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TROPICAL FANO SCHEMES

SARA LAMBOGLIA

Abstract. We define a tropical version Fd(tropX) of the Fano Scheme Fd(X)
of a projective variety X ⊆ Pn and prove that Fd(tropX) is the support of a
polyhedral complex contained in tropG(d, n). In general tropFd(X) ⊆ Fd(tropX)
but we construct linear spaces L such that tropF1(X) ( F1(tropX) and show that
for a toric variety tropFd(X) = Fd(tropX).

1. Introduction

The classical Fano scheme of a projective variety X ⊆ Pn is the fine moduli space
parametrising linear spaces contained in X . It is denoted by Fd(X), with d the
dimension of the linear spaces, and is a subscheme of the Grassmannian G(d, n) of
d−dimensional subspaces of Pn. Fano schemes have been intensively studied because
of their geometric properties. Gino Fano [8] first introduced these schemes and mostly
considered the case of hypersurfaces. Then in the 70s these schemes have been used
to prove results on the irrationality of cubic threefolds [5, 20]. Recently there has
been new interests for Fano schemes not only in algebraic geometry [4, 14–16] but
also in machine learning [17] and geometric complexity theory [19].

In this paper we study a tropical version of the Fano scheme. We investigate the
structure of this tropical object and relations with the classical Fd(X).

The first way of obtaining a tropical version of Fd(X) is to consider its tropical-
ization inside tropG(d, n). The points of tropFd(X) are in correspondence with the
tropicalization of the classical linear spaces contained in X . However it is not true
in general that a tropicalized linear space that lies in tropX is the tropicalization
of a classical linear space in X . A famous example of this is in [23] where Vigeland
proves that there are smooth surfaces in P3 of degree 3 whose tropicalization contains
infinitely many lines. Since there are only 27 lines in the classical surfaces we deduce
that these infinite tropical lines do not come from their tropicalization.

This leads us to define the second tropical version of Fd(X) to be the set of trop-
icalized linear spaces of dimension d contained in tropX . We call this the tropical

Fano scheme and we denote it by Fd(tropX). We take the first steps in studying the
structure and the properties of this object that can also be used to investigate the
classical Fano scheme.

Theorem 1. Let X be a projective variety in Pn. Then the tropical Fano scheme
Fd(tropX) is a polyhedral complex whose support is contained in tropG(d, n). More-
over if X is a fan then Fd(tropX) is a fan.
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The two tropical versions of the Fano scheme come from two different constructions.
The first is strictly linked to the algebraic variety and to its classical Fano scheme
while the other only depends on the tropical variety tropX . However we immediately
observe that

(1.1) tropFd(X) ⊆ Fd(tropX)

and since Theorem 1 allows us to define a dimension for Fd(tropX) we obtain a
bound for the dimension of Fd(X). A natural question arises:

Question 2. For which varieties X do we have tropFd(X) = Fd(tropX)?

We start by looking at the simplest algebraic varieties: linear subspaces of Pn. We
then analyse the case of toric varieties embedded in Pn via monomial maps. These
are two examples where the tropicalization can be easily described. For a linear
space L the tropicalization is computed from the matroid associated to L. On the
other hand a monomial map can be tropicalized to a linear map from Rr to Rn and
its image is the tropicalization of the toric variety associated to the monomial map
([18, Corollary 3.2.13]).

Theorem 3. ciap

(1) Let n ≥ 5. If L is a generic 2−dimensional plane in Pn then

tropF1(L) ( F1(tropL).

(2) If X is a toric variety in Pn then Fd(tropX) = tropFd(X).

The paper is structured as follows. In Section 2 we define the tropical Fano scheme
and we give a rigorous statement of Theorem 1 (Theorem 2.3 and Corollary 2.4). We
study the case of linear spaces in Section 3. We prove the first part of Theorem 3
in Theorem 3.1 and then use it to prove the strict containment in (1.1) for a generic
hypersurface. In Section 4 we analyse the case of toric varieties and we prove the
second part of Theorem 3 (Theorem 4.2). Finally in Section 5 we study the structure
of Fd(tropX).

Acknowledgements. The author would like to thank Diane Maclagan for useful
suggestions and a close reading, Nathan Ilten, Paolo Tripoli, Maŕıa Angélica Cueto
and Annette Werner for helpful discussions and Melody Chan for her valuable com-
ments that lead to the improvement of the final version of this paper. The author was
supported by EPSRC grant 1499803 and partially by LOEWE research unit USAG.

2. Definitions of Fd(tropX)

In this section we set notation and define the tropical Fano Scheme Fd(tropX) of
the tropicalization of a projective variety X ⊆ Pn.

Let k be a field with a surjective valuation v : k∗ → R (cf. Remark 5.2) and let
Tm be the torus (k∗)m+1/k∗ contained in Pm. The tropical projective space tropPm

is (R
m+1

\ {(∞, . . . ,∞)})/R1 where R denotes R ∪ {∞} and R1 is the linear space
spanned by the vector (1, . . . , 1). Let O be a Tm-orbit of Pm. This is the locus of
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points in Pm where xi = 0 for every i in the subset I of all coordinates and xi 6= 0 for
i /∈ I. Its tropicalization O := tropO is the locus of points (x0, . . . , xn) in tropPm

where xi = ∞ if and only if i ∈ I. We refer to O as an orbit of tropPm.

For any projective variety Y ⊆ Pm the tropicalization tropY is given by the union
of tropY ∩O := trop(Y ∩O) where O is the unique orbit of Pm such that tropO = O
(see Section 6 in [18]). If Y is irreducible and O is such that dimY ∩ O = dimY
then Y ⊆ O and tropY = tropY ∩O in tropPm [18, Theorem 6.2.18].

LetG(d, n) be the Grassmannian parametrising d-dimensional projective subspaces

in Pn. We consider it embedded via the Plücker map into P(
n+1

d+1)−1. Its tropicalization

tropG(d, n) ⊆ tropP(
n+1

d+1)−1 parametrises tropicalized linear spaces of dimension d in
tropPn ([22, Theorem 3.8], [18, Theorem 4.3.17 and Remark 4.4.2],[6]). Hence it is
possible to associate to each point p of tropG(d, n) a unique tropicalized linear space
which we denote by Γp.

Notation 2.1. Given two tropical varieties tropX, tropY we write tropX ⊆ tropY
for the containment of the support of tropX in the support of tropY .

Definition 2.2. The tropical Fano scheme is the set Fd(tropX) ⊆ tropG(d, n) de-
fined by

Fd(tropX) := {p ∈ tropG(d, n) : Γp ⊆ tropX}.

In Section 5 we prove the following results:

Theorem 2.3. Let X be a projective variety in Pn and O be an orbit of tropP(
n+1

d+1)−1.

Then Fd(tropX)∩O is a polyhedral complex whose support is contained in the inter-

section tropG(d, n) ∩O.

Corollary 2.4. Consider a non empty intersection Fd(tropX)∩O and let O′ be the

unique orbit of tropPn such that Γp ∩O′ = Γp for all p ∈ Fd(tropX) ∩ O. Then

Fd(tropX) ∩O is a fan if tropX ∩O′ is a fan.

Remark 2.5. Note that tropFd(X) does not have the same property described in
Proposition 2.4. There are varieties X ⊆ Pn such that trop(X ∩ T n) is a fan but

tropFd(X) ∩ tropT (
n+1

d+1)−1 is not. In the next section we give an explicit example of
this (Example 3.5).

3. Linear spaces and generic hypersurfaces

In this section we show that there exist linear spaces and hypersurfaces for which
the containment tropF1(X) ⊆ F1(tropX) is strict. In Theorem 3.1 we prove that
if n ≥ 5 and L is a generic plane in Pn then there exists a tropical line in tropL
that is not realizable in L. We then compute an explicit example of a plane L ⊆ P5

with this property and we show that dim tropF1(L) < dimF1(tropL). Finally in
Proposition 3.6 we prove that the containment is strict for a general hypersurface X
whose tropicalization has the same support as a tropical hyperplane.

Theorem 3.1. Let n ≥ 5. There exists a semi-algebraic set in G(2, n) whose points

are planes L ⊆ Pn such that trop F1(L) ( F1(tropL).
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A semialgebraic subset of an algebraic variety X is a subset ofX that can locally be
defined by finitely many Boolean operators and inequalities of the form v(f) ≤ v(g)
where f, g are algebraic functions on X([21]). For example every set in X that is
Zariski open is also a semialgebraic set.

Proof of Theorem 3.1. Let L be the standard tropical plane in tropPn. This is the clo-
sure in tropPn of the tropicalization of the uniform matroid of rank 3 in {0, 1, . . . , n},
which is the fan in tropT n ∼= Rn+1/R1 given by the 2-dimensional cones pos(ei, ej)
for 0 ≤ i < j ≤ n where e0, . . . , en is the standard basis of Rn+1. Let Γ◦ ⊆ trop(T n)
be the 1-dimensional fan whose rays are pos(ei + ej) where 0 ≤ i 6= j ≤ n. The
closure of Γ◦ in tropPn is a tropical line Γ and since Γ◦ ⊆ L ∩ tropT n then Γ is
contained in L.

Given p ∈ G(2, n) we denote by Lp the associated plane in Pn. We show that we
can find an open semi-algebraic set U in G(2, n) such that for every p ∈ U we have
tropLp = L and there does not exist ℓ ⊆ Lp such that trop ℓ = Γ.

Firstly we have that tropLp = L if and only if p ∈ U1 where

U1 = {q ∈ G(2, n) : v(q) = (0, . . . , 0)}.

The plane Lp induces a line arrangement A = {ℓ0, . . . , ℓn} ⊆ Pn given by the lines
ℓi = Lp ∩ {xi = 0}, with x0, . . . , xn coordinates of Pn. Let i, j be two distinct indices
then we denote by wi,j the point of intersection of ℓi and ℓj. There exists a Zariski
open set U2 of G(2, n) such that for every p ∈ V the line arrangement induced by Lp

satisfies the following conditions

(I) ℓi ∩ ℓj ∩ ℓk = ∅ for any three distinct indices i, j, k;
(II) wi0,i1 , wi2,i3, wi4,i5 are not collinear unless {i0, i1} ∩ {i2, i3} ∩ {i4, i5} 6= ∅.

Let U be the set U1 ∩ U2. We prove that if p ∈ U then Γ is not realisable in Lp.

Suppose there exists a line ℓ ⊆ Lp such that trop ℓ = Γ. Let Oi,j be the orbit of
Pn where xi = xj = 0, then by Theorem 6.3.4 in [18] we have that ℓ ∩ Ok,k+1 6= ∅
for k = 0, . . . , n − 1 if n is odd and for k = 0, . . . , n − 2 if n is even. In fact we
have that trop ℓ ∩ pos(ek, ek+1) = Γ ∩ pos(ek, ek+1) = pos(ek + ek+1). Moreover
ℓ∩Ok,k+1 ⊆ Lp ∩Ok,k+1 = ℓk ∩ ℓk+1 = wk,k+1 hence ℓ∩Ok,k+1 = wk,k+1. This implies
that w0,1, . . . , wn−1,n (resp. w0,1, . . . , wn−2,n−1 ) are collinear and if n ≥ 5 this is a
contradiction since Lp satisfies condition (II).

�

Remark 3.2. Note that condition (I) is satisfied by all linear spaces Lp with p ∈ U .
In fact ℓi ∩ ℓj ∩ ℓk = ∅ if and only if trop ℓi ∩ trop ℓj ∩ trop ℓk = ∅. Since tropLp = L
we have that trop ℓi = tropLp ∩ {xi = ∞} = L ∩ {xi = ∞} and by definition of L
the intersection trop ℓi ∩ trop ℓj ∩ trop ℓk is empty for every triple of distinct indices
i, j, k.

In the following examples we will always assume k to be the field of generalised
Puiseux series C((R)) with the natural valuation associated to it (see [18, Exam-
ple 2.17]). The explicit computations for the tropical varieties and prevarieties are
done with Tropical.m2 [1], while we use Polymake [10] and the Polyhedra package in
Macaulay2 [12] to get the tree associated the tropical lines in a cone of F1(tropL).
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Example 3.3. Let L be the plane spanned by the rows of the following matrix




0 −271 −92 0 −13 −54
0 −18 −7 −1 0 −4
−1 12293 4173 0 588 2450



 .

The line arrangement A = {ℓi = L ∩ {xi = 0} : i = 0, . . . , 5} satisfies conditions
(I) and (II) in the proof of Theorem 3.1. The coordinates of the point p ∈ G(2, 5)
associated to L are non zero complex numbers hence v(p) = (0, . . . , 0). This implies
that tropL = L hence p ∈ U . The Fano scheme F1(L) is defined by the ideal

(49p25 − 37p35 − 29p45, 49p15 + 40p35 − 64p45, 49p05 − 26p35 − 27p45,

98p24 − 74p34 + 153p45, 98p14 + 80p34 + 461p45,

98p04 − 52p34 − 13p45, 98p23 + 58p34 + 153p35,

98p13 + 128p34 + 461p35, 98p03 + 54p34 − 13p35,

98p12 + 144p34 + 473p35 + 73p45, 98p02 + 10p34 − 91p35 − 92p45,

98p01 − 112p34 − 234p35 − 271p45)

The tropicalization tropF1(L) is 2−dimensional fan in tropP9.

The tropical Fano scheme F1(tropL) is the tropical prevariety defined by the trop-
ical incidence relations associated to tropL ([13, Theorem 1]). These are given by
the Plücker relations generating G(1, 5) and by all tropical polynomials of the form

⊕

i∈T\S

pS∪ipT\i

where S ⊆ {0, 1, 2, 3} = T , |S| = 1 and pT\i are the valuations of coordinates of p.
In this case pT\i = 0 for all 0 ≤ i ≤ 3.

Computations show that while tropF1(L) ∩ tropT 9 is a 2-dimensional fan, the
tropical Fano scheme F1(tropL)∩tropT

9 is a fan with 15 maximal cones of dimension
3 and 30 maximal cones of dimension 2. The rays of F1(tropL) ∩ tropT 9 are the
same as the rays of tropF1(L) ∩ tropT 9 and the dimension 2 maximal cones are
also cones of tropF1(L) ∩ tropT 9. The dimension 3 cones of F1(tropL) ∩ tropT 9

are the ones parametrizing tropical lines whose combinatorial type (see Section 5
for a definition) is a snow-flake tree. This is the graph in Figure 1 whose leaves are
labelled by numbers from 0 to 5. The 2-dimensional faces of these cones are contained
in tropF1(L). The relative interior is parametrising all tropical lines not realisable
in L. In Figure 2 we have an example of one of these tropical lines.

In the next example we show that it is possible to realise the line Γ in the proof
of Theorem 3.1 by choosing a particular L′ with tropL′ = L.

Example 3.4. Let L′ ⊆ P5 be the plane spanned by the rows of the following matrix:




1 3 0 1 5 7
0 0 1 3 −1 −1
1 4 −1 −3 0 0





The line arrangement A′ associated to L′ satisfies condition (I) of the proof of The-
orem 3.1 and we have tropL′ = L = tropL. However A′ does not satisfy condition
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Figure 1. A snow-flake tree in G(1, 5).

(II). Let p′i,j be the point L
′ ∩Oi,j. The points p′0,1, p

′
2,3 and p

′
4,5 are collinear and the

line ℓ passing through them is defined by the following equations

x4 − x5 = 0, 3x2 − x3 = 0, 3x1 + 4x3 + 12x5 = 0, 3x0 + x3 + 3x5 = 0.

The tropical line trop ℓ is the closure in tropP5 of the fan in tropT 5 whose rays are
pos(e0 + e1), pos(e2 + e3), pos(e4 + e5). Hence this is the tropical line Γ of the proof
of Theorem 3.1. We now compare tropF1(L

′) with tropF1(L). The ideal associated
to the Fano scheme F1(L

′) is

(6p25 − 2p35 − p45, 6p15 + 8p35 + 97p45, 6p05 + 2p35 + 25p45

6p24 − 2p34 − p45, 6p14 + 8p34 + 73p45, 6p04 + 2p34 + 19p45

6p23 + p34 − p35, 6p1,3 − 97p34 + 73p35,

6p03 − 25p34 + 19p35, 6p12 − 31p34 + 23p35 − 4p45,

6p02 − 8p34 + 6p35 − p45, 6p01 + p34 − p35 − 3p45)

and tropF1(L
′) is a 2−dimensional fan in tropP5. Let L be the plane of Exam-

ple 3.3. Since tropL = tropL′ then F1(tropL) = F1(tropL
′) and both tropF1(L

′)
and tropF1(L) are contained in F1(tropL). All rays of trop F1(L) are also rays
of tropF1(L

′) but tropF1(L
′) has also an extra ray r that is not contained in

tropF1(L). The combinatorial type of the tropical lines associated to points in r
is the snowflake in Figure 1. Moreover r is the barycentre of the 3-dimensional
cone C of F1(tropL) containing r in its relative interior. If C = pos(r1, r2, r3) then
r = pos(r1 + r2 + r3). We have that C ∩ tropF1(L) is given by the two dimen-
sional faces of C. On the other hand C ∩ tropF1(L

′) is the union of the three cones
pos(r1, r1 + r2 + r3), pos(r2, r1 + r2 + r3), pos(r3, r1 + r2 + r3) (see Figure 3).

In Example 3.5 we exhibit a plane L′′ such that trop(L′′ ∩ T n) is a fan but

trop(F1(L
′′) ∩ T (

n+1

2 )−1) is not. This shows that Proposition 2.4 does not hold if
we replace F1(tropX) with tropF1(X).
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e1e0

e2

e3e4

e5

Figure 2. A tropical line contained in the three cones
pos(e0, e3), pos(e2, e5), pos(e1, e4) of tropL ⊆ R5 ∼= R6/R1 as in
Example 3.3.

r1

r2 r3

C ∩ F1(tropL)

C ∩ F1(tropL
′)

Figure 3. A section of the cone C ⊆ F1(tropL) as in Example 3.4.

Example 3.5. Let L′′ be the plane in P5 spanned by the rows of the following matrix

M =





1 1 0 t 1 1
1 t+ 1 1 2 t 0
5 8 6 9 7 10



 .

We have that tropL′′ = tropL with L the plane in Example 3.3 and the line
arrangement A′′ = {L′′ ∩ Oi,j : 0 ≤ i < j ≤ 5} satisfies condition (I) of proof of
Theorem 3.1. Moreover the points p′′01 = L′′∩O0,1, p

′′
23 = L′′∩O2,3 and p

′′
45 = L′′∩O4,5

are not collinear.

The line spanned by the first two rows of M tropicalizes to a tropical line whose
combinatorial type is a snowflake tree whose pairs of leaves are labelled by i and
i + 1 for i = 0, .., 4. The corresponding point in tropF1(L

′′) is e01 + e23 + e45 in
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O = trop(G(1, 5) ∩ T (
6

2)) ⊆ R(
6

2)/R1, where the eij ’s denote the standard basis

vectors of R(
6

2).

We want to show that tropF1(L
′′) is not a fan by proving that the ray pos(e01 +

e23 + e45) is not contained in trop(F1(L
′′) ∩ T (

6

2)).

By contradiction suppose pos(e01+e23+e45) ⊆ trop(F1(L
′′)∩T (

6

2)) then its closure

in tropP(
6

2) is a point Q and it is contained in tropF1(L
′′).

The point Q is in the orbit O = {[pij] ∈ tropP(
6

2)−1 : p01 = p23 = p45 = ∞} and
Qij = 0 for ij 6= 01, 23, 45. The tropical line ΓQ is given by the fan in tropP5 with
rays pos(e0 + e1), pos(e2 + e3) and pos(e4 + e5). Moreover ΓQ is not realizable in L′′

otherwise the points p′′01, p
′′
23 and p′′45 would be collinear.

Another instance where the containment tropF1(X) ⊆ F1(tropX) is strict is the
case of general hypersurfaces whose tropicalization has the same support of a tropical
linear space. An hypersurface is general if its Fano scheme of lines has dimension
2n− d− 3 (see [2, Theorem 8]).

Proposition 3.6. If X is a general hypersurface of degree d > 1 and the tropical-

ization tropX has the same support as a tropical linear space then trop(F1(X)) (
F1(tropX).

Proof. If L is a (n − 1)-dimensional linear space then the dimension of F1(L) is
dimG(2, n) = 2n − 4. By hypothesis we have that F1(tropX) = F1(tropL) and
dimF1(tropL) ≥ dim tropF1(L) = 2n − 4. On the other hand the dimension
of tropF1(X) is equal to the dimension of F1(X) which is 2n − d − 3. Suppose
tropF1(X) = F1(tropX) then we would have 2n− d− 3 ≥ 2n− 4 but this is not the
case if d > 1. �

4. Toric varieties

In this section we look at Fano schemes of toric varieties. We prove that for these
varieties the tropical Fano scheme is equal to the tropicalization of the classical Fano
scheme.

Consider a toric variety X associated to a set of lattice points A = {a0, . . . , an}
with A ⊆ Zm × {1} and denote by A the matrix whose columns are the points
in A. The variety X has a natural embedding in Pn given by a monomial map
φA : (k∗)m × k∗ → Pn (see [7, Section 2.1]). We denote the closure of the image
of this map by XA. The matrix A also defines a map trop(φA) : Rm+1 → Rn+1.
By [18, Theorem 3.2.13] we have that trop(XA ∩ T n) ⊆ Rn+1/R1 is the quotient
by R1 of the image of trop(φA) which is the classical linear space spanned by the
rows of A. Since the embedding of the toric variety only depends on the row span
of A ([7, Proposition 1.1.9]) it is possible to recover the ideal defining XA from
trop(XA ∩ T n).
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Example 4.1. Let XA ⊆ P3 be the toric variety associated to the set of lattice points
A = {(1, 1, 1), (0, 0, 1), (0,−1, 1), (1, 0, 1)}. The matrix A is





1 0 0 1
1 0 −1 0
1 1 1 1





and the ideal defining XA is (xz − yw). The tropicalization trop(XA ∩ T 3) is the
quotient by R1 of {(x, y, z, w) : x + z = y + w} and this is equal to the quotient by
R1 of the linear span of the rows of A.

By contrast with the case of linear spaces we show that for toric varieties the
tropical Fano scheme is the same as the tropicalization of the classical Fano scheme.

Theorem 4.2. Let X = XA be a toric variety. Then Fd(tropX) = tropFd(X).

We prove this result by showing that for each tropicalized linear space Γ ⊆ tropX
there exists a linear space ℓ ⊆ X that tropicalizes to it. We explicitly construct ℓ
using Cayley structures on A. We use results in [16, Section 3] where the authors
prove that for each s−Cayley structure π there exists a subvariety Zπ of Fs(XA) and
from π it is also possible to deduce equations of the linear spaces parametrised by Zπ.

Given a set of n + 1 lattice points A in Zm × {1}, let L be the kernel of the map
defined by the matrix A and ei be the standard basis vectors of Rn+1. If l ∈ L we can
write l =

∑

li>0 liei−
∑

li<0−liei and denote by l+ =
∑

li>0 liei and l
− =

∑

−li<0−liei.
We have that l ∈ L if and only if

∑

i liai = 0. The toric variety XA ⊆ Pn is generated

by binomials of the form xl+ −xl− =
∏

li>0 x
li
i −

∏

li<0 x
li
i with l ∈ L ([18, Proposition

1.1.9]).

A face τ of A is the intersection of a face of conv(A) with A. Denote by ∆s the
standard basis {e0, . . . , es} of Zs+1.

Definition 4.3. An s-Cayley structure on τ is a surjective map π : τ → ∆s such
that if l ∈ L, li 6= 0 for all i with ai ∈ τ and

∑

li 6=0 liai = 0 then
∑

li 6=0 liπ(ai) = 0, or

equivalently
∑

li>0 liπ(ai) =
∑

li<0−liπ(ai).

Example 4.4. Consider the set of lattice points A as in Example 4.1. A 1−Cayley
structure is given by π : A → Z2 with π((0, 0, 1)) = π((0,−1, 1)) = e0 and π((1, 0, 1)) =
π((1, 1, 1)) = e1. An example of a surjective map π : A → ∆1 that is not a Cay-
ley structure is given by π : A → Z2 with π((1, 1, 1)) = π((0,−1, 1)) = e0 and
π((0, 0, 1)) = π((1, 0, 1)) = e1. We can see that l = (1,−1, 1,−1) is in L hence
(1, 1, 1)− (0, 0, 1) + (0,−1, 1)− (1, 0, 1) = 0 but if we apply π we get 2e1 − 2e2 = 0
which is a contradiction.

We now prove that given a tropicalized linear space in trop(X∩T n) we can associate
a Cayley structure on A to it.

Let Γ be a d-dimensional tropicalized linear space in tropT n and let MΓ be the
matroid associated to it. This is the matroid on {0, 1, . . . n} whose bases are the set
{i0, . . . , id} such that the corresponding Plücker coordinates pi0,...,id is not zero. Note
that this matrix does not have loops, circuits of one element.
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The recession fan of Γ is the fan whose cones are pos(eF1
, . . . , eFd+1

) + R1 where
∅ 6= F1 ( . . . ( Fd+1 is a maximal chain of flats of MΓ, eFi

=
∑

j∈Fi
ei and (ei)k = 1

for k = i and (ei)k = 0 otherwise.

Proposition 4.5. Let XA ⊆ Pn be a toric variety and let Γ be a tropicalized linear

space contained in trop(XA ∩ T n). If MΓ has m + 1 non-empty minimal flats then

there exists an m−Cayley structure on A.

The following is a technical lemma which will be used for the proof of Proposition
4.5.

Lemma 4.6. Let Γ ⊆ tropT n be a tropicalized linear space and {F 0
1 , . . . , F

m
1 } the

set of non-empty minimal flats of MΓ. Then

(i) there exists a unique F j
1 such that i ∈ F j

1 ;

(ii)
⋃m

j=1 F
j
1 = {0, . . . , n}.

Proof. For (i) we observe that if i ∈ F j
1 ∩F

k
1 then, since there are no loops, {i} would

also be a flat but this would contradict the minimality of F j
1 and F k

1 .

If there exists i ∈ {0, . . . , n} that is not in
⋃m

j=1 F
j
1 then {i} can not be a flat. This

implies that it is a loop but this is a contradiction since MΓ has no loops. �

Proof of Proposition 4.5. Let Γ be a tropicalized linear space contained in trop(X ∩
T n) and F 0

1 , . . . , F
m
1 the non-empty minimal flats of MΓ. The ray pos(eF i

1
) of Γ is

contained in trop(X ∩ T n) for all i hence the vectors eF 0
1
, . . . , eFm

1
are part of a set

of generators for the linear space trop(X ∩ T n). Lemma 4.6 implies that they are
linearly independent vectors in Rn+1. The linear span in Rn+1/R1 of eF 0

1
, . . . , eFm

1
is

equal to the linear span of eF 1
1
, . . . , eFm

1
and (1, . . . , 1). Hence we can assume that

eF 1
1
, . . . , e Fm

1
are the firstm rows of A and eF 0

1
is the unique among eF 0

1
, . . . , eFm

1
with

last coordinate equal to 1. The columns of A are the points of A and by Lemma 4.6
they can be partitioned in m+1 sets A0, . . . , Am. The set Ai, for i = 0, . . . , m− 1, is
given all points whose coordinates (p0, . . . , pn) are such that pi = 1 and pj = 0 for all
0 ≤ j 6= i ≤ m. The set Am is given by the points whose first m coordinates are zero.
We have that A0∪ . . .∪Am = A. In fact by Lemma 4.6 for any i there exists a unique
e
F

j
1

such that (e
F

j
1

)i = 1. This implies for each point (p0, . . . , pn) in A (equivalently

each column of A) there exists a unique 0 ≤ i ≤ m such that pi = 1. Since each e
F

j
1

has at least one coordinate equal to 1 we have that A0 ∪ . . . ∪ Am−1 ⊆ A. Moreover
since the firstm rows of A are eF 1

1
, . . . , eFm

1
we have that the last column of A has first

m entries equal to zero. Hence Am 6= ∅ and A = ∪s
i=0Ai. We define π : A → ∆m to

be the map that sends the points in Ar to er+1 ∈ Zm+1. This map is an m−Cayley
structure on A. In fact let l ∈ L with l = l+ − l− =

∑

li>0 liei −
∑

li<0 liei and
{i : li 6= 0} = {i : ai ∈ A} then we have

∑

li>0,ai∈A0

liai + . . .+
∑

li>0,ai∈Am

liai =
∑

li<0,ai∈A0

−liai + . . .+
∑

li<0,ai∈Am

−liai.
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We need to prove that
∑

li>0,ai∈A0

liπ(ai)+ . . .+
∑

li>0,ai∈Am

liπ(ai) =
∑

li<0,ai∈A0

−liπ(ai)+ . . .+
∑

li<0,ai∈Am

−liπ(ai).

By definition of π we have that
∑

li>0,ai∈A0

liπ(ai) + . . .+
∑

li>0,ai∈Am

liπ(ai) = (
∑

li>0,ai∈A0

li, . . . ,
∑

li>0,ai∈Am

li)

and
∑

li<0,ai∈A0

−liπ(ai) + . . .+
∑

li<0,ai∈Am

−liπ(as) = (
∑

li<0,ai∈A0

−li, . . . ,
∑

li<0,ai∈Am

−li).

Consider (p0, . . . , pn) =
∑

li>0,ai∈A0
liai+ . . .+

∑

li>0,ai∈Am
liai =

∑

li<0,ai∈A0
−liai+

. . . +
∑

li<0,ai∈Am
−liai. The first coordinate p0 is given by the first coordinate

of
∑

li>0,ai∈A0
liai that is

∑

li>0,ai∈A0
li or equivalently by the first coordinate of

∑

li<0,ai∈A0
−liai that is

∑

li<0,ai∈A0
−li.

From this we obtain
∑

li>0,ai∈A0
li =

∑

li<0,ai∈A0
−li. In the same way we have

∑

li>0,ai∈A1
li =

∑

li<0,ai∈A1
−li, . . . ,

∑

li>0,ai∈Am−1
li =

∑

li<0,ai∈Am−1
−li.

Since pn =
∑

li>0 li =
∑

li<0−li we can also deduce that
∑

li>0,ai∈Am

li =
∑

li<0,ai∈Asm

−li

therefore

(
∑

li>0,ai∈A0

li, . . . ,
∑

li>0,ai∈Am

li) = (
∑

li<0,ai∈A0

−li, . . . ,
∑

li<0,ai∈Am

−li).

�

Example 4.7. Let A be the set given by the columns of the matrix A where

A =









0 1 0 0 0
1 0 0 0 0
2 1 7 3 5
1 1 1 1 1









.

The toric variety XA is defined by the ideal (x2x3−x24) ⊆ C[x0, x1, x2, x3, x4]. The
tropical line Γ1 spanned by (0, 1, 0, 0, 0) is contained in trop(XA ∩ T 3). In the case
of tropical lines the cones pos(eF 0

1
) + R1, . . . , pos(eFm

1
) + R1 are exactly the rays of

Γ. We can define a 1−Cayley structure associated to Γ1 by sending the set

A0 = {(0, 1, 2, 1), (0, 0, 7, 1), (0, 0, 3, 1), (0, 0, 5, 1)}

to e0 and A1 = {(1, 0, 1, 1)} to e1.

We also notice that the tropical line Γ2 whose rays are pos(1, 0, 0, 0, 0), pos(0, 1, 0, 0, 0)
and pos(−1,−1, 0, 0, 0) is contained in trop(XA ∩ T 3). The 2−Cayley structure as-
sociated to Γ1 is the map sending A0 = {(0, 1, 2, 1)} to e0, A1 = {(1, 0, 1, 1)} to e1,
A2 = {(0, 0, 7, 1), (0, 0, 3, 1), (0, 0, 5, 1)} to e2.



12

Proof of Theorem 4.2. We will prove that given a tropicalized linear space Γ ⊆
tropX there exists a linear space ℓ′ in X such that trop ℓ′ = Γ.

Assume that Γ is in trop(X∩O) with O an orbit of Pn. We can consider Y = X ∩O
as a subvariety of O ∼= Ps with s = dimO. The variety Y is also a toric variety and
we denote by A′ the set of lattice points associated to it.

Suppose MΓ has l + 1 minimal flats. By Lemma 4.5 we have that there exists
a l−Cayley structure π on A′. Let Zπ be the subvariety of Fl(Y ) associated to π
(see [16, Section 3, Section 4]). This is the closed torus orbit of the linear space L
generated by v0, . . . ,vl ∈ Rs+1 where

(vj)i =

{

1 if π(aj) = e1
0 else

.

Let Γ′ be the translation of Γ to the origin. There exists a point p in tropY such
that Γ = Γ′ + p. The vectors eF 0

1
, . . . , eFm

1
generate a linear space L and Γ ⊆ L + p.

We have that L = L. In fact by definition of the (vj)i and by construction of π in
Lemma 4.5 the matrix





v1

...
vl





is equal to the submatrix of A given by the first l rows. The equations of L are
codimL binomials of type xi−xj for pairs (i, j) with 0 ≤ i 6= j ≤ m, hence tropL = L.
Moreover there exists t ∈ T dimY such that trop(t · L) = L+ p.

We show that Γ is the tropicalization of a linear space in t ·L hence in Y . Using the
equations of L we can choose x0, . . . , xl ∈ {x0, . . . , xs} such that for any q ∈ L we have
qi = qj for j ∈ {0, . . . , l}. This implies that the projection φ = φx0,...,xl

: Ps → Pl

induces an isomorphism between L and Pl. Let ψ−1 be its inverse. Since φ and
φ−1 are linear monomial maps then trop(φ) = φ and trop(φ−1) = φ−1. Consider
the linear space φ(Γ′) ⊆ tropPl. This linear space is realizable in Pl, that is there
exists ℓ′ ∈ Pl such that trop ℓ′ = φ(Γ′). Now φ−1(ℓ′) ⊆ L ⊆ Y and trop(φ−1(ℓ′)) =
trop(φ−1)(trop(ℓ′)) = Γ′. If we consider ℓ = t · φ(ℓ′) then trop(ℓ) = Γ.

�

Example 4.8. Consider the toric variety XA of Example 4.7. We use the proof
of Theorem 4.2 to compute the lines ℓ1, ℓ2 in XA that tropicalize to Γ1 and Γ2 re-
spectively. The line ℓ1 is the line L associated to the 1−Cayley structure π1. Its
defining equations are x0 − x2 = 0, x2 − x3 = 0, x3 − x4 = 0. The tropical line Γ2

is contained in the linear space L defined by x2 − x3 = 0, x3 − x4 = 0. Consider
the projection φ = φx0,x1,x2

: P5 → P2 then φ(Γ2) is the tropical line in R3/R1
with rays pos(1, 0, 0), pos(0, 1, 0), pos(0, 0, 1) and it is the tropicalization of the line
V (x0+x1+x2). Applying φ we get that ℓ2 is defined by (x0+x1+x2, x2x3−x

2
4, x3−x4).

5. Proof of Theorem 2.3 and Proposition 2.4

In this section we prove Theorem 2.3 by showing that there exists a polyhedral
structure on each Fd(tropX) ∩ O.
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The key point in the proof of Theorem 2.3 is the identification of tropG(d, n)∩O
with the subfan of the secondary fan Σ of the matroid polytope PM ([18, Definition
4.2.9 ]). We see in the following paragraph that M is the uniform matroid associated
to tropG(d, n)∩O. The cones of this subfan are the intersection of tropG(d, n)∩O
with the cones of Σ and the subdivisions associated to these cones are the matroid

subdivisions (see [18, §4.4 ] for a definition).

The space tropG(d, n)∩ tropT (
n+1

d+1)−1 was first studied by Speyer and Sturmfels in
[22] and can be identified with a subfan of the secondary fan of the uniform matroid
of rank d + 1 on {0, 1, . . . , n}[18, §4.4]. The same interpretation of tropG(d, n) ∩ O

can be extended to the case where O is any orbit of tropP(
n+1

d+1)−1. This is done in
the forthcoming paper of Cueto and Corey [6]. In particular they show that

G(d, n) ∩O ∼= G(1, n′)×
∏

j∈J

T j

where n′ < n and J ⊆ N with |J | < ∞. The isomorphism between them is a map
ψ = π × f where π is a projection and f is a monomial map. Hence it is possible to
consider the tropicalization of this map to get

tropG(d, n) ∩O ∼= tropG(d, n′)×
∏

j∈J

tropT j.

Let M ′ be the uniform matroid of rank d + 1 on {0, 1, . . . , n′}. We can identify
tropG(d, n) ∩ O with a product of a subfan of the secondary fan of PM ′ with
∏

j∈J tropT
j = R

∑
j∈J j/R1.

This identification induces a polyhedral structure on tropG(d, n) given by the
union of cones CT where each T is a different matroid subdivision. Consider p in
the relative interior C◦

T of CT and the corresponding tropical linear space Γp. We
say that the combinatorial type of Γp is T . If p is contained in ∈ CT \ C◦

T then
the combinatorial type of Γp is T ′ where T ′ is the matroid subdivision associated
to a cone CT ′ in the boundary of CT such that p ∈ C◦

T ′. Note that if CT ′ is in the
boundary of CT then a cell σ in CT is either equal to a cell in CT ′ or it is obtained
by subdividing a cell σ′ of CT ′. In the second case all the cells in the subdivision
of σ′ are cells of in CT . For the case of tropG(1, n) instead of T one considers the
corresponding tree with n′ ≤ n labelled leaves. In fact in this case the polyhedral
complex dual to the subdivision has the coarsest polyhedral structure.

In what follows we call an open polyhedron a set of the form P \ ∂P where P is
a polyhedron and ∂P is its boundary. For example the open square with vertices
(0, 0, 1), (1, 0, 1), (1, 0, 0), and (0, 0, 0) in R3 is an open polyhedron.

Proof of Theorem 2.3. We prove that Fd(tropX)∩O can be written as the union of
finitely many polyhedra, denoted by FT , and hence the common refinement of these
polyhedra is the polyhedral complex structure on Fd(tropX) ∩O.

There are two key points in the proof. The first is that the complement of a
polyhedron is the union of open polyhedra and second that the projection of an open
polyhedron is an open polyhedron. Secondly it is crucial to describe the polyhedral
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structure of a tropical linear space from its Plücker coordinates. In the following we
will start by showing this last point.

Let T be a combinatorial type of tropical linear spaces associated to the relative
interior of a cone CT ⊆ tropG(d, n) ∩ O. Consider p ∈ CT then the tropical linear
space Γp is a subcomplex of the dual complex to a subdivision T ′ of PM , where M
is the uniform matroid associated to tropG(d, n) ∩ O and CT ′ is a face of CT . This
implies that Γp =

∐

iCi(p) and each cell Ci(p) in tropPn has the following form

{x ∈ tropPn : A(i, T )xt ≤ f(p) and B(i, T )xt = g(p)}

where A(i, T ) and B(i, T ) are matrices with entries in R and f(p), g(p) are vectors
whose entries are linear forms in the coordinates of p, that depend only on T and not
on p. Note that if p ∈ CT \C◦

T then p ∈ CT ′ ⊂ CT hence some of the Ci(p) might be
the same. These are dual to the cell of T ′ that is subdivided in T .

We are now ready to define FT . This is the set

FT = {p ∈ CT : Γp ⊆ tropX}

hence
Fd(tropX) ∩ O =

⋃

T

FT

where the union is over all combinatorial types T associated to the relative interior
of the maximal cones of tropG(d, n) ∩ O.

The tropical linear space Γp is contained in tropX if and only if for every i we
have C◦

i (p) ⊆ tropX , that is

FT =
⋂

i

{p ∈ CT : C◦
i (p) ⊆ tropX}

where Γp =
∐

i C
◦
i (p) and C

◦
i (p) is the relative interior of a cell Ci(p) of Γp. Denote

by FCi
the set {p ∈ CT : C◦

i (p) ⊆ tropX}. We show that this set is open and is the
union of open polyhedra.

Consider the set

F̃Ci
:= {(p, x) ∈ CT×tropPn : x ∈ C◦

i (p) and x /∈ tropX} ⊆ (tropG(d, n)∩O)×tropPn.

Firstly we observe that x /∈ tropX if and only if x is in the complement of any cell
of tropX that is

(5.1) x /∈ tropX ⇔ x ∈
⋂

σ cell of tropX

σc.

The complement of a polyhedron is a union of open polyhedra hence the term on the
left of (5.1) is the union of finitely many open polyhedra.

Since

F̃Ci
= {(p, x) ∈ CT × tropPn : x ∈ C◦

i (p)} ∩ {(p, x) ∈ CT × tropPn : x /∈ tropX}

we obtain that F̃Ci
is the union of finitely many open polyhedra. Moreover this is

also the case for π(F̃Ci
) where π is the projection

π : tropG(d, n) ∩ O × tropPn → tropG(d, n) ∩O.
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We can be describe π(F̃Ci
) in the following way

π(F̃Ci
) = {p ∈ CT : ∃x ∈ Ci(p) such that x /∈ tropX}.

The set FCi
is the complement of π(F̃Ci

) hence it is closed and it is the union of
finitely many polyhedra. This proves that FT is the union of finitely many polyhedra
and hence the same holds for Fd(tropX) ∩ O. �

Remark 5.2. It is not necessary to have a surjective valuation v. Let G = v(k) be
the value group of v and assume G ( R. Then for any variety X ⊆ Pn we have
that each face of tropX is a v(k)-polyhedron, so it is defined by linear equalities
and inequalities with coefficients in v(k). In particular if Γ is a tropical linear space
then the inequalities defining the cells have coefficients in v(k). This implies that
the set FT is not a union of polyhedra but it is the intersection of this union with

v(k∗)m. Let O be an orbit of tropP(
n+1

d+1)−1 then we can define Fd(tropX) ∩ O to be
the Euclidean closure of

⋃

T FT .

The structure of the tropical Fano scheme is strictly connected to the structure of
the tropical variety tropX .

Proof of Corollary 2.4. The polyhedral structure on Fd(tropX) ∩ O is the common
refinement of the FT . In the case in which tropX ∩O′ is a fan we get that FT is the
union of finitely many cones for every T . This can be seen from the construction of
each FT in the proof of Theorem 2.3. Then the common refinement of these cones
for every T gives a fan structure on Fd(tropX) ∩O . �
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