,z), z > 0}.
However it doesn’t contain the handle of the Whitney umbrella (i.e. {(0,0, z), z < 0}) which
is a smooth manifold of dimension 1 whereas dim X = 2.
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Proof of Theorem 5.10. To simplify the exposition we suppose that X, and hence Y as well,

is pure-dimensional. That is X = Reg(X) and Y = Reg(Y). The proof in the general case is
similar.

First we apply Proposition 5.4 to f~!. Hence the Jacobian determinant of f~! is bounded
from above. Therefore the Jacobian determinant of f is bounded from below and we can ap-
ply to f Theorem 4.13. This shows that f~! is generically arc-analytic and that the Jacobian
determinant of f is bounded from above and below.

Now we show that the Jacobian matrix of f is bounded from above. Let y € L(X)\ L(S).
We may assume, as explained above, that RY ¢ R¥ is the limit of tangent spaces T, X.
Similarly by considering the limit of T, ;Y we may assume that it equals R ¢ R™. Then
Y1, ..., ¥y formalocal system of coordinates on Y at every f(y(1)), t # 0. By the assumptions

the matrix (3—;")( f(y(@®) is bounded and its determinant is a unit. Therefore, by the cofactor
j

formula, its inverse, that is (%)( f(y(®)is bounded. This shows that f is inner Lipschitz by
Proposition 5.9. ' [ |

Remark 5.12. Notice that, in the above proof, we do not need a homeomorphism f : X - Y

but only a homeomorphism of f : Reg(X) — Reg(Y).
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