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WEAK MIXING FOR NONSINGULAR BERNOULLI

ACTIONS OF COUNTABLE AMENABLE GROUPS

Alexandre I. Danilenko

Abstract. Let G be an amenable discrete countable infinite group, A a finite set,
and (µg)g∈G a family of probability measures on A such that infg∈G mina∈A µg(a) >

0. It is shown (among other results) that if the Bernoulli shiftwise action of G on the
infinite product space

⊗
g∈G(A, µg) is nonsingular and conservative then it is weakly

mixing. This answers in positive a question by Z. Kosloff who proved recently that

the conservative Bernoulli Zd-actions are ergodic. As a byproduct, we prove a weak

version of the pointwise ratio ergodic theorem for nonsingular actions of G.

0. Introduction

Let G be an amenable discrete infinite countable group. We call a nonsingular G-
action Q = (Qg)g∈G on a σ-finite measure space weakly mixing (see [GlWe], [DaSi]
and references therein) if for each ergodic measure preserving G-action R = (Rg)g∈G

on a standard probability space, the product G-action (Qg ×Rg)g∈G is ergodic. Of
course, every weakly mixing action is ergodic.

Given a countable set A and a family (µg)g∈G of probability measures on A,
we set X := AG and µ :=

⊗
g∈G µg. Throughout this section we denote by T =

(Tg)g∈G the left shiftwise action of G on X , i.e. (Tgx)h := xg−1h for all x =
(xh)h∈G ∈ X and g, h ∈ G. The dynamical system (X, µ, T ) is called a nonsingular

Bernoulli G-action if µ ◦ Tg ∼ µ for all g ∈ G. If µg = µh for all g, h ∈ G then T
preserves µ and the dynamical properties of probability preserving Bernoulli actions
are well understood (see [OrWe]).

On the other hand, the purely nonsingular case is considerably less studied even
for G = Z. Some of nonsingular Bernoulli shifts can be nonconservative (see ex-
amples in [Ha] and [DaLe]). Krengel constructed in [Kr] the first conservative
nonsingular Bernoulli shift which does not admit an equivalent invariant probabil-
ity measure (see also [Ha] and [Ko1] for further refinements of his result). It was
assumed in all those papers that µ is semistationary, i.e. there is n ∈ Z such that
either µn = µn−1 = µn−2 = · · · or µn = µn+1 = µn+2 = · · · . In the recent works
[Ko3] and [DaLe], the semistationary nonsingular Bernoulli shifts were studied in
depth in the framework of theory of nonsingular endomorphisms. In particular, it
was shown that every such shift is either dissipative or weakly mixing, it possesses
the nonsingular property K (in the sense of [SiTh]) and Krieger’s type of it (in the
conservative case) is either II1 or III1. A number of explicit examples of type III1
Bernoulli transformations with various weak mixing properties were constructed by
Vaes and Wahl in [VaWa]. They also showed that each infinite countable amenable
group (in fact, a group from a much larger class of countable groups with nontrivial
first L2-cohomology) has Bernoulli actions of type III1.
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Unfortunately, the aforementioned approach to semistationary shifts (Z-actions)
does not work with the shifts T which do not have an equivalent semistationary
measure. Such shifts remain almost unstudied so far. It is known that they are of
zero type [Ko2]. Some progress was achieved recently by Kosloff [Ko4] who proved
that

(◦) if A is finite, infn∈Z mina∈A µn(a) > 0 and T is conservative then T is
ergodic.

We refine and extend this as follows:

Theorem 0.1 (see Corollary 3.2, Theorem 3.5 below).

(i) For a finite A, if infn∈N mina∈A µn(a) > 0 and T is conservative then T is

weakly mixing.

(ii) If #A = 2, infn∈N mina∈A

∣∣∣ log
(

µn(a)
µn+1(a)

)∣∣∣ < ∞ and T is conservative then

T is weakly mixing.

(iii) Under condition (i) or (ii), if T ×· · ·×T (p times) is conservative for some

p > 1 then T × · · · × T (p times) is weakly mixing.

We note that the condition on (µn)
∞
n=1 in (ii) is weaker than the condition on

(µn)
∞
n=1 in (i). Hence (i) and (◦) follow from (ii) in case where #A = 2. We also

construct an explicit example of a weakly mixing nonsingular Bernoulli shift whose
quasiinvariant measure is not equivalent to any semistationary one (see Example 3.3
below).

The proof of (◦) in [Ko4] is based heavily on application of the Hurewicz non-
singular ergodic theorem and the maximal inequality. That proof is valid also for
the nonsingular Bernoulli actions of Zd, d < ∞, and, apparently, some Heisenberg
groups, however it does not extend to actions of groups for which the Hurewicz
theorem fails, say

⊕∞
n=1 Z or Q (see a discussion in [Ho]). In view of that Kosloff

asks [Ko4, Problem from §5.3]:

does (◦) extend to nonsingular Bernoulli actions of arbitrary countable
amenable group actions?

We answer in positive by demonstrating a stronger theorem.

Theorem 0.2 (see Corollary 2.4 below). Let A be finite and let G be an amenable

discrete countable infinite group.

(i) If infg∈Gmina∈A µg(a) > 0 and T = (Tg)g∈G is conservative then T is

weakly mixing.

(ii) Under the condition of (i), if the “diagonal” G-action T × · · · × T (p times)
is conservative for some p > 1 then it is weakly mixing.

In fact, we deduce Theorem 0.2 from the following more general result (cf. [Ko4,
Theorem 2]).

Theorem 0.3 (see Theorem 2.3 below). Let (X, d) be a Polish ultrametric space,

R a countable Borel equivalence relation on X, µ a probability Borel measure on

X and Q = (Qg)g∈G a conservative nonsingular G-action on (X, µ). If there is a

µ-conull subset X0 ⊂ X such that

— (Qg ×Qg)(R∩ (X0 ×X0)) = R∩ (X0 ×X0) for all g ∈ G,

— if (Qgx, x) ∈ R for some x ∈ X0 and g ∈ G then g = 1,
— the restriction of Q to the σ-algebra Inv(R) of R-saturated subsets is ergodic,
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— limg→∞ d(Qgx,Qgy) = 0 for all (x, y) ∈ R ∩ (X0 ×X0),
— there is a Borel map α : R → [1,+∞) with

α(x, y)−1 <
dµ ◦Qg

dµ
(x)/

dµ ◦Qg

dµ
(y) < α(x, y)

for all (x, y) ∈ R ∩ (X0 ×X0) and each g ∈ G.

then Q is ergodic. If, moreover, Inv(R) is trivial (mod µ) then Q is weakly mixing.

In contrast to [Ko4], we do not use any form of the maximal inequality in the
proof of Theorem 0.3. Our main tools are the measurable orbit theory and the fol-
lowing version of the pointwise ratio ergodic theorem for nonsingular group actions
which is of independent interest.

Theorem 0.4 (see Appendix). Let G be amenable. Then for each nonsingular

action T = (Tg)g∈G on a standard probability space (X, µ) and a countable subset

L of L1(X, µ), there is a Følner sequence (Fn)
∞
n=1 in G such that

⋃∞
n=1 Fn = G

and for each f ∈ L, there exists

lim
n→∞

∑
g∈Fn

f(Tgx)
dµ◦Tg

dµ
(x)

∑
g∈Fn

dµ◦Tg

dµ
(x)

= E(f | T)(x)

at a.e. x, where T denotes the σ-algebra of T -invariant subsets in X.

Nonsingular Markov shifts were also considered in [Ko4]. It was shown there that
under a natural boundedness condition, if the shifts are conservative then they are
ergodic. We deduce from Theorem 0.3 that they are weakly mixing.

The outline of the paper is as follows. In §1 we briefly remind some basic concepts
from the theory of measured equivalence relations. In §2 we prove Theorems 0.2
and 0.3. In the final §3 we consider the case G = Z in more detail. We first extend
slightly Theorems 0.2 in this particular case (see Theorem 3.1) and then prove
Theorem 0.1. The example of a conservative nonsingular Bernoulli shift whose
quasiinvariant measure is not equivalent to semistationary one is also constructed
there. A remark on nonsingular Markov shifts completes §3. Appendix contains a
proof of Theorem 0.4.

Acknowledgements. I am grateful to M. Lemańczyk and S. Vaes for useful dis-
cussions and for finding some gaps in earlier versions of the paper. I also thank
Z. Kosloff for useful remarks.

1. Countable equivalence relations on measure spaces

Let (X,B) be a standard Borel space. A Borel equivalence relation R ⊂ X ×X
is called countable if for each x ∈ X , the R-class R(x) := {y ∈ X | (x, y) ∈ R} of x
is countable. If R(x) is finite for each x then R is called finite.

Given a subset B ∈ B, we denote by R(B) the R-saturation of B, i.e. R(B) :=⋃
x∈B R(x). Of course, R(B) ∈ B. A subset B ∈ B is called R-saturated (or

R-invariant) if B = R(B). We denote the collection of all R-saturated subsets
by Inv(R). It is a sub-σ-algebra of B. If T is a Borel bijection T of X and
TR(x) = R(Tx) at each x ∈ X , we say that T normalizes R. In this case the
restriction of T to Inv(R) is well defined.
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Let A and B be two countable sets, #A ≥ 2, #D = ∞, and X = AD. We
define the tail equivalence relation on X by setting that a point x = (xd)d∈D ∈ X
is equivalent to a point y = (yd)d∈D ∈ X if there is a finite subset D0 ⊂ D such
that xd = yd whenever d 6∈ D0.

Let µ be a probability measure on (X,B). We say that R is µ-nonsingular if
µ(R(B)) = 0 whenever µ(B) = 0. If each subset from Inv(R) is either µ-null or
µ-conull then R is called µ-ergodic. If R(x) ∩ B 6= ∅ for each subset B ∈ B for
a.e. x ∈ B then R is called µ-conservative. If R is µ-nonsingular and there is an
increasing sequence R1 ⊂ R2 ⊂ · · · of finite equivalence relations Rn, n ∈ N, such
that R(x) =

⋃∞
n=1 Rn(x) for a.e. x ∈ X then R is called µ-hyperfinite and the

sequence (Rn)
∞
n=1 is called a filtration of R. A Borel equivalence subrelation of a

µ-nonsingular equivalence relation is µ-nonsingular itself.
For each countable R, there is a countable group Γ of Borel isomorphisms of X

such that R is the orbit equivalence relation of Γ [FeMo]. Such a group Γ is not
unique. However R is µ-nonsingular, µ-ergodic or µ-conservative if and only if Γ is
µ-nonsingular, µ-ergodic or µ-conservative respectively.

If R is µ-nonsingular then there exists a Borel map ∆R,µ : R → R∗
+ such that

∆R,µ(x, y) = ∆R,µ(y, z)∆R,µ(z, x) for all (x, y), (y, z) ∈ R

and ∆R,µ(x, γx) = dµ◦γ
dµ

(x) at a.e. x for each µ-nonsingular invertible Borel

transformation γ of X with (x, γx) ∈ R for a.e. x. We call ∆R,µ the Radon-

Nikodym cocycle of the pair (R, µ). A µ-nonsingular R is µ-conservative if and
only if

∑
y∈R(x) ∆R,µ(x, y) = +∞ at a.e. x. If S is a subrelation of R then

∆S,µ = ∆R,µ ↾ S. If R is finite and f ∈ L1(X, µ) then the mathematical expecta-
tion of f with respect to Inv(R) at a point x ∈ X is the ratio

∑
y∈R(x) f(y)∆R,µ(x, y)∑

y∈R(x) ∆R,µ(x, y)
.

For more information about measured equivalence relations (and measurable orbit
theory) we refer to [DaSi] and references therein.

2. Proof of Theorems 0.3 and 0.2.

Let X be a Polish 0-dimensional space, d an ultrametric on X compatible with
the topology, and R a countable Borel equivalence relation on X . Let G be an
amenable discrete infinite countable group and let T = (Tg)g∈G be a Borel free
action of G on X that normalizes R, i.e. Tg normalizes R for each g ∈ G. We
recall that given a probability measure µ on X , T is called strictly R-outer (mod
µ), if Tgx 6∈ R(x) for each g ∈ G \ {1} at a.e. x ∈ X . Of course, a strictly R-outer
G-action is free (mod µ).

Definition 2.1.

(i) We say that T squashes R if there is a µ-conull subset X0 ⊂ X such that
limg→∞ d(Tgx, Tgy) = 0 for each (x, y) ∈ R ∩ (X0 ×X0).

(ii) We say that T is R-bounded if there are a Borel map α : R → [1,+∞) and
a µ-conull subset X0 ⊂ X such that

α(x, y)−1 ≤
dµ ◦ Tg

dµ
(x)/

dµ ◦ Tg

dµ
(y) ≤ α(x, y)

for all (x, y) ∈ R ∩ (X0 ×X0) and each g ∈ G.
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Remark 2.2. It is easy to verify that if R is µ-nonsingular then T is R-bounded if
and only if there are a Borel map β : R → [1,+∞) and a µ-conull subset Y0 ⊂ X
such that

β(x, y)−1 ≤ ∆R,µ(Tgx, Tgy) ≤ β(x, y)

for all (x, y) ∈ R ∩ (Y0 × Y0) and each g ∈ G.
We now state and prove the main result of this section.

Theorem 2.3. Let µ be a probability Borel measure on X such that T = (Tg)g∈G is

a conservative nonsingular G-action on (X, µ). Let T normalize a countable Borel

equivalence relation R on X and let the restriction of T to Inv(R) be µ-ergodic1. If

T is strictly R-outer, R-bounded and squashes R then T is ergodic. If, moreover,

R is µ-ergodic then T is weakly mixing.

Proof. Suppose that T is not ergodic. Denote by F the σ-algebra of Borel T -
invariant subsets. Then there is a subset B ∈ F with 0 < µ(B) < 1. Let E(. |
F) stand for the mathematical expectation with respect to F. Select a sequence
(An)

∞
n=1 of open subsets in X such that

1

n3
≥ ‖1B − 1An

‖1 ≥ ‖1B − E(1An
| F)‖1

for each n. Then by the Markov inequality,

µ

({
x ∈ X

∣∣∣∣ |1B(x)−E(1An
| F)(x)| >

1

n

})
≤

1

n2
.

Hence the Borel-Cantelli lemma yields that for a.e. x ∈ X ,

(2-1) |1B(x)− E(1An
| F)(x)| ≤

1

n
eventually in n.

Since d is an ultrametric, we may assume without loss of generality that for each
n > 0, there is ǫn > 0 such that for each x ∈ An, the ball centered at x and of radius
ǫn is a subset of An. Denote by T the T -orbit equivalence relation on (X, µ). It is
countable, µ-nonsingular, µ-conservative and µ-hyperfinite. By Theorem A.1 (see
Appendix below), there is an increasing sequence H1 ⊂ H2 ⊂ · · · of finite subsets
in G such that

⋃∞
k=1 Hk = G and

(2-2) E(1An
| F)(x) = lim

k→+∞

∑
g∈Hk

1An
(Tgx)

dµ◦Tg

dµ
(x)

∑
g∈Hk

dµ◦Tg

dµ
(x)

for each n at a.e. x ∈ X . Since T normalizes R, it follows that R(B) ∈ F.
Therefore, by the condition of the theorem, µ(R(B)) = 1 and thus µ(R(B)\B) > 0.
Hence there exist a Borel subset B0 ⊂ B, a µ-nonsingular Borel one-to-one map
γ : B0 → X \B and C > 0 such that µ(B0) > 0, (x, γx) ∈ R and α(x, γx) < C for
all x ∈ B0. Since T squashes R, for a.e. x ∈ X and each n > 0, there is a finite
subset Fn(x) in G such that d(Tgx, Tgγx) < ǫn whenever g 6∈ Fn(x). According to

1The latter is equivalent to the fact that the smallest equivalence relation containing R and

the graphs of all Tg , g ∈ G, is µ-ergodic.
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our choice of ǫn, if g 6∈ Fn(x) then Tgx ∈ An if and only if Tgγx ∈ An. Since T is
R-bounded, we obtain that

(2-3)
1

α(x, γx)

dµ ◦ Tg

dµ
(γx) ≤

dµ ◦ Tg

dµ
(x) ≤ α(x, γx)

dµ ◦ Tg

dµ
(γx)

at a.e. x ∈ B0. Since T is conservative,

(2-4) ∞ =
∑

g∈G

dµ ◦ Tg

dµ
(x) = lim

k→∞

∑

g∈Hk\Fn(x)

dµ ◦ Tg

dµ
(x)

at a.e. x and each n > 0. Substituting (2-3) into (2-2) and using (2-4) we obtain
that

E(1An
| F)(x) ≤ α(x, γx)2E(1An

| F)(γx) ≤ C2E(1An
| F)(γx)

for all n > 0 and a.e. x ∈ B0. Passing to the limit (n → ∞) and applying (2-2) we
obtain that 1 ≤ 0, which is a nonsense. This proves the first claim of the theorem.

To prove the second one, take an ergodic probability preserving G-action R =
(Rg)g∈G. Since every Borel G-action admits a countable generating partition
[JaKeLo], we can realize R as a left shiftwise action on the space NG which is
0-dimensional Polish in the usual infinite product topology. We define an ultra-
metric d′ on NG by setting d′(a, b) :=

∑
h∈G ǫh(1 − δ(ah, bh)), where δ(., .) is the

Kronecker delta, ǫh > 0 for each h ∈ G and
∑

h∈G ǫh < ∞. Denote by T the tail

equivalence relation on NG. Then R normalizes and squashes T . The product space
X × NG is 0-dimentional Polish. Its topology is compatible with an ultrametric.
The product G-action T ×R := (Tg×Rg)g∈G normalizes and squashes the product
equivalence relation R× T on X ×NG. Moreover, T ×R is strictly (R× T )-outer
because T is strictly R-outer. Since

Inv(R× T ) = Inv(R)⊗ Inv(T )

and Inv(R) is trivial mod µ, the restriction of T ×R to Inv(S ×T ) is isomorphic to
the restriction of R to Inv(T ), which is ergodic because R is ergodic on the entire
Borel σ-algebra on NG. It is easy to verify that since R is probability preserving,
T ×R is (R×T )-bounded. Since T is conservative and R is probability preserving,
T×R is conservative. Thus we may apply the first claim of the theorem to conclude
that T ×R is ergodic. Hence T is weakly mixing. �

Given a countable set A, we let X = AG and denote by T the tail equivalence
relation on X . Given a sequence (µn)

∞
n=1 of non-degenerated probability measures

on A, we let µ :=
⊗∞

n=1 µn. We will always assume that µ is non-atomic or,
equivalently, ∑

g∈G

log(max
a∈A

µg(a)) = −∞.

Then T is µ-nonsingular and for all T -equivalent points x = (xh)h∈G and y =
(yh)y∈H from X ,

(2-5) ∆T ,µ(x, y) =
∏

h∈G

µh(yh)

µh(xh)
.
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We note that the product is finite indeed. It follows from the Kolmogorov 0-1 law
that T is µ-ergodic2. Let T = (Tg)g∈G denote the left shiftwise G-action on X . It
follows from [Ka] that T is nonsingular if and only if for each g ∈ G,

∑

h∈G

∑

a∈A

(√
µh(a)−

√
µg−1h(a)

)2

< ∞.

Corollary 2.4. Let (X, µ, T ) be a conservative nonsingular Bernoulli G-action

with A finite. If δ := infg∈Gmina∈A µg(a) > 0 then T is weakly mixing. More

generally, if the “diagonal” G-action T × · · · × T (p times) is conservative for some

p > 1 then it is weakly mixing.

Proof. We note that X is a Cantor (compact, ultrametric) space. Of course, T
normalizes and squashes T (mod µ). Moreover, T is strictly R-outer (mod µ).
Take (x, y) ∈ T . Let Fx,y := {g ∈ G | xg 6= yg}. It follows from (2-5) that

∆T ,µ(Tgx, Tgy) =
∏

h∈G

µgh(yh)

µgh(xh)
=

∏

h∈Fx,y

µgh(yh)

µgh(xh)
.

Hence δ#Fx,y ≤ ∆T ,µ(Tgx, Tgy) ≤ δ−#Fx,y . Thus, T is T -bounded by Remark 2.2.
It now follows from Theorem 2.3 that T is weakly mixing. Thus, the first claim is
proved. The second claim follows from the first one. �

3. On weak mixing of conservative two-sided shifts

In this section we consider in more detail the case where G = Z. First we note
that in this case the condition of the R-boundedness in Theorem 2.3 can be slightly
relaxed.

Theorem 3.1. Let X be the same as in Theorem 2.2 and let µ be a probability Borel

measure on X. Let T be a conservative nonsingular transformation of (X, µ) that

normalizes a countable Borel equivalence relation R on X and let the restriction of

T to Inv(R) be µ-ergodic. If T is strictly R-outer, squashes R and there is a Borel

map α : R → [1,+∞) and a µ-conull Borel subset X0 ⊂ X such that

α(x, y)−1 <
dµ ◦ T−k

dµ
(x)/

dµ ◦ T−k

dµ
(y) < α(x, y)

for all (x, y) ∈ S ∩ (X0 ×X0) and each k ≥ 0 then T is ergodic. If, moreover, R is

µ-ergodic then T is weakly mixing.

Proof. The proof is almost a verbal repetition of the proof of Theorem 2.3. Only a
slight modification is needed. Instead of (2-2), we should use the following limit

E(1An
| F)(x) = lim

K→+∞

∑K
k=0 1An

(T−kx)dµ◦T
−k

dµ
(x)

∑K
k=0

dµ◦T−k

dµ
(x)

at a.e. x ∈ X for each n > 0. The existence of this limit follows from the Hurewicz
ergodic theorem. �

In a similar way one can “relax” the corresponding R-boundedness condition in
Remark 2.2.

We now discuss some applications of Theorem 3.1 to nonsingular Bernoulli shifts.
The first claim of the following corollary strengthens [Ze, Theorem 3] (where it was
proved that T is ergodic under a stronger condition that infn∈Z mina∈A µn(a) > 0).

2Hint: enumerate the elements of G with natural numbers.

7



Corollary 3.2. Let (X, µ, T ) be a conservative nonsingular Bernoulli Z-shift with

A finite. If δ := infn>0 mina∈A µn(a) > 0 then T is weakly mixing. More generally,

if the product T × · · · × T (p times) is conservative for some p > 1 then T × · · · ×
T (p times) is weakly mixing.

Proof. Take (x, y) ∈ T . Let Jx,y := {k ∈ Z | xk 6= yk}. It follows from (2-5) that

∆T ,µ(T
nx, Tny) =

∏

k∈Jx,y

µk+n(yk)

µk+n(xk)
.

If n is sufficiently large then k+n > 0 for each k ∈ Jx,y. Hence we have eventually
(in n) that δ#Jx,y ≤ ∆T ,µ(T

nx, Tny) ≤ δ−#Jx,y It remains to apply Theorem 3.1
(and a corresponding analogue of Remark 2.2). �

We now give some concrete examples of weakly mixing nonsingular Bernoulli
shifts without an equivalent semistationary measure.

Example 3.3. Fix λ ∈ (0, 1/2) and a real ξ such that

ξ >

(
λ

2

)−2

+

(
λ

2

)−1 (
1−

λ

2

)−2

.

Choose a sequence of reals (αn)
∞
n=1 and a sequence of positive integers (An)

∞
n=0

such that the following conditions hold:

(i) αj ∈ (0, 1/2) and
∑∞

j=1 α
2
j < +∞,

(ii) A0 = 0, Al > 8Al−1 for each l > 0 and

(iii)
∑n

j=1 α
2
jAj =

logn
4ξ

for each n > 0.

We now define for each n ∈ Z, a measure µn on A = {0, 1} by setting

µn(0) :=

{
λ, if 2Al ≤ |n| < Al+1 for some l ≥ 0,

λ+ αl, if Al ≤ |n| < 2Al for some l > 0.

It is straightforward to verify that

(I) λ/2 < µn(0) < 1− λ/2 for each n ∈ Z and
(II)

∑
n∈Z

|µn+1(0)− µn(0)|
2 = 4

∑∞
j=1 α

2
j < ∞.

It follows from (I) that µ is non-atomic. It follows from (2-5) and (II) that T is
µ-nonsingular. Of course, µ is not semi-stationary. It is straightforward to deduce
from (I), (iii) and the Kakutani theorem [Ka] that µ is not equivalent to any semi-
stationary measure on X . To show that T is conservative we will apply [VaWa,

Proposition 4.1], which states that if
∑

n∈Z
e−ξ

∑
j∈Z

|µj+n(0)−µj(0)|
2

= +∞ then T
is conservative. Indeed, it follows from (ii) and (iii) that for each l > 0,

∑

j∈Z

|µj−4Al
(0)− µj(0)|

2 = 4

l∑

j=1

α2
jAj + 4

∑

j>l

α2
jAl =

log l

ξ
+ o(1).

Then

∑

n∈Z

e−ξ
∑

j∈Z
|µj+n(0)−µj(0)|

2

≥
+∞∑

l=1

e−ξ
∑

j∈Z
|µj−4Al

(0)−µj(0)|
2

=
+∞∑

l=1

e− log l+o(1)

8



Hence
∑

n∈Z
e−ξ

∑
j∈Z

|µj+n(0)−µj(0)|
2

= +∞ and thus T is µ-conservative. Corol-
lary 3.2 yields that T is weakly mixing.

We now investigate ergodicity of nonsingular Bernoulli shifts under assumption
that δ = 0, where δ is defined in Corollary 3.2.

Let S be the symmetric equivalence relation on X . By definition, it is the
orbit equivalence relation of the natural action of the group Σ0(Z) of all finite
permutations of Z on X . In other words, two points x = (xn)n∈Z and y = (yn)n∈Z

of X are S-equivalent if there is σ ∈ Σ0(Z) such that xn = yσ(n) for all n ∈ Z. It
is easy to verify that S is a subrelation of T and T normalizes S. We will use the
following result from [AlPi].

Lemma 3.4.

(i) Let #A = 2. Then S is µ-ergodic if and only if
∑

n∈Z
mina∈A µn(a) = +∞,

i.e. µ is non-atomic.

(ii) Let A be finite. Then S is µ-ergodic if and only if for each nonempty proper

subset B ⊂ A,
∑

n∈Z
min(µn(B), µn(A \B) = +∞.

The following statement strengthens Corollary 3.2 in the case where #A = 2.

Theorem 3.5. Let (X, µ, T ) be a nonsingular Bernoulli shift with #A = 2. If

there is D > 1 such that

(3-1) D−1 <
µk(a)

µk+1(a)
< D for all a ∈ A and each k < 0

and T is conservative then T is weakly mixing. More generally, if T × · · · ×
T (p times) is conservative for some p > 1 then T × · · · × T (p times) is weakly

mixing.

Proof. By Lemma 3.4(i), S is ergodic. Take (x, y) ∈ S. Let Jx,y := {k ∈ Z | xk 6=
yk} and let σ be a permutation of Jx,y such that yk = xσ(k) for all k ∈ Jx,y. It
follows from (2-5) that

∆S,µ(T
nx, Tny) =

∏

k∈Jx,y

µσ−1(k)+n(xk)

µk+n(xk)
.

If n is large enough, we deduce from (3-1) that

D−|σ−1(k)−k| ≤
µσ−1(k)+n(xk)

µk+n(xk)
≤ D|σ−1(k)−k|

for each k ∈ Jx,y. Since |σ−1(k)− k| < #Jx,y, we obtain that

D−(#Jx,y)
2

≤
µσ−1(k)+n(xk)

µk+n(xk)
≤ D(#Jx,y)

2

eventually in n. Hence T is weakly mixing by Theorem 3.1 and the analogue of
Remark 2.2. �

As in [Ko4], we note that Theorem 3.1 can be applied also to nonsingular Markov
shifts.
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Remark 3.6. Let S be a finite set and let M = (M(a, b))a,b∈S be a {0, 1}-valued
(S × S)-matrix. Given two integers i ≤ j and a finite sequence a = (al)i≤l≤j of
elements from S such that M(al, al+1) = 1 for each l = i, . . . , j − 1, we denote

by [a]ji the cylinder [a]ji := {x ∈ XM | xl = al for each l = i, . . . , j}. The set of
infinite paths XM := {x = (xi)i∈Z ∈ SZ | M(xi, xi+1) > 0} is a closed subset of SZ

which is invariant under the two-sided shift T . Suppose that there is a sequence
(πn)n∈Z of probability measures on S and a sequence (Pn)n∈Z of row-stochastic
(S×S)-matrices such that πnPn = πn+1 and Pn(a, b) > 0 if and only if M(a, b) = 1
for each n ∈ Z. Then there is a unique probability measure µ on XM such that for
every cylinder [a]ji in XM ,

µ([a]ji ) = πi(ai)Pi(ai, ai+1) · · ·Pj−1(aj−1, aj).

It is called a Markov measure on XM generated by (πn, Pn)n∈Z. Denote by T the
restriction of the tail equivalence relation to XM . It is easy to verify that T is
µ-nonsingular and for each (x, y) ∈ T ,

∆T ,µ(x, y) :=
∏

i∈Z

Pi(yi, yi+1)

Pi(xi, xi+1)
.

We note that the infinite product in this formula is indeed finite. Suppose that

— M is primitive, i.e. there is n > 0 with Mn(a, b) > 0 for all a, b ∈ S and
— that δ := inf{Pn(a, b) | n ∈ Z,M(a, b) = 1} > 0.

It was shown in [Ko4] that under these two conditions, T is µ-ergodic. It follows
from this fact, Theorem 3.1 and Remark 2.2 that if the shift T on (XM , µ) is
conservative and nonsingular then T weakly mixing. Indeed, it suffices to note that

∆T ,µ(T
nx, Tny) :=

∏
i
Pi+n(yi,yi+1)
Pi+n(xi,xi+1)

and argue as in Corollary 3.2.

Appendix. Weak pointwise ratio ergodic theorem for

nonsingular actions of amenable groups

We recall that given a finite subset K ⊂ G and ǫ > 0, a finite subset F ⊂ G is
called [K, ǫ]-invariant if #{g ∈ F | Kg ⊂ F} > (1− ǫ)#F .

Theorem A.1. Let G be amenable. Fix a sequence (Kn)
∞
n=1 of finite subsets in G

and a sequence of positive reals (ǫn)
∞
n=1 converging to 0. Then for each nonsingular

action T = (Tg)g∈G on a standard probability space (X, µ) and a countable subset

L of L1(X, µ), there is an increasing sequence F1 ⊂ F2 ⊂ · · · of finite subsets in G
such that

⋃∞
n=1 Fn = G and for every f ∈ L, there exists

(A-1) lim
n→∞

∑
g∈Fn

f(Tgx)
dµ◦Tg

dµ
(x)

∑
g∈Fn

dµ◦Tg

dµ
(x)

= E(f | Inv(T ))(x),

at a.e. x, where T denotes the T -orbit equivalence relation on X. Moreover, Fn is

[Km, ǫm]-invariant for each m ≤ n. In particularly, if
⋃∞

n=1 Kn = G then (Fn)
∞
n=1

is a Følner sequence in G.

Proof. Let R = (Rg)g∈G be an ergodic measure preserving Bernoulli (free) action
of G on a standard probability space (Y, ν). Denote by R the R-orbit equivalence
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relation on Y . We also denote by R̂ the orbit equivalence relation of the product G-

action T ×R := (Tg ×Rg)g∈G. Since G is amenable, R and R̂ are both hyperfinite.
Let (Rn)

∞
n=1 be a filtration of R. For y ∈ Y and n > 0, let Gy,n stand for the finite

subset of G such that Rn(y) = {Rgy | g ∈ Gy,n}. For each n > 0, we now define a

finite equivalence relation R̂n on X × Y by setting

(x, y) ∼R̂n
(x′, y′) iff (y, y′) ∈ Rn and x′ = Tgx

for the only element g ∈ G such that y′ = Tgy.

Then (R̂n)
∞
n=1 is a filtration of R̂. It follows from the martingale convergence

theorem there there is a (µ× ν)-conull subset Z of X × Y such that

(A-2) lim
n→∞

E(f ⊗ 1 | Inv(R̂n))(x, y) = E(f ⊗ 1 | Inv(R̂))(x, y)

for every f ∈ L at each (x, y) ∈ Z. We now note that

(A-3)
E(f ⊗ 1 | Inv(R̂n))(x, y) =

∑
g∈Gy,n

f(Tgx)
dµ◦Tg

dµ
(x)

∑
g∈Gy,n

dµ◦Tg

dµ
(x)

and

E(f ⊗ 1 | Inv(R̂))(x, y) = E(f | Inv(T ))(x).

By the Fubini theorem, there is y0 ∈ Y and a µ-conull subset X0 in X such
that X0 × {y0} ⊂ Z. We let Fn := Gy0,n. Since R1(y0) ⊂ R2(y0) ⊂ · · · and⋃∞

n=1 Rn(y0) = R(y0), it follows that F1 ⊂ F2 ⊂ · · · and
⋃∞

n=1 Fn = G. It remains
to substitute (A-3) into (A-2) to obtain (A-1).

By [Da, Lemma 2.2], for each m > 0,

ν({y ∈ Y | Gy,n is [Km, ǫm]-invariant}) > 1− ǫm

eventually in n. Hence passing to a subsequence in (Rn)
∞
n=1 and applying the

Borel-Cantelli lemma we can choose y0 in such a way that Fn is [Km, ǫm]-invariant
for all n ≥ m > 0. �
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[DaLe] A. I. Danilenko and M. Lemańczyk, K-property for Maharam extensions of nonsingular

Bernoulli and Markov shifts, Ergod. Th. & Dynam. Sys. (to appear).
[DaSi] A. I. Danilenko and C. E. Silva, Ergodic theory: non-singular transformations, Mathe-

matics of Complexity and Dynamical Systems, Springer, New York, 2012, pp. 329–356.

[FeMo] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neu-

mann algebras, I, Trans. Amer. Math. Soc. 234 (1977), 289–324.

[GlWe] E. Glasner and B. Weiss, Weak mixing properties for non-singular actions, Ergod. Th.

& Dynam Sys. 36 (2016), 2203–2217.
[Ha] T. Hamachi, On a Bernoulli shift with non-identical factor measures, Ergod. Th. &

Dynam. Sys. 1 (1981), 273–284.
[Ho] M. Hochman, On the ratio ergodic theorem for group actions, J. London Math. Soc. 88

(2013), 465–482.

11



[JaKeLo] S. Jackson, A. S. Kechris and A. Louveau, Countable Borel equivalence relations, Jour-
nal of Math. Logic 2 (2002), 1–80.

[Ka] S. Kakutani, On equivalence of infinite product measures, Ann. Math. 49 (1948), 214–

224.
[Ko1] Z. Kosloff, On a type III1 Bernoulli shift, Ergodic Theory & Dyn. Syst. 31 (2011),

1727–1743.
[Ko2] , The zero-type property and mixing of Bernoulli shifts, Ergodic Theory & Dyn.

Syst. 33 (2013), 549–559.

[Ko3] , On the K property for Maharam extensions of Bernoulli shifts and a question

of Krengel, Israel J. Math. 199 (2014), 485–506.

[Ko4] , Proving ergodicity via divergence of ergodic sums, Preprint, arXiv:1802.07780.

[Kr] U. Krengel, Transformations without finite invariant measure have strong generators,
Lecture Notes in Math. 160 (1970), Springer, New York, 133–157.

[SiTh] C. E. Silva and P. Thieullen, A skew product entropy for nonsingular transformations,
J. London Math. 52 (1995), 497–516.

[OrWe] D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable

groups, J. Anal. Math. 48 (1987), 1–141.
[VaWa] S. Vaes and J. Wahl, Bernoulli actions of type III1 and L2-cohomology, Geom. and

Funct. Anal. 28 (2018), 518–562.

Institute for Low Temperature Physics & Engineering of National Academy of

Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, UKRAINE

E-mail address: alexandre.danilenko@gmail.com

12


