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ON THE RELATIVE TWIST FORMULA OF ℓ-ADIC SHEAVES

ENLIN YANG AND YIGENG ZHAO

Abstract. We propose a conjecture on the relative twist formula of ℓ-adic sheaves, which can
be viewed as a generalization of Kato-Saito’s conjecture. We verify this conjecture under some
transversal assumptions.

We also define a relative cohomological characteristic class and prove that its formation is
compatible with proper push-forward. A conjectural relation is also given between the relative
twist formula and the relative cohomological characteristic class.
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1. Introduction

As an analogy of the theory of D-modules, Beilinson [Bei16] and T. Saito [Sai17a] define the
singular support and the characteristic cycle of an ℓ-adic sheaf on a smooth variety respectively.
As an application of their theory, we prove a twist formula of epsilon factors in [UYZ], which is
a modification of a conjecture due to Kato and T. Saito[KS08, Conjecture 4.3.11].

1.1. Kato-Saito’s conjecture.

1.1.1. Let X be a smooth projective scheme purely of dimension d over a finite field k of
characteristic p. Let Λ be a finite field of characteristic ℓ ‰ p or Λ “ Qℓ. Let F P Db

cpX,Λq and
χpXk̄,Fq be the Euler-Poincaré characteristic of F . The Grothendieck L-function LpX,F , tq
satisfies the following functional equation

(1.1.1.1) LpX,F , tq “ εpX,Fq ¨ t´χpXk̄,Fq ¨ LpX,DpFq, t´1q,

where DpFq is the Verdier dual RHompF , Rf !Λq of F , f : X Ñ Speck is the structure morphism
and

(1.1.1.2) εpX,Fq “ detp´Frobk;RΓpXk̄,Fqq´1

is the epsilon factor (the constant term of the functional equation (1.1.1.1)) and Frobk is the
geometric Frobenius (the inverse of the Frobenius substitution).
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1.1.2. In (1.1.1.1), both χpXk̄,Fq and εpX,Fq are related to ramification theory. Let ccX{kpFq “

0!XpCCpF ,X{kqq P CH0pXq be the characteristic class of F (cf. [Sai17a, Definition 5.7]), where
0X : X Ñ T ˚X is the zero section and CCpF ,X{kq is the characteristic cycle of F . Then
χpXk̄,Fq “ degpccX{kpFqq by the index formula [Sai17a, Theorem 7.13]. The following theorem
proved in [UYZ] gives a relation between εpX,Fq and ccX{kpFq, which is a modified version of
the formula conjectured by Kato and T. Saito in [KS08, Conjecture 4.3.11].

Theorem 1.1.3 (Twist formula, [UYZ, Theorem 1.5]). We have

(1.1.3.1) εpX,F b Gq “ εpX,FqrankG ¨ detGpρX p´ccX{kpFqqq in Λˆ,

where ρX : CH0pXq Ñ πab
1 pXq is the reciprocity map defined by sending the class rss of a closed

point s P X to the geometric Frobenius Frobs and detG : πab
1 pXq Ñ Λˆ is the representation

associated to the smooth sheaf detG of rank 1.

When F is the constant sheaf Λ, this is proved by S. Saito [SS84]. If F is a smooth sheaf on
an open dense subscheme U of X such that F is tamely ramified along D “ XzU , then Theorem
1.1.3 is a consequence of [Sai93, Theorem 1]. In [Vi09a, Vi09b], Vidal proves a similar result
on a proper smooth surface over a finite field of characteristic p ą 2 under certain technical
assumptions. Our proof of Theorem 1.1.3 is based on the following theories: one is the theory
of singular support [Bei16] and characteristic cycle [Sai17a], and another is Laumon’s product
formula [Lau87].

1.2. ε-factorization.

1.2.1. Now we assume that X is a smooth projective geometrically connected curve of genus g
over a finite field k of characteristic p. Let ω be a non-zero rational 1-form on X and F an ℓ-adic
sheaf on X. The following formula is conjectured by Deligne and proved by Laumon [Lau87,
3.2.1.1]:

(1.2.1.1) εpX,Fq “ prk:Fpsp1´gqrankpFq
ź

vP|X|

εvpF |Xpvq
, ωq.

For higher dimensional smooth scheme X over k, it is still an open question whether there is an ε-
factorization formula (respectively a geometric ε-factorization formula) for εpX,Fq (respectively
detRΓpX,Fq).

1.2.2. In [Bei07], Beilinson develops the theory of topological epsilon factors using K-theory
spectrum and he asks whether his construction admits a motivic (ℓ-adic or de Rham) coun-
terpart. For de Rham cohomology, such a construction is given by Patel in [Pat12]. Based on
[Pat12], Abe and Patel prove a similar twist formula in [AP17] for global de Rham epsilon factors
in the classical setting of DX -modules on smooth projective varieties over a field of characteristic
zero. In the ℓ-adic situation, such a geometric ε-factorization formula is still open even if X is
a curve. Since the classical local ε-factors depend on an additive character of the base field, a
satisfied geometric ε-factorization theory will lie in an appropriate gerbe rather than be a super
graded line (cf. [Bei07, Pat12]).

1.2.3. More generally, we could also ask similar questions in a relative situation. Now let
f : X Ñ S be a proper morphism between smooth schemes over k. Let F be an ℓ-adic sheaf
on X such that f is universally locally acyclic relatively to F . Under these assumptions, we
know that Rf˚F is locally constant on S. Now we can ask if there is an analogue geometric
ε-factorization for the determinant detRf˚F . This problem is far beyond the authors’ reach
at this moment. But, similar to (1.1.3.1), we may consider twist formulas for detRf˚F . One
of the purposes of this paper is to formulate such a twist formula and prove it under certain
assumptions.
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1.2.4. Relative twist formula. Let S be a regular Noetherian scheme over Zr1{ℓs and f : X Ñ S

a proper smooth morphism purely of relative dimension n. Let F P Db
cpX,Λq such that f

is universally locally acyclic relatively to F . Then we conjecture that (see Conjecture 2.1.4)
there exists a unique cycle class ccX{SpFq P CHnpXq such that for any locally constant and
constructible sheaf G of Λ-modules on X, we have an isomorphism of smooth sheaves of rank 1
on S

detRf˚pF b Gq – pdetRf˚FqbrankG b detGpccX{SpFqq(1.2.4.1)

where detGpccX{SpFqq is a smooth sheaf of rank 1 on S (see 2.1.3 for the definition). We
call (1.2.4.1) the relative twist formula. As an evidence, we prove a special case of the above
conjecture in Theorem 2.4.4. It is also interesting to consider a similar relative twist formula for
de Rham epsilon factors in the sense of [AP17]. We will pursue this question elsewhere.

1.2.5. If S is moreover a smooth connected scheme of dimension r over a perfect field k, we
construct a candidate for ccX{SpFq in Definition 2.4.3. We also relate the relative characteristic
class ccX{SpFq to the total characteristic class of F . Let K0pX,Λq be the Grothendieck group

of Db
cpX,Λq. In [Sai17a, Definition 6.7.2], T. Saito defines the following morphism

ccX,‚ : K0pX,Λq Ñ CH‚pXq “
r`n
à

i“0

CHipXq,(1.2.5.1)

which sends F P Db
cpX,Λq to the total characteristic class ccX,‚pFq of F . Under the assump-

tion that f : X Ñ S is SSpF ,X{kq-transversal, we show that p´1qr ¨ ccX{SpFq “ ccX,rpFq in
Proposition 2.5.2.

1.2.6. Following Grothendieck [SGA5], it’s natural to ask whether the following diagram

K0pX,Λq

f˚

��

ccX,‚ // CH‚pXq

f˚

��
K0pY,Λq

ccY,‚ // CH‚pY q

(1.2.6.1)

is commutative or not for any proper map f : X Ñ Y between smooth schemes over k. If
k “ C, the diagram (1.2.6.1) is commutative by [Gin86, Theorem A.6]. By the philosophy of
Grothendieck, the answer is no in general if charpkq ą 0 (cf. [Sai17a, Example 6.10]). If k is a
finite field and if f : X Ñ Y is moreover projective, as a corollary of Theorem 1.1.3, we prove
in [UYZ, Corollary 5.26] that the degree zero part of (1.2.6.1) commutes. In general, motivated
by the conjectural formula (1.2.4.1), we propose the following question. Let f : X Ñ S and
g : Y Ñ S be smooth morphisms. Let Db

cpX{S,Λq be the thick subcategory of Db
cpX,Λq consists

of F P Db
cpX,Λq such that f is SSpF ,X{kq-transversal. Let K0pX{S,Λq be the Grothendieck

group of Db
cpX{S,Λq. Then for any proper morphism h : X Ñ Y over S, we conjecture that the

following diagram commutes (see Conjecture 2.5.4)

K0pX{S,Λq

h˚

��

ccX,r // CHrpXq

h˚

��
K0pY {S,Λq

ccY,r // CHrpY q.

(1.2.6.2)

1.2.7. As an evidence for (1.2.6.2), we construct a relative cohomological characteristic class

cccX{SpFq P H2npX,Λpnqq(1.2.7.1)

in Definition 3.2.4 if X Ñ S is smooth and SSpF ,X{kq-transversal. We prove that the for-
mation of cccX{SpFq is compatible with proper push-forward (see Corollary 3.3.4 for a precise



4 ENLIN YANG AND YIGENG ZHAO

statement). Similar to [Sai17a, Conjecture 6.8.1], we conjecture that we have the following
equality (see Conjecture 3.2.6)

(1.2.7.2) clpccX{SpFqq “ cccX{SpFq in H2npX,Λpnqq

where cl : CHnpXq Ñ H2npX,Λpnqq is the cycle class map.

Acknowledgements. Both authors are partially supported by the DFG through CRC 1085
Higher Invariants (Universität Regensburg). The authors are thank Naoya Umezaki for sharing
ideas and for helpful discussion during writing the paper [UYZ]. The authors are also thank
Professor Weizhe Zheng for discussing his paper [Zh15], and Haoyu Hu for his valuable comments.
The first author would like to thank his advisor Professor Linsheng Yin (1963-2015) for his
constant encouragement during 2010-2015.

Notation and Conventions.

(1) Let p be a prime number and Λ be a finite field of characteristic ℓ ‰ p or Λ “ Qℓ.
(2) We say that a complex F of étale sheaves of Λ-modules on a scheme X over Zr1{ℓs is

constructible (respectively smooth) if the cohomology sheaf HqpFq is constructible for
every q and if HqpFq “ 0 except finitely many q (respectively moreover HqpFq is locally
constant for all q).

(3) For a scheme S over Zr1{ℓs, let Db
cpS,Λq be the triangulated category of bounded com-

plexes of Λ-modules with constructible cohomology groups on S and let K0pS,Λq be the
Grothendieck group of Db

cpS,Λq.
(4) For a scheme X, we denote by |X| the set of closed points of X.
(5) For any smooth morphism X Ñ S, we denote by T ˚

XpX{Sq Ď T ˚pX{Sq the zero section
of the relative cotangent bundle T ˚pX{Sq of X over S. If S is the spectrum of a field,
we simply denote T ˚pX{Sq by T ˚X.

2. Relative twist formula

2.1. Reciprocity map.

2.1.1. For a smooth proper variety X purely of dimension n over a finite field k of characteristic
p, the reciprocity map ρX : CHnpXq Ñ πab

1 pXq is given by sending the class rss of closed point
s P X to the geometric Frobenius Frobs at s. The map ρX is injective with dense image [KS83].

2.1.2. Let S be a regular Noetherian scheme over Zr1{ℓs and X a smooth proper scheme purely
of relative dimension n over S. By [Sai94, Proposition 1], there exists a unique way to attach a
pairing

CHnpXq ˆ πab
1 pSq Ñ πab

1 pXq(2.1.2.1)

satisfying the following two conditions:

(1) When S “ Speck is a point, for a closed point x P X, the pairing with the class rxs
coincides with the inseparable degree times the Galois transfer trankpxq{k (cf.[Tat79, 1])
followed by ix˚ for ix : x Ñ X

Galpkab{kq
trankpxq{kˆrkpxq : ksi
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Galpkpxqab{kpxqq

ix˚
ÝÝÑ πab

1 pXq.

(2) For any point s P S, the following diagram commutes

CHnpXq

��

ˆ πab
1 pSq // πab

1 pXq

CHnpXsq ˆ πab
1 psq

OO

// πab
1 pXsq.

OO
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2.1.3. For any locally constant and constructible sheaf G of Λ-modules on X and any z P
CHnpXq, we have a map

πab
1 pSq

pz,‚q
ÝÝÝÑ πab

1 pXq
det G
ÝÝÝÑ Λˆ(2.1.3.1)

where pz, ‚q is the map determined by the paring (2.1.2.1) and detG is the representation
associated to the locally constant sheaf detG of rank 1. The composition detG˝pz, ‚q : πab

1 pSq Ñ
Λˆ determines a locally constant and constructible sheaf of rank 1 on S, which we simply denote
by detGpzq. Now we propose the following conjecture.

Conjecture 2.1.4 (Relative twist formula). Let S be a regular Noetherian scheme over Zr1{ℓs
and f : X Ñ S a smooth proper morphism purely of relative dimension n. Let F P Db

cpX,Λq
such that f is universally locally acyclic relatively to F . Then there exists a unique cycle class
ccX{SpFq P CHnpXq such that for any locally constant and constructible sheaf G of Λ-modules
on X, we have an isomorphism

detRf˚pF b Gq – pdetRf˚FqbrankG b detGpccX{SpFqq in K0pS,Λq,(2.1.4.1)

where K0pS,Λq is the Grothendieck group of Db
cpS,Λq.

We call this cycle class ccX{SpFq P CHnpXq the relative characteristic class of F if it exists. If
S is a smooth scheme over a perfect field k, we construct a candidate for ccX{SpFq in Definition
2.4.3.

As an evidence, we prove a special case of the above conjecture in Theorem 2.4.4. In order to
construct a cycle class ccX{SpFq satisfying (2.1.4.1), we use the theory of singular support and
characteristic cycle.

2.2. Transversal condition and singular support.

2.2.1. Let f : X Ñ S be a smooth morphism of Noetherian schemes over Zr1{ℓs. We denote
by T ˚pX{Sq the vector bundle SpecpSymOX

pΩ1
X{Sq_q on X and call it the relative cotangent

bundle on X with respect to S. We denote by T ˚
XpX{Sq “ X the zero-section of T ˚pX{Sq.

A constructible subset C of T ˚pX{Sq is called conical if C is invariant under the canonical
Gm-action on T ˚pX{Sq.

Definition 2.2.2 ([Bei16, §1.2] and [HY17, §2]). Let f : X Ñ S be a smooth morphism of
Noetherian schemes over Zr1{ℓs and C a closed conical subset of T ˚pX{Sq. Let Y be a Noetherian
scheme smooth over S and h : Y Ñ X an S-morphism.

(1) We say that h : Y Ñ X is C-transversal relatively to S at a geometric point ȳ Ñ Y if
for every non-zero vector µ P Chpȳq “ C ˆX ȳ, the image dhȳpµq P T ˚

ȳ pY {Sq :“ T ˚pY {Sq ˆY ȳ

is not zero, where dhȳ : T
˚
hpȳqpX{Sq Ñ T ˚

ȳ pY {Sq is the canonical map. We say that h : Y Ñ X

is C-transversal relatively to S if it is C-transversal relatively to S at every geometric point
of Y . If h : Y Ñ X is C-transversal relatively to S, we put h˝C “ dhpC ˆX Y q where
dh : T ˚pX{Sq ˆX Y Ñ T ˚pY {Sq is the canonical map induced by h. By the same argument of
[Bei16, Lemma 1.1], h˝C is a conical closed subset of T ˚pY {Sq.

(2) Let Z be a Noetherian scheme smooth over S and g : X Ñ Z an S-morphism. We say
that g : X Ñ Z is C-transversal relatively to S at a geometric point x̄ Ñ X if for every non-zero
vector ν P T ˚

gpx̄qpZ{Sq, we have dgx̄pνq R Cx̄, where dgx̄ : T
˚
gpx̄qpZ{Sq Ñ T ˚

x̄ pX{Sq is the canonical

map. We say that g : X Ñ Z is C-transversal relatively to S if it is C-transversal relatively to S

at all geometric points of X. If the base BpCq – C X T ˚
XpX{Sq of C is proper over Z, we put

g˝C :“ pr1pdg´1pCqq, where pr1 : T
˚pZ{Sq ˆZ X Ñ T ˚pZ{Sq denotes the first projection and

dg : T ˚pZ{Sq ˆZ X Ñ T ˚pX{Sq is the canonical map. It is a closed conical subset of T ˚pZ{Sq.
(3) A test pair of X relative to S is a pair of S-morphisms pg, hq : Y Ð U Ñ X such that U

and Y are Noetherian schemes smooth over S. We say that pg, hq is C-transversal relatively to
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S if h : U Ñ X is C-transversal relatively to S and g : U Ñ Y is h˝C-transversal relatively to
S.

Definition 2.2.3 ([Bei16, §1.3] and [HY17, §4]). Let f : X Ñ S be a smooth morphism of
Noetherian schemes over Zr1{ℓs. Let F be an object in Db

cpX,Λq.
(1) We say that a test pair pg, hq : Y Ð U Ñ X relative to S is F-acyclic if g : U Ñ Y is

universally locally acyclic relatively to h˚F .
(2) For a closed conical subset C of T ˚pX{Sq, we say that F is micro-supported on C relatively

to S if every C-transversal test pair of X relative to S is F-acyclic.
(3) Let CpF ,X{Sq be the set of all closed conical subsets C 1 Ď T ˚pX{Sq such that F is micro-

supported on C 1 relatively to S. Note that CpF ,X{Sq is non-empty if f : X Ñ S is universally
locally acyclic relatively to F . If CpF ,X{Sq has a smallest element, we denote it by SSpF ,X{Sq
and call it the singular support of F relative to S.

Theorem 2.2.4 (Beilinson). Let f : X Ñ S be a smooth morphism between Noetherian schemes
over Zr1{ℓs and F an object of Db

cpX,Λq.

(1) p[HY17, Theorem 5.2]q If we further assume that f : X Ñ S is projective and universally
locally acyclic relatively to F , the singular support SSpF ,X{Sq exists.

(2) p[HY17, Theorem 5.2 and Theorem 5.3]q In general, after replacing S by a Zariski open
dense subscheme, the singular support SSpF ,X{Sq exists, and for any s P S, we have

(2.2.4.1) SSpF |Xs ,Xs{sq “ SSpF ,X{Sq ˆS s.

(3) p[Bei16, Theorem 1.3]q If S “ Speck for a field k and if X is purely of dimension d, then
SSpF ,X{Sq is purely of dimension d.

2.3. Characteristic cycle and index formula.

2.3.1. Let k be a perfect field of characteristic p. Let X be a smooth scheme purely of dimension
n over k, let C be a closed conical subset of T ˚X and f : X Ñ A1

k a k-morphism. A closed point
v P X is called at most an isolated C-characteristic point of f : X Ñ A1

k if there is an open
neighborhood V Ď X of v such that f : V ´ tvu Ñ A1

k is C-transversal. A closed point v P X

is called an isolated C-characteristic point if v is at most an isolated C-characteristic point of
f : X Ñ A1

k but f : X Ñ A1
k is not C-transversal at v.

Theorem 2.3.2 (T. Saito, [Sai17a, Theorem 5.9]). Let X be a smooth scheme purely of dimen-
sion n over a perfect field k of characteristic p. Let F be an object of Db

cpX,Λq and tCαuαPI

the set of irreducible components of SSpF ,X{kq. There exists a unique n-cycle CCpF ,X{kq “
ř

αPI mαrCαs pmα P Zq of T ˚X supported on SSpF ,X{kq, satisfying the following Milnor for-
mula (2.3.2.1):

For any étale morphism g : V Ñ X, any morphism f : V Ñ A1
k, any isolated g˝SSpF ,X{kq-

characteristic point v P V of f : V Ñ A1
k and any geometric point v̄ of V above v, we have

(2.3.2.1) ´ dimtot RΦv̄pg˚F , fq “ pg˚CCpF ,X{kq, dfqT˚V,v,

where RΦv̄pg˚F , fq denotes the stalk at v̄ of the vanishing cycle complex of g˚F relative to f ,
dimtot RΦv̄pg˚F , fq is the total dimension of RΦv̄pg˚F , fq and g˚CCpF ,X{kq is the pull-back
of CCpF ,X{kq to T ˚V .

We call CCpF ,X{kq the characteristic cycle of F . It satisfies the following index formula.

Theorem 2.3.3 (T. Saito, [Sai17a, Theorem 7.13]). Let k̄ be an algebraic closure of a perfect
field k of characteristic p, X a smooth projective scheme over k and F P Db

cpX,Λq. Then, we
have

(2.3.3.1) χpXk̄,F |Xk̄
q “ degpCCpF ,X{kq, T ˚

XXqT˚X ,

where χpXk̄,F |Xk̄
q denotes the Euler-Poincaré characteristic of F |Xk̄

.
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We give a generalization in Theorem 2.3.5. For a smooth scheme π : X Ñ Speck, and two
objects F1 and F2 in Db

cpX,Λq, we denote F1 bL
k F2 – pr˚

1F1 bL pr˚
2F2 P Db

cpX ˆ X,Λq, where
pri : X ˆ X Ñ X is the ith projection, for i “ 1, 2. We also denote DXpF1q “ RHompF1,KXq,
where KX “ Rπ!Λ.

Lemma 2.3.4. Let X be a smooth variety purely of dimension n over a perfect field k of
characteristic p. Let F1 and F2 be two objects in Db

cpX,Λq. Then the diagonal map δ : ∆ “
X ãÑ XˆX is SSpF2bLDXF1,XˆX{kq-transversal if and only if SSpF2bL

kDXF1,XˆX{kq Ď
T ˚
∆pX ˆ Xq. If we are in this case, then the canonical map

RHompF1,Λq bL F2
–
ÝÑ RHompF1,F2q

is an isomorphism.

Proof. The first assertion follows from the short exact sequence of vector bundles onX associated
to δ : ∆ “ X ãÑ X ˆ X:

0 Ñ T ˚
∆pX ˆ Xq Ñ T ˚pX ˆ Xq ˆXˆX ∆

dδ
ÝÑ T ˚X Ñ 0.

For the second claim, we have the following canonical isomorphisms

RHompF1,Λq bL F2 – RHompF1,Λpnqr2nsq bL Λp´nqr´2ns bL F2

p1q
– DXF1 bL Rδ!Λ bL F2

– δ˚pF2 b
L
k DXF1q bL Rδ!Λ

p2q
– Rδ!pF2 b

L
k DXF1q(2.3.4.1)

p3q
– Rδ!pRHomppr˚

2F1, Rpr!1F2qq – RHompδ˚pr˚
2F1, Rδ!Rpr!1F2q

– RHompF1,F2q,

where
(1) follows from the purity for the closed immersion δ [ILO14, XVI, Théorème 3.1.1];
(2) follows from the assumption that δ is SSpF2bL

k DXF1q-transversal by [Sai17a, Proposition
8.13 and Definition 8.5];

(3) follows from the Künneth formula [SGA5, Exposé III, (3.1.1)]. �

Theorem 2.3.5. Let X be a smooth projective variety purely of dimension n over an alge-
braically closed field k of characteristic p. Let F1 and F2 be two objects in Db

cpX,Λq such that
the diagonal map δ : ∆ “ X ãÑ X ˆX is properly SSpF2 bL

k DXF1,X ˆX{kq-transversal. Then
we have

(2.3.5.1) p´1qn ¨ dimΛ ExtpF1,F2q “ deg pCCpF1,X{kq, CCpF2,X{kqqT˚X

where dimΛ ExtpF1,F2q “
ř

i

p´1qi dimΛ Exti
Db

cpX,ΛqpF1,F2q.

Proof. By the isomorphisms (2.3.4.1), the left hand side of (2.3.5.1) equals to

p´1qn ¨ χpX,Rδ!pF2 b
L
k DXF1qq “ p´1qn ¨ χpX, δ˚pF2 b

L
k DXF1q

“ p´1qn ¨ degpCCpδ˚pF2 b
L
k DXpF1q,X{kq, T ˚

XXqT˚X .(2.3.5.2)

Since δ : X Ñ X ˆ X is properly SSpF2 bL
k DXF1,X ˆ X{kq-transversal, we have

CCpδ˚pF2 b
L
k DXF1q,X{kq “ p´1qnδ˚CCpDpF2 b

L
k DXF1,X ˆ X{kqq(2.3.5.3)

“ p´1qnδ˚pCCpF2,X{kq ˆ CCpF1,X{kqq.(2.3.5.4)
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where the equality (2.3.5.3) follows from [Sai17a, Theroem 7.6], and (2.3.5.4) follows from
[Sai17b, Theorem 2.2.2]. Consider the following commutative diagram

T ˚X ˆ T ˚X T ˚pX ˆ Xq T ˚pX ˆ Xq ˆXˆX ∆
proo dδ // T ˚X

T ˚X
– //

OO

diag

ggPPPPPPPPPPPPP
T ˚
∆pX ˆ Xq //

OO

X.

OO

l

We have δ˚pCCpF2,X{kq ˆ CCpF1,X{kqq “ dδ˚pr
!pCCpF2,X{kq ˆ CCpF1,X{kqq and

degpδ˚pCCpF2,X{kq ˆ CCpF1,X{kqq, T ˚
XXqT˚X “ deg pCCpF1,X{kq, CCpF2,X{kqqT˚X .

Then (2.3.5.1) follows from the above formula and (2.3.5.2). �

Remark 2.3.6. If F1 is the constant sheaf Λ, then Theorem 2.3.5 is the index formula (2.3.3.1).
Theorem 2.3.5 can be viewed as the ℓ-adic version of the global index formula in the setting of
DX -modules (cf. [Gin86, Theorem 11.4.1]).

2.4. Relative twist formula.

2.4.1. Let S be a Noetherian scheme over Zr1{ℓs, f : X Ñ S a smooth morphism of finite type
and F an object of Db

cpX,Λq. Assume that the relative singular support SSpF ,X{Sq exists. A
cycle B “

ř

iPI mirBis in T ˚pX{Sq is called the characteristic cycle of F relative to S if each Bi

is a subset of SSpF ,X{Sq, each Bi Ñ S is open and equidimensional and if, for any algebraic
geometric point s̄ of S, we have

(2.4.1.1) Bs̄ “
ÿ

iPI

mirpBiqs̄s “ CCpF |Xs̄ ,Xs̄{s̄q.

We denote by CCpF ,X{Sq the characteristic cycle of F on X relative to S. Notice that relative
characteristic cycles may not exist in general.

Proposition 2.4.2 (T. Saito, [HY17, Proposition 6.5]). Let k be a perfect field of characteristic
p. Let S be a smooth connected scheme of dimension r over k, f : X Ñ S a smooth morphism of
finite type and F an object of Db

cpX,Λq. Assume that f : X Ñ S is SSpF ,X{kq-transversal and
that each irreducible component of SSpF ,X{kq is open and equidimensional over S. Then the
relative singular support SSpF ,X{Sq and the relative characteristic cycle CCpF ,X{Sq exist,
and we have

SSpF ,X{Sq “ θpSSpF ,X{kqq,(2.4.2.1)

CCpF ,X{Sq “ p´1qrθ˚pCCpF ,X{kqq,(2.4.2.2)

where θ : T ˚X Ñ T ˚pX{Sq denotes the projection induced by the canonical map Ω1
X{k Ñ Ω1

X{S.

Definition 2.4.3. Let k be a perfect field of characteristic p and S a smooth connected scheme
of dimension r over k. Let f : X Ñ S be a smooth morphism purely of relative dimension n

and F an object of Db
cpX,Λq. Assume that f : X Ñ S is SSpF ,X{kq-transversal. Consider the

following cartesian diagram

T ˚S ˆS X //

��

T ˚X

��
X

0X{S // T ˚pX{Sq

(2.4.3.1)

where 0X{S : X Ñ T ˚pX{Sq is the zero section. Since f : X Ñ S is SSpF ,X{kq-transversal, the

refined Gysin pull-back 0!
X{SpCCpF ,X{kqq of CCpF ,X{kq is a r-cycle class supported on X.

We define the relative characteristic class of F to be

ccX{SpFq “ p´1qr ¨ 0!X{SpCCpF ,X{kqq in CHnpXq.(2.4.3.2)
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Now we prove a special case of Conjecture 2.1.4.

Theorem 2.4.4 (Relative twist formula). Let S be a smooth connected scheme of dimension r

over a finite field k of characteristic p. Let f : X Ñ S be a smooth projective morphism of relative
dimension n. Let F P Db

cpX,Λq and G a locally constant and constructible sheaf of Λ-modules
on X. Assume that f is properly SSpF ,X{kq-transversal. Then there is an isomorphism

detRf˚pF b Gq – pdetRf˚FqbrankG b detGpccX{SpFqq in K0pS,Λq.(2.4.4.1)

Note that we also have ccX{SpFq “ pCCpF ,X{Sq, T ˚
XXqT˚pX{Sq P CHnpXq.

Proof. We may assume G ‰ 0. Since G is a smooth sheaf, we have SSpF ,X{kq “ SSpFbG,X{kq.
Since f is proper and SSpF ,X{kq-transversal, by [Sai17a, Lemma 4.3.4], Rf˚F and Rf˚pF bGq
are smooth sheaves on S. For any closed point s P S, we have the following commutative
diagram

T ˚X ˆX Xs
θs //

pr

��

T ˚Xs – T ˚pX{Sq ˆX Xs

pr

��

Xs

0Xsoo

i

��
T˚X

θ // T ˚pX{Sq

l

X
0X{Soo

l

where 0X{S and 0Xs are the zero sections. Hence we have

ccXspF |Xsq “ pCCpF |Xs ,Xs{sq,XsqT˚Xs
“ 0!Xs

CCpF |Xs ,Xs{sq
paq
“ 0!Xs

i!CCpF ,X{kq

“ p´1qr0!Xs
i˚CCpF ,X{kq “ p´1qr0!Xs

θs˚pr
!CCpF ,X{kq

“ p´1qr0!Xs
pr!θ˚CCpF ,X{kq “ p´1qr0!Xs

pr!pp´1qrCCpF ,X{Sqq(2.4.4.2)

“ 0!Xs
pr!CCpF ,X{Sq “ i!0!X{SCCpF ,X{Sq “ i!ccX{SpFq,

where the equality (a) follows from [Sai17a, Theorem 7.6] since f is properly SSpF ,X{kq-
transversal.

By Chebotarev density (cf. [Lau87, Théorème 1.1.2]), we may assume that S is the spectrum
of a finite field. Then it is sufficient to compare the Frobenius action. Then one use (2.4.4.2)
and Theorem 1.1.3. �

Example 2.4.5. Let S be a smooth projective connected scheme over a finite field k of char-
acteristic p ą 2. Let f : X Ñ S be a smooth projective morphism of relative dimension n,
χ “ rankRf˚Qℓ the Euler-Poincaré number of the fibers and let F be a constructible étale sheaf
of Λ-modules on S. Then by the projection formula, we have Rf˚f

˚F – F b Rf˚Qℓ. Since f is
projective and smooth, Rf˚Qℓ is a smooth sheaf on S. Using Theorem 1.1.3, we get

εpS,Rf˚f
˚Fq “ εpS,Fqχ ¨ detRf˚Qℓp´ccY {kpFqq.(2.4.5.1)

By [Sai94, Theorem 2], detRf˚Qℓ “ κX{Sp´1
2nχq, where κX{S is a character of order at most 2

and is determined by the following way:
(1) If n is odd, then κX{S is trivial.
(2) If n “ 2m is even, then κX{S is the quadratic character defined by the square root of

p´1q
χpχ´1q

2 ¨ δdR,X{S, where δdR,X{S : pdetHdRpX{Sqqb2 »
ÝÑ OS is the de Rham discriminant

defined by the non-degenerate symmetric bilinear form HdRpX{Sq bL HdRpX{Sq Ñ OSr´2ns,
and HdRpX{Sq “ Rf˚Ω

‚
X{S is the perfect complex of OS-modules whose cohomology computes

the relative de Rham cohomology of X{S.
Similarly, if F is a locally constant and constructible étale sheaf of Λ-modules on S, then

detRf˚f
˚F – detpF b Rf˚Qℓq – pdetFqbχ b pdetRf˚Qℓq

brankF

– pdetFqbχ b pκX{Sp´
1

2
nχqqbrankF .(2.4.5.2)
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2.5. Total characteristic class.

2.5.1. In the rest of this section, we relate the relative characteristic class ccX{SpFq to the total
characteristic class of F . Let X be a smooth scheme purely of dimension d over a perfect field
k of characteristic p. In [Sai17a, Definition 6.7.2], T. Saito defines the following morphism

ccX,‚ : K0pX,Λq Ñ CH‚pXq “
d

à

i“0

CHipXq,(2.5.1.1)

which sends F P Db
cpX,Λq to the total characteristic class ccX,‚pFq of F . For our convenience,

for any integer n we put

ccnX pFq – ccX,d´npFq in CHnpXq.(2.5.1.2)

By [Sai17a, Lemma 6.9], for any F P Db
cpX,Λq, we have

ccdXpFq “ ccX,0pFq “ pCCpF ,X{kq, T ˚
XXqT˚X in CH0pXq,(2.5.1.3)

cc0XpFq “ ccX,dpFq “ p´1qd ¨ rankF ¨ rXs in CHdpXq “ Z.(2.5.1.4)

The following proposition gives a computation of ccnXF for any n.

Proposition 2.5.2. Let S be a smooth connected scheme of dimension r over a perfect field k of
characteristic p. Let f : X Ñ S be a smooth morphism purely of relative dimension n. Assume
that f is SSpF ,X{kq-transversal. Then we have

ccnXpFq “ p´1qr ¨ ccX{SpFq in CHnpXq(2.5.2.1)

where ccX{SpFq is defined in Definition 2.4.3.

Proof. We use the notation of [Sai17a, Lemma 6.2]. We put F “ pT ˚S ˆS Xq ‘ A1
X and

E “ T ˚X ‘ A1
X . We have a canonical injection i : F Ñ E of vector bundles on X induced by

df : T ˚S ˆS X Ñ T ˚X. Let ī : PpF q Ñ PpEq be the canonical map induced by i : F Ñ E. By
[Sai17a, Lemma 6.1.2 and Lemma 6.2.1], we have a commutative diagram:

CHrpPpF qq CHn`rpPpEqq
ī˚

oo

r
À

q“0
CHqpXq

»

OO

can
��

n`r
À

q“0
CHqpXq

canoo

»

OO

can
��

CHrpXq CHnpXq CHrpXq.

(2.5.2.2)

Since f is smooth and SSpF ,X{kq-transversal, the intersection SSpF ,X{kq X pT ˚S ˆS Xq
is contained in the zero section of T ˚S ˆS X. Thus the Gysin pull-back i˚pCCpF ,X{kqq is

supported on the zero section of T ˚S ˆS X. Let CCpF ,X{kq be any extension of CCpF ,X{kq

to PpEq (cf. [Sai17a, Definition 6.7.2]). Then ī˚pCCpF ,X{kqq is an extension of i˚pCCpF ,X{kqq

to PpF q. By [Sai17a, Definition 6.7.2], the image of CCpF ,X{kq in CHnpXq by the right vertical

map of (2.5.2.2) equals to ccnXpFq “ ccX,rpFq. The image of ī˚pCCpF ,X{kqq in CHnpXq by
the left vertical map of (2.5.2.2) equals to p´1qr ¨ ccX{SpFq (cf. (2.4.3.2)). Now the equality
(2.5.2.1) follows from the commutativity of (2.5.2.2). �
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2.5.3. Following Grothendieck [SGA5], it’s natural to ask the following question: is the diagram

K0pX,Λq

f˚

��

ccX,‚ // CH‚pXq

f˚

��
K0pY,Λq

ccY,‚ // CH‚pY q

(2.5.3.1)

commutative for any proper map f : X Ñ Y between smooth schemes over a perfect field k? If
k “ C, the diagram (2.5.3.1) is commutative by [Gin86, Theorem A.6]. By the philosophy of
Grothendieck, the answer is no in general if charpkq ą 0 (cf. [Sai17a, Example 6.10]). However, in
[UYZ, Corollary 1.9], we prove that the degree zero part of the diagram (2.5.3.1) is commutative,
i.e., if f : X Ñ Y is a proper map between smooth projective schemes over a finite field k of
characteristic p, then we have the following commutative diagram

K0pX,Λq

f˚

��

ccX,0 // CH0pXq

f˚

��
K0pY,Λq

ccY,0 // CH0pY q.

(2.5.3.2)

Now we propose the following:

Conjecture 2.5.4. Let S be a smooth connected scheme over a perfect field k of characteristic
p. Let f : X Ñ S be a smooth morphism purely of relative dimension n and g : Y Ñ S a smooth
morphism purely of relative dimension m. Let Db

cpX{S,Λq be the thick subcategory of Db
cpX,Λq

consists of F P Db
cpX,Λq such that f : X Ñ S is SSpF ,X{kq-transversal. Let K0pX{S,Λq be

the Grothendieck group of Db
cpX{S,Λq. Then for any proper morphism h : X Ñ Y over S,

X
h //

f ��❅
❅❅

❅❅
❅❅

❅ Y

g
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

(2.5.4.1)

the following diagram commutes

K0pX{S,Λq

h˚

��

ccn
X // CHnpXq

h˚

��
K0pY {S,Λq

ccmY // CHmpY q.

(2.5.4.2)

That is to say, for any F P Db
cpX,Λq, if f is SSpF ,X{kq-transversal, then we have

h˚pccnXpFqq “ ccmY pRh˚Fq in CHmpY q.(2.5.4.3)

Remark 2.5.5. If f is SSpF ,X{kq-transversal, by [Sai17a, Lemma 3.8 and Lemma 4.2.6],
the morphism g : Y Ñ S is SSpRh˚F , Y {kq-transversal. Thus we have a well-defined map
h˚ : K0pX{S,Λq Ñ K0pY {S,Λq.

In next section, we formulate and prove a cohomological version of Conjecture 2.5.4 (cf.
Corollary 3.3.4).

3. Relative cohomological characteristic class

In this section, we assume that S is a smooth connected scheme over a perfect field k of
characteristic p and Λ is a finite field of characteristic ℓ. To simplify our notations, we omit to
write R or L to denote the derived functors unless otherwise stated explicitly or for RHom.
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We briefly recall the content of this section. Let X Ñ S be a smooth morphism purely of
relative dimension n and F P Db

cpX,Λq. If X Ñ S is SSpF ,X{kq-transversal, we construct a
relative cohomological characteristic class cccX{SpFq P H2npX,Λpnqq following the method of
[AS07, SGA5]. We conjecture that the image of the cycle class ccX{SpFq by the cycle class map

cl : CHnpXq Ñ H2npX,Λpnqq is cccX{SpFq (cf. Conjecture 2.1.4). In Corollary 3.3.4, we prove
that the formation of cccX{SF is compatible with proper push-forward.

3.1. Relative cohomological correspondence.

3.1.1. Let π1 : X1 Ñ S and π2 : X2 Ñ S be smooth morphisms purely of relative dimension n1

and n2 respectively. We put X – X1 ˆS X2 and consider the following cartesian diagram

X
pr2 //

pr1

��

X2

π2

��
X1 π1

// S.

l(3.1.1.1)

Let Ei and Fi be objects of Db
cpXi,Λq for i “ 1, 2. We put

F – F1 b
L
S F2 :“ pr˚

1F1 bL pr˚
2F2,(3.1.1.2)

E – E1 b
L
S E2 :“ pr˚

1E1 bL pr˚
2E2,(3.1.1.3)

which are objects of Db
cpX,Λq. Similarly, we can define F1bL

k F2, which is an object of Db
cpX1ˆk

X2,Λq. We first compare SSpF1 bL
S F2,X1 ˆS X1{kq and SSpF1 bL

k F2,X1 ˆk X1{kq.

Lemma 3.1.2. Assume that π1 : X1 Ñ S is SSpF1,X1{kq-transversal. Then we have

SSppr˚
1F1,X{kq X SSppr˚

2F2,X{kq Ď T ˚
XX.(3.1.2.1)

Moreover, the closed immersion i : X1ˆSX2 ãÑ X1ˆkX2 is SSpF1bL
kF2,X1ˆkX2{kq-transversal

and

(3.1.2.2) SSpF1 b
L
S F2,X1 ˆS X2{kq Ď i˝pSSpF1 b

L
k F2,X1 ˆk X2{kqq.

Proof. We first prove (3.1.2.1). Since Xi Ñ S is smooth, we obtain an exact sequence of vector
bundles on Xi for i “ 1, 2

0 Ñ T ˚S ˆS Xi
dπiÝÝÑ T ˚Xi Ñ T ˚pXi{Sq Ñ 0.(3.1.2.3)

Since π1 : X1 Ñ S is SSpF1,X1{kq-transversal, we have

SSpF1,X1{kq X pT ˚S ˆS X1q Ď T ˚
SS ˆS X1.(3.1.2.4)

Consider the following diagram with exact rows and exact columns:

0 0

T ˚pX2{Sq ˆX2
X

– //

OO

T ˚pX{X1q

OO

0 // T ˚X2 ˆX2
X

OO

// T ˚X

OO

// T ˚pX{X2q // 0

0 // T ˚S ˆS X

OO

// T ˚X1 ˆX1
X //

OO

T ˚pX1{Sq ˆX1
X //

–
OO

0

0

OO

0

OO

(3.1.2.5)

Since pri is smooth, by [Sai17a, Corollary 8.15], we have

SSppr˚
i Fi,X{kq “ pr˝

iSSpFi,Xi{kq “ SSpFi,Xi{kq ˆXi
X.
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It follows from (3.1.2.4) and (3.1.2.5) that pr˝
1SSpF1,X1{kq X pr˝

2SSpF2,X2{kq Ď T ˚
XX. Thus

SSppr˚
1F1,X{kq X SSppr˚

2F2,X{kq Ď T ˚
XX. This proves (3.1.2.1).

Now we consider the cartesian diagram

X “ X1 ˆS X2
i //

��

X1 ˆk X2

��
S

δ // S ˆk S

l(3.1.2.6)

where δ : S Ñ S ˆk S is the diagonal. We get the following commutative diagram of vector
bundles on X with exact rows:

T ˚X1 ˆS T ˚X2

0 // NX{pX1ˆkX2q
// T ˚pX1 ˆk X2q ˆX1ˆkX2

X
di // T ˚X // 0

0 // NS{pSˆkSq ˆS X

–
OO

// T ˚pS ˆk Sq ˆSˆkS X

OO

dδ // T ˚S ˆS X

OO

// 0

T ˚S ˆS X // pT ˚S ˆS X1q ˆS pT ˚S ˆS X2q

where NS{pSˆkSq is the conormal bundle associated to δ : S Ñ S ˆk S. By [Sai17b, Theo-

rem 2.2.3], we have SSpF1 bL
k F2,X1 ˆk X2{kq “ SSpF1,X1{kq ˆ SSpF2,X2{kq. Therefore

by (3.1.2.4), NX{pX1ˆkX2q X SSpF1 bL
k F2,X1 ˆk X2{kq is contained in the zero section of

NX{pX1ˆkX2q. Hence i : X ãÑ X1 ˆk X2 is SSpF1 bL
k F2,X1 ˆk X2{kq-transversal. Now the

assertion (3.1.2.2) follows from [Sai17a, Lemma 4.2.4]. �

Proposition 3.1.3. Under the notation in 3.1.1, we assume that

(1) SSpEi,Xi{kq X SSpFi,Xi{kq Ď T ˚
Xi
Xi for all i “ 1, 2;

(2) π1 : X1 Ñ S is SSpE1,X1{kq-transversal or π2 : X2 Ñ S is SSpF2,X2{kq-transversal;
(3) π1 : X1 Ñ S is SSpF1,X1{kq-transversal or π2 : X2 Ñ S is SSpE2,X2{kq-transversal.

Then the following canonical map pcf. [Zh15, (7.2.2)] and [SGA5, Exposé III, (2.2.4)]q

RHompE1,F1q b
L
S RHompE2,F2q Ñ RHompE ,Fq.(3.1.3.1)

is an isomorphism.

If S is the spectrum of a field, then the above result is proved in [SGA5, Exposé III, Proposition
2.3]. Our proof below is different from that of loc.cit. and is based on [Sai17a].

Proof. In the following, we put E_
i – RHompEi,Λq. Since SSpEi,Xi{kqXSSpFi,Xi{kq Ď T ˚

Xi
Xi,

Lemma 2.3.4 implies that

(3.1.3.2) Fi bL E_
i “ Fi bL RHompEi,Λq

–
ÝÑ RHompEi,Fiq, for all i “ 1, 2,

Hence we have

RHompE1,F1q b
L
S RHompE2,F2q – pF1 bL E_

1 q b
L
S pF2 bL E_

2 q(3.1.3.3)

– pF1 b
L
S F2q bL pE_

1 b
L
S E_

2 q.

Note that we also have

E_
1 b

L
S E_

2 “ pr˚
1RHompE1,Λq bL pr˚

2RHompE2,Λq

– RHomppr˚
1E1,Λq bL RHomppr˚

2E2,Λq(3.1.3.4)

paq
– RHomppr˚

1E1, RHomppr˚
2E2,Λqq

– RHomppr˚
1E1 bL pr˚

2E2,Λq “ E_,
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where the isomorphism (a) follows from Lemma 2.3.4 by the fact that (cf. Lemma 3.1.2)

SSppr˚
1E1,X{kq X SSppr˚

2E2,X{kq Ď T ˚
XX.

By Lemma 3.1.2, we have

SSpE ,X{kq X SSpF ,X{kq

Ď i˝pSSpE1 b
L
k E2,X1 ˆk X2{kqq X i˝pSSpF1 b

L
k F2,X1 ˆk X2{kqq

pbq
“ i˝pSSpE1,X1q ˆ SSpE2,X2qq X i˝pSSpF1,X1q ˆ SSpF2,X2qq

pcq
Ď T ˚

XX,

where the equality (b) follows from [Sai17b, Theorem 2.2.3], and pcq follows from the assumptions
(2) and (3) (cf. [Sai17b, Lemma 2.7.2]). Thus by Lemma 2.3.4, we have

F bL E_ – RHompE ,Fq.(3.1.3.5)

Combining (3.1.3.3), (3.1.3.4) and (3.1.3.5), we get

RHompE1,F1q b
L
S RHompE2,F2q – F bL E_ – RHompE ,Fq.(3.1.3.6)

This finishes the proof. �

3.1.4. Künneth formula. We have the following canonical morphism

(3.1.4.1) F1 b
L
S RHompF2, π

!
2ΛSq Ñ RHomppr˚

2F2,pr
!
1F1q,

by taking the adjunction of the following composition map

pr˚
1F1 b pr˚

2RHompF2, π
!
2ΛSq b pr˚

2F2 Ñ pr˚
1F1 b pr˚

2pF2 b RHompF2, π
!
2ΛSqq

evaluation
ÝÝÝÝÝÝÑ pr˚

1F1 b pr˚
2π

!
2ΛS Ñ pr˚

1F1 b pr!1ΛX1
Ñ pr!1F1.

Corollary 3.1.5. Assume that π1 : X1 Ñ S is SSpF1,X1{kq-transversal or π2 : X2 Ñ S is
SSpF2,X2{kq-transversal. Then the canonical map (3.1.4.1) is an isomorphism.

If S is the spectrum of a field, then the above result is proved in [SGA5, Exposé III, (3.1.1)].
Our proof below is different from that of loc.cit.

Proof. By Proposition 3.1.3, we have the following isomorphisms

F1 b
L
S RHompF2, π

!
2ΛSq

Prop.3.1.3
– RHomppr˚

2F2,pr
˚
1F1 b pr!1ΛSq

paq
– RHomppr˚

2F2,pr
!
1F1q,

where paq follows from the fact that pr1 is smooth (cf. [ILO14, XVI, Théorème 3.1.1] and [SGA4,
XVIII, Theoréme 3.2.5]). �

Definition 3.1.6. Let Xi,Fi be as in 3.1.1 for i “ 1, 2. A relative correspondence between X1

and X2 is a scheme C over S with morphisms c1 : C Ñ X1 and c2 : C Ñ X2 over S. We put
c “ pc1, c2q : C Ñ X1 ˆSX2 the corresponding morphism. A morphism u : c˚

2F2 Ñ c!1F1 is called
a relative cohomological correspondence from F2 to F1 on C.

3.1.7. Given a correspondence C as above, we recall that there is a canonical isomorphism
[SGA4, XVIII, 3.1.12.2]

(3.1.7.1) RHompc˚
2F2, c

!
1F1q

–
ÝÑ c!RHomppr˚

2F2,pr
!
1F1q.
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3.1.8. For i “ 1, 2, consider the following diagram of S-morphisms

Xi

fi //

πi   ❅
❅❅

❅❅
❅❅

❅
Yi

qi��⑧⑧
⑧⑧
⑧⑧
⑧

S,

where πi and qi are smooth morphisms. We put X – X1 ˆS X2, Y – Y1 ˆS Y2 and f –

f1 ˆS f2 : X Ñ Y . Let Mi P Db
cpYi,Λq for i “ 1, 2. We have a canonical map (cf. [Zh15,

Construction 7.4] and [SGA5, Exposé III, (1.7.3)])

(3.1.8.1) f !
1M1 b

L
S f !

2M2 Ñ f !pM1 b
L
S M2q

which is adjoint to the composite

f!pf
!
1M1 b

L
S f !

2M2q
»

ÝÝÑ
paq

f1!f
!
1M1 b

L
S f2!f

!
2M2

adjbadj
ÝÝÝÝÝÑ M1 b

L
S M2(3.1.8.2)

where (a) is the Künneth isomorphism [SGA4, XVII, Théorème 5.4.3].

Proposition 3.1.9. If q2 : Y2 Ñ S is SSpM2, Y2{kq-transversal, then the map (3.1.8.1) is an
isomorphism.

If S is the spectrum of a field, the above result is proved in [SGA5, Exposé III, Proposition
1.7.4].

Proof. Consider the following cartesian diagrams

X1 ˆS X2
f1ˆid //

f

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

idˆf2
��

Y1 ˆS X2
//

idˆf2
��

X2

f2
��

X1 ˆS Y2

pr1
��

f1ˆid // Y1 ˆS Y2

pr1
��

pr2 // Y2

q2

��
X1

f1 //

π1

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖ Y1
q1 //

q1

��

S

S.

We may assume that X2 “ Y2 and f2 “ id, i.e., it suffices to show that the canonical map

(3.1.9.1) f !
1M1 b

L
S M2

–
ÝÑ pf1 ˆ idq!pM1 b

L
S M2q.

is an isomorphism. Since we have

M2 – DY2
DY2

M2 – RHompDY2
M2,KY2

q

– RHompDY2
pM2qp´dimSqr´2dimSs, q!2ΛSq,

we may assume M2 “ RHompL2, q
!
2ΛSq for some L2 P Db

cpY2,Λq. By [Sai17a, Corollary 4.9],
we have SSpM2, Y2{kq “ SSpL2, Y2{kq. Thus by assumption, the morphism q2 : Y2 Ñ S is
SSpL2, Y2{kq-transversal. By Corollary 3.1.5, we have an isomorphism

M1 b
L
S RHompL2, q

!
2ΛSq – RHomppr˚

2L2,pr
!
1M1q inDb

cpY1 ˆS Y2,Λq,(3.1.9.2)

f !
1M1 b

L
S RHompL2, q

!
2ΛSq – RHomppf1 ˆ idq˚pr˚

2L2,pr
!
1f

!
1M1q inDb

cpX1 ˆS Y2,Λq.(3.1.9.3)
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We have

pf1 ˆ idq!pM1 b
L
S M2q “ pf1 ˆ idq!pM1 b

L
S RHompL2, q

!
2ΛSqq

(3.1.9.2)
– pf1 ˆ idq!pRHomppr˚

2L2,pr
!
1M1qq

(3.1.7.1)
– RHomppf1 ˆ idq˚pr˚

2L2, pf1 ˆ idq!pr!1M1q(3.1.9.4)

– RHomppf1 ˆ idq˚pr˚
2L2,pr

!
1f

!
1M1q

(3.1.9.3)
– f !

1M1 b
L
S RHompL2, q

!
2ΛSq – f !

1M1 b
L
S M2.

This finishes the proof. �

3.2. Relative cohomological characteristic class.

3.2.1. We introduce some notation for convenience. For any commutative diagram

W

f ##❋
❋❋

❋❋
❋❋

❋❋
h // V

g
||②②
②②
②②
②②
②

Speck

of schemes, we put

KW – Rf !Λ,(3.2.1.1)

KW {V – Rh!ΛV .(3.2.1.2)

Under the notation in 3.1.1, by Proposition 3.1.9, we have an isomorphism

KX1{S b
L
S KX2{S » KX{S .(3.2.1.3)

3.2.2. Consider a cartesian diagram

E
e

  ❅
❅❅

❅❅
❅❅

❅

��

// D

d

��
C

c // X

(3.2.2.1)

of schemes over k. Let F , G and H be objects of Db
cpX,Λq and F b G Ñ H any morphism. By

the Künneth isomorphism [SGA4, XVII, Théorème 5.4.3] and adjunction, we have

e!pc
!F b

L
X d!Gq

»
ÝÑ c!c

!F bL d!d
!G Ñ F b G Ñ H.

By adjunction, we get a morphism

c!F b
L
X d!G Ñ e!H.(3.2.2.2)

Thus we get a pairing

x, y : H0pC, c!Fq b H0pD, d!Gq Ñ H0pE, e!Hq.(3.2.2.3)

3.2.3. Now we define the relative Verdier pairing by applying the map (3.2.2.3) to relative
cohomological correspondences. Let π1 : X1 Ñ S and π2 : X2 Ñ S be smooth morphisms.
Consider a cartesian diagram

E
e

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

��

// D

d“pd1,d2q

��
C

c“pc1,c2q
// X “ X1 ˆS X2

(3.2.3.1)
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of schemes over S. Let F1 P Db
cpX1,Λq and F2 P Db

cpX2,Λq. Assume that one of the following
conditions holds:

(1) π1 : X1 Ñ S is SSpF1,X1{kq-transversal;
(2) π2 : X2 Ñ S is SSpF2,X2{kq-transversal.

By Corollary 3.1.5, we have

RHomppr˚
2F2,pr

!
1F1q bL RHomppr˚

1F1,pr
!
2F2q

»
ÝÑ pF1 b

L
S RHompF2, π

!
2ΛSqq bL pRHompF1, π

!
1ΛSq b

L
S F2q(3.2.3.2)

evaluation
ÝÝÝÝÝÝÑ π!

1ΛS b
L
S π!

2ΛS

(3.2.1.3)
– KX{S .

By (3.1.7.1), (3.2.2.2), (3.2.2.3) and (3.2.3.2), we get the following pairings

c!RHompc˚
2F2, c

!
1F1q bL d!RHompd˚

1F1, d
!
2F2q Ñ e!KE{S,(3.2.3.3)

x, y : Hompc˚
2F2, c

!
1F1q b Hompd˚

1F1, d
!
2F2q Ñ H0pE, e!pKX{Sqq “ H0pE,KE{Sq.(3.2.3.4)

The pairing (3.2.3.4) is called the relative Verdier pairing (cf. [SGA5, Exposé III (4.2.5)]).

Definition 3.2.4. Let f : X Ñ S be a smooth morphism purely of relative dimension n and
F P Db

cpX,Λq. We assume that f is SSpF ,X{kq-transversal. Let c “ pc1, c2q : C Ñ X ˆS X be
a closed immersion and u : c˚

2F Ñ c!1F be a relative cohomological correspondence on C. We
define the relative cohomological characteristic class cccX{Spuq of u to be the cohomology class

xu, 1y P H0
CXXpX,KX{Sq defined by the pairing (3.2.3.4).

In particular, if C “ X and c : C Ñ X ˆS X is the diagonal and if u : F Ñ F is the identity,
we write

cccX{SpFq “ x1, 1y in H2npX,Λpnqq

and call it the relative cohomological characteristic class of F .

If S is the spectrum of a perfect field, then the above definition is [AS07, Definition 2.1.1].

Example 3.2.5. If F is a locally constant and constructible sheaf of Λ-modules on X, then we
have cccX{SF “ rankF ¨ cnpΩ_

X{Sq X rXs P CHnpXq.

Conjecture 3.2.6. Let S be a smooth connected scheme over a perfect field k of characteristic
p. Let f : X Ñ S be a smooth morphism purely of relatively dimension n and F P Db

cpX,Λq.
Assume that f is SSpF ,X{kq-transversal. Let cl : CHnpXq Ñ H2npX,Λpnqq be the cycle class
map. Then we have

(3.2.6.1) clpccX{SpFqq “ cccX{SpFq in H2npX,Λpnqq,

where ccX{SpFq is the relative characteristic class defined in Definition 2.4.3.

If S is the spectrum of a perfect field, then the above conjecture is [Sai17a, Conjecture 6.8.1].

3.3. Proper push-forward of relative cohomological characteristic class.

3.3.1. For i “ 1, 2, let fi : Xi Ñ Yi be a proper morphism between smooth schemes over S.
Let X – X1 ˆS X2, Y – Y1 ˆS Y2 and f – f1 ˆS f2. Let pi : X Ñ Xi and qi : Y Ñ Yi be the
canonical projections for i “ 1, 2. Consider a commutative diagram

X

f

��

C
coo

g

��
Y D

doo

(3.3.1.1)
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of schemes over S. Assume that c is proper. Put ci “ pic and di “ qid. By [Zh15, Construction
7.17], we have the following push-forward maps for cohomological correspondence (see also
[SGA5, Exposé III, (3.7.6)] if S is the spectrum of a field):

f˚ : Hompc˚
2L2, c

!
1L1q Ñ Hompd˚

2pf2!L2q, d!1pf1˚L1qq,(3.3.1.2)

f˚ : g˚RHompc˚
2L2, c

!
1L1q Ñ RHompd˚

2pf2!L2q, d!1pf1˚L1qq.(3.3.1.3)

Theorem 3.3.2 ([SGA5, Théorème 4.4]). For i “ 1, 2, let fi : Xi Ñ Yi be a proper morphism
between smooth schemes over S. Let X – X1 ˆS X2, Y – Y1 ˆS Y2 and f – f1 ˆS f2. Let
pi : X Ñ Xi and qi : Y Ñ Yi be the canonical projections for i “ 1, 2. Consider the following
commutative diagram with cartesian horizontal faces

C 1 C

X C2

D1 D

Y D2

c1

f 1

g
c

f2

c2

d1 d

f

d2

where c1, c2, d1 and d2 are proper morphisms between smooth schemes over S. Let c1
i “ pic

1, c2
i “

pic
2, d1

i “ qid
1, d2

i “ qid
2 for i “ 1, 2. Let Li P Db

cpXi,Λq and we put Mi “ fi˚Li for i “ 1, 2.
Assume that one of the following conditions holds:

(1) X1 Ñ S is SSpL1,X1{kq-transversal;
(2) X2 Ñ S is SSpL2,X2{kq-transversal.

Then we have the following commutative diagram

f˚c
1
˚RHompc1˚

2 L2, c
1!
1L1q bL f˚c

2
˚RHompc2˚

1 L1, c
2!
2 L2q

p1q
//

p2q

��

f˚c˚KC{S

p4q

��
d1

˚RHompd1˚
2 M2, d

1!
1M1q bL d2

˚RHompd2˚
1 M1, d

2!
2 M2q

p3q // d˚KD{S

(3.3.2.1)

where p3q is given by (3.2.3.3), p1q is the composition of f˚p(3.2.3.3)q with the canonical map
f˚c

1
˚ bL f˚c

2
˚ Ñ f˚pc1

˚ b c2
˚q, p2q is induced from (3.3.1.3), and p4q is defined by

f˚c˚KC{S » d˚g˚KC{S “ d˚g!g
!KD{S

adj
ÝÝÑ d˚KD{S .(3.3.2.2)

If S is the spectrum of a field, this is proved in [SGA5, Théoreème 4.4]. We use the same
notation as loc.cit.

Proof. By [Sai17a, Lemma 3.8 and Lemma 4.2.6] and the assumption, one of the following
conditions holds:

(a1) Y1 Ñ S is SSpM1, Y1{kq-transversal;
(a2) Y2 Ñ S is SSpM2, Y2{kq-transversal.

Now we can use the same proof of [SGA5, Théorème 4.4]. We only sketch the main step. Put

P “ L1 b
L
S RHompL2,KX2{Sq, Q “ RHompL1,KX1{Sq b

L
S L2(3.3.2.3)

E “ M1 b
L
S RHompM2,KY2{Sq, F “ RHompM1,KY1{Sq b

L
S M2.(3.3.2.4)
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Then the theorem follows from the following commutative diagram

f˚c
1
˚c

1!P bL f˚c
2
˚c

2!Q //

��

f˚c˚c
!pP bL Qq

��

// f˚c˚c
!KX{S

��
d1

˚d
1!f˚P bL d2

˚d
2!f˚Q

��

// d˚d
!pf˚P bL f˚Qq //

��

d˚d
!f˚pP bL Qq // d˚d

!f˚KX{S

��
d1

˚d
1!E bL d2

˚d
2!F // d˚d

!pE bL Fq // d˚d
!KY {S

where commutativity can be verified following the same argument of [SGA5, Théorème 4.4]. �

Corollary 3.3.3 ([SGA5, Corollaire 4.5]). Under the assumptions of Theorem 3.3.2, we have a
commutative diagram

Hompc1˚
2 L2, c

1!
1L1q b Hompc2˚

1 L1, c
2!
2 L2q

(3.3.1.2)b(3.3.1.2)

��

// H0pC,KC{Sq

g˚

��
Hompd1˚

2 f2˚L2, d
1!
1f1˚L1q b Hompd2˚

1 f1˚L1, d
2!
2 f2˚L2q // H0pD,KD{Sq.

(3.3.3.1)

Corollary 3.3.4. Let S be a smooth connected scheme over a perfect field k of characteristic p.
Let f : X Ñ S be a smooth morphism purely of relative dimension n and g : Y Ñ S a smooth
morphism purely of relative dimension m. Assume that f is SSpF ,X{kq-transversal. Then for
any proper morphism h : X Ñ Y over S,

X
h //

f ��❅
❅❅

❅❅
❅❅

❅ Y

g
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

(3.3.4.1)

we have

f˚cccX{SpFq “ cccY {SpRf˚Fq in H2mpY,Λpmqq.(3.3.4.2)

Proof. This follows from Corollary 3.3.3 and Definition 3.2.4. �
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