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ON THE RELATIVE TWIST FORMULA OF /-ADIC SHEAVES

ENLIN YANG AND YIGENG ZHAO

ABSTRACT. We propose a conjecture on the relative twist formula of ¢-adic sheaves, which can
be viewed as a generalization of Kato-Saito’s conjecture. We verify this conjecture under some
transversal assumptions.

We also define a relative cohomological characteristic class and prove that its formation is
compatible with proper push-forward. A conjectural relation is also given between the relative
twist formula and the relative cohomological characteristic class.
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1. INTRODUCTION

As an analogy of the theory of D-modules, Beilinson [Beil6] and T. Saito [Sail7a] define the
singular support and the characteristic cycle of an f-adic sheaf on a smooth variety respectively.
As an application of their theory, we prove a twist formula of epsilon factors in [UYZ], which is
a modification of a conjecture due to Kato and T. Saito[KKS08, Conjecture 4.3.11].

1.1. Kato-Saito’s conjecture.

1.1.1. Let X be a smooth projective scheme purely of dimension d over a finite field k of
characteristic p. Let A be a finite field of characteristic £ # p or A = Q,. Let F € D%(X,A) and
X(Xz,F) be the Euler-Poincaré characteristic of . The Grothendieck L-function L(X,F,t)
satisfies the following functional equation

(1.1.1.1) L(X,F,t) = (X, F) -t XXF) (X, D(F),t7Y),

where D(F) is the Verdier dual RHom(F, Rf'A) of F, f: X — Speck is the structure morphism
and

(1.1.1.2) e(X,F) = det(—]?‘robk;RF(X/,;,]:))*1

is the epsilon factor (the constant term of the functional equation (1.1.1.1)) and Froby is the
geometric Frobenius (the inverse of the Frobenius substitution).
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1.1.2. In(1.1.1.1), both x (X, ) and (X, F) are related to ramification theory. Let ccx /,(F) =
0% (CC(F, X /k)) € CHo(X) be the characteristic class of F (cf. [Sail7a, Definition 5.7]), where
Ox: X — T*X is the zero section and CC(F, X /k) is the characteristic cycle of F. Then
X(Xg, F) = deg(ccx/k(F)) by the index formula [Sail7a, Theorem 7.13]. The following theorem
proved in [UYZ] gives a relation between (X, F) and ccx ,(F), which is a modified version of
the formula conjectured by Kato and T. Saito in [KS08, Conjecture 4.3.11].

Theorem 1.1.3 (Twist formula, [UYZ, Theorem 1.5]). We have
(1.1.3.1) (X, F®G) = e(X, F)*kI . det G(px (—cexm(F))) in A™,

where px : CHy(X) — 7 (X) is the reciprocity map defined by sending the class [s] of a closed
point s € X to the geometric Frobenius Frobg and detG: w?b(X ) — A* is the representation
associated to the smooth sheaf det G of rank 1.

When F is the constant sheaf A, this is proved by S. Saito [SS84]. If F is a smooth sheaf on
an open dense subscheme U of X such that F is tamely ramified along D = X\U, then Theorem
1.1.3 is a consequence of [Sai93, Theorem 1]. In [Vi09a, Vi09b], Vidal proves a similar result
on a proper smooth surface over a finite field of characteristic p > 2 under certain technical
assumptions. Our proof of Theorem 1.1.3 is based on the following theories: one is the theory
of singular support [Beil6] and characteristic cycle [Sail7a], and another is Laumon’s product
formula [Lau87].

1.2. e-factorization.

1.2.1. Now we assume that X is a smooth projective geometrically connected curve of genus g
over a finite field k of characteristic p. Let w be a non-zero rational 1-form on X and F an f-adic
sheaf on X. The following formula is conjectured by Deligne and proved by Laumon [Lau87,
3.2.1.1):

(1.2.1.1) e(X,F) = plFFl=orankl®) T ¢ (Fx ).
ve| X|

For higher dimensional smooth scheme X over k, it is still an open question whether there is an e-
factorization formula (respectively a geometric e-factorization formula) for (X, F) (respectively
det RT'(X, F)).

1.2.2. In [Bei07], Beilinson develops the theory of topological epsilon factors using K-theory
spectrum and he asks whether his construction admits a motivic (¢-adic or de Rham) coun-
terpart. For de Rham cohomology, such a construction is given by Patel in [Pat12]. Based on
[Pat12], Abe and Patel prove a similar twist formula in [AP17] for global de Rham epsilon factors
in the classical setting of Dx-modules on smooth projective varieties over a field of characteristic
zero. In the f-adic situation, such a geometric e-factorization formula is still open even if X is
a curve. Since the classical local e-factors depend on an additive character of the base field, a
satisfied geometric e-factorization theory will lie in an appropriate gerbe rather than be a super
graded line (cf. [Bei07, Pat12]).

1.2.3. More generally, we could also ask similar questions in a relative situation. Now let
f: X — S be a proper morphism between smooth schemes over k. Let F be an f-adic sheaf
on X such that f is universally locally acyclic relatively to F. Under these assumptions, we
know that Rf.F is locally constant on S. Now we can ask if there is an analogue geometric
e-factorization for the determinant det Rf,F. This problem is far beyond the authors’ reach
at this moment. But, similar to (1.1.3.1), we may consider twist formulas for det Rf.F. One
of the purposes of this paper is to formulate such a twist formula and prove it under certain
assumptions.
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1.2.4. Relative twist formula. Let S be a regular Noetherian scheme over Z[1/¢] and f: X — S
a proper smooth morphism purely of relative dimension n. Let F € DZ(X, A) such that f
is universally locally acyclic relatively to F. Then we conjecture that (see Conjecture 2.1.4)
there exists a unique cycle class ccx/g(F) € CH"(X) such that for any locally constant and
constructible sheaf G of A-modules on X, we have an isomorphism of smooth sheaves of rank 1

on S
(1.2.4.1) det Rf(F ® G) = (det Rf,. JF)®*™ I @ det G(cex /s(F))

where det G(cex/g(F)) is a smooth sheaf of rank 1 on S (see 2.1.3 for the definition). We
call (1.2.4.1) the relative twist formula. As an evidence, we prove a special case of the above
conjecture in Theorem 2.4.4. It is also interesting to consider a similar relative twist formula for
de Rham epsilon factors in the sense of [AP17]. We will pursue this question elsewhere.

1.2.5. If S is moreover a smooth connected scheme of dimension r over a perfect field k, we
construct a candidate for ccx /g(F) in Definition 2.4.3. We also relate the relative characteristic
class ccx/s(F) to the total characteristic class of F. Let Ko(X,A) be the Grothendieck group
of DY(X,A). In [Sail7a, Definition 6.7.2], T. Saito defines the following morphism

r+n

(1.2.5.1) cexe: Ko(X,A) - CH,(X) = @ CH;(X),
=0

which sends F € D%(X,A) to the total characteristic class ccy.o(F) of F. Under the assump-
tion that f: X — S is SS(F, X/k)-transversal, we show that (—1)" - ccx/s(F) = ccx,(F) in
Proposition 2.5.2.

1.2.6. Following Grothendieck [SGAJ5], it’s natural to ask whether the following diagram

CCX .0

Ko(X,A) 2% 0HL.(X)
(1.2.6.1) f*l lf*
Ko(Y,A) —2% CH.(Y)

is commutative or not for any proper map f: X — Y between smooth schemes over k. If
k = C, the diagram (1.2.6.1) is commutative by [Gin86, Theorem A.6]. By the philosophy of
Grothendieck, the answer is no in general if char(k) > 0 (cf. [Sail7a, Example 6.10]). If k is a
finite field and if f: X — Y is moreover projective, as a corollary of Theorem 1.1.3, we prove
in [UYZ, Corollary 5.26] that the degree zero part of (1.2.6.1) commutes. In general, motivated
by the conjectural formula (1.2.4.1), we propose the following question. Let f: X — S and
g: Y — S be smooth morphisms. Let D2(X /S, A) be the thick subcategory of D%(X, A) consists
of F € D% X,A) such that f is SS(F, X /k)-transversal. Let Ko(X/S,A) be the Grothendieck
group of DY%(X /S, A). Then for any proper morphism h: X — Y over S, we conjecture that the
following diagram commutes (see Conjecture 2.5.4)

Ko(X/S,A) —~"» CH,(X)
(1.2.6.2) h*l lh*
Ko(Y /S, A) —="~ CH,(Y).

1.2.7.  As an evidence for (1.2.6.2), we construct a relative cohomological characteristic class
(1.2.7.1) ceexys(F) € H*™(X,A(n))

in Definition 3.2.4 if X — S is smooth and SS(F, X/k)-transversal. We prove that the for-
mation of cccyg(F) is compatible with proper push-forward (see Corollary 3.3.4 for a precise
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statement). Similar to [Sail7a, Conjecture 6.8.1], we conjecture that we have the following
equality (see Conjecture 3.2.6)

(1.2.7.2) cl(cex/s(F)) = ccexys(F) in H* (X, A(n))
where cl: CH"(X) — H?"(X,A(n)) is the cycle class map.
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Notation and Conventions.

(1) Let p be a prime number and A be a finite field of characteristic £ # p or A = Q,.

(2) We say that a complex F of étale sheaves of A-modules on a scheme X over Z[1/¢] is
constructible (respectively smooth) if the cohomology sheaf H?(F) is constructible for
every q and if H(F) = 0 except finitely many ¢ (respectively moreover H4(F) is locally
constant for all q).

(3) For a scheme S over Z[1/¢], let D2(S, A) be the triangulated category of bounded com-
plexes of A-modules with constructible cohomology groups on S and let Ky(S, A) be the
Grothendieck group of D%(S, A).

(4) For a scheme X, we denote by | X| the set of closed points of X.

(5) For any smooth morphism X — S, we denote by T%(X/S) < T*(X/S) the zero section
of the relative cotangent bundle 7%(X/S) of X over S. If S is the spectrum of a field,
we simply denote T*(X/S) by T*X.

2. RELATIVE TWIST FORMULA
1. Reciprocity map.

2.1.1.  For a smooth proper variety X purely of dimension n over a finite field £ of characteristic
p, the reciprocity map px: CH"(X) — m3P(X) is given by sending the class [s] of closed point

s € X to the geometric Frobenius Frobs at s. The map px is injective with dense image [KS83].

2.1.2. Let S be a regular Noetherian scheme over Z[1/¢] and X a smooth proper scheme purely
of relative dimension n over S. By [Sai94, Proposition 1], there exists a unique way to attach a
pairing

(2.1.2.1) CH™(X) x m3P(S) — 7P (X)

satisfying the following two conditions:

(1) When S = Speck is a point, for a closed point z € X, the pairing with the class [z]
coincides with the inseparable degree times the Galois transfer trang ), (cf.[Tat79, 1])
followed by 4.4 for iz: z — X

trang g/, [k(x): k]i

Gal (k™" /k) Gal(k(z)™ /k(z)) 22 730 (X).
(2) For any point s € S, the following diagram commutes
(X)

P(Xs).

| ]

CH"(X,) x  7f"(s)

CH'(X) x  m($) — 3
e
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2.1.3. For any locally constant and constructible sheaf G of A-modules on X and any z €
CH"(X), we have a map

(2.1.3.1) 72 (S) (2,0) (X)) detG yx

where (z,e) is the map determined by the paring (2.1.2.1) and detG is the representation
associated to the locally constant sheaf det G of rank 1. The composition det Go(z,): m3P(S) —
A determines a locally constant and constructible sheaf of rank 1 on .S, which we simply denote
by det G(z). Now we propose the following conjecture.

Conjecture 2.1.4 (Relative twist formula). Let S be a reqular Noetherian scheme over Z[1/¢]
and f: X — S a smooth proper morphism purely of relative dimension n. Let F € D%(X,A)
such that f is universally locally acyclic relatively to F. Then there exists a unique cycle class
cex/s(F) € CH"(X) such that for any locally constant and constructible sheaf G of A-modules
on X, we have an isomorphism

(2.1.4.1) det Rfy(F ®G) = (det Rf. F)®*™ 9 @ det G(cex/s(F)) in Ko(S,A),
where Ko(S,A) is the Grothendieck group of D2(S, A).

We call this cycle class ccx g(F) € CH"(X) the relative characteristic class of F if it exists. If
S is a smooth scheme over a perfect field k, we construct a candidate for ccx /g(F) in Definition
2.4.3.

As an evidence, we prove a special case of the above conjecture in Theorem 2.4.4. In order to
construct a cycle class ccx/g(F) satisfying (2.1.4.1), we use the theory of singular support and
characteristic cycle.

2.2. Transversal condition and singular support.

2.2.1. Let f: X — S be a smooth morphism of Noetherian schemes over Z[1/¢]. We denote
by T*(X/S) the vector bundle Spec(Symg, (Qk/s)v) on X and call it the relative cotangent
bundle on X with respect to S. We denote by T%(X/S) = X the zero-section of T*(X/S).

A constructible subset C' of T#(X/S) is called conical if C' is invariant under the canonical
G,-action on T*(X/S).

Definition 2.2.2 ([Beil6, §1.2] and [HY17, §2]). Let f: X — S be a smooth morphism of
Noetherian schemes over Z[1/¢] and C a closed conical subset of 7*(X/S). Let Y be a Noetherian
scheme smooth over S and h: Y — X an S-morphism.

(1) We say that h: Y — X is C-transversal relatively to S at a geometric point §j — Y if
for every non-zero vector p € Cyy) = C xx 9, the image dhy(u) € TF(Y/S) == T*(Y/S) xy ¥
is not zero, where dhy: T;:(g) (X/S) — T;(Y/S) is the canonical map. We say that h: Y — X
is C-transversal relatively to S if it is C-transversal relatively to S at every geometric point
of Y. If h :' Y — X is C-transversal relatively to S, we put h°C = dh(C xx Y) where
dh : T*(X/S) xx Y — T*(Y/S) is the canonical map induced by h. By the same argument of
[Beil6, Lemma 1.1], h°C' is a conical closed subset of T%*(Y/S).

(2) Let Z be a Noetherian scheme smooth over S and g: X — Z an S-morphism. We say
that g: X — Z is C-transversal relatively to S at a geometric point T — X if for every non-zero
vector v € T;(g_c)(Z/S), we have dgz(v) ¢ Cz, where dgz T;(f)(Z/S) — TX(X/S) is the canonical
map. We say that g: X — Z is C-transversal relatively to S if it is C-transversal relatively to S
at all geometric points of X. If the base B(C) = C n T%(X/S) of C is proper over Z, we put
9oC := pry(dg—1(C)), where pry: T*(Z/S) xz X — T*(Z/S) denotes the first projection and
dg : T*(Z/S) xz X — T*(X/S) is the canonical map. It is a closed conical subset of T*(Z/5).

(3) A test pair of X relative to S is a pair of S-morphisms (g,h) : Y « U — X such that U
and Y are Noetherian schemes smooth over S. We say that (g, h) is C-transversal relatively to
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S if h: U — X is C-transversal relatively to S and g : U — Y is h°C-transversal relatively to
S.

Definition 2.2.3 ([Beil6, §1.3] and [HY17, §4]). Let f: X — S be a smooth morphism of
Noetherian schemes over Z[1/f]. Let F be an object in D2(X, A).

(1) We say that a test pair (g,h) : Y <« U — X relative to S is F-acyclicif g : U - Y is
universally locally acyclic relatively to h*F.

(2) For a closed conical subset C' of T*(X/S), we say that F is micro-supported on C relatively
to S if every C-transversal test pair of X relative to S is F-acyclic.

(3) Let C(F, X/S) be the set of all closed conical subsets C' < T*(X/S) such that F is micro-
supported on C’ relatively to S. Note that C(F, X/S) is non-empty if f: X — S is universally
locally acyclic relatively to F. If C(F, X /S) has a smallest element, we denote it by SS(F, X/S)
and call it the singular support of F relative to S.

Theorem 2.2.4 (Beilinson). Let f: X — S be a smooth morphism between Noetherian schemes
over Z[1/€] and F an object of D%(X, A).
(1) ([HY17, Theorem 5.2]) If we further assume that f : X — S is projective and universally
locally acyclic relatively to F, the singular support SS(F,X/S) exists.
(2) ([HY17, Theorem 5.2 and Theorem 5.3]) In general, after replacing S by a Zariski open
dense subscheme, the singular support SS(F,X/S) exists, and for any s € S, we have

(2.2.4.1) SS(Flx., Xs/s) = SS(F,X/S) xg s.

(3) ([Beil6, Theorem 1.3]) If S = Speck for a field k and if X is purely of dimension d, then
SS(F,X/S) is purely of dimension d.

2.3. Characteristic cycle and index formula.

2.3.1. Let k be a perfect field of characteristic p. Let X be a smooth scheme purely of dimension
n over k, let C be a closed conical subset of T7*X and f : X — Ai a k-morphism. A closed point
v € X is called at most an isolated C-characteristic point of f : X — A} if there is an open
neighborhood V' € X of v such that f:V — {v} — Al is C-transversal. A closed point v € X
is called an isolated C-characteristic point if v is at most an isolated C-characteristic point of
f: X - A,lf but f: X — A}C is not C-transversal at v.

Theorem 2.3.2 (T. Saito, [Sail7a, Theorem 5.9]). Let X be a smooth scheme purely of dimen-
sion n over a perfect field k of characteristic p. Let F be an object of DY(X,A) and {Cy}acr
the set of irreducible components of SS(F,X/k). There exists a unique n-cycle CC(F,X/k) =
Yaer MalCal (Mo € Z) of T*X supported on SS(F,X/k), satisfying the following Milnor for-
mula (2.5.2.1):

For any étale morphism g: V — X, any morphism f:V — AL, any isolated g°SS(F, X /k)-
characteristic pointveV of f:V — A,lf and any geometric point v of V above v, we have

(2.3.2.1) — dimtot R®5(¢* F, f) = (¢*CC(F, X k), df )r#v0,

where R®5(g* f) denotes the stalk at © of the vanishing cycle complex of g*F relative to f,
dimtot R®;(g*F, ) zs the total dimension of R®3(¢*F, f) and ¢g*CC(F, X /k) is the pull-back
of CC(F,X/k) toT

We call CC(F, X /k) the characteristic cycle of F. It satisfies the following index formula.

Theorem 2.3.3 (T. Saito, [Sail7a, Theorem 7.13]). Let k be an algebraic closure of a perfect
field k of characteristic p, X a smooth projective scheme over k and F € DIC’(X, A). Then, we
have

(2331) X(XI%7‘F|X;;) = deg(C’C’(]:, X/k)7T§X)T*X7

where x (X, F|x;) denotes the Euler-Poincaré characteristic of F|x, .
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We give a generalization in Theorem 2.3.5. For a smooth scheme 7: X — Speck, and two
objects F; and F in D(X, A), we denote Fi XL Ty = priFy ®F priF € DY(X x X, A), where
pr; : X x X — X is the ith projection, for ¢ = 1,2. We also denote Dx (F;) = RHom(F1,Kx),
where Kx = Rr'A.

Lemma 2.3.4. Let X be a smooth variety purely of dimension n over a perfect field k of
characteristic p. Let Fy and Fa be two objects in DY(X,A). Then the diagonal map 6: A =
X — X xX is SS(FoXL Dx Fi, X x X /k)-transversal if and only if SS(FoXE Dx F1, X x X /k)
TX(X x X). If we are in this case, then the canonical map

RHom(Fi,A) ®" Fo = RHom(Fi, F»)
18 an isomorphism.

Proof. The first assertion follows from the short exact sequence of vector bundles on X associated
tod: A=X— X x X:

0— TE(X x X) —» T*X x X) xx.x A2 T*X - 0.

For the second claim, we have the following canonical isomorphisms

1
RHom(Fi, A) @ Fy ~ RHom(Fy, A(n)[2n]) @ A(—n)[—2n] @ F» = Dy Fi @ RI'A @ Fy
@)

(2.3.4.1) ~ §*(FoF DxF1) @Y RO'A = RS (Foa®F DxF1)
3
Y s (RHom(pri Fi, Rpri Fa)) =~ RHom(6*priFy, RS Rpry Fy)
= R”Hom(]:l, ]:2),

where

(1) follows from the purity for the closed immersion ¢ [ILO14, XVI, Théoréme 3.1.1];

(2) follows from the assumption that d is SS(FoXE Dx Fy)-transversal by [Sail7a, Proposition
8.13 and Definition 8.5];

(3) follows from the Kiinneth formula [SGAS5, Exposé III, (3.1.1)]. O

Theorem 2.3.5. Let X be a smooth projective variety purely of dimension n over an alge-
braically closed field k of characteristic p. Let F1 and Fo be two objects in DIC’(X, A) such that
the diagonal map 6: A = X — X x X is properly SS(FoXE DxFi, X x X /k)-transversal. Then
we have

(2.3.5.1) (—1)" - dimy Ext(Fy, F) = deg (CO(Fy, X/k), CO(Fa, X/E))pu x

where dimp Ext(Fy, F2) = Y.(—1)" dimy Ext’bb (F1, F2).

Z. (X.A)

Proof. By the isomorphisms (2.3.4.1), the left hand side of (2.3.5.1) equals to

(=)™ - x(X, RO (F2a ®E Dx F1)) = (=1)" - x(X, 6" (Fa &E Dx Fy)
(2.3.5.2) (—1)™ - deg(CC(6* (Fo ®E Dx (F1), X/k), T% X)psx.

Since §: X — X x X is properly SS(Fo XL DxF1, X x X /k)-transversal, we have

(2.3.5.3) CO(6*(F R DxFi), X/k) = (—1)"6*CC(D(Fo &k DxF1, X x X/k))
(2.3.5.4) = (=1)"0*(CC(Fa, X /k) x CCO(Fy, X /k)).
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where the equality (2.3.5.3) follows from [Sail7a, Theroem 7.6], and (2.3.5.4) follows from
[Sail7b, Theorem 2.2.2]. Consider the following commutative diagram

T*X x T*X == T*(X x X) =——T*(X x X) xxxx A —2= T*X
diag
T*X = TE(X x X) X.

We have 0*(CC(Fo, X /k) x CO(F1, X /k)) = déspr'(CC(Fp, X /k) x CC(Fi, X /k)) and
deg(6*(CC(Fo, X /k) x CC(F1,X/k)), Tx X)r+x = deg (CC(F1,X/k), CC(Fa, XJk)) s x -
Then (2.3.5.1) follows from the above formula and (2.3.5.2). O
Remark 2.3.6. If F is the constant sheaf A, then Theorem 2.3.5 is the index formula (2.3.3.1).

Theorem 2.3.5 can be viewed as the f-adic version of the global index formula in the setting of
Dx-modules (cf. [Gin86, Theorem 11.4.1]).

2.4. Relative twist formula.

2.4.1. Let S be a Noetherian scheme over Z[1//], f : X — S a smooth morphism of finite type
and F an object of D2(X, A). Assume that the relative singular support SS(F, X/S) exists. A
cycle B =Y., m;[B;] in T*(X/S) is called the characteristic cycle of F relative to S if each B;
is a subset of SS(F,X/S), each B; — S is open and equidimensional and if, for any algebraic
geometric point § of S, we have

(2.4.1.1) Bs = Y \mi[(B;)s] = CC(F|x,, Xs/5).

el
We denote by CC(F, X/S) the characteristic cycle of F on X relative to S. Notice that relative
characteristic cycles may not exist in general.

Proposition 2.4.2 (T. Saito, [HY17, Proposition 6.5]). Let k be a perfect field of characteristic
p. Let S be a smooth connected scheme of dimension r over k, f : X — S a smooth morphism of
finite type and F an object of DY(X, A). Assume that f: X — S is SS(F, X /k)-transversal and
that each irreducible component of SS(F, X /k) is open and equidimensional over S. Then the
relative singular support SS(F,X/S) and the relative characteristic cycle CC(F,X/S) exist,
and we have

(2.4.2.1) SS(F,X/S)=0(SS(F,X/k)),

(2.4.2.2) CC(F,X/S)=(-1)"0,(CC(F,X/k)),

where 0 : T*X — T*(X/S) denotes the projection induced by the canonical map Q%{/k — Qk/s.

Definition 2.4.3. Let k be a perfect field of characteristic p and S a smooth connected scheme
of dimension r over k. Let f : X — S be a smooth morphism purely of relative dimension n
and F an object of D%(X,A). Assume that f: X — S is SS(F, X /k)-transversal. Consider the
following cartesian diagram

(2.4.3.1) T*S xg X T*X

| |

Ox

X — (X))

where Oy /g: X — T*(X/S) is the zero section. Since f : X — S is SS(F, X /k)-transversal, the
refined Gysin pull-back 0% /S(CC (F,X/k)) of CC(F,X/k) is a r-cycle class supported on X.
We define the relative characteristic class of F to be

(2.4.3.2) cex s(F) = (1) - 0x ;g(CC(F, X /k)) in CH"(X).
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Now we prove a special case of Conjecture 2.1.4.

Theorem 2.4.4 (Relative twist formula). Let S be a smooth connected scheme of dimension r
over a finite field k of characteristic p. Let f: X — S be a smooth projective morphism of relative
dimension n. Let F € DY(X,A) and G a locally constant and constructible sheaf of A-modules
on X. Assume that f is properly SS(F, X /k)-transversal. Then there is an isomorphism
(2.4.4.1) det Rfx(F ®G) = (det RfyF)®™ 9 @ det G(ccx/s(F)) in Ko(S,A).

Note that we also have ccx s(F) = (CC(F, X/S), Tx X)r+(x/s) € CH"(X).

Proof. We may assume G # 0. Since G is a smooth sheaf, we have SS(F, X /k) = SS(FQG, X /k).
Since f is proper and SS(F, X /k)-transversal, by [Sail7a, Lemma 4.3.4], Rf.F and Rf.(F®G)

are smooth sheaves on S. For any closed point s € S, we have the following commutative
diagram

0
T*X xx Xy~ T*X, = T*(X/S) xx Xy~ X,
lpr O lpr O lz
0
T* X f T*(X/S) B x

where Oy /g and Ox, are the zero sections. Hence we have

cex, (FIx,) = (CC(Flx.. Xo/s). Xo)pex, = Oy, CC(Flx,. Xo/s) & 0 ¢ COF X k)
= (—1)"04,i*CC(F, X /k) = (1) 0 05:pr'CC(F, X /k)
(2.4.4.2) = (—1)"0,pr'0.CCO(F, X k) = (=1)"0'_pr'((—1)"CC(F, X/S))
= 0y, pr' CC(F, X/S) = i'0x ;sCC(F, X /S) = i cex s (F),

where the equality (a) follows from [Sail7a, Theorem 7.6] since f is properly SS(F,X/k)-
transversal.
By Chebotarev density (cf. [Lau87, Théoreme 1.1.2]), we may assume that S is the spectrum

of a finite field. Then it is sufficient to compare the Frobenius action. Then one use (2.4.4.2)
and Theorem 1.1.3. O

Example 2.4.5. Let S be a smooth projective connected scheme over a finite field & of char-
acteristic p > 2. Let f: X — S be a smooth projective morphism of relative dimension n,
x = rankR f,Q, the Euler-Poincaré number of the fibers and let F be a constructible étale sheaf
of A-modules on S. Then by the projection formula, we have Rf, f*F =~ F ® Rf.+Q,. Since f is

projective and smooth, Rf,Q, is a smooth sheaf on S. Using Theorem 1.1.3, we get
(2.4.5.1) e(S,Rfcf*F) =¢e(S, F)x- detRf*@g(—ccwk(]:)).

By [Sai94, Theorem 2], detRf.Q, = rx /S(—%nx), where ry /g is a character of order at most 2
and is determined by the following way:
(1) If n is odd, then rx g is trivial.
(2) If n = 2m is even, then kx/g is the quadratic character defined by the square root of
x(x—1) ~

(=1)" 2 - bar,x/5, Where dqr x/g: (det Har(X/S))®? = Qg is the de Rham discriminant
defined by the non-degenerate symmetric bilinear form Hgr(X/S) @ Har(X/S) — Og[—2n],
and Hyr(X/S) = Rf:Q% /s is the perfect complex of Og-modules whose cohomology computes
the relative de Rham cohomology of X/S.

Similarly, if F is a locally constant and constructible étale sheaf of A-modules on S, then

detRf, f*F = det(F ® Rf.Qy) = (detF)®X @ (detRf*@é)(@rank]:

1
(2.4.5.2) ~ (detf.')®x ® (KX/S(_an))(@rank}"
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2.5. Total characteristic class.

2.5.1.  In the rest of this section, we relate the relative characteristic class ccx/g(F) to the total
characteristic class of F. Let X be a smooth scheme purely of dimension d over a perfect field
k of characteristic p. In [Sail7a, Definition 6.7.2], T. Saito defines the following morphism

U

(2.5.1.1) cexet Ko(X,A) - CH.(X) = P CH;(X),
i=0

which sends F € D(X, A) to the total characteristic class ccx o(F) of F. For our convenience,
for any integer n we put

(2.5.1.2) ccx (F) = cex,g—n(F) in CH"(X).

By [Sail7a, Lemma 6.9], for any F € D2(X,A), we have

(2.5.1.3) ek (F) = cexo(F) = (CC(F, X /k), TEX)p«x in CHo(X),
(2.5.1.4) X (F) = cex a(F) = (1) - rankF - [X] in CHy(X) =Z.
The following proposition gives a computation of cc’y, F for any n.

Proposition 2.5.2. Let S be a smooth connected scheme of dimension r over a perfect field k of
characteristic p. Let f: X — S be a smooth morphism purely of relative dimension n. Assume
that f is SS(F, X /k)-transversal. Then we have

(2.5.2.1) ccx (F) = (=1)" - eex/g(F) in  CH"(X)
where ccxs(F) is defined in Definition 2.4.5.

Proof. We use the notation of [Sail7a, Lemma 6.2]. We put F = (T*S xg X) ® A and
E=T*X& A}X. We have a canonical injection i: F' — E of vector bundles on X induced by
df: T*S xg X — T*X. Let i: P(F) — P(E) be the canonical map induced by i: F — E. By
[Sail7a, Lemma 6.1.2 and Lemma 6.2.1], we have a commutative diagram:

CH, (P(F)) Z CH, (P(E))
(2:5.22) & CH,(X) @ o, (x)
q=0 gq=0
CH, (X ) =—— CH"(X) =——— CH,(X).

Since f is smooth and SS(F, X /k)-transversal, the intersection SS(F,X/k) n (T*S xg X)
is contained in the zero section of T*S xg¢ X. Thus the Gysin pull-back i*(CC(F, X /k)) is
supported on the zero section of 7*S x g X. Let CC(F, X /k) be any extension of CC(F, X /k)
to P(E) (cf. [Sail7a, Definition 6.7.2]). Then i*(CC(F, X /k)) is an extension of i*(CC(F, X /k))
to P(F'). By [Sail7a, Definition 6.7.2], the image of CC(F, X /k) in CH"(X) by the right vertical
map of (2.5.2.2) equals to cc'y(F) = ccx,(F). The image of i*(CC(F, X /k)) in CH"(X) by
the left vertical map of (2.5.2.2) equals to (—1)" - ccx/s(F) (cf. (2.4.3.2)). Now the equality
(2.5.2.1) follows from the commutativity of (2.5.2.2). O
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2.5.3. Following Grothendieck [SGAB5], it’s natural to ask the following question: is the diagram

Ko(X,A) 2% OHL(X)
(2.5.3.1) f*l lf*
Ko(Y,A) —2% CH.(Y)

commutative for any proper map f: X — Y between smooth schemes over a perfect field k7 If
k = C, the diagram (2.5.3.1) is commutative by [Gin86, Theorem A.6]. By the philosophy of
Grothendieck, the answer is no in general if char(k) > 0 (cf. [Sail7a, Example 6.10]). However, in
[UYZ, Corollary 1.9], we prove that the degree zero part of the diagram (2.5.3.1) is commutative,
ie, if f: X — Y is a proper map between smooth projective schemes over a finite field & of
characteristic p, then we have the following commutative diagram

Ko(X,A) = CHy(X)
(25.3.2) f*l lf*

Ko(Y,A) —2% CHy(Y).
Now we propose the following:

Conjecture 2.5.4. Let S be a smooth connected scheme over a perfect field k of characteristic
p. Let f: X — S be a smooth morphism purely of relative dimension n and g: Y — S a smooth
morphism purely of relative dimension m. Let D2(X /S, A) be the thick subcategory of D%(X, A)
consists of F € DY(X,A) such that f: X — S is SS(F, X /k)-transversal. Let Ko(X/S,A) be
the Grothendieck group of D%(X/S,A). Then for any proper morphism h: X — Y over S,

X Y
(2.5.4.1) \ /
f g
S
the following diagram commutes
Ko(X/S,A) —= ~ CH™X)
(2.5.4.2) h*l lh*

Ko(Y/S,A) —2 ~ CH™Y).

That is to say, for any F € DY(X,A), if f is SS(F, X /k)-transversal, then we have
(2.5.4.3) hy(ccx (F)) = ey (RheF) in CH™(Y).

Remark 2.5.5. If f is SS(F, X/k)-transversal, by [Sail7a, Lemma 3.8 and Lemma 4.2.6],
the morphism ¢: Y — S is SS(Rh.F,Y /k)-transversal. Thus we have a well-defined map
hy: Ko(X/S,A) — Ko(Y/S,A).

In next section, we formulate and prove a cohomological version of Conjecture 2.5.4 (cf.
Corollary 3.3.4).
3. RELATIVE COHOMOLOGICAL CHARACTERISTIC CLASS

In this section, we assume that S is a smooth connected scheme over a perfect field k of
characteristic p and A is a finite field of characteristic £. To simplify our notations, we omit to
write R or L to denote the derived functors unless otherwise stated explicitly or for RHom.
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We briefly recall the content of this section. Let X — S be a smooth morphism purely of
relative dimension n and F € D% X,A). If X — S is SS(F, X /k)-transversal, we construct a
relative cohomological characteristic class ccex/s(F) € H**(X, A(n)) following the method of
[AS07, SGA5]. We conjecture that the image of the cycle class ccx/s(F) by the cycle class map

cl: CHY(X) — H?"(X,A(n)) is ccexys(F) (cf. Conjecture 2.1.4). In Corollary 3.3.4, we prove
that the formation of cccx/gF is compatible with proper push-forward.

3.1. Relative cohomological correspondence.

3.1.1. Let m: X1 — S and m9: X9 — S be smooth morphisms purely of relative dimension ny
and ny respectively. We put X := X; xg X5 and consider the following cartesian diagram

x 2 x,

(3.1.1.1) prll . lm

Xl?S

Let & and F; be objects of D%(X;, A) for i = 1,2. We put
(3.1.1.2) F = F1 X5 Fp = priF @ priFo,
(3.1.1.3) £ =& L& = pri& @ pri&s,,

which are objects of D%(X, A). Similarly, we can define F; % F», which is an object of D%(X; x,
Xo,A). We first compare SS(F; g Fo, X1 xg X1/k) and SS(Fy ﬁ Fo, X1 ¥ X1/k).

Lemma 3.1.2. Assume that m1: X1 — S is SS(F1, X1/k)-transversal. Then we have

(3.1.2.1) SS(priFi, X /k) n SS(pr5Fa, X /k) € Ty X.

Moreover, the closed immersion i: X1 xgXo — X1 xp X5 is SS(}],%]:Q, X1 xXo/k)-transversal
and

(3.1.2.2) SS(FL L Fo, X1 x5 Xo/k) € i°(SS(F1L®E Fa, X1 %1, Xo/k)).

Proof. We first prove (3.1.2.1). Since X; — S is smooth, we obtain an exact sequence of vector
bundles on X; for i = 1,2

(3.1.2.3) 0— T*S x5 X; 6 T* X, — T*(X;/S) — 0.
Since m1: X7 — S is SS(Fi1, X1 /k)-transversal, we have
(3.1.2.4) SS(]:l,Xl/k‘) N (T*S X g Xl) ET;S xXg X1.

Consider the following diagram with exact rows and exact columns:

0 0

! !
T*(X5/S) x x, X —= T*(X /X))
! !

(3.1.2.5) 0—— T*X2 X X, X T*X T*(X/XQ) —0

} ] E

T*S x5 X T*Xy xx, X —= T*(X1/S) xx, X —=0

f !

0 0
Since pr; is smooth, by [Sail7a, Corollary 8.15], we have
SS(prj Fi, X /k) = pry SS(Fi, Xi/k) = SS(Fi, Xi/k) x x, X.

0
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It follows from (3.1.2.4) and (3.1.2.5) that pr{SS(Fi, X1/k) n pr§SS(Fe, Xo/k) < T3 X. Thus
SS(priFi, X/k) n SS(pr3Fa, X /k) < T3 X. This proves (3.1.2.1).
Now we consider the cartesian diagram
X = X1 x5 Xo —> X1 %} X»
(3.1.2.6) l . l
S d S %), 8

where §: S — S xj S is the diagonal. We get the following commutative diagram of vector
bundles on X with exact rows:

T*X1 Xs T*Xg
||

0 —= Ny /(x,x,x0) — T* (X1 xp X2) Xx1%, %5 X

= i !

0_>'NS/(S><;€S)XSX T*(SXkS) XSXkSXL5>T*SXSX—>0

T*S XsX—>(T*S Xle) Xs(T*S XsXQ)

di

where N S/(Sxxs) is the conormal bundle associated to d: S — S x3 S. By [Sail7b, Theo-
rem 2.2.3], we have SS(F; KL Fo, X1 xi, Xo/k) = SS(F1,X1/k) x SS(Fa, Xo/k). Therefore
by (3.1.24), Nx/(x1x,x0) N SS(F1 B Fa, X1 xj Xo/k) is contained in the zero section of
NX/(Xlka2)' Hence i: X — X xi Xy is SS(F ﬁ Fa, X1 xp Xo/k)-transversal. Now the
assertion (3.1.2.2) follows from [Sail7a, Lemma 4.2.4]. O
Proposition 3.1.3. Under the notation in 5.1.1, we assume that

(1) SS(&, Xi/k) n SS(Fi, Xi/k) = T%, X; for all i =1,2;

(2) m: X1 — S is SS(&1, X1 /k)-transversal or wo: X9 — S is SS(Fa, Xo/k)-transversal;

(3) m: X1 — S is SS(F1, X1/k)-transversal or wo: X9 — S is SS(E, Xo/k)-transversal.
Then the following canonical map (cf. [Zh15, (7.2.2)] and [SGA5, Exposé 111, (2.2.4)])

(3.1.3.1) RHom(E1, F1) W5 RHom(Ey, Fo) — RHom(E, F).
s an isomorphism.

If S is the spectrum of a field, then the above result is proved in [SGA5, Exposé 111, Proposition
2.3]. Our proof below is different from that of loc.cit. and is based on [Sail7a].

Proof. In the following, we put & == RHom(&;, A). Since SS(&;, Xi/k)nSS(Fi, Xi/k) < T%, Xi,
Lemma 2.3.4 implies that

(3.1.3.2) Fi @F & = F; @ RHom(&;, A) = RHom(&;, F;), forall i = 1,2,
Hence we have
(3.1.3.3) RHom(E1, Fi) W5 RHom(E, Fo) = (F1 @Y &) RE (R @l &)

=~ (F1 95 F2) @ (61 W5 &5).
Note that we also have
EY RE &y = priRHom(Er, A) @ pri RHom(Es, A)
(3.1.3.4) ~ RHom(pri&, A) @F RHom(pri&,, A)

(é) RHom(pri&r, RHom(pr5&s, A))
=~ RHom(pri& @ pri&y, A) = £V,
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where the isomorphism (a) follows from Lemma 2.3.4 by the fact that (cf. Lemma 3.1.2)
SS(pri&, X/k) n SS(pr3&s, X /k) € Tx X.
By Lemma 3.1.2, we have
SS(E,X/k) n SS(F,X/k)
< i°(SS(EL XY, E2, X1 X Xo/k)) A i°(SS(FL Ky Fa, X1 xi Xo/k))

—
=

= iO(SS(gl,Xl) X SS(gQ,XQ)) N iO(SS(fl,Xl) X SS(]:Q,XQ))

ryx,

where the equality (b) follows from [Sail7b, Theorem 2.2.3], and (c) follows from the assumptions
(2) and (3) (cf. [Sail7b, Lemma 2.7.2]). Thus by Lemma 2.3.4, we have

(3.1.3.5) FRLEY =~ RHom(E, F).

Combining (3.1.3.3), (3.1.3.4) and (3.1.3.5), we get

(3.1.3.6) RHom(E,, F1) K5 RHom(Ey, Fo) =~ F@F €Y =~ RHom(E, F).

This finishes the proof. O

3.1.4. Kinneth formula. We have the following canonical morphism
(3.1.4.1) F1 ®E RHom(Fy, mhAs) — RHom(prsFa, pryFi),
by taking the adjunction of the following composition map

priF1 ® prs RHom(Fa, 7T!2A5) ® pryFa — priFi1 ® pry(Fo @ RHom(Fa, 7T!2A5))

evaluation

priJFi ®@ primyAs — priJFi @ priAx, — priFi.

Corollary 3.1.5. Assume that m: X1 — S is SS(Fi, X1/k)-transversal or my: Xo — S is
SS(Fa, Xo/k)-transversal. Then the canonical map (3.1.4.1) is an isomorphism.

If S is the spectrum of a field, then the above result is proved in [SGA5, Exposé III, (3.1.1)].
Our proof below is different from that of loc.cit.

Proof. By Proposition 3.1.3, we have the following isomorphisms

Prop.3.1.3
F1 ®E RHom(Fy, mhAs) e~ RHom(priFa, priFi @ priAg)

(é) RHom(priFa, pri F1),

where (a) follows from the fact that pr; is smooth (cf. [ILO14, XVI, Théoréme 3.1.1] and [SGA4,
XVIII, Theoréme 3.2.5]). O

Definition 3.1.6. Let X;, F; be as in 3.1.1 for i = 1,2. A relative correspondence between Xy
and X5 is a scheme C' over S with morphisms ¢;: C — X7 and co: C — X5 over S. We put
¢ = (c1,c2): C — X; xgX» the corresponding morphism. A morphism u: ¢3Fy — cll]-"l is called
a relative cohomological correspondence from Fy to F1 on C.

3.1.7. Given a correspondence C as above, we recall that there is a canonical isomorphism
[SGA4, XVIII, 3.1.12.2]

(3.1.7.1) RHom(c5Fy, ¢ F1) = ¢ RHom(pr Fy. pri F).
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3.1.8. For i = 1,2, consider the following diagram of S-morphisms

fi
S,

where 7; and ¢; are smooth morphisms. We put X = X; xg X9, Y == Y7 xg Yy and f =
fi x5 f2: X > Y. Let M; € Di(Y;,A) for i = 1,2. We have a canonical map (cf. [Zh15,
Construction 7.4] and [SGAS5, Exposé 111, (1.7.3)])

X;

Y;

(3.1.8.1) MRS fyMo — (M s M)

which is adjoint to the composite
~ adjXladj
(3.1.8.2) AFM R FiMy) = Frfima 535 fa fiMo M [ My

where (a) is the Kiinneth isomorphism [SGA4, XVII, Théoréme 5.4.3].

Proposition 3.1.9. If g2: Yo — S is SS(Ma,Ys/k)-transversal, then the map (3.1.8.1) is an
isomorphism.

If S is the spectrum of a field, the above result is proved in [SGA5, Exposé 111, Proposition
1.7.4].

Proof. Consider the following cartesian diagrams

id
X1 XSXQ&)YE XSX2—>X2

idxle \ idx fo lfz
f

1 xid pra2
X1 xXgYy ——Y]; Xg Yy ——=1Y>

prll pri l%
f1

X, v, —% .g

\ q1
1

S.

We may assume that Xo = Y5 and fs = id, i.e., it suffices to show that the canonical map

>~

(3.1.9.1) FIMiEE My S (fi x id)' (M BE Ms).
is an isomorphism. Since we have
Ms = Dy, Dy, My =~ RHom(Dy, Ma, Ky,)
~ RHom(Dy,(Mz)(—dimS)[—2dimS], ghAs),
we may assume My = RHom(La, gyAg) for some Lo € DY(Ys, A). By [Sail7a, Corollary 4.9],

we have SS(May,Ys/k) = SS(L2,Y2/k). Thus by assumption, the morphism go: Y2 — S is
SS(Ly,Ys/k)-transversal. By Corollary 3.1.5, we have an isomorphism

(3.1.9.2) My K5 RHom(Ls, gyAs) = RHom(prs Ly, priM;) inDS(Y] xg Ya, A),
(3.1.9.3) fiMi K5 RHom(Ls, ghAs) = RHom((f1 x id)*pri Ly, pri fiM1) in DY(X| xg Ya, A).
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We have
(fi xid) (M1 M2) = (f1 x id) (M1 1§ RHom(Ly, gyAs))
(3.1.9.2) o . |
~ ' (f1 xid)’ (RHom(prj Lo, priMy))
3.1.7.1
(3.1.9.4) ( ~ )RHom((fl x id)*pri Lo, (f1 x id)'priM;)
= RHom((f1 x id)*pr3 Lo, prj fiM1)
(1.93) L ! ! L
> fiMi Xg RHom(La, gaAs) = f1 My Kg Ma.
This finishes the proof. O

3.2. Relative cohomological characteristic class.

3.2.1.  We introduce some notation for convenience. For any commutative diagram

W h v
N A
Speck

of schemes, we put
(3.2.1.1) Kw = Rf'A,
(3.2.1.2) Kw v = Rh'Ay.
Under the notation in 3.1.1, by Proposition 3.1.9, we have an isomorphism
(3.2.1.3) Kx,/s 85 Kx, /s ~ Kx/s-
3.2.2. Consider a cartesian diagram

E——D
(3.2.2.1) l\ ld

C =X

of schemes over k. Let F, G and H be objects of DZ(X, A) and F ® G — H any morphism. By
the Kiinneth isomorphism [SGA4, XVII, Théoreme 5.4.3] and adjunction, we have

a(d FRE dg) = ad Fe"dd'G - F®G — H.
By adjunction, we get a morphism
(3.2.2.2) dFRE d'G — e'H.
Thus we get a pairing
(3.2.2.3) () HYC, ¢ F)@ HY(D,d'G) — H(E, e'H).
3.2.3. Now we define the relative Verdier pairing by applying the map (3.2.2.3) to relative

cohomological correspondences. Let m1: X7 — S and m: X9 — S be smooth morphisms.
Consider a cartesian diagram

E D

(3.2.3.1) l \ ld=(d1,d2)
C

X:Xl Xng

c=(c1,c2)
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of schemes over S. Let Fj € D%(X1,A) and F» € D%(X5,A). Assume that one of the following
conditions holds:

(1) m: X1 — Sis SS(Fi, X1 /k)-transversal;
(2) my: X9 — S is SS(Fa, Xo/k)-transversal.

By Corollary 3.1.5, we have
RHom(prsFs, priF1) ®" RHom(priFi, pryFs)

(3.2.3.2) = (FLRE RHom(Fy, mhAs)) @ (RHom(Fy, miAs) K5 F)

| Lo, (3213)
mAsKgmAs = Kys.

By (3.1.7.1), (3.2.2.2), (3.2.2.3) and (3.2.3.2), we get the following pairings

(3.23.3)  aRHom(c3Fz, i F1) ® diRHom(d} Fi, dyJs) — elKpys,

(3.234)  {,): Hom(c}Fa,c\J1) @ Hom(di Fi,dy ) — HY(E, €' (Kxs)) = H(E,Kp/s).
The pairing (3.2.3.4) is called the relative Verdier pairing (cf. [SGASH, Exposé 111 (4.2.5)]).

evaluation

Definition 3.2.4. Let f: X — S be a smooth morphism purely of relative dimension n and
F e D(X,A). We assume that f is SS(F, X /k)-transversal. Let ¢ = (c1,¢2): C — X xg X be
a closed immersion and u: ¢ F — ¢|F be a relative cohomological correspondence on C. We
define the relative cohomological characteristic class cccx /S(u) of u to be the cohomology class
(u,1y € HY._ +(X,Kx/g) defined by the pairing (3.2.3.4).

In particular, if C = X and ¢: C — X xg X is the diagonal and if u: F — F is the identity,
we write

ccexys(F) =<1,1) in H>™(X,A(n))
and call it the relative cohomological characteristic class of F.

If S is the spectrum of a perfect field, then the above definition is [AS07, Definition 2.1.1].

Example 3.2.5. If F is a locally constant and constructible sheaf of A-modules on X, then we
have cccy g F = rankF - cn(Q}’(/S) N [X]e CH"(X).

Conjecture 3.2.6. Let S be a smooth connected scheme over a perfect field k of characteristic
p. Let f: X — S be a smooth morphism purely of relatively dimension n and F € D2(X,A).
Assume that f is SS(F, X /k)-transversal. Let cl: CH"(X) — H?*"(X,A(n)) be the cycle class
map. Then we have

(3.2.6.1) cl(cex/s(F)) = ceex/g(F) in H*(X,A(n)),
where ccx g(F) is the relative characteristic class defined in Definition 2.4.3.

If S is the spectrum of a perfect field, then the above conjecture is [Sail7a, Conjecture 6.8.1].
3.3. Proper push-forward of relative cohomological characteristic class.

3.3.1. Fori= 1,2, let f;: X; — Y; be a proper morphism between smooth schemes over S.
Let X =X xg X0, Y =Y) xgYsand f = f; xg fo. Let p;: X — X; and ¢;: Y — Y] be the
canonical projections for ¢ = 1,2. Consider a commutative diagram

X<—-C
(3.3.1.1) fl lg

y<4 D



18 ENLIN YANG AND YIGENG ZHAO

of schemes over S. Assume that ¢ is proper. Put ¢; = p;c and d; = ¢;d. By [Zh15, Construction
7.17], we have the following push-forward maps for cohomological correspondence (see also
[SGA5, Exposé 111, (3.7.6)] if S is the spectrum of a field):

(3.3.1.2) fst Hom(c3La, ¢\ L£1) — Hom(d3(fa1L2),dy (f1:L1)),
(3.3.1.3) fe: geRHom(ci Lo, ¢\ L1) — RHom(d5(fuLls), d) (fixL1)).

Theorem 3.3.2 ([SGA5, Théoreme 4.4]). For i = 1,2, let f;: X; — Y; be a proper morphism
between smooth schemes over S. Let X = X1 xg Xo, Y =Y xgYs and f = f1 Xg fo. Let
pi: X > X; and q;: Y — Y; be the canonical projections for i = 1,2. Consider the following
commutative diagram with cartesian horizontal faces

C' < C
C
x / g \
f X o
f
D’ D Vi
X d \
i; Y D"
d//

where ¢, ", d" and d" are proper morphisms between smooth schemes over S. Let ¢, = p;d, ¢! =

pic’ d, = qd,d! = qd" fori=1,2. Let L; € D%(X;,A) and we put M; = fi.L; fori = 1,2.
Assume that one of the following conditions holds:

(1) X1 — S is SS(Ly, X1 /k)-transversal;

(2) Xo — S is SS(La, Xo/k)-transversal.

Then we have the following commutative diagram

fuc RHom(c5 Lo, ¢} L1) @ fucl RHom(c* L1, ¢y L) L fxciKeys

(3.3.2.1) l@) l@)

d, RHom(dif Mo, dj M) ®" d RHom(d!* My, di Ms) — 2= duK s

where (3) is given by (3.2.3.3), (1) is the composition of f.((3.2.3.3)) with the canonical map
fal ®F fucl — fu(c @), (2) is induced from (3.3.1.3), and (4) is defined by

adj
(3322) f*C*’CC/S >~ d*g*’CC/S = d*ggg!/CD/s —J> d*’CD/S-

If S is the spectrum of a field, this is proved in [SGA5, Théoreeme 4.4]. We use the same
notation as loc.cit.

Proof. By [Sail7a, Lemma 3.8 and Lemma 4.2.6] and the assumption, one of the following
conditions holds:

(al) Y3 — S is SS(M;, Y1/k)-transversal;
(a2) Yo — S is SS( My, Ys/k)-transversal.

Now we can use the same proof of [SGA5, Théoreme 4.4]. We only sketch the main step. Put
(3.3.2.3) P = L1 RHom(L2,Kx,s), Q= RHom(L1,Kx,s) X Lo
(3.3.2.4) & = M1 [¥§ RHom(Ma, Ky, s), F = RHom(My, Ky, s) 5§ Ma.
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Then the theorem follows from the following commutative diagram

f*C;C/!P QL f*C;:C”!Q f*C*C!(P QF Q) — f*C*C!ICX/S

| | |

d;d/'f*P @L df,fd”!f*Q - d*d' (f*P @L f* Q) - d*d'f* (P @L Q) - d*d!f*’CX/S

| | |

dyd'€ @ dld"F d.d (€ ®" F) did Ky s

where commutativity can be verified following the same argument of [SGA5, Théoreme 4.4]. O

Corollary 3.3.3 ([SGA5, Corollaire 4.5]). Under the assumptions of Theorem 3.3.2, we have a
commutative diagram

(3.33.1) Hom(c L2, £1) ® Hom(c{* L1,¢4'L)

H°(C,K¢ys)
@&L%@@&L%L l%
Hom(d foxL, di f1oL£1) @ Hom(d{* fisL1, d5 fosLo) —= H(D,Kp)s).

Corollary 3.3.4. Let S be a smooth connected scheme over a perfect field k of characteristic p.
Let f: X — S be a smooth morphism purely of relative dimension n and g: Y — S a smooth
morphism purely of relative dimension m. Assume that f is SS(F, X /k)-transversal. Then for
any proper morphism h: X —Y over S,

X i Y
(3.3.4.1) \ /
f g
S

we have
(3.3.4.2) feccex)s(F) = ceey jg(Rf«F) in H*™(Y, A(m)).
Proof. This follows from Corollary 3.3.3 and Definition 3.2.4. O
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