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LEFSCHETZ PROPERTIES FOR HIGHER ORDER NAGATA

IDEALIZATIONS

ARMANDO CERMINARA*, RODRIGO GONDIM**, GIOVANNA ILARDI*,
AND FULVIO MADDALONI*

Abstract. We study a generalization of Nagata idealization for level algebras.
These algebras are standard graded Artinian algebras whose Macaulay dual
generator is given explicitly as a bigraded polynomial of bidegree (1, d). We
consider the algebra associated to polynomials of the same type of bidegree
(d1, d2). We prove that the geometry of the Nagata hypersurface of order e

is very similar to the geometry of the original hypersurface. We study the
Lefschetz properties for Nagata idealizations of order d1, proving that WLP
holds if d1 ≥ d2. We give a complete description of the associated algebra in
the monomial square free case.

Introduction

The Lefschetz properties are algebraic abstractions inspired by the so called Hard
Lefschetz Theorem about the cohomology of smooth projective varieties over the
complex numbers (see [La, Ru]). Since the cohomology ring of such varieties are
standard graded Artinian K−algebras satisfying the Poincaré duality, from the al-
gebraic viewpoint these algebras can be characterized as standard graded Artinian
Gorenstein algebras, AG algebras for short (see [HMMNWW, MW]). In this con-

text, A =

d⊕

k=0

Ak, the Hard Lefschetz Theorem can be reformulated as a possible

purely algebraic property of the algebra A.

It is important to highlight that nowadays the Lefschetz properties are consid-
ered in a number of distinct contexts, such as Khaler manifolds, solvmanifolds (see
[Ka]), arithmetic hyperbolic manifolds (see [Be]), Shimura varieties (see [HL]), con-
vex polytopes (see [KN]), Coxeter groups (see [NW]), matroids, simplicial complexes
[St, St2, BN, GZ, KN] among others. In these new contexts the Lefschetz properties
showed to have interactions with the algebra itself, the geometry and the combi-
natorics. This work lies at the intersection of these three areas. In fact, standard
graded AG algebras can be presented as A = Q/Ann(f) where f ∈ K[x0, . . . , xn]d
is a homogeneous form of degree d in a polynomial ring, Q = K[∂0, . . . , ∂n] is
the associated ring of differential operators and Ann(f) is the ideal of differential

*Dipartimento Matematica ed Applicazioni “Renato Caccioppoli", Università Degli
Studi Di Napoli “Federico II", Via Cinthia - Complesso Universitario Di Monte S.
Angelo 80126 - Napoli - Italia

**Universidade Federal Rural de Pernambuco, av. Don Manoel de Medeiros s/n,
Dois IrmÃčos - Recife - PE 52171-900, Brasil

E-mail addresses: armando.cerminara@unina.it, rodrigo.gondim@ufrpe.br,

giovanna.ilardi@unina.it, maddalonifulvio@gmail.com .
2010 Mathematics Subject Classification. Primary 13A02, 05E40; Secondary 13D40, 13E10.
Key words and phrases. Lefschetz properties, Artinian Gorenstein Algebras, Nagata

idealization.
**Partially supported by ICTP-INdAM Research in Pairs Fellowship 2018/2019 and by

FACEPE ATP - 0005-1.01/18.

1

http://arxiv.org/abs/1807.06415v2


2 R. GONDIM

operators that annihilates f . Therefore, in this paper we are interested in the al-
gebraic structure of A, together the geometry of the hypersurface X = V (f) ⊂ P

n

and the combinatorics of the form f in a very particular way.
The cornerstone of the algebraic theory of Lefschetz properties were the original

papers of Stanley [St, St2, St3] and the works of Watanabe, summarized in
[HMMNWW]. A very important construction that appears many times in these
works is the so called Nagata idealization also called trivial extension. In general
Nagata idealization is a useful tool, developed by Nagata, to convert any R−module
M in a ideal of another ring, A ⋉ M . In our perspective the starting point
is a very interesting isomorphism between the Nagata idealization of an ideal
I = (g0, . . . , gm) ⊂ K[u1, . . . , um] and a level algebra in such way that the new
ring is an AG algebra and we get an explicit formula for the Macaulay generator f
(see [HMMNWW, Proposition 2.77])

(1) f = x0g0 + . . .+ xngn ∈ K[x0, . . . , xn, u1, . . . , um](1,d−1).

This bigraded polynomial is closely related with Gordan-Noether and Perazzo con-
structions of forms with vanishing Hessian (see [GN, Pe, CRS, GRu]). It is not
a coincidence since in [MW] the authors present a Hessian criterion for the SLP
saying that the vanishing of a (higher) Hessian implies the failure of SLP. This
criterion was generalized in [GZ2] also for the WLP using mixed Hessians. Fol-
lowing the original ideas of Gordan-Noether and Perazzo, the second author in
[Go] constructed families of polynomials whose k-th Hessian is zero. A natural
generalization of (1) should be to consider polynomials of the form:

(2) f = xd1

0 g0 + . . .+ xd1

n gn ∈ K[x0, . . . , xn, u1, . . . , um](d1,d2).

These polynomials are called Nagata polynomials of order d1 (see Definition 3.1).
The study of the hypersurfaces with vanishing Hessian began in 1852, when

O. Hesse wrote two papers (see [He, He1]), in which he claimed they must be cones.
Given an irreducible hypersurface X = V (f) ⊂ P

N of degree deg f = d ≥ 3, P.
Gordan and M. Noether proved in [GN] that Hesse’s claim is true for N ≤ 3, but
it is false for N ≥ 4; in fact it is possible to construct counterexamples in P

N for
each N ≥ 4 and for all d ≥ 3. Moreover, they classified all the counterexamples
to Hesse’s claim in P

4 (see [CRS, Go, GN]). Perazzo classified cubic hypersurfaces
with vanishing Hessian in P

N for N ≤ 6 (see [Pe]), this work was revisited and
generalized in [GRu]. The problem is open in the other cases. In all the cases where
the classification of hypersurfaces with vanishing Hessian are done they share two
very particular geometric properties (see [CRS, GR, GRu, Ru]):

(i) there is a linear space L in the singular locus of X , that is the linear
span of the dual variety of the image of the polar (gradient) map, that is
L =< Z∗ >;

(ii) the hypersurface is a tangent scroll over the dual of the polar image.

In this paper we study the Lefschetz properties for the algebras associated to
Nagata polynomials of order d1, the geometry of the Nagata hypersurfaces of order
d1 and the interaction between the combinatorics of f and the algebraic structure
of A in the case that the gi are square free monomials, by using a simplicial complex
to study this case.

We show that the geometry of Nagata hypersurfaces is very similar to the
geometry of the known hypersurfaces with vanishing Hessian. Hence these are
hypersurfaces, satisfying at least a Laplace equation (see [DI, DDI]). We proved
that they are scroll hypersurfaces in Theorem 2.9 and Corollary 2.10. These are
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our first main results.

From the algebraic viewpoint we are interested in the Lefschetz properties and
the algebraic structure of Nagata idealizations. The Lefschetz properties are studied
in two cases:

(1) d1 < d2, in this case we give examples with small numbers of summands
where the SLP holds and we recall a result proved in [Go] (see Proposition
2.5);

(2) d1 ≥ d2, in this case A has the WLP as proved in Proposition 2.7. This is
our second main result.

The structure of the algebra A, including the Hilbert vector and a complete
description of the ideal I was proved in Theorem 3.5 for the case in which the gi
are square free monomials. This is our third main result. To prove it, we use the
combinatorics of the simplicial complex associated to the monomials gi in order to
describe both Ak and Ik.

Part of this paper was inspired by the discussions of a group work in the workshop
Lefschetz Properties and Artinian Algebras at BIRS, Banff, Canada in Mach, 2016.
The participants of the group work were M. Boij, R. Gondim, J. Migliore, U. Nagel,
A. Seceleanu, H. Schenck and J. Watanabe.

1. Artinian Gorenstein algebras and the Lefschetz properties

In this section we recall some basic facts about Artinian Gorenstein algebras and
the Lefschetz properties. For a more detailed account, let see [HMMNWW, MN1,
Ru, MW, Go].

1.1. Standard graded Artinian Gorenstein algebras and Hilbert vector.
In all the paper K denotes a field of characteristic zero.

Definition 1.1. Let R = K[x0, . . . , xn] be the polynomial ring in n+1 variables and
I ⊂ R be an homogeneous Artinian ideal such that I1 = 0. We say that a graded

Artinian K−algebra A = R/I =

d⊕

i=0

Ai is a standard graded Artinian K−algebra

if it is generated in degree 1 as algebra. Setting hi = dimK Ai, the Hilbert vector is
Hilb(A) = (1, h1, . . . , hd). If I1 = 0, then h1 is called the codimension of A.

Definition 1.2. A standard graded Artinian algebra A is Gorenstein if and only if
dimAd = 1 and the restriction of the multiplication of the algebra in complementary
degree, that is, Ak ×Ad−k → Ad is a perfect paring for k = 0, 1, . . . , d (see [MW]).
If Aj = 0 for j > d, then d is called the socle degree of A.

Remark 1.3. Since Ak × Ad−k → Ad is a perfect paring for k = 0, 1, . . . , d, it
induces two K−linear maps, Ad−k → A∗

k, with A∗
k := Hom(Ak, Ad) and Ak →

A∗
d−k, with A∗

d−k := Hom(Ad−k, Ad), that are two isomorphisms.

Let R = K[x0, . . . , xn] be the polynomial ring in n+ 1 variables. We denote by
Rd = K[x0, . . . , xn]d the K−vector space of homogeneous polynomials of degree d.
We denote by Q = K[X0, . . . , Xn] the ring of differential operators of R, where
Xi :=

∂
∂xi

for i = 0, . . . , n. We denote by Qk = Q[X0, . . . , Xn]k the K−vector space
of homogeneous differential operators of R of degree k.
For each d ≥ k ≥ 0 there exist natural K−bilinear maps Rd ×Qk → Rd−k defined
by differentiation:

(f, α) → fα := α(f).
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Let f ∈ R be a homogeneous polynomial of degree deg f = d ≥ 1, we define:

Ann(f) := {α ∈ Q|α(f) = 0} ⊂ Q.

This is called the annihilator of f .

Since Ann(f) is a homogeneous ideal of Q, we can define

A =
Q

Ann(f)
.

A is a standard graded Artinian Gorenstein K−algebra.

Conversely, by the theory of inverse systems, we get the following characteriza-
tion of standard graded Artinian Gorenstein K−algebras.

Theorem 1.4. (Double annihilator Theorem of Macaulay)
Let R = K[x0, . . . , xn] and let Q = K[X0, . . . , Xn] be the ring of differential opera-

tors. Let A =

d⊕

i=0

Ai = Q/I be an Artinian standard graded K−algebra. Then A is

Gorenstein if and only if there exists f ∈ Rd such that A ≃ Q/Ann(f).

A proof of this result can be found in [MW, Theorem 2.1].

Remark 1.5. With the previous notation, let A =

d⊕

i=0

Ai = Q/I be an Artinian

Gorenstein K−algebra with I = Ann(f), I1 = 0 and Ad 6= 0. The socle degree of
A coincides with the degree of the form f .

Now we deal with standard bigraded Artinian Gorenstein algebras, i.e. Artinian

Gorenstein algebras, A =

d⊕

i=0

Ai, such that







Ad 6= 0

Ak =

k⊕

i=0

A(i,k−i) for k < d
.

The pair (d1, d2), such that A(d1,d2) 6= 0 and d1 + d2 = d, is said the socle bidegree
of A.

Remark 1.6. Since A∗
k ≃ Ad−k and since duality is compatible with direct sum,

we get A∗
(i,j) ≃ A(d1−i,d2−j).

By abuse notation, we denote the polynomial ring viewed as standard bigraded
ring in the set of variables {x0, . . . , xn} and {u1, . . . , um} by R = K[x0, . . . , xn, u1, . . . , um].
A homogeneous polynomial f ∈ R(d1,d2) is said to be bihomogeneous polynomial of
total degree deg f = d = d1 + d2 if f can be written in the following way:

(3) f =

s∑

i=1

figi,

where fi ∈ K[x0, . . . , xn]d1
and gi ∈ K[u1, . . . , um]d2

, ∀i ≤ s.

Remark 1.7. All bihomogeneous polynomials f ∈ K[x0, . . . , xn, u1, . . . um](d1,d2)

can be written as (3), where fi ∈ K[x0, . . . , xn]d1
and gi ∈ K[u1, . . . , um]d2

, ∀i ≤ s,
are monomials.
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A homogeneous ideal I ⊂ R is a bihomogeneous ideal if

I =

∞⊕

i,j=0

I(i,j)

where I(i,j) = I ∩R(i,j) ∀i, j. Let Q = K[X0, . . . , Xn, U1, . . . , Um] be the associated
ring of differential operators and let f ∈ R(d1,d2) be a bihomogeneous polynomial
of total degree d = d1 + d2, then I = Ann(f) ⊂ Q is a bihomogeneous ideal and
A = Q/I is a standard bigraded Artinian Gorenstein algebra of socle bidegree
(d1, d2) and codimension N = n+m+ 1.

Remark 1.8. Let f ∈ R(d1,d2) be a bihomogeneous polynomial of degree (d1, d2),
and let A be the associated bigraded algebra of socle bidegree (d1, d2), then for
i > d1 or j > d2:

I(i,j) = Q(i,j).

In fact for all α ∈ Q(i,j) with i > d1 or j > d2 we get α(f) = 0, so Q(i,j) = I(i,j).
As consequence, we have the following decomposition for all Ak:

Ak =
⊕

i≤d1,j≤d2,i+j=k

A(i,j).

Furthermore for i < d1 and j < d2, the evaluation map Q(i,j) → A(d1−i,d2−j) given
by α → α(f) provides the following short exact sequence:

0 −−−−→ I(i,j) −−−−→ Q(i,j) −−−−→ A(d1−i,d2−j) −−−−→ 0.

1.2. The Lefschetz properties and the Hessian criterion.

Definition 1.9. Let

A =

d⊕

i=0

Ai

be an Artinian graded K−algebra with Ad 6= 0.
The algebra A is said to have the Weak Lefschetz Property, briefly WLP , if there

exists an element L ∈ A1 such that the multiplication map

•L : Ai → Ai+1

is of maximal rank for 0 ≤ i ≤ d− 1.

The algebra A is said to have the Strong Lefschetz Property, briefly SLP , if there
exists an element L ∈ A1 such that the multiplication map

•Lk : Ai → Ai+k

is of maximal rank for 0 ≤ i ≤ d and 0 ≤ k ≤ d− i.
A is said to have the Strong Lefschetz Property in the narrow sense if there exists

an element L ∈ A1 such that the multiplication map

•Ld−2i : Ai → Ad−i

is bijective for i = 0, . . . , ⌊d
2⌋.

Remark 1.10. In the case of standard graded Artinian Gorenstein algebras the
two condition SLP and SLP in the narrow sense are equivalent.

Definition 1.11. Let f ∈ Rd be a homogeneous polynomial, let A =

d⊕

i=0

Ai =

Q

Ann(f)
be the associated Artinian Gorenstein algebra and let B = {αj |j = 1, . . . , σk} ⊂
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Ak be an ordered K−basis of Ak. The k−th Hessian matrix of f with respect to B
is

Hesskf := (αiαj(f))
σk

i,j=1 .

The k−th Hessian of f with respect to B is

hesskf := det(Hesskf ).

Theorem 1.12. ([Wa1], [MW]) Let notation be as above. An element L = a1X1+
. . . + anXn ∈ A1 is a strong Lefschetz element of A = Q/Ann(f) if and only if

hesskf (a1, . . . , an) 6= 0 for all k = 0, . . . , ⌊d/2⌋. In particular, if for some k ≤ ⌊d
2⌋

we have hesskf = 0, then A does not have the SLP.

2. Higher order Nagata idealization

2.1. Nagata idealization.

Definition 2.1. Let A be a ring and M be a A−module. The idealization of M ,
A⋉M , is the product set A×M in which addition and multiplication are defined
as follows:

(a,m) + (b, n) = (a+ b,m+ n) and (a,m).(b, n) = (ab, bm+ an).

The following is a known result whose proof can be found in [HMMNWW, The-
orem 2.77].

Theorem 2.2. Let R = K[u1, . . . , un] and R′ = K[u1, . . . , un, x0, . . . , xn] be poly-

nomial rings and let Q = K[∂1, . . . , ∂n] and Q′ = K[∂1, . . . , ∂n, δ0, . . . , δn] the asso-

ciated ring of differential operators. Let I = (g1, . . . , gm) ⊂ Q be an ideal generated

by forms of degree d and let A = Q/Ann(g1, . . . , gm) be the associated level al-

gebra. Let f = x0g0 + . . . + xmgm ∈ R′ be a bihomogeneous polynomial and let

A′ = Q′/Ann(f) be the associated algebra. Considering I as an A−module, we

have

A⋉ I ≃ A′

2.2. Lefschetz properties for higher order Nagata idealization.

Definition 2.3. A bihomogeneous polynomial

(4) f =
s∑

i=0

xd1

i gi ∈ K[x0, . . . , xn, u1, . . . , um](d1,d2)

is called a Nagata polynomial of order d1, if the polynomials gi are linearly inde-
pendent and they depend on all variables.

By Theorem 2.2, the algebra A = Q/Ann(f) can be realized as a trivial extension
and it is said Nagata idealization of order d1, socle degree d1 + d2 and codimension
n+m+ 1.

Let R = K[x0, . . . , xn, u1, . . . , um] be the polynomial ring and f ∈ R(d1,d2), with

d1 ≥ 1, be a polynomial of type f =
n∑

i=0

xd1

i gi, where gi is a polynomial in u1, . . . , um

variables, for all i = 0, . . . ,m. We denote by Q = K[X0, . . . , Xn, U1, . . . , Um] the
ring of differential operators of R, where Xi =

∂
∂xi

, for i = 0, . . . , n and Uj = ∂
∂uj

,

for j = 1, . . . ,m. Let A = Q
Ann(f) the associated algebra.

In the case d1 < d2, we have an example such that A has the SLP, hence A has
the WLP:

Example 2.4. Let f = x2u3+ y2v3 be a bihomogeneous polynomial. Hence A has
bidegree (2, 3), Hilbert vector (1, 4, 6, 6, 4, 1) and A has the SLP. By the Hessian

criterion, Theorem 1.12, there are two Hessians to control, hess1f 6= 0 and hess2f 6= 0.
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If the number of summands in f is great enough, we get the following Proposition:

Proposition 2.5 ([Go], Proposition 2.5). Let x0, . . . , xn and u1, . . . , um be in-

dependent sets of indeterminates with n ≥ m ≥ 2. For j = 1, . . . , s, let fj ∈
K[x0, . . . , xn]d1

and gj ∈ K[u1, . . . , um]d2
be linearly independent forms with 1 ≤

d1 < d2. If s >
(
m−1+d1

d1

)
, then the form of degree d1 + d2 given by

f = f1g1 + · · ·+ fsgs

satisfies

hesskf = 0

Corollary 2.6. Let A be a Nagata idealization of order d1 < d2, then A fails SLP.

If we consider d1 ≥ d2, we have the following Proposition:

Proposition 2.7. With the same notations, if d1 ≥ d2, then A has the WLP and

L =

n∑

i=0

Xi is a weak Lefschetz element.

Proof. (The idea of this result was shared by the work group in Banff).
We denote by k = ⌊d1+d2

2 ⌋. We note that d1 ≥ k. Infact, by hypothesis d1 ≥ d2,
hence:

d1 + d1 ≥ d1 + d2 ⇒
2d1
2

≥
d1 + d2

2
⇒ d1 ≥

d1 + d2
2

≥ ⌊
d1 + d2

2
⌋ = k.

We have:

Ak = A(k,0) ⊕A(k−1,1) ⊕ · · · ⊕A(k−d2,d2).

We want to prove that for L = X0 + . . .+Xn ∈ Q[X0, . . . , Xn]1

•L : A(k−i,i) → A(k−i+1,i)

has maximal rank for all i = 0, . . . , d2. Since A is a standard graded AG algebra it
is enough to check it in the middle (see [MMN], Proposition 2.1).

We denote ωj = Xk−i
j αj , where αj ∈ Q[U1, . . . , Um]i, for j = 0, . . . , n and we

suppose that {ωj} is a basis for A(k−i,i). Hence we get

∑

j

bjωj = 0 ⇒ bj = 0.

It implies that the αj(gj) are linear independent in K(x1, . . . , xn).

Let Ωj = Xk−i+1
j αj = •L(ωj), we want to prove that {Ω0, . . . ,Ωn} is a linear

independent system for A(k−i+1,i). We consider the following linear combination
∑

j

cjΩj = 0. By definition, we get:

0 =
∑

j

cjΩj(f) =
∑

j

cjΩj

(
∑

i

xd1

i gi

)

=
∑

j

cjx
d1−k+i−1
j αj(gj).

Since αj(gj) are linear independent in K(x1, . . . , xn), for all j = 0, . . . , n, we have

cjx
d1−k+i−1
j = 0 ⇒ cj = 0.

The result follows. �

For this case, there is nothing we are able to say about the SLP.
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2.3. The geometry of Nagata hypersurfaces of order d1.

Definition 2.8. Let R = K[x0, . . . , xn, u1, . . . , um] be the polynomial ring, with K

an algebraically closed field. Let f ∈ R be a Nagata polynomial of order d1 and
degree deg f = d = d1 + d2.

The hypersurface X = V (f) ⊂ P
N is called a Nagata hypersurface of order d1.

Let X = V (f) ⊂ P
N be a Nagata hypersurface of order d1. We can consider two

linear space respectively P
m−1 with coordinates u1, . . . , um and P

n with coordinates
x0, x1, . . . , xn. Let pα ∈ P

m−1 be a point and we consider the following linear space
of dimension n+ 1:

Lα := 〈pα,P
n〉 = {〈pα, q〉 : q ∈ P

n} .

If we consider the intersection Lα with X , we obtain a variety Yα. Yα is reducible
whose irreducible components are the linear space P

n and a variety, called residue

and denoted by Ỹα. Ỹα is a cone of vertex pα over a (n− 1)−dimensional basis.

Theorem 2.9. A Nagata hypersurface X = V (f) ⊂ P
N of order e consists of the

union of the residue parts Ỹα, i.e.

X = ∪αỸα.

Proof. Fixed a point pα = (0 : . . . : 0 : a1 : . . . : am) ∈ P
m−1 and let p = (x0 : . . . :

xn : 0 : . . . : 0) be a point in P
n. We consider the line that joins the points pα and

p :

Lα :







x0 = λx0

· · · · · · · · ·

xn = λxn

u1 = µa1

· · · · · · · · ·

um = µam

with λ, µ ∈ K.
Since X = V (f) is a Nagata hypersurface of order d1, we have:

f = xd1

0 g0 + . . .+ xd1

n gn.

If we consider the intersection between the line Lα and the Nagata hypersurface
X , we get:

fLα
= λd1x0

d1g0(µa1, . . . , µam)+. . .+λd1xn
d1gn(µa1, . . . , µam) = λd1µd2

n∑

i=0

xi
d1gi(a)

where a is the vector (a1, . . . , am).

Since pα and p are points of X , then

n∑

i=0

xi
d1gi(a) = 0. Therefore

Ỹα = V

(
n∑

i=0

xi
d1gi(a)

)

and, by arbitrariness of the points pα ∈ P
m−1 and p ∈ P

n, we have ∪αỸα =
X. �

As consequence of the above theorem, we can say how many linear spaces there
are in a Nagata hypersurface of order e. We note that P

m−1 and P
n are linear

spaces on X . Thus we have:
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Corollary 2.10. Let X = V (f) ⊂ P
N be a Nagata hypersurface of order d1. There

is a family of lines of dimension m+ n− 1 on X.

Proof. Let pα ∈ P
m−1 be a point, then there is a family of lines of dimension n

that joins pα and the linear space P
n, for all pα ∈ P

m−1. This family covers Ỹα.
Then we have a family of lines of dimension (n) + (m− 1) = n+m− 1 on X . The
singular locus of X contains P

m−1.
Conversely, let p ∈ P

n be a point, then there is a family of lines of dimension
m−1 that joins p and all points q in the linear space Pm−1. So the proof follows. �

3. Simplicial Nagata idealization of order k

Definition 3.1. A bihomogeneous polynomial

(5) f =

n∑

i=0

xk
i gi ∈ K[x0, . . . , xn, u1, . . . , um](k,d−k)

is called a simplicial Nagata polynomial of order k if all gi are square free monomials.

The following combinatorial constructions were inspired by [GZ].

Definition 3.2. Let V = {u1, . . . , um} be a finite set. A simplicial complex ∆
with vertex set V is a collection of subsets of V , i.e. a subset of the power set 2V ,
such that for all A ∈ ∆ and for all subset B ⊂ A, we have B ∈ ∆.

We say that ∆ is a simplex if ∆ = 2V .
The members of ∆ are referred as faces and the maximal faces (respect to the
inclusion) are the facets. The vertex set of ∆ is also called 0−skeleton. If A ∈ ∆
and |A| = k, it is called a (k − 1)−face, or a face of dimension k − 1: the 0−faces
are the vertices and the 1−faces are called edges.

Definition 3.3. If all the facets have the same dimension d > 0, the complex is
said to be pure.

Let ∆ be a pure simplicial complex of dimension d > 0 with vertex set V =
{u1, . . . , um}, we denote by fk the number of (k − 1)−faces, hence f0 = 1, f1 = m,
fd+1 is the number of facets of ∆ and fj = 0, for j > d+ 1.

Remark 3.4. There is a natural bijection between the square free monomials, of
degree r, in the variables u1, . . . , um. and the (r − 1)-faces of the simplex 2V , with
vertex set V = {u1, . . . , um}. In fact, a square free monomial g = ui1 · · ·uir , in the
variables u1, . . . , um, corresponds to the finite subset of 2V given by {ui1 , . . . , uir} .

9, to any finite subset F of 2V , we associate the monomial mF =
∏

ui∈F

ui of square

free type.

An important result about simplicial Nagata idealization can be found in [GZ,
Theorem 3.2].

3.1. Simplicial Nagata idealization of order k. Let f ∈ K[x0, . . . , xn, u1, . . . , um](k,k+1)

be a simplicial Nagata polynomial of order k:

(6) f =
n∑

r=1

xk
rgr

with gr monomials in variables u1, . . . , um of degree k + 1.
We want to characterize the Hilbert vector of the algebras associated to the Na-

gata polynomial of type (6).
Let ∆ be a pure simplicial complex of dimension k, with vertex set V = {u1, . . . , um}.
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We denote by fk the number of (k − 1)−faces, hence f0 = 1, f1 = m, fk+1 is the
number of the facets of ∆ and fj = 0 for j > k + 1.

The facets of ∆, associated to f , corresponding to the monomials gi, will be
labeled by gi. The associated algebra is A∆ = Q/Ann(f∆). By abuse of notation,
we will always denote f∆ with f and A∆ with A.

If p ∈ K[u1, . . . , um] is a square free monomial, we denote by P ∈ K[U1, . . . , Um]
the dual differential operator P = p(U1, . . . , Um).

Theorem 3.5. Let f ∈ K[x0, . . . , xn, u1, . . . , um](k,k+1) be a simplicial Nagata poly-

nomial of order k:

f =

n∑

r=1

xk
rgr

with gr monomials in variables u1, . . . , um of degree k+1. Let ∆ be a pure simplicial

complex of dimension k and let A = Q/Ann(f). Then

A =

d=2k+1⊕

i=0

Ai where Ai = A(i,0) ⊕A(i−1,1) ⊕ · · · ⊕A(0,i), Ad = A(k,k+1)

(1) for all j = 1, . . . , k + 1 :

dimA(i,j) =







fj for i = 0

(n+ 1) · fj for 1 ≤ i < k

fk+1−j for i = k

where fj is the number of the subfaces, of dimension j − 1, of the facet, gi,
of ∆.

(2) I = AnnQ(f) is generated by

(a) 〈X0, . . . , Xn〉
k+1

and U2
1 , . . . , U

2
m;

(b) the monomials in I representing the minimal faces of the complement

of ∆, ∆c;

(c) the monomials X i
rPr, for i = 1, . . . , k, such that, fixed the facet Mr of

∆, corresponding to the monomial gr, Pr is the dual differential opera-

tor of pr; pr is a monomial in the variables u1, . . . , um, corresponding

to a face M ′ of ∆ s.t. M ′ ∩Mr = ∅;
(d) the binomials Xk

r G̃r −Xk
s G̃s where gr = g̃rgrs and gs = g̃sgrs and grs

represents a common subface of gr, gs.

Proof. (1) Let f be of type (6) associated to the pure simplicial complex ∆ of
dimension k. The variables u1, . . . , um represent the vertices of ∆.

We consider the following cases:
• for i = 0 and j = 1, . . . , k+1, A(0,j) is generated by the only monomials

of degree j, in the variables U1, . . . , Uk+1, that do not annihilate f.
These monomials represent (j− 1)− faces of ∆. We need to show that
they are linearly independent over K.
Consider {Ω1, . . . ,Ων} a system of monomials of Q(0,j), where Ωs, for
s = 1, . . . , ν, is associated to any (j − 1)− face ω. We take any linear
combination:

0 =
ν∑

r=0

crΩr(f) =
ν∑

r=0

cr

n∑

s=0

xk
sΩr(gs) =

n∑

s=0

xs

ν∑

r=0

Ωr(gs).

Therefore we get

ν∑

r=0

crΩr(gs) = 0, for all s = 0, . . . , n. For each

r = 0, . . . , ν, there is a s = 0, . . . , n, such that if Ωr(gs) 6= 0, then
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cr = 0 for all r. Hence dimA(0,j) = fj, where fj is the number of
(j − 1)−faces of ∆.

• for 1 ≤ i < k and j = 1, . . . , k + 1, the generators of A(i,j) are

the monomials of type X i
sUr1Ur2 · · ·Urj for s = 0, . . . , n, for all j.

Fix s = 0, . . . , n, and let Ms be the facet of ∆, corresponding to
the monomial gs, the monomial Ur1Ur2 · · ·Urj of Q(0,j) is the dual
differential operator of the monomial ur1ur2 · · ·urj , that gives the

(j− 1)−dimensional subfaces of Ms. The monomials X i
sUr1Ur2 · · ·Urj

for s = 0, . . . , n, for all j are linearly independent. In fact, denoting
by Ωi

s the monomial X i
sUr1Ur2 · · ·Urj , for s = 0, . . . , n, we note that:

Ωi
s(f) = cxk−i

s (Ur1 · · ·Urj )(gs) 6= 0

since (Ur1 · · ·Urj )(gs) identifies the vertices of the (j−1)−dimensional
face. We get:

n∑

s=0

csΩ
i
s(f) = 0 ⇔ cs = 0 ∀s.

For s = 0, . . . , n, in correspondence of Ωi
s(f), we can get a number of

(j−1)−dimensional faces of ∆. Denoting such number by f j , we have

dimA(i,j) = (n+ 1) · fj .
• for i = k and j = 1, . . . , k, by duality A∗

(0,k+1−j) ≃ A(k,j), thence we

have:

dimA(k,j) = dimA∗
(0,k+1−j) = fk+1−j .

(2) Let I = Ann(f) be the annihilator. We consider the following exact se-
quence:

(7) 0 −−−−→ I(i,j) −−−−→ Q(i,j) −−−−→ A(k−i,k+1−j) −−−−→ 0.

we have the following cases:
• for i = 0 and 1 ≤ j ≤ k + 1, we have by (2)

dimA(0,j) = fj ⇒ dim I(0,j) = dimQ(0,j) − fj.

Since A(0,j) has a basis given by the (j − 1)−faces of ∆, then I(0,j)
is generated by monomials representing all the (j − 1)−faces of the
complement of ∆. In I, it is enough to consider the minimal faces of
∆c, by definition of ideal.
We note that in I(0,2) there are also the monomials U2

1 , . . . , U
2
m, since

the monomials gi, in the variables u1, . . . , um are square free.
• for 1 ≤ i < k and 1 ≤ j ≤ k + 1, fix the facet Mr of ∆, corresponding

to gr, since A(i,j) has a basis given by the (j−1)−dimensional subfaces

of Mr, then I(i,j) is generated by monomials X i
rPr where Pr is the dual

differential operator of pr; pr is a monomial in the variables u1, . . . , um,
corresponding to a (j − 1)−dimensional face M r s.t. M r ∈ ∆c or
Mr ∈ ∆ and M r ∩Mr = ∅.

• for i = k and 1 ≤ j ≤ k + 1, we fix two facets of ∆, Mr and Ms,
corresponding to the monomials gr and gs, and such that Mr∩Ms 6= ∅.
Let Mrs = Mr ∩Ms; we denote the monomial corresponding to it by
grs. We consider M̃r = Mr\Mrs and M̃s = Ms\Mrs. Let g̃r and

g̃s be the monomials corresponding to M̃r and M̃s. We note that
M̃r∩M̃s = ∅. Hence the binomials, Xk

r G̃r−Xk
s G̃s, are in I(k,j), where

G̃r and G̃s are the dual differential operators of g̃r and g̃s respectively.
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Let us consider the following exact sequence:

0 −−−−→ I(k,j) −−−−→ Q(k,j) −−−−→ A(0,k+1−j) −−−−→ 0,

we get dim I(k,j) = dimQ(k,j) − fk+1−j . Let Q̃(k,j) be the K−space

spanned by all the monomials Xk
r G̃r, where G̃r is the dual differential

operator of gr that is a monomial in the variables u1, . . . , um, cor-
responding to a subface of Mr. Let I(k,j) ⊂ I(k,j) be the K−vector

space spanned by the monomials Xk
r Pr, where Pr is the dual differ-

ential operator of the monomial, in the variables u1, . . . , um, pr, not
corresponding to a subface of Mr. They are two K−vector spaces s.t.
Q(k,j) = Q̃(k,j) ⊕ I(k,j). We consider the ideal Ĩ(k,j) ⊂ Q̃(k,j). The

exact sequence given by evaluation restricted to Q̃(k,j) becomes:

0 −−−−→ Ĩ(k,j) −−−−→ Q̃(k,j) −−−−→ A(0,k+1−j) −−−−→ 0.

We note:

dim I(k,j) = dimQ(k,j) − fk+1−j = dim Q̃(k,j) + dim I(k,j) − fk+1−j =

= dim Ĩ(k,j) + fk+1−j + dim I(k,j) − fk+1−j = dim Ĩ(k,j) + dim I(k,j).

Hence I(k,j) = Ĩ(k,j) ⊕ I(k,j). The generators of Ĩ(k,j) are the binomial

Xk
r G̃r −Xk

s G̃s precisely. The result follows.
Moreover for i = k+1 and j = 0, it is clear that I(k+1,0) = (X0, . . . , Xn)

k+1.

In fact Xk+1
i (f) = 0, for i = 0, . . . , n, since the monomials in x0, . . . , xn of

f have degree k, by Remark 1.8.
�

We discuss the following example:

Example 3.6. Let V = {u1, . . . , u6} be a finite set. We have:

2V = {∅, {u1}, . . . , {u6}, . . . , {u1, . . . , u6}}

Let ∆ be the following simplicial complex:

∆ = {∅, {u1}, . . . , {u6}
︸ ︷︷ ︸

vertices

, {u1, u2}, . . . , {u5, u6}
︸ ︷︷ ︸

edges

, {u1, u2, u3}, . . . , {u2, u3, u6}
︸ ︷︷ ︸

2−faces

}

It is given by two pyramids, with the common basis, of vertices u1, . . . u5 and u6

and faces labeled by g0, . . . , g6 and g7:

u1

u2

u3

u4

u5

u6

g0

g1

g2
g3

g4

g5

g6

g7
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The 2−faces are the facets of ∆, then ∆ is pure of dimension 2.
Let

f = f∆ = x2
0u1u2u3 + x2

1u1u2u4 + x2
2u1u4u5 + x2

3u1u3u5+

+ x2
4u2u3u6 + x2

5u2u4u6 + x2
6u4u5u6 + x2

7u3u5u6

be the bihomogeneous polynomial of degree 5. It is a Nagata polynomial of order
2 and the monomials g0 = u1u2u3, g1 = u1u2u4, g2 = u1u4u5, g3 = u1u3u5,
g4 = u2u3u6, g5 = u2u4u6, g6 = u4u5u6 and g7 = u3u5u6 are of square free type.

We have

A = A0 ⊕A1 ⊕A2 ⊕A3 ⊕ A4 ⊕A5

and the Hilbert vector is given by:

h0 = 1 = h5 and h1 = 14 = h4.

We calculate h2 = dimA2 and h3 = dimA3.
By Theorem 3.5, we have

h2 = dimA2 = dimA(2,0) + dimA(1,1) + dimA(0,2) =

= f3 + 8 · f1 + f2 = 8 + 8 · 3 + 12 = 44

h3 = dimA3 = dimA(3,0) + dimA(2,1) + dimA(1,2) + dimA(0,3) =

= 0 + f2 + 8 · f2 + f3 = 12 + 8 · 3 + 8 = 44

Hence the Hilbert vector is (1, 14, 44, 44, 14, 1).

By Theorem 3.5, I = Ann(f) is generated by:

• 〈X0, . . . , X7〉3 and U2
1 , . . . , U

2
m, by the part (2a);

• since the complement of ∆ is:

∆c = {{u1, u6} , . . . , {u2, u5}
︸ ︷︷ ︸

diagonals

, {u1, u2, u6} , . . . , {u1, u5, u6}
︸ ︷︷ ︸

2−faces

,

{u1, u2, u3, u5} , . . . , {u2, u3, u5, u6}
︸ ︷︷ ︸

3−faces

, . . . , {u1, . . . , u6}}

and since diagonals are the minimal faces of ∆c, then the monomials U1U6,
U3U4 and U2U5 are in I = Ann(f), by the part (2b).

• For i = 1, 2, fix the facet M0 = {u1, u2, u3} ∈ ∆, corresponding to the
monomial g0, we have that the monomial p0 represents:

– one of the remaining vertices, for example u4:
u1

u2

u3

u4

u5

u6

g0

g1

g2
g3

g4

g5

g6

g7

and finally we get: P0 = p0(U1, . . . , U8) = U4. Thence the monomial
of degree i + 1, X i

0U4 is in I = Ann(f). The other monomials of this
type are obtained with the same procedure.
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– one of the remaining edges, for example the edge that joins the vertices
u5 and u6:

u1

u2

u3

u4

u5

u6

g0

g1

g2
g3

g4

g5

g6

g7

We get:

P0 = p0(U1, . . . , U8) = U5U6

and the monomial of degree i+ 2, X i
0U5U6, is in I = Ann(f), by part

(2c). The other monomials of this type are obtained by the same way.
• The faces g0 and g3 have the common edge that joins the vertices u1u3 :

u1

u2

u3u5

u6

g0

g1

g2
g3

g4

g5

g6

g7

g1,3 represents the edge that joins the vertices u1 and u3. g̃0 and g̃3 represent
the vertices u2 and u5 respectively. We have:

G̃0 = g̃0(U1, . . . , U6) = U2 and G̃3 = g̃3(U1, . . . , U6) = U5.

The binomial, of degree 3, X2
0U2 − X2

3U5, is in I = Ann(f) by the part
(2d). The other binomials of degree 3 of this type are obtained by the
same procedure. We note that the faces g0 and g2 have the common vertex
u1, hence, in the ideal I = Ann(f) there is the binomial, of degree 4,
X2

0U2U3 −X2
2U4U5; the other binomials, of degree 4, are obtained by the

same procedure.
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