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ON A THEOREM OF BREDIHIN AND LINNIK

J.B. FRIEDLANDER∗ AND H. IWANIEC∗∗

Dedicated to the memory of Yu. V. Linnik.

Abstract: We give a new proof of a theorem of B. M. Bredihin which
was originally proved by extending Linnik’s solution, via his dispersion
method, of a problem of Hardy and Littlewood. 1

1. Introduction

Among the many beautiful consequences of Linnik’s dispersion method
is an asymptotic formula for the number of solutions to the equation

p = a2 + b2 + 1

in primes p 6 x and integers a and b. This result of 1965, due to
Bredihin [B] was a follow-up to Linnik’s celebrated work on the Hardy-
Littlewood problem, cf. Chapter 7 of [L]. The involved arguments are
lengthy and complicated, though very inventive. Due to much progress
over the intervening years, much shorter arguments can now be put
forward. This of course does not mean that they are shorter ab-initio.
Our purpose here is to illustrate how these arguments can be applied.

THEOREM 1. Let S(x) be the number of solutions to

(1.1) p = a2 + b2 + 1

in integers a and b and primes p ≡ 3(mod 8), p 6 x. We have

(1.2) S(x) = c
x

log x
+O

(

x
( log log x

log x

)2)

,

where the constant c is given by

(1.3) c =
π

2

∏

p

(

1 +
χ(p)

p(p− 1)

)

,

with χ being the Dirichlet character of conductor 4.
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The other reduced residue classes modulo 8 can be covered by essen-
tially the same arguments but we do not treat them.
Note that the theorem shows that the integers p − 1 tend to have

about as many representations as the sum of two squares as does a
typical integer n. Recall also that, if the number of representable p−1
is counted without multiplicity in a and b, then the order of magnitude
is given by x/(log x)3/2 by a theorem of the second-named author [I].

2. Dirichlet divisor switching

Let λ = 1 ∗ χ that is

(2.1) λ(n) =
∑

ab=n

χ(a)

This is similiar in many respects to the divisor function τ(n). The
number of representations of n as the sum of two squares is equal to
4λ(n). If n ≡ 1(mod 4) then, in (2.1), χ(a) can be replaced by χ(b);
therefore we can write

(2.2) λ(n) =
∑

a|n
a6y

χ(a) +
∑

b|n
b<n/y

χ(b)

for any y > 0. We can refine this partition by integrating over y against
a smooth weight function. Let w(t) be a smooth function supported
on 1 6 t 6 2 such that

(2.3)

∫ ∞

0

w(t)t−1dt = 1.

Let Y > 1, multiply (2.2) by w(y/Y ) and integrate with the measure
y−1dy, getting

(2.4) λ(n) =

∫ ∞

0

[

w
( y

Y

)

+ w
( n

yY

)

](

∑

b|n
b<y

χ(b)
)dy

y
.

Note that if X < n 6 2X we can choose Y =
√
X so the integration

in (2.4) runs over the segment 1
2

√
X < y < 2

√
X .

3. Primes in arithmetic progressions

The key input which greatly streamlines the proof is the main re-
sult of [BFI] which gives asymptotics of Bombieri-Vinogradov type for
the distribution of primes in arithmetic progressions and which treats
moduli of the progression which go beyond the range of that which
can be sucessfully handled even on the assumption of the Generalized
Riemann Hypothesis.
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We state this restricted to a range somewhat lesser than that in [BFI],
which is however sufficient for our needs and is conveniently recorded
as Theorem 2.2.1 of [FI].

(3.1)
∑

q6Q
(q,a)=1

∣

∣

∣
π(x; q, a)− π(x)

ϕ(q)

∣

∣

∣
≪ x

( log log x

log x

)2

for Q =
√
x(log x)A with any a 6= 0, A > 0, x > 3, the implied constant

depending only on a and A.
We actually require a slightly modified form of (3.1) which follows

from it in two easy steps. In the first place we have

(3.2)
∑

q6Q
(q,a)=1
(q,k)=1

∣

∣

∣

∑

p6x
p≡a(mod q)
p≡ℓ(mod k)

1− π(x)

ϕ(qk)

∣

∣

∣
≪ x

( log log x

log x

)2

for Q =
√
x(log x)A with any a 6= 0, k > 1, (ℓ, k) = 1, A > 0, x > 3, the

implied constant depending only on a,k and A. To this end one merely
splits the indexed variables into classes modulo k, which is harmless
for k fixed.
In the second step we modify (3.2) to a counting of primes with

smooth weight.

LEMMA 3.1. Let f(t) be a smooth function supported on 1 6 t 6 2.
We have

(3.3)
∑

q6Q
(q,a)=1
(q,k)=1

∣

∣

∣

∑

p6x
p≡a(mod q)
p≡ℓ(modk)

f
( p

X

)

− 1

ϕ(qk)

∑

p

f
( p

X

)

∣

∣

∣
≪ x

( log log x

log x

)2

for Q =
√
x(log x)A with any a 6= 0, k > 1, (ℓ, k) = 1, A > 0, x > 3,

the implied constant depending only on a,k, A and f .

Proof. We write

f
( p

X

)

= −
∫ ∞

p/X

f ′(t)dt.

Given 1 6 t 6 2 this implies p 6 tX . Applying (3.2) with x = tX and
integrating the result over t, we derive (3.3). �
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4. Proof of the theorem

We have

(4.1) S(x) = 4
∑

p6x
p≡3(mod 8)

λ
(p− 1

2

)

.

We are going to evaluate

(4.2) T (X) = S(2X)− S(X) = 4
∑

X<p62X
p≡3(mod 8)

λ
(p− 1

2

)

for every X > 3. Applying (2.4) we write

T (X) = 4

∫

∑

b<y

χ(b)
∑

X<p62X
p≡1(mod b)
p≡3(mod 8)

[

w
( y

Y

)

+ w
(p− 1

2yY

)

]dy

y

where we choose Y =
√
X . Here we can replace w((p − 1)/2yY ) by

w(p/2yY ) up to an error term O(1/yY ) which contributes to T (X) a
bounded amount:

T (X) = 4

∫

∑

b<y

χ(b)
∑

X<p62X
p≡1(mod b)
p≡3(mod 8)

[

w
( y

Y

)

+ w
( p

2yY

)

]dy

y
+ O(1) .

Note that the integration runs over the segment 1
4

√
X < y < 2

√
X.

Now we can apply (3.2) for the first term and (3.3) for the second term
with q = b, k = 8, ℓ = 3, getting

T (X) =

∫

∑

b<y

χ(b)

ϕ(b)

∑

X<p62X

[

w
( y

Y

)

+w
( p

2yY

)

]dy

y
+O

(

X
( log logX

logX

)2)

.

Next, we replace the sum over b < y by the complete series

(4.3) c1 =
∑

b

χ(b)

ϕ(b)
= L(1, χ)

∏

p

(

1 +
χ(p)

p(p− 1)

)

up to an error term O(1/y) which contributes to T (X) at mostO(
√
X/ logX).

Now the free integration over y yields (see (2.3))
∫

[

w
( y

Y

)

+ w
( p

2yY

)

]dy

y
= 2 .

Therefore,

T (X) = 2c1
(

π(2X)− π(X)
)

+O
(

X
( log logX

logX

)2)

.
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Summing this over X = 2−nx, n = 1, 2, 3, . . ., we derive (1.2), thus
completing the proof of theorem 1.
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