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STRONG FACTORIZATION AND THE BRAID ARRANGEMENT FAN

JOHN MACHACEK∗

Abstract. We establish strong factorization for pairs of smooth fans which are refined

by the braid arrangement fan. Our method uses a correspondence between cones and

preposets.

1. Introduction

We use the combinatorics of the braid arrangement fan to study toric varieties coming

from fans refined by the braid arrangement fan. The braid arrangement fan is the fan

whose maximal cones are the Weyl chambers of type A. Our main result is a proof of Oda’s

strong factorization conjecture in the special case where we are given two smooth fans

that are refined by the braid arrangement fan. We now recall Oda’s strong factorization

conjecture is its combinatorial form.

Conjecture 1.1 ([4]). Given two smooth fans Σ1 and Σ2 with the same support, there

exists a third fan Σ3 which can be obtain from both Σ1 and Σ2 by sequences of smooth star

subdivisions.

Given a birational map we can consider the problem of finding a factorization of the

map. A strong factorization consists of a sequence of blow-ups followed by a sequence of

blow-downs. A weak factorization allows blow-ups and blow-downs in any order. For a

birational map between two smooth complete varieties over an algebraically closed field of

characteristic zero a weak factorization exists [1, 7]. The existence of a strong factorization

is an open problem.

Equivariant versions of the factorization problems for smooth toric varieties were con-

jectured in [4] and became known as “Oda’s strong factorization conjecture” and “Oda’s

weak factorization conjecture.” As with many problems in toric geometry, Oda’s conjec-

tures can be phrased in terms of convex geometry as we do in Conjecture 1.1. In these

terms blow-ups become star subdivisions. Oda’s weak factorization conjecture has been

solved by W lodarczyk [6] and Morelli [3]. Oda’s strong factorization conjecture is still

open. Da Silva and Karu [2] propose an algorithm to produce a strong factorization from

a weak factorization, but this proposed algorithm is not guaranteed to terminate.
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Figure 1. The permutahedron Π(3) and its normal fan B(3).

When refining a fan to produce a factorization we need to have some way a bounding

the complexity of the fans that will arise in order to avoid the problem of the process not

terminating. In our case we find that all refinements produced will be coarsenings the braid

arrangement fan. In Section 2 we review the braid arrangement fan and its combinatorics.

Section 3 contains the proof on our main result that establishes Conjecture 1.1 in the case

that Σ1 and Σ2 are refined by the braid arrangement fan.

2. The braid arrangement fan

Let [n] = {1, 2, . . . , n} and consider the lattice Z
n ⊆ R

n with standard basis {ei : i ∈

[n]}. For any A ⊆ [n] we let eA =
∑

i∈A ei. We then take the lattice N = Z
n/Ze[n] and

vector space NR = R ⊗Z N . For any 1 ≤ i < j ≤ n let Hij denote the hyperplane in

NR defined by xi = xj . The braid arrangement is the hyperplane arrangement consisting

of the hyperplanes {Hij}1≤i<j≤n. We let B(n) denote the braid arrangement fan in NR.

The maximal cones in B(n) are Weyl chambers of type An−1. We let Π(n) denote the

permutahedron. This is a lattice polytope with whose normal fan is B(n). The vertices

of Π(n) are all permutations of the vector (1, 2, . . . , n). The rays in B(n) are eA for each

A ⊆ [n] such that A 6∈ {∅, [n]}. The permutahedron Π(3) and the fan B(3) with rays

label by minimal lattice points are shown in Figure 1.

A preposet is a binary relation which is reflexive and transitive. We will use either

ordered pairs (i, j) or i � j to denote relations in preposets. Postnikov, Reiner, and

Williams have given a correspondence between cones in fans which are refined by B(n)
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and preposts on [n] [5, Section 3]. When not otherwise stated we will assume that any

preposet has [n] as its underlying set. The correspondence works by observing that any

cone in such a fan is determine by inequalities of the form xi ≤ xj where (x1, x2, . . . , xn)

are coordinates for N = Z
n/Ze[n]. Hence, xi ≤ xj exactly maps to i � j. For cones which

are not of maximal dimension there will be pairs xi ≤ xj and xj ≤ xi giving equality

xi = xj . A poset is a prepost which is also antisymmetric. A poset is called a tree poset

if its Hasse diagram is a tree. Recall the Hasse diagram of a poset has a vertex for each

element of the poset and a directed edge i → j for each covering relation i ≺ j.

Any preposet determines an equivalence relation on [n] by declaring i ∼ i for all i ∈ [n]

and i ∼ j for i 6= j whenever i � j and j � i. For any preposet we define its Hasse diagram

to be the transitive reduction of the graph (with loops and multiple edges removed) which

has a vertex for each equivalence class and a directed edge from the class of a to the class of

b for each relation a � b. A preposet is called connected if its Hasse diagram is connected.

We will assume throughout that all preposets we encounter are connected, this ensures

that the cones they define are strongly convex [5, Proposition 3.5 (7)]. When drawing a

Hasse diagram we will omit the direction of the edges and draw so that each edge should

be oriented upward. A tree preposet is defined to be a preposet whose Hasse diagram is a

tree. Maximal cones will be labeled by posets. In general the dimension of a cone labeled

by a preposet will be one less than the number of equivalence classes on [n] the preposet

determines.

For a cone σ let σ(1) denote the set of minimal lattice points of its ray generators. Give

a set of lattice vectors A ⊆ N we let

cone(A) = {
∑

v∈A

λvv : λv ∈ R, λv ≥ 0} ⊆ NR

and thus σ = cone(σ(1)). If σ(1) can be extended to a basis of lattice N , then σ is called

smooth. A fan inherits the adjective smooth if each cone in the fan is smooth. Consider

a cone τ in a smooth fan Σ. Let τ(1) = {v1, v2, . . . , vk} and set v0 = v1 + v2 + · · · + vk.

For any τ ⊆ σ ∈ Σ the (smooth) star subdivision of the cone σ relative to τ is the fan

Σ∗
σ(τ) = {cone(A) : A ⊆ σ(1) ∪ {v0}, τ(1) 6⊆ A}.

The star subdivision of the fan Σ relative to τ is

Σ∗(τ) = {σ ∈ Σ : τ 6⊆ σ} ∪
⋃

τ⊆σ

Σ∗
σ(τ).

A fan refined by B(n) is smooth if and only if each maximal cone is labeled by a

tree poset [5, Corollar 3.10]. In the smooth case, containment of cones can be found by

contracting edges in Hasse diagrams [5, Proposition 3.5 (2)]. When we contract an edge in

a Hasse diagram we merge the equivalence classes labeling to the two vertices of the edge.

For a smooth fan each cone will be labeled by a tree preposet. Figure 2 shows the Hasse

diagram of a poset indexing a smooth cone along with all its contractions. The poset
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Figure 2. The Hasse diagram of a tree poset and all its contractions.

on the left indexes the 3-dimensional cone σ defined by x4 ≤ x2, x2 ≤ x1, and x2 ≤ x3.

The other preposets in Figure 2 index cones arising from intersecting σ with one or more

hyperplanes from {H12, H23, H24}. We record the two facts from [5] aforementioned in

this paragraph in forms we will make make use of them.

Lemma 2.1. A fan refined by B(n) is smooth if and only if each maximal cone is labeled

by a tree poset.

Lemma 2.2. The faces of any smooth cone σ in a fan refined by B(n) are all cones

labeled by contractions of the Hasse diagram of the preposet labeling σ.

A linear order is a poset in which any two elements are comparable. Under our cone

to poset correspondence, linear orders index the Weyl chambers. Given a poset P and

a ∈ P , the down-degree of a is the number of edges b → a in the Hasse diagram while

the up-degree is the number of edges a → b. An upset of a poset P is a subset A of

[n], the underlying set of P , such that if a ∈ A and b ∈ [n], then b ∈ A whenever

a � b. A downset is defined analogously. Note any element a ∈ [n] generates an upset

(downset) consisting of all elements greater than a (less than a). For any preposet P we

let P op = {(j, i) : (i, j) ∈ P}.

3. Smooth fans and strong factorization

Before proving our main theorem, we provide a lemma to describe the ray generators of

a smooth cone labeled by a tree preposet. It will be useful to us to have the ray generators

explicitly described in terms of the Hasse diagram of a tree preposet. We first define some

notation. Given a tree preposet P , for each edge a → b in its Hasse diagram we will

associate an certain element of the lattice N that we now describe. If we remove the

edge a → b from the Hasse diagram we obtain two connected components. Let B denote

the union of all the equivalence classes of corresponding to the vertices in the component

with b. Then to the edge a → b we associate the lattice vector va→b which is defined as

va→b := eB.

Lemma 3.1. Let σ be a smooth cone labeled by a tree preposet P with Hasse diagram

D. The ray generators of σ are {va→b : a → b is an edge in D}.
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Proof. Let us consider a maximal dimensional cone σ. Cones of smaller dimension

can be treated by applying the same argument projected onto a smaller dimension space.

Each edge a → b of the Hasse diagram gives a facet of the cone σ on the hyperplane

Hab. Since our cone is smooth it has n − 1 facets and n − 1 ray generators. Each ray

generator is obtained by the intersection of n − 2 facets. Choose any edge a → b of the

Hasse diagram. We will now show that va→b is the ray generator obtained by taking the

intersection of the facets corresponding to the other n− 2 edges. Let A denote the union

of all vertices in the component of a in the Hasse diagram with a → b removed. Similarly,

let B denote the union of the vertices in the component with b after removing a → b. The

intersection of the n− 2 hyperplanes corresponding to the other edges is the line defined

by xi = xj for i, j ∈ A and xk = xℓ for k, ℓ ∈ B. Considering again the edge a → b we

see within the cone σ that on this line xi ≤ xk for i ∈ A and k ∈ B. Therefore it follows

that va→b = eB is a ray generator for cone σ. �

Theorem 3.2. Let Σ be a complete smooth fan refined by B(n), then there exists of

sequence of fans

(Σ0,Σ1, . . . ,Σℓ)

such that Σ0 = Σ, Σℓ = B(n), and Σi is obtained from Σi−1 by a star subdivision for each

1 ≤ i ≤ ℓ.

Proof. Let Σ = Σi at some i in the proposed sequence of fans. Note that Σ = B(n)

if and only if every maximal cone is label by a linear order. So, assume some maximal

cone is not labeled by a linear order. Since Σ is smooth by Lemma 2.1 this maximal cone

of is labeled by a tree poset which is not a linear order. Choose a cone σ ∈ Σ labeled

by a tree poset P with Hasse diagram D which is not a linear order. This means in D

there is a vertex with either down-degree or up-degree strictly greater than 1. Let us

assume we have a vertex b with down-degree k > 1. We may assume we are in the case

of down-degree greater than 1 since we could consider P op and the change of coordinates

exchanging xi and −xi for 1 ≤ i ≤ n.

Let ai ≺ b for 1 ≤ i ≤ k be the covering relations in P with b as the greater element.

Now set B to be the upset generated by b and Ai to be the downset generated by ai for

each 1 ≤ i ≤ k. We can then contract the Hasse diagram of P to a Hasse diagram of a

tree preposet having vertex set {A1, A2, . . . , Ak, B} and edge set {Ai → B : 1 ≤ i ≤ k}.

By Lemma 2.2 this tree preposet indexes a face τ ⊆ σ. We will perform a star subdivision

relative to τ .

Let A = A1⊎A2⊎· · ·⊎Ak and let Ai denote the complement of Ai in [n]. By Lemma 3.1

the ray generators of τ are then {vAi→B = eAi
: 1 ≤ i ≤ k}. Hence, the star subdivision
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Figure 3. Portions of the Hasse diagrams D and D′ from the proof of Theorem 3.2.

adds the ray generated by eB since

eA1
+ eA2

+ · · · + eAk
= keB + (k − 1)eA

= eB + (k − 1)e[n]

= eB.

We now verify that Σ∗(τ) is still refined by B(n). To do this we let

S = {vi→j : i → j ∈ D, i → j 6= a1 → b} ⊎ {eB}

and will show that σ′ = cone(S) is the cone indexed by the poset with Hasse diagram D′

that has edges

{i → j ∈ D : j 6= b} ⊎ {a1 → b} ⊎ {ai → a1 : 1 < i ≤ k}.

The labeling of the {ai : 1 ≤ i ≤ k} is arbitrary it suffices the consider i = 1 as we have

in σ′. Furthermore, it did not matter which cone σ containing the face τ we originally

chose. A local picture of the Hasse diagrams D and D′ can be found in Figure 3.

Let v′i→j denote the ray generators of σ′ corresponding to edges of D′. We need to show

{v′i→j : i → j ∈ D′} = S.

First note if i → j ∈ D and i → j ∈ D′, then vi→j = v′i→j. Next we see that vai→b = v′ai→a1

for 1 < i ≤ k. Finally we observe that eB = v′a1→b.

It follows that σ′ is indeed the cone indexed by the poset wit Hasse diagram D′. Thus,

Σ∗(τ) is refined by B(n). Let Σi+1 = Σ∗(τ). The theorem is proven by iterating the

process we have described. �

Theorem 3.2 gives an affirmative solution to Conjecture 1.1 in the special case we are

considering.

Corollary 3.3. Conjecture 1.1 holds whenever Σ1 and Σ2 are two complete smooth

fans refined by B(n). Moreover, in this case the third fan Σ3 can always be taken to be

B(n).
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