DIFFERENCE BETWEEN FAMILIES OF WEAKLY AND STRONGLY MAXIMAL INTEGRAL LATTICE-FREE POLYTOPES

Gennadiy Averkov*

November 21, 2021

Abstract

A d-dimensional closed convex set K in \mathbb{R}^d is said to be lattice-free if the interior of K is disjoint with \mathbb{Z}^d . We consider the following two families of lattice-free polytopes: the family \mathcal{L}^d of integral lattice-free polytopes in \mathbb{R}^d that are not properly contained in another integral lattice-free polytope and its subfamily \mathcal{M}^d consisting of integral lattice-free polytopes in \mathbb{R}^d which are not properly contained in another lattice-free set. It is known that $\mathcal{M}^d = \mathcal{L}^d$ holds for $d \leq 3$ and, for each $d \geq 4$, \mathcal{M}^d is a proper subfamily of \mathcal{L}^d . We derive a super-exponential lower bound on the number of polytopes in $\mathcal{L}^d \setminus \mathcal{M}^d$ (with standard identification of integral polytopes up to affine unimodular transformations).

1 Introduction

By |X| we denote the cardinality of a finite set X. Let \mathbb{N} be the set of all positive integers and let $d \in \mathbb{N}$ be the dimension. We call elements of \mathbb{Z}^d are called *integral points* or *integral vectors*. We call a polyhedron $P \subseteq \mathbb{R}^d$ *integral* if P is the convex hull of $P \cap \mathbb{Z}^d$. Let $\mathrm{Aff}(\mathbb{Z}^d)$ be the group of affine transformations $A : \mathbb{R}^d \to \mathbb{R}^d$ with $A(\mathbb{Z}^d) = \mathbb{Z}^d$. We call elements of $\mathrm{Aff}(\mathbb{Z}^d)$ *affine unimodular transformations*. For a family \mathcal{X} of subsets of \mathbb{R}^d , we consider the family of equivalence classes

$$\mathcal{X}/\operatorname{Aff}(\mathbb{Z}^d) := \left\{ \left\{ A(X) \, : \, A \in \operatorname{Aff}(\mathbb{Z}^d) \right\} \, : \, X \in \mathcal{X} \right\}$$

with respect to identification of the elements of \mathcal{X} up to affine unimodular transformations. A subset K of \mathbb{R}^d is called *lattice-free* if K is closed, convex, d-dimensional and the interior of K contains no points from \mathbb{Z}^d . A set K is called *maximal lattice-free* if K is lattice-free and is not a proper subset of another lattice-free set.

Our objective is to study the relationship between the following two families of integral lattice-free polytopes:

^{*}Institute of Mathematical Optimization, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany. Email: averkov@ovgu.de

- The family \mathcal{L}^d of integral lattice-free polytopes P in \mathbb{R}^d such that there exists no integral lattice-free polytope properly containing P. We call elements of \mathcal{L}^d weakly maximal integral lattice-free polytopes.
- The family \mathcal{M}^d of integral lattice-free polytopes P in \mathbb{R}^d such that there exists no <u>lattice-free set</u> properly containing P. We call the elements of \mathcal{L}^d strongly maximal integral lattice-free polytopes.

The family \mathcal{L}^d has applications in mixed-integer optimization, algebra and algebraic geometry; see [DPW16, AKW17], [BHHS16] and [Tre10], respectively. In [AWW11, NZ11] it was shown that \mathcal{L}^d is finite up to affine unimodular transformations:

Theorem 1. ([AWW11, Theorem 2.1], [NZ11, Corollary 1.3]) $\mathcal{L}^d/\operatorname{Aff}(\mathbb{Z}^d)$ is finite.

Several groups of researchers are interested in enumeration of \mathcal{L}^d , up to affine unimodular transformations, in fixed dimensions. This requires understanding geometric properties of \mathcal{L}^d . Currently, no explicit description of \mathcal{L}^d is available for dimensions $d \geq 4$ and, moreover, it is even extremely hard to decide if a given polytope belongs to \mathcal{L}^d . A brute-force algorithm based on volume bounds for \mathcal{L}^d (provided in [NZ11]) would have doubly exponential running time in d. In contrast to \mathcal{L}^d , its subfamily \mathcal{M}^d is easier to deal with. Lovász's characterization [Lov89, Proposition 3.3] of maximal lattice-free sets leads to a straightforward geometric description of polytopes belong to \mathcal{M}^d . This characterization can be used to decide whether a given polytope is an element of \mathcal{M}^d in only exponential time in d. Thus, while enumeration of \mathcal{M}^d in fixed dimensions is a hard task, too, enumeration of \mathcal{L}^d is even more challenging.

For a given dimension d, it is a priori not clear whether or not \mathcal{M}^d is a proper subset of \mathcal{L}^d . Recently, it has been shown that the inequality $\mathcal{M}^d = \mathcal{L}^d$ holds if and only if $d \leq 3$. The equality $\mathcal{M}^d = \mathcal{L}^d$ is rather obvious for $d \in \{1,2\}$, as it is not hard to enumerate \mathcal{L}^d in these very small dimensions and to check that every element of \mathcal{L}^d belongs to \mathcal{M}^d . Starting from dimension three, the problem gets very difficult. Results in [AWW11] and [AKW17] establish the equality $\mathcal{M}^3 = \mathcal{L}^3$ and enumerate \mathcal{L}^3 , up to affine unimodular transformations. As a complement, in [NZ11, Theorem 1.4] it was shown that for all $d \geq 4$ there exists a polytope belonging to \mathcal{L}^d but not to \mathcal{M}^d .

While Theorem 1.4 in [NZ11] shows that \mathcal{L}^d and \mathcal{M}^d are two different families, it does not provide information on the number of polytopes in \mathcal{L}^d that do not belong to \mathcal{M}^d . Relying on a result of Konyagin [Kon14], we will show that, asymptotically, the gap between \mathcal{L}^d and \mathcal{M}^d is very large.

For $a_1, \ldots, a_d > 0$, we introduce

$$\kappa(a) := \kappa(a_1, \dots, a_d) = \frac{1}{a_1} + \dots + \frac{1}{a_d}.$$
(1.1)

Reciprocals of positive integers are sometimes called Egyptian fractions. Thus, if $a \in \mathbb{N}^d$, then $\kappa(a)$ is a sum of d Egyptian fractions. We consider the set

$$\mathcal{A}_d := \left\{ (a_1, \dots, a_d) \in \mathbb{N}^d : a_1 \le \dots \le a_d, \ \kappa(a_1, \dots, a_d) = 1 \right\}$$
 (1.2)

of all different solutions of the Diophantine equation

$$\kappa(x_1,\ldots,x_d)=1$$

in the unknowns $x_1, \ldots, x_d \in \mathbb{N}$. The set \mathcal{A}_d represents possible ways to write 1 as a sum of d Egyptian fractions. It is known that \mathcal{A}_d is finite. Our main result allows is a lower bound on the cardinality of $(\mathcal{L}^d \setminus \mathcal{M}^d)/\operatorname{Aff}(\mathbb{Z}^d)$:

Theorem 2.
$$|(\mathcal{L}^{d+5} \setminus \mathcal{M}^{d+5})/\operatorname{Aff}(\mathbb{Z}^{d+5})| \geq |\mathcal{A}_d|$$
.

The proof of Theorem 2 is constructive. This means that, for every $a \in \mathcal{A}_d$, we generate an element in $P_a \in \mathcal{L}^{d+5} \setminus \mathcal{M}^{d+5}$ such that for two different elements a and b of \mathcal{A}_d , the respective polytopes P_a and P_b do not coincide up to affine unimodular transformations. The proof of Theorem 2 is inspired by the construction in [NZ11]. Using lower bounds on $|\mathcal{A}_d|$ from [Kon14], we obtain the following asymptotic estimate:

Corollary 3.
$$\ln \ln \left| \left(\mathcal{L}^d \setminus \mathcal{M}^d \right) / \operatorname{Aff}(\mathbb{Z}^d) \right| = \Omega \left(\frac{d}{\ln d} \right)$$
, as $d \to \infty$.

Notation. We view the elements of \mathbb{R}^d as columns. By o we denote the zero vector and by e_1, \ldots, e_d the standard basis of \mathbb{R}^d . If $x \in \mathbb{R}^d$ and $i \in \{1, \ldots, d\}$, then x_i denotes the i-th component of x. The relation $a \leq b$ for $a, b \in \mathbb{R}^d$ means $a_i \leq b_i$ for every $i \in \{1, \ldots, d\}$. The relations $\geq, >$ and < on \mathbb{R}^d are introduced analogously. The abbreviations aff, conv, int and relint stand for the affine hull, convex hull, interior and relative interior, respectively.

2 An approach to construction of polytopes in $\mathcal{L}^d \setminus \mathcal{M}^d$

We will present a systematic approach to construction of polytopes in $\mathcal{L}^d \setminus \mathcal{M}^d$, but first we discuss general maximal lattice-free sets.

Definition 4. Let P be a lattice-free polyhedron in \mathbb{R}^d . We say that a facet F of P is blocked if the relative interior of F contains an integral point.

Maximal lattice-free sets can be characterized as follows:

Proposition 5. ([Lov89, Proposition 3.3].) Let K be a d-dimensional closed convex subset of \mathbb{R}^d . Then the following conditions are equivalent.

- (i) K is maximal lattice-free,
- (ii) K is a lattice-free polyhedron such that every facet of K is blocked.

It can happen that some facets of a maximal lattice-free polyhedron are more than just blocked. We introduce a respective notion. Recall that the *integer hull* K_I of a compact convex set K in \mathbb{R}^d is defined by

$$K_I := \operatorname{conv}(K \cap \mathbb{Z}^d).$$

Definition 6. Let P be a d-dimensional lattice-free polyhedron in \mathbb{R}^d . A facet F of P is called strongly blocked if F_I is (d-1)-dimensional and $\mathbb{Z}^d \cap relint$ $F_I \neq \emptyset$. The polyhedron P is called strongly blocked if all facets of P are strongly blocked.

The following proposition extracts the geometric principle behind the construction from [NZ11, Section 3]. (Note that arguments in [NZ11, Section 3] use an algebraic language.)

Proposition 7. Let P be a strongly blocked lattice-free polytope in \mathbb{R}^d . Then $P_I \in \mathcal{L}^d$. Furthermore, if P_I is not integral, then $P_I \notin \mathcal{M}^d$.

Proof. In order to show $P_I \in \mathcal{L}^d$ it suffices to verify that, for every $z \in \mathbb{Z}^d$ such that $\operatorname{conv}(P_I \cup \{z\})$ is lattice-free, one necessarily has $z \in P_I$. If $z \notin P_I$, then $z \notin P$ and so, for some facet F of P, the point z and the polytope P lie on different sides of the hyperplane aff F. Then $\emptyset \neq \mathbb{Z}^d \cap \operatorname{relint} F_I \subseteq \operatorname{int}(\operatorname{conv}(P \cup \{z\}))$, yielding a contradiction to the choice of z. Thus, for every facet F of P, z and P lie on the same side of aff F. It follows $z \in P$. Hence $z \in P \cap \mathbb{Z}^d \subseteq P_I$.

If P is not integral, then $P_I \notin \mathcal{M}^d$ since $P_I \subsetneq P$ and P is lattice-free.

3 Lattice-free axis-aligned simplices

For $a \in \mathbb{R}^d_{>0}$, the d-dimensional simplex

$$T(a) := \text{conv}\{o, a_1 e_1, \dots, a_d e_d\}.$$

is called axis-aligned. The proof of the following proposition is straightforward.

Proposition 8. For $a \in \mathbb{R}^d_{>0}$, the following statements hold.

- I. The simplex T(a) is a lattice-free set if and only if $\kappa(a) \geq 1$.
- II. The simplex T(a) is a maximal lattice-free set if and only if $\kappa(a) = 1$.

We introduce transformations which preserve the values of κ . The transformations arise from the following trivial identities for t > 0:

$$\frac{1}{t} = \frac{1}{t+1} + \frac{1}{t(t+1)},\tag{3.1}$$

$$\frac{1}{t} = \frac{1}{t+2} + \frac{1}{t(t+2)} + \frac{1}{t(t+2)},\tag{3.2}$$

$$\frac{1}{t} = \frac{2}{3t} + \frac{1}{3t}. (3.3)$$

Consider a vector $a \in \mathbb{R}^d_{>0}$. By (3.1), if t is a component of a, we can replace this component with two new components t+1 and t(t+1) to generate a vector $b \in \mathbb{R}^{d+1}_{>0}$ satisfying $\kappa(b) = \kappa(a)$. Identities (3.2) and (3.3) can be applied in a similar fashion. For

every $d \in \mathbb{N}$, with the help of (3.1)–(3.3), we introduce the following maps:

$$\phi_d: \mathbb{R}^d_{>0} \to \mathbb{R}^{d+1}_{>0}, \qquad \phi_d(a) := \begin{pmatrix} a_1 \\ \vdots \\ a_{d-1} \\ a_d + 1 \\ a_d(a_d + 1) \end{pmatrix}, \qquad (3.4)$$

$$\psi_{d}: \mathbb{R}^{d}_{>0} \to \mathbb{R}^{d+3}_{>0}, \qquad \psi_{d}(a) := \begin{pmatrix} a_{1} \\ \vdots \\ a_{d-1} \\ a_{d} + 3 \\ a_{d}(a_{d} + 1) \\ (a_{d} + 1)(a_{d} + 3) \\ (a_{d} + 1)(a_{d} + 3) \end{pmatrix}, \qquad (3.5)$$

$$\xi_d: \mathbb{R}^d_{>0} \to \mathbb{R}^{d+1}_{>0} \qquad \qquad \xi_d(a) := \begin{pmatrix} a_1 \\ \vdots \\ a_{d-1} \\ \frac{3}{2}a_d \\ 3a_d \end{pmatrix}.$$
(3.6)

The map ϕ_d replaces the component a_d by two other components based on (3.1), while ξ_d replaces a_d based on (3.3). The map ψ_d acts by replacing the component a_d based on (3.1) and then replacing the component $a_d + 1$ based on (3.2). Identities (3.1)–(3.3) imply

$$\kappa(\phi_d(a)) = \kappa(\psi_d(a)) = \kappa(\xi_d(a)) = \kappa(a). \tag{3.7}$$

Lemma 9. Let $P = T(\xi_d(a))$, where $a \in \mathcal{A}_d$ and $d \geq 2$. Then P is a strongly blocked lattice-free (d+1)-dimensional polytope. Furthermore, if a_d is odd, P is not integral.

Proof. In this proof, we use the all-ones vector

$$\mathbb{1}_d := \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^d.$$

For the sake of brevity we introduce the notation $t:=a_d$. One has $1=\kappa(a)=\sum_{i=1}^d\frac{1}{a_i}\geq\sum_{i=1}^d\frac{1}{t}=\frac{d}{t}$, which implies $t\geq d\geq 2$. By (3.7), one has $\kappa(\xi_d(a))=1$ and so, by Proposition 8, P is maximal lattice-free.

If t is even, the polytope P is integral and hence every facet of P. In view of Proposition 5, integral maximal lattice-free polytopes are strongly blocked, and so we conclude that P is strongly blocked.

Assume that t is odd, then the polytope P has one non-integral vertex. In this case, we need to look at facets of P more closely, to verify that P is strongly blocked. We consider all facets of P.

1. The facet $F = \text{conv}\{o, a_1e_1, \dots, a_{d-1}e_{d-1}, 3te_{d+1}\}$ is a d-dimensional integral integral axis-aligned simplex. Since

$$\kappa(a_1,\ldots,a_{d-1},3t)<1,$$

the integral point $e_1 + \cdots + e_{d-1} + e_{d+1}$ is in the relative interior of F. Hence, F is strongly blocked.

2. The facet $F = \text{conv}\left\{o, a_1e_1, \dots, a_{d-1}e_{d-1}, \frac{3}{2}te_d\right\}$ contains the *d*-dimensional integral axis-aligned simplex

$$G := \operatorname{conv} \left\{ o, a_1 e_1, \dots, a_{d-1} e_{d-1}, \frac{3t-1}{2} e_d \right\},$$

as a subset. In view of $t \geq 2$, we have

$$\kappa\left(a_1,\ldots,a_{d-1},\frac{3t-1}{2}\right)<1,$$

which implies that the integral point $e_1 + \cdots + e_d$ is in the relative interior of G. It follows that F is strongly blocked.

3. The facet $F := \operatorname{conv}\left\{a_1e_1, \dots, a_{d-1}e_{d-1}, \frac{3}{2}te_d, 3te_{d+1}\right\}$ contains the integral d-dimensional simplex

$$G := \operatorname{conv} \left\{ a_1 e_1, \dots, a_{d-1} e_{d-1}, \frac{3t-1}{2} e_d + e_{d+1}, 3t e_{d+1} \right\}.$$

as a subset. It turns out that $\mathbb{1}_{d+1}$ is the relative interior of G, because $\mathbb{1}_{d+1}$ is a convex combination of the vertices of relint G, with positive coefficients. Indeed, the equality

$$\mathbb{1}_{d+1} = \sum_{i=1}^{d-1} \frac{1}{a_i} (a_i e_i) + \lambda \left(\frac{3t-1}{2} e_d + e_{d+1} \right) + \mu \left(3t e_{d+1} \right)$$

holds for $\lambda = \frac{2}{3t-1}$ and $\mu = \frac{t-1}{t(3t-1)}$, where

$$\sum_{i=1}^{d-1} \frac{1}{a_i} + \lambda + \mu = 1.$$

4. It remains to consider faces F with the vertex set $\{o, a_1e_1, \ldots, a_de_d, \frac{3}{2}te_d, 3te_{d+1}\}\setminus \{a_ie_i\}$, where $i\in\{1,\ldots,d+1\}$. Without loss of generality, let i=1 so that $F=\operatorname{conv}\{o, a_2e_2,\ldots,\frac{3}{2}te_d, 3te_{d+1}\}$. This facet contains the integral d-dimensional simplex

$$G := \operatorname{conv} \left\{ o, a_2 a_2, \dots, a_{d-1} e_{d-1}, \frac{3t-1}{2} e_d + e_{d+1}, 3t e_{d+1} \right\}.$$

Similarly to the previous case, one can check that $e_2 + \cdots + e_{d+1}$ is an integral point in the relative interior of G. Consequently, F is strongly blocked.

4 Proof of the main result

For $d \geq 4$, Nill and Ziegler [LZ91] construct one vector $a \in \mathbb{R}^d_{>0}$ with $T(a)_I \in \mathcal{L}^d \setminus \mathcal{M}^d$. We generalize this construction and provide many further vectors a with the above properties. We will also need to verify that for difference choices of a, we get essentially different polytopes $T(a)_I$.

Lemma 10. Let P and Q be d-dimensional strongly blocked lattice-free polytopes such that for their integral hulls the equality $Q_I = A(P_I)$ holds for some $A \in \text{Aff}(\mathbb{Z}^d)$. Then Q = A(P).

Proof. Since A is an affine transformation, we have

$$A(P_I) = A(\operatorname{conv}(P \cap \mathbb{Z}^d)) = \operatorname{conv} A(P \cap \mathbb{Z}^d).$$

Using $A \in \text{Aff}(\mathbb{Z}^d)$, it is straightforward to check the equality $A(P \cap \mathbb{Z}^d) = A(P) \cap \mathbb{Z}^d$. We thus conclude that $A(P_I) = A(P)_I$. The assumption $Q_I = A(P_I)$ yields $Q_I = A(P)_I$. Since P is strongly blocked lattice-free, A(P) too is strongly blocked lattice-free. We thus have the equality $Q_I = A(P)_I$ for strongly blocked lattice-free polytopes Q and A(P). To verify the assertion, it suffices to show that a strongly blocked lattice-free polytope Q is uniquely determined by the knowledge of its integer hull Q_I . This is quite easy to see. For every strongly blocked facet G of Q_I , the affine hull of G contains a facet of Q. Conversely, if F is an arbitrary facet of Q, then $G = F_I$ is a strongly blocked facet of Q_I . Thus, the knowledge of Q_I allows to determine affine hulls of all facets of Q. In other words, Q_I uniquely determines a hyperplane description of Q.

Lemma 11. Let $a, b \in \mathbb{R}^d_{>0}$ be such that the equality T(b) = A(T(a)) holds for some $A \in \text{Aff}(\mathbb{Z}^d)$. Then a and b coincide up to permutation of components.

Proof. We use induction on d. For d=1, the assertion is trivial. Let $d \geq 2$. One of the d facets of T(a) containing o is mapped by A to a facet of T(b) that contains o. Without loss of generality we can assume that the facet $T(a_1, \ldots, a_{d-1}) \times \{0\}$ of T(a) is mapped to the facet $T(b_1, \ldots, b_{d-1}) \times \{0\}$ of T(b). By the inductive assumption, (a_1, \ldots, a_{d-1}) and (b_1, \ldots, b_{d-1}) coincide up to permutation of components. Since unimodular transformations preserve the volume, T(a) and T(b) have the same volume. This means, $\prod_{i=1}^d a_i = \prod_{i=1}^d b_i$. Consequently, $a_d = b_d$ and we conclude that a and b coincide up to permutation of components.

Proof of Theorem 2. For every $a \in \mathcal{A}_d$, we introduce the (d+5)-dimensional integral lattice-free polytope

$$P_a := T(\eta(a))_I$$

where

$$\eta(x) := \xi_{d+4}(\psi_{d+1}(\phi_d(x)))$$

and the functions ξ_{d+4} , ψ_{d+1} and ϕ_d are defined by (3.4)–(3.6).

By (3.7) for each $a \in \mathcal{A}_d$, we have $\kappa(\eta(a)) = 1$. For $a \in \mathcal{A}_d$ the last component of $\phi_d(a)$ is even. This implies that the last component of $\psi_{d+1}(\phi_d(a))$ is odd. Thus, by Lemma 9, $T(\eta(a))$ is strongly blocked lattice-free polytope which is not integral.

Let $a, b \in \mathcal{A}_d$ be such that the polytopes P_a and P_b coincide up to affine unimodular transformations. Then, by Lemma 10, $T(\eta(a))$ and $T(\eta(b))$ coincide up to affine unimodular transformations. But then, by Lemma 11, $\eta(a)$ and $\eta(b)$ coincide up to permutations. Since the components of a and b are sorted in the ascending order, the components of $\eta(a)$ and $\beta(b)$ too are sorted in the ascending order. Thus, we arrive at the equality $\eta(a) = \eta(b)$, which implies a = b.

In view of Proposition 7, each P_a with $a \in \mathcal{A}_d$ belongs to \mathcal{L}^d but not to \mathcal{M}^d . Thus, the equivalence classes of the polytopes P_a with $a \in \mathcal{A}_d$ with respect to identification up to affine unimodular transformations form a subset of $(\mathcal{L}^{d+5} \setminus \mathcal{M}^{d+5})/\operatorname{Aff}(\mathbb{Z}^{d+5})$ of cardinality $|\mathcal{A}_d|$. This yields the desired assertion.

Proof of Corollary 3. The assertion is a direct consequence of Theorem 2 and the asymptotic estimate

$$\ln \ln |\mathcal{A}_d| = \Omega \left(\frac{d}{\ln d} \right)$$

of Konyagin [Kon14, Theorem 1].

Remark 12. In view of the upper bound $\ln \ln |\mathcal{A}_d| = O(d)$ by Sándor [Sán03, Theorem 2], the lower bound of Konyagin is optimal up to the logarithmic factor in the denominator.

Since all known elements of \mathcal{L}^d are of the form P_I , for some strongly blocked lattice-free polytope P, we ask the following

Question 13. Do there exist polytopes $L \in \mathcal{L}^d$ which cannot be represented as $L = P_I$ for any strongly blocked lattice-free polytope P?

If there is a gap between the families \mathcal{L}^d and the family

$$\left\{P_I: P \subseteq \mathbb{R}^d \text{ strongly blocked lattice-free polytope}\right\}$$

then it would be interesting to understand how irregular the polytopes from this gap can be. For example, one can ask the following

Question 14. Do there exist polytopes $L \in \mathcal{L}^d$ with the property that no facet of L is blocked?

Acknowledgements

I would like to thank Christian Wagner for valuable comments.

References

- [AKW17] Gennadiy Averkov, Jan Krümpelmann, and Stefan Weltge, Notions of maximality for integral lattice-free polyhedra: the case of dimension three, Math. Oper. Res. **42** (2017), no. 4, 1035–1062. MR 3722425
- [AWW11] Gennadiy Averkov, Christian Wagner, and Robert Weismantel, Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three, Math. Oper. Res. 36 (2011), no. 4, 721–742. MR 2855866

- [BHHS16] Mónica Blanco, Christian Haase, Jan Hofmann, and Francisco Santos, *The finiteness threshold width of lattice polytopes*, arXiv preprint arXiv:1607.00798 (2016).
- [CC15] Wouter Castryck and Filip Cools, The lattice size of a lattice polygon, J. Combin. Theory Ser. A 136 (2015), 64–95. MR 3383267
- [Cur22] D. R. Curtiss, On Kellogg's Diophantine Problem, Amer. Math. Monthly 29 (1922), no. 10, 380–387. MR 1520110
- [DPW16] Alberto Del Pia and Robert Weismantel, Relaxations of mixed integer sets from lattice-free polyhedra, Ann. Oper. Res. **240** (2016), no. 1, 95–117. MR 3500323
- [Guy94] R. K. Guy, Unsolved problems in number theory, second ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994, Unsolved Problems in Intuitive Mathematics, I. MR 96e:11002
- [Kon14] S. V. Konyagin, Double exponential lower bound for the number of representations of unity by Egyptian fractions, Math. Notes 95 (2014), no. 1-2, 277–281,
 Translation of Mat. Zametki 95 (2014), no. 2, 312–316. MR 3267215
- [Lov89] L. Lovász, Geometry of numbers and integer programming, Mathematical programming (Tokyo, 1988), Math. Appl. (Japanese Ser.), vol. 6, SCIPRESS, Tokyo, 1989, pp. 177–201. MR 92f:90041
- [LZ91] J. C. Lagarias and G. M. Ziegler, Bounds for lattice polytopes containing a fixed number of interior points in a sublattice, Canad. J. Math. 43 (1991), no. 5, 1022–1035. MR 92k:52032
- [NZ11] Benjamin Nill and Günter M. Ziegler, *Projecting lattice polytopes without interior lattice points*, Math. Oper. Res. **36** (2011), no. 3, 462–467. MR 2832401
- [Sán03] Cs. Sándor, On the number of solutions of the Diophantine equation $\sum_{i=1}^n \frac{1}{x_i} = 1$, Period. Math. Hungar. **47** (2003), no. 1-2, 215–219. MR 2004j:11031
- [Sch93] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 94d:52007
- [Tre10] J. Treutlein, 3-dimensional lattice polytopes without interior lattice points, PhD thesis, 2010.