ON THE RELATIVE TWIST FORMULA OF ℓ -ADIC SHEAVES

ENLIN YANG AND YIGENG ZHAO

ABSTRACT. We propose a conjecture on the relative twist formula of ℓ -adic sheaves, which can be viewed as a generalization of Kato-Saito's conjecture. We verify this conjecture under some transversal assumptions.

We also define a relative cohomological characteristic class and prove that its formation is compatible with proper push-forward. A conjectural relation is also given between the relative twist formula and the relative cohomological characteristic class.

Contents

1.	Introduction	1
2.	Relative twist formula	4
3.	Relative cohomological characteristic class	11
References		19

1. INTRODUCTION

As an analogy of the theory of *D*-modules, Beilinson [Bei16] and T. Saito [Sai17a] define the singular support and the characteristic cycle of an ℓ -adic sheaf on a smooth variety respectively. As an application of their theory, we prove a twist formula of epsilon factors in [UYZ], which is a modification of a conjecture due to Kato and T. Saito[KS08, Conjecture 4.3.11].

1.1. Kato-Saito's conjecture.

1.1.1. Let X be a smooth projective scheme purely of dimension d over a finite field k of characteristic p. Let Λ be a finite field of characteristic $\ell \neq p$ or $\Lambda = \overline{\mathbb{Q}}_{\ell}$. Let $\mathcal{F} \in D_c^b(X, \Lambda)$ and $\chi(X_{\bar{k}}, \mathcal{F})$ be the Euler-Poincaré characteristic of \mathcal{F} . The Grothendieck L-function $L(X, \mathcal{F}, t)$ satisfies the following functional equation

(1.1.1.1)
$$L(X,\mathcal{F},t) = \varepsilon(X,\mathcal{F}) \cdot t^{-\chi(X_{\bar{k}},\mathcal{F})} \cdot L(X,D(\mathcal{F}),t^{-1}),$$

where $D(\mathcal{F})$ is the Verdier dual $R\mathcal{H}om(\mathcal{F}, Rf^!\Lambda)$ of $\mathcal{F}, f: X \to \operatorname{Spec} k$ is the structure morphism and

(1.1.1.2)
$$\varepsilon(X,\mathcal{F}) = \det(-\operatorname{Frob}_k; R\Gamma(X_{\bar{k}},\mathcal{F}))^{-1}$$

is the epsilon factor (the constant term of the functional equation (1.1.1.1)) and Frob_k is the geometric Frobenius (the inverse of the Frobenius substitution).

Date: April 5, 2022.

²⁰¹⁰ Mathematics Subject Classification. Primary 14F20; Secondary 11G25, 11S40.

1.1.2. In (1.1.1.1), both $\chi(X_{\bar{k}}, \mathcal{F})$ and $\varepsilon(X, \mathcal{F})$ are related to ramification theory. Let $cc_{X/k}(\mathcal{F}) = 0_X^!(CC(\mathcal{F}, X/k)) \in CH_0(X)$ be the characteristic class of \mathcal{F} (cf. [Sai17a, Definition 5.7]), where $0_X \colon X \to T^*X$ is the zero section and $CC(\mathcal{F}, X/k)$ is the characteristic cycle of \mathcal{F} . Then $\chi(X_{\bar{k}}, \mathcal{F}) = \deg(cc_{X/k}(\mathcal{F}))$ by the index formula [Sai17a, Theorem 7.13]. The following theorem proved in [UYZ] gives a relation between $\varepsilon(X, \mathcal{F})$ and $cc_{X/k}(\mathcal{F})$, which is a modified version of the formula conjectured by Kato and T. Saito in [KS08, Conjecture 4.3.11].

Theorem 1.1.3 (Twist formula, [UYZ, Theorem 1.5]). We have

(1.1.3.1) $\varepsilon(X, \mathcal{F} \otimes \mathcal{G}) = \varepsilon(X, \mathcal{F})^{\operatorname{rank}\mathcal{G}} \cdot \det \mathcal{G}(\rho_X(-cc_{X/k}(\mathcal{F}))) \quad \text{in } \Lambda^{\times},$

where $\rho_X : CH_0(X) \to \pi_1^{ab}(X)$ is the reciprocity map defined by sending the class [s] of a closed point $s \in X$ to the geometric Frobenius Frob_s and $\det \mathcal{G} : \pi_1^{ab}(X) \to \Lambda^{\times}$ is the representation associated to the smooth sheaf $\det \mathcal{G}$ of rank 1.

When \mathcal{F} is the constant sheaf Λ , this is proved by S. Saito [SS84]. If \mathcal{F} is a smooth sheaf on an open dense subscheme U of X such that \mathcal{F} is tamely ramified along $D = X \setminus U$, then Theorem 1.1.3 is a consequence of [Sai93, Theorem 1]. In [Vi09a, Vi09b], Vidal proves a similar result on a proper smooth surface over a finite field of characteristic p > 2 under certain technical assumptions. Our proof of Theorem 1.1.3 is based on the following theories: one is the theory of singular support [Bei16] and characteristic cycle [Sai17a], and another is Laumon's product formula [Lau87].

1.2. ε -factorization.

1.2.1. Now we assume that X is a smooth projective geometrically connected curve of genus g over a finite field k of characteristic p. Let ω be a non-zero rational 1-form on X and \mathcal{F} an ℓ -adic sheaf on X. The following formula is conjectured by Deligne and proved by Laumon [Lau87, 3.2.1.1]:

(1.2.1.1)
$$\varepsilon(X,\mathcal{F}) = p^{[k:\mathbb{F}_p](1-g)\mathrm{rank}(\mathcal{F})} \prod_{v \in |X|} \varepsilon_v(\mathcal{F}|_{X_{(v)}},\omega).$$

For higher dimensional smooth scheme X over k, it is still an open question whether there is an ε -factorization formula (respectively a geometric ε -factorization formula) for $\varepsilon(X, \mathcal{F})$ (respectively det $R\Gamma(X, \mathcal{F})$).

1.2.2. In [Bei07], Beilinson develops the theory of topological epsilon factors using K-theory spectrum and he asks whether his construction admits a motivic (ℓ -adic or de Rham) counterpart. For de Rham cohomology, such a construction is given by Patel in [Pat12]. Based on [Pat12], Abe and Patel prove a similar twist formula in [AP17] for global de Rham epsilon factors in the classical setting of \mathcal{D}_X -modules on smooth projective varieties over a field of characteristic zero. In the ℓ -adic situation, such a geometric ε -factorization formula is still open even if X is a curve. Since the classical local ε -factors depend on an additive character of the base field, a satisfied geometric ε -factorization theory will lie in an appropriate gerbe rather than be a super graded line (cf. [Bei07, Pat12]).

1.2.3. More generally, we could also ask similar questions in a relative situation. Now let $f: X \to S$ be a proper morphism between smooth schemes over k. Let \mathcal{F} be an ℓ -adic sheaf on X such that f is universally locally acyclic relatively to \mathcal{F} . Under these assumptions, we know that $Rf_*\mathcal{F}$ is locally constant on S. Now we can ask if there is an analogue geometric ε -factorization for the determinant det $Rf_*\mathcal{F}$. This problem is far beyond the authors' reach at this moment. But, similar to (1.1.3.1), we may consider twist formulas for det $Rf_*\mathcal{F}$. One of the purposes of this paper is to formulate such a twist formula and prove it under certain assumptions.

3

1.2.4. Relative twist formula. Let S be a regular Noetherian scheme over $\mathbb{Z}[1/\ell]$ and $f: X \to S$ a proper smooth morphism purely of relative dimension n. Let $\mathcal{F} \in D_c^b(X, \Lambda)$ such that fis universally locally acyclic relatively to \mathcal{F} . Then we conjecture that (see Conjecture 2.1.4) there exists a unique cycle class $cc_{X/S}(\mathcal{F}) \in CH^n(X)$ such that for any locally constant and constructible sheaf \mathcal{G} of Λ -modules on X, we have an isomorphism of smooth sheaves of rank 1 on S

(1.2.4.1)
$$\det Rf_*(\mathcal{F} \otimes \mathcal{G}) \cong (\det Rf_*\mathcal{F})^{\otimes \operatorname{rank}\mathcal{G}} \otimes \det \mathcal{G}(cc_{X/S}(\mathcal{F}))$$

where det $\mathcal{G}(cc_{X/S}(\mathcal{F}))$ is a smooth sheaf of rank 1 on S (see 2.1.3 for the definition). We call (1.2.4.1) the relative twist formula. As an evidence, we prove a special case of the above conjecture in Theorem 2.4.4. It is also interesting to consider a similar relative twist formula for de Rham epsilon factors in the sense of [AP17]. We will pursue this question elsewhere.

1.2.5. If S is moreover a smooth connected scheme of dimension r over a perfect field k, we construct a candidate for $cc_{X/S}(\mathcal{F})$ in Definition 2.4.3. We also relate the relative characteristic class $cc_{X/S}(\mathcal{F})$ to the total characteristic class of \mathcal{F} . Let $K_0(X, \Lambda)$ be the Grothendieck group of $D_c^b(X, \Lambda)$. In [Sai17a, Definition 6.7.2], T. Saito defines the following morphism

(1.2.5.1)
$$cc_{X,\bullet} \colon K_0(X,\Lambda) \to \operatorname{CH}_{\bullet}(X) = \bigoplus_{i=0}^{r+n} \operatorname{CH}_i(X)$$

which sends $\mathcal{F} \in D^b_c(X, \Lambda)$ to the total characteristic class $cc_{X,\bullet}(\mathcal{F})$ of \mathcal{F} . Under the assumption that $f: X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal, we show that $(-1)^r \cdot cc_{X/S}(\mathcal{F}) = cc_{X,r}(\mathcal{F})$ in Proposition 2.5.2.

1.2.6. Following Grothendieck [SGA5], it's natural to ask whether the following diagram

(1.2.6.1)
$$\begin{array}{ccc} K_0(X,\Lambda) \xrightarrow{cc_{X,\bullet}} CH_{\bullet}(X) \\ f_* & & & \downarrow f_* \\ K_0(Y,\Lambda) \xrightarrow{cc_{Y,\bullet}} CH_{\bullet}(Y) \end{array}$$

is commutative or not for any proper map $f: X \to Y$ between smooth schemes over k. If $k = \mathbb{C}$, the diagram (1.2.6.1) is commutative by [Gin86, Theorem A.6]. By the philosophy of Grothendieck, the answer is no in general if $\operatorname{char}(k) > 0$ (cf. [Sai17a, Example 6.10]). If k is a finite field and if $f: X \to Y$ is moreover projective, as a corollary of Theorem 1.1.3, we prove in [UYZ, Corollary 5.26] that the degree zero part of (1.2.6.1) commutes. In general, motivated by the conjectural formula (1.2.4.1), we propose the following question. Let $f: X \to S$ and $g: Y \to S$ be smooth morphisms. Let $D_c^b(X/S, \Lambda)$ be the thick subcategory of $D_c^b(X, \Lambda)$ consists of $\mathcal{F} \in D_c^b(X, \Lambda)$ such that f is $SS(\mathcal{F}, X/k)$ -transversal. Let $K_0(X/S, \Lambda)$ be the Grothendieck group of $D_c^b(X/S, \Lambda)$. Then for any proper morphism $h: X \to Y$ over S, we conjecture that the following diagram commutes (see Conjecture 2.5.4)

(1.2.6.2)
$$\begin{array}{c} K_0(X/S,\Lambda) \xrightarrow{cc_{X,r}} CH_r(X) \\ & & & \downarrow h_* \\ & & & \downarrow h_* \\ & & & K_0(Y/S,\Lambda) \xrightarrow{cc_{Y,r}} CH_r(Y). \end{array}$$

1.2.7. As an evidence for (1.2.6.2), we construct a relative cohomological characteristic class (1.2.7.1) $ccc_{X/S}(\mathcal{F}) \in H^{2n}(X, \Lambda(n))$

in Definition 3.2.4 if $X \to S$ is smooth and $SS(\mathcal{F}, X/k)$ -transversal. We prove that the formation of $ccc_{X/S}(\mathcal{F})$ is compatible with proper push-forward (see Corollary 3.3.4 for a precise statement). Similar to [Sai17a, Conjecture 6.8.1], we conjecture that we have the following equality (see Conjecture 3.2.6)

(1.2.7.2)
$$\operatorname{cl}(cc_{X/S}(\mathcal{F})) = ccc_{X/S}(\mathcal{F}) \quad \text{in} \quad H^{2n}(X, \Lambda(n))$$

where cl: $\operatorname{CH}^n(X) \to H^{2n}(X, \Lambda(n))$ is the cycle class map.

Acknowledgements. Both authors are partially supported by the DFG through CRC 1085 *Higher Invariants* (Universität Regensburg). The authors are thank Naoya Umezaki for sharing ideas and for helpful discussion during writing the paper [UYZ]. The authors are also thank Professor Weizhe Zheng for discussing his paper [Zh15], and Haoyu Hu for his valuable comments. The first author would like to thank his advisor Professor Linsheng Yin (1963-2015) for his constant encouragement during 2010-2015.

Notation and Conventions.

- (1) Let p be a prime number and Λ be a finite field of characteristic $\ell \neq p$ or $\Lambda = \overline{\mathbb{Q}}_{\ell}$.
- (2) We say that a complex \mathcal{F} of étale sheaves of Λ -modules on a scheme X over $\mathbb{Z}[1/\ell]$ is *constructible* (respectively *smooth*) if the cohomology sheaf $\mathcal{H}^q(\mathcal{F})$ is constructible for every q and if $\mathcal{H}^q(\mathcal{F}) = 0$ except finitely many q (respectively moreover $\mathcal{H}^q(\mathcal{F})$ is locally constant for all q).
- (3) For a scheme S over $\mathbb{Z}[1/\ell]$, let $D^b_c(S,\Lambda)$ be the triangulated category of bounded complexes of Λ -modules with constructible cohomology groups on S and let $K_0(S,\Lambda)$ be the Grothendieck group of $D^b_c(S,\Lambda)$.
- (4) For a scheme X, we denote by |X| the set of closed points of X.
- (5) For any smooth morphism $X \to S$, we denote by $T_X^*(X/S) \subseteq T^*(X/S)$ the zero section of the relative cotangent bundle $T^*(X/S)$ of X over S. If S is the spectrum of a field, we simply denote $T^*(X/S)$ by T^*X .

2. Relative twist formula

2.1. Reciprocity map.

2.1.1. For a smooth proper variety X purely of dimension n over a finite field k of characteristic p, the reciprocity map $\rho_X \colon \operatorname{CH}^n(X) \to \pi_1^{\operatorname{ab}}(X)$ is given by sending the class [s] of closed point $s \in X$ to the geometric Frobenius Frob_s at s. The map ρ_X is injective with dense image [KS83].

2.1.2. Let S be a regular Noetherian scheme over $\mathbb{Z}[1/\ell]$ and X a smooth proper scheme purely of relative dimension n over S. By [Sai94, Proposition 1], there exists a unique way to attach a pairing

(2.1.2.1)
$$\operatorname{CH}^n(X) \times \pi_1^{\operatorname{ab}}(S) \to \pi_1^{\operatorname{ab}}(X)$$

satisfying the following two conditions:

(1) When S = Speck is a point, for a closed point $x \in X$, the pairing with the class [x] coincides with the inseparable degree times the Galois transfer $\operatorname{tran}_{k(x)/k}$ (cf.[Tat79, 1]) followed by i_{x*} for $i_x : x \to X$

$$\operatorname{Gal}(k^{\operatorname{ab}}/k) \xrightarrow{\operatorname{tran}_{k(x)/k} \times [k(x):k]_{i}} \operatorname{Gal}(k(x)^{\operatorname{ab}}/k(x)) \xrightarrow{i_{x*}} \pi_{1}^{\operatorname{ab}}(X).$$

(2) For any point $s \in S$, the following diagram commutes

 $\mathbf{5}$

2.1.3. For any locally constant and constructible sheaf \mathcal{G} of Λ -modules on X and any $z \in CH^n(X)$, we have a map

(2.1.3.1)
$$\pi_1^{\mathrm{ab}}(S) \xrightarrow{(z,\bullet)} \pi_1^{\mathrm{ab}}(X) \xrightarrow{\det \mathcal{G}} \Lambda^{\times}$$

where (z, \bullet) is the map determined by the paring (2.1.2.1) and det \mathcal{G} is the representation associated to the locally constant sheaf det \mathcal{G} of rank 1. The composition det $\mathcal{G} \circ (z, \bullet) \colon \pi_1^{ab}(S) \to \Lambda^{\times}$ determines a locally constant and constructible sheaf of rank 1 on S, which we simply denote by det $\mathcal{G}(z)$. Now we propose the following conjecture.

Conjecture 2.1.4 (Relative twist formula). Let S be a regular Noetherian scheme over $\mathbb{Z}[1/\ell]$ and $f: X \to S$ a smooth proper morphism purely of relative dimension n. Let $\mathcal{F} \in D_c^b(X, \Lambda)$ such that f is universally locally acyclic relatively to \mathcal{F} . Then there exists a unique cycle class $cc_{X/S}(\mathcal{F}) \in CH^n(X)$ such that for any locally constant and constructible sheaf \mathcal{G} of Λ -modules on X, we have an isomorphism

(2.1.4.1)
$$\det Rf_*(\mathcal{F} \otimes \mathcal{G}) \cong (\det Rf_*\mathcal{F})^{\otimes \operatorname{rank}\mathcal{G}} \otimes \det \mathcal{G}(cc_{X/S}(\mathcal{F})) \quad \text{in } K_0(S,\Lambda),$$

where $K_0(S, \Lambda)$ is the Grothendieck group of $D^b_c(S, \Lambda)$.

We call this cycle class $cc_{X/S}(\mathcal{F}) \in CH^n(X)$ the relative characteristic class of \mathcal{F} if it exists. If S is a smooth scheme over a perfect field k, we construct a candidate for $cc_{X/S}(\mathcal{F})$ in Definition 2.4.3.

As an evidence, we prove a special case of the above conjecture in Theorem 2.4.4. In order to construct a cycle class $cc_{X/S}(\mathcal{F})$ satisfying (2.1.4.1), we use the theory of singular support and characteristic cycle.

2.2. Transversal condition and singular support.

2.2.1. Let $f: X \to S$ be a smooth morphism of Noetherian schemes over $\mathbb{Z}[1/\ell]$. We denote by $T^*(X/S)$ the vector bundle $\operatorname{Spec}(\operatorname{Sym}_{\mathcal{O}_X}(\Omega^1_{X/S})^{\vee})$ on X and call it the relative cotangent bundle on X with respect to S. We denote by $T^*_X(X/S) = X$ the zero-section of $T^*(X/S)$. A constructible subset C of $T^*(X/S)$ is called *conical* if C is invariant under the canonical \mathbb{G}_m -action on $T^*(X/S)$.

Definition 2.2.2 ([Bei16, §1.2] and [HY17, §2]). Let $f: X \to S$ be a smooth morphism of Noetherian schemes over $\mathbb{Z}[1/\ell]$ and C a closed conical subset of $T^*(X/S)$. Let Y be a Noetherian scheme smooth over S and $h: Y \to X$ an S-morphism.

(1) We say that $h: Y \to X$ is *C*-transversal relatively to *S* at a geometric point $\bar{y} \to Y$ if for every non-zero vector $\mu \in C_{h(\bar{y})} = C \times_X \bar{y}$, the image $dh_{\bar{y}}(\mu) \in T^*_{\bar{y}}(Y/S) := T^*(Y/S) \times_Y \bar{y}$ is not zero, where $dh_{\bar{y}}: T^*_{h(\bar{y})}(X/S) \to T^*_{\bar{y}}(Y/S)$ is the canonical map. We say that $h: Y \to X$ is *C*-transversal relatively to *S* if it is *C*-transversal relatively to *S* at every geometric point of *Y*. If $h: Y \to X$ is *C*-transversal relatively to *S*, we put $h^{\circ}C = dh(C \times_X Y)$ where $dh: T^*(X/S) \times_X Y \to T^*(Y/S)$ is the canonical map induced by *h*. By the same argument of [Bei16, Lemma 1.1], $h^{\circ}C$ is a conical closed subset of $T^*(Y/S)$.

(2) Let Z be a Noetherian scheme smooth over S and $g: X \to Z$ an S-morphism. We say that $g: X \to Z$ is C-transversal relatively to S at a geometric point $\bar{x} \to X$ if for every non-zero vector $\nu \in T^*_{g(\bar{x})}(Z/S)$, we have $dg_{\bar{x}}(\nu) \notin C_{\bar{x}}$, where $dg_{\bar{x}}: T^*_{g(\bar{x})}(Z/S) \to T^*_{\bar{x}}(X/S)$ is the canonical map. We say that $g: X \to Z$ is C-transversal relatively to S if it is C-transversal relatively to S at all geometric points of X. If the base $B(C) \coloneqq C \cap T^*_X(X/S)$ of C is proper over Z, we put $g_{\circ}C := \operatorname{pr}_1(dg^{-1}(C))$, where $\operatorname{pr}_1: T^*(Z/S) \times_Z X \to T^*(Z/S)$ denotes the first projection and $dg: T^*(Z/S) \times_Z X \to T^*(X/S)$ is the canonical map. It is a closed conical subset of $T^*(Z/S)$.

(3) A test pair of X relative to S is a pair of S-morphisms $(g,h) : Y \leftarrow U \rightarrow X$ such that U and Y are Noetherian schemes smooth over S. We say that (g,h) is C-transversal relatively to

S if $h: U \to X$ is C-transversal relatively to S and $g: U \to Y$ is $h^{\circ}C$ -transversal relatively to S.

Definition 2.2.3 ([Bei16, §1.3] and [HY17, §4]). Let $f: X \to S$ be a smooth morphism of Noetherian schemes over $\mathbb{Z}[1/\ell]$. Let \mathcal{F} be an object in $D_c^b(X, \Lambda)$.

(1) We say that a test pair $(g,h): Y \leftarrow U \rightarrow X$ relative to S is \mathcal{F} -acyclic if $g: U \rightarrow Y$ is universally locally acyclic relatively to $h^*\mathcal{F}$.

(2) For a closed conical subset C of $T^*(X/S)$, we say that \mathcal{F} is micro-supported on C relatively to S if every C-transversal test pair of X relative to S is \mathcal{F} -acyclic.

(3) Let $\mathcal{C}(\mathcal{F}, X/S)$ be the set of all closed conical subsets $C' \subseteq T^*(X/S)$ such that \mathcal{F} is microsupported on C' relatively to S. Note that $\mathcal{C}(\mathcal{F}, X/S)$ is non-empty if $f: X \to S$ is universally locally acyclic relatively to \mathcal{F} . If $\mathcal{C}(\mathcal{F}, X/S)$ has a smallest element, we denote it by $SS(\mathcal{F}, X/S)$ and call it the singular support of \mathcal{F} relative to S.

Theorem 2.2.4 (Beilinson). Let $f : X \to S$ be a smooth morphism between Noetherian schemes over $\mathbb{Z}[1/\ell]$ and \mathcal{F} an object of $D_c^b(X, \Lambda)$.

- (1) ([HY17, Theorem 5.2]) If we further assume that $f: X \to S$ is projective and universally locally acyclic relatively to \mathcal{F} , the singular support $SS(\mathcal{F}, X/S)$ exists.
- (2) ([HY17, Theorem 5.2 and Theorem 5.3]) In general, after replacing S by a Zariski open dense subscheme, the singular support $SS(\mathcal{F}, X/S)$ exists, and for any $s \in S$, we have

$$(2.2.4.1) SS(\mathcal{F}|_{X_s}, X_s/s) = SS(\mathcal{F}, X/S) \times_S s$$

(3) ([Bei16, Theorem 1.3]) If S = Speck for a field k and if X is purely of dimension d, then $SS(\mathcal{F}, X/S)$ is purely of dimension d.

2.3. Characteristic cycle and index formula.

2.3.1. Let k be a perfect field of characteristic p. Let X be a smooth scheme purely of dimension n over k, let C be a closed conical subset of T^*X and $f: X \to \mathbb{A}^1_k$ a k-morphism. A closed point $v \in X$ is called at most an isolated C-characteristic point of $f: X \to \mathbb{A}^1_k$ if there is an open neighborhood $V \subseteq X$ of v such that $f: V - \{v\} \to \mathbb{A}^1_k$ is C-transversal. A closed point $v \in X$ is called an *isolated C-characteristic point* if v is at most an isolated C-characteristic point of $f: X \to \mathbb{A}^1_k$ but $f: X \to \mathbb{A}^1_k$ but $f: X \to \mathbb{A}^1_k$ is not C-transversal at v.

Theorem 2.3.2 (T. Saito, [Sai17a, Theorem 5.9]). Let X be a smooth scheme purely of dimension n over a perfect field k of characteristic p. Let \mathcal{F} be an object of $D_c^b(X, \Lambda)$ and $\{C_\alpha\}_{\alpha \in I}$ the set of irreducible components of $SS(\mathcal{F}, X/k)$. There exists a unique n-cycle $CC(\mathcal{F}, X/k) = \sum_{\alpha \in I} m_\alpha [C_\alpha] \ (m_\alpha \in \mathbb{Z})$ of T^*X supported on $SS(\mathcal{F}, X/k)$, satisfying the following Milnor formula (2.3.2.1):

For any étale morphism $g: V \to X$, any morphism $f: V \to \mathbb{A}^1_k$, any isolated $g^\circ SS(\mathcal{F}, X/k)$ characteristic point $v \in V$ of $f: V \to \mathbb{A}^1_k$ and any geometric point \overline{v} of V above v, we have

where $\operatorname{R}\Phi_{\bar{v}}(g^*\mathcal{F}, f)$ denotes the stalk at \bar{v} of the vanishing cycle complex of $g^*\mathcal{F}$ relative to f, dimtot $\operatorname{R}\Phi_{\bar{v}}(g^*\mathcal{F}, f)$ is the total dimension of $\operatorname{R}\Phi_{\bar{v}}(g^*\mathcal{F}, f)$ and $g^*CC(\mathcal{F}, X/k)$ is the pull-back of $CC(\mathcal{F}, X/k)$ to T^*V .

We call $CC(\mathcal{F}, X/k)$ the characteristic cycle of \mathcal{F} . It satisfies the following index formula.

Theorem 2.3.3 (T. Saito, [Sai17a, Theorem 7.13]). Let \bar{k} be an algebraic closure of a perfect field k of characteristic p, X a smooth projective scheme over k and $\mathcal{F} \in D^b_c(X, \Lambda)$. Then, we have

(2.3.3.1) $\chi(X_{\overline{k}}, \mathcal{F}|_{X_{\overline{k}}}) = \deg(CC(\mathcal{F}, X/k), T_X^*X)_{T^*X},$

where $\chi(X_{\bar{k}}, \mathcal{F}|_{X_{\bar{k}}})$ denotes the Euler-Poincaré characteristic of $\mathcal{F}|_{X_{\bar{k}}}$.

We give a generalization in Theorem 2.3.5. For a smooth scheme $\pi: X \to \text{Spec}k$, and two objects \mathcal{F}_1 and \mathcal{F}_2 in $D_c^b(X, \Lambda)$, we denote $\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2 \coloneqq \text{pr}_1^* \mathcal{F}_1 \otimes^L \text{pr}_2^* \mathcal{F}_2 \in D_c^b(X \times X, \Lambda)$, where $\text{pr}_i: X \times X \to X$ is the *i*th projection, for i = 1, 2. We also denote $D_X(\mathcal{F}_1) = R\mathcal{H}om(\mathcal{F}_1, \mathcal{K}_X)$, where $\mathcal{K}_X = \text{R}\pi^!\Lambda$.

Lemma 2.3.4. Let X be a smooth variety purely of dimension n over a perfect field k of characteristic p. Let \mathcal{F}_1 and \mathcal{F}_2 be two objects in $D^b_c(X,\Lambda)$. Then the diagonal map $\delta: \Delta = X \hookrightarrow X \times X$ is $SS(\mathcal{F}_2 \boxtimes^L D_X \mathcal{F}_1, X \times X/k)$ -transversal if and only if $SS(\mathcal{F}_2 \boxtimes^L D_X \mathcal{F}_1, X \times X/k) \subseteq T^*_{\Lambda}(X \times X)$. If we are in this case, then the canonical map

$$R\mathcal{H}om(\mathcal{F}_1,\Lambda)\otimes^L \mathcal{F}_2 \xrightarrow{\cong} R\mathcal{H}om(\mathcal{F}_1,\mathcal{F}_2)$$

is an isomorphism.

Proof. The first assertion follows from the short exact sequence of vector bundles on X associated to $\delta: \Delta = X \hookrightarrow X \times X$:

$$0 \to T^*_{\Delta}(X \times X) \to T^*(X \times X) \times_{X \times X} \Delta \xrightarrow{d\delta} T^*X \to 0.$$

(1)

For the second claim, we have the following canonical isomorphisms

$$R\mathcal{H}om(\mathcal{F}_{1},\Lambda) \otimes^{L} \mathcal{F}_{2} \cong R\mathcal{H}om(\mathcal{F}_{1},\Lambda(n)[2n]) \otimes^{L} \Lambda(-n)[-2n] \otimes^{L} \mathcal{F}_{2} \stackrel{(1)}{\cong} D_{X}\mathcal{F}_{1} \otimes^{L} R\delta^{!}\Lambda \otimes^{L} \mathcal{F}_{2}$$

$$(2.3.4.1) \cong \delta^{*}(\mathcal{F}_{2} \boxtimes_{k}^{L} D_{X}\mathcal{F}_{1}) \otimes^{L} R\delta^{!}\Lambda \stackrel{(2)}{\cong} R\delta^{!}(\mathcal{F}_{2} \boxtimes_{k}^{L} D_{X}\mathcal{F}_{1})$$

$$\stackrel{(3)}{\cong} R\delta^{!}(R\mathcal{H}om(\operatorname{pr}_{2}^{*}\mathcal{F}_{1},R\operatorname{pr}_{1}^{!}\mathcal{F}_{2})) \cong R\mathcal{H}om(\delta^{*}\operatorname{pr}_{2}^{*}\mathcal{F}_{1},R\delta^{!}R\operatorname{pr}_{1}^{!}\mathcal{F}_{2})$$

$$\cong R\mathcal{H}om(\mathcal{F}_{1},\mathcal{F}_{2}),$$

where

(1) follows from the purity for the closed immersion δ [ILO14, XVI, Théorème 3.1.1];

(2) follows from the assumption that δ is $SS(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1)$ -transversal by [Sai17a, Proposition 8.13 and Definition 8.5];

(3) follows from the Künneth formula [SGA5, Exposé III, (3.1.1)].

Theorem 2.3.5. Let X be a smooth projective variety purely of dimension n over an algebraically closed field k of characteristic p. Let \mathcal{F}_1 and \mathcal{F}_2 be two objects in $D_c^b(X, \Lambda)$ such that the diagonal map $\delta \colon \Delta = X \hookrightarrow X \times X$ is properly $SS(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1, X \times X/k)$ -transversal. Then we have

(2.3.5.1)
$$(-1)^n \cdot \dim_{\Lambda} \operatorname{Ext}(\mathcal{F}_1, \mathcal{F}_2) = \deg \left(CC(\mathcal{F}_1, X/k), CC(\mathcal{F}_2, X/k) \right)_{T^* X}$$

where $\dim_{\Lambda} \operatorname{Ext}(\mathcal{F}_1, \mathcal{F}_2) = \sum_{i} (-1)^i \dim_{\Lambda} \operatorname{Ext}^{i}_{D^{b}_{c}(X, \Lambda)}(\mathcal{F}_1, \mathcal{F}_2).$

Proof. By the isomorphisms (2.3.4.1), the left hand side of (2.3.5.1) equals to

$$(-1)^n \cdot \chi(X, R\delta^!(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1)) = (-1)^n \cdot \chi(X, \delta^*(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1))$$

(2.3.5.2)
$$= (-1)^n \cdot \deg(CC(\delta^*(\mathcal{F}_2 \boxtimes_k^L D_X(\mathcal{F}_1), X/k), T_X^*X)_{T^*X}.$$

Since $\delta: X \to X \times X$ is properly $SS(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1, X \times X/k)$ -transversal, we have

$$(2.3.5.3) CC(\delta^*(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1), X/k) = (-1)^n \delta^* CC(D(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1, X \times X/k))$$

(2.3.5.4)
$$= (-1)^n \delta^* (CC(\mathcal{F}_2, X/k) \times CC(\mathcal{F}_1, X/k)).$$

where the equality (2.3.5.3) follows from [Sai17a, Theorem 7.6], and (2.3.5.4) follows from [Sai17b, Theorem 2.2.2]. Consider the following commutative diagram

We have $\delta^*(CC(\mathcal{F}_2, X/k) \times CC(\mathcal{F}_1, X/k)) = d\delta_* \operatorname{pr}^!(CC(\mathcal{F}_2, X/k) \times CC(\mathcal{F}_1, X/k))$ and

$$\deg(\delta^*(CC(\mathcal{F}_2, X/k) \times CC(\mathcal{F}_1, X/k)), T_X^*X)_{T^*X} = \deg(CC(\mathcal{F}_1, X/k), CC(\mathcal{F}_2, X/k))_{T^*X}.$$

Then (2.3.5.1) follows from the above formula and (2.3.5.2).

Remark 2.3.6. If \mathcal{F}_1 is the constant sheaf Λ , then Theorem 2.3.5 is the index formula (2.3.3.1). Theorem 2.3.5 can be viewed as the ℓ -adic version of the global index formula in the setting of \mathcal{D}_X -modules (cf. [Gin86, Theorem 11.4.1]).

2.4. Relative twist formula.

2.4.1. Let S be a Noetherian scheme over $\mathbb{Z}[1/\ell]$, $f: X \to S$ a smooth morphism of finite type and \mathcal{F} an object of $D_c^b(X, \Lambda)$. Assume that the relative singular support $SS(\mathcal{F}, X/S)$ exists. A cycle $B = \sum_{i \in I} m_i[B_i]$ in $T^*(X/S)$ is called the *characteristic cycle of* \mathcal{F} relative to S if each B_i is a subset of $SS(\mathcal{F}, X/S)$, each $B_i \to S$ is open and equidimensional and if, for any algebraic geometric point \bar{s} of S, we have

(2.4.1.1)
$$B_{\bar{s}} = \sum_{i \in I} m_i [(B_i)_{\bar{s}}] = CC(\mathcal{F}|_{X_{\bar{s}}}, X_{\bar{s}}/\bar{s}).$$

We denote by $CC(\mathcal{F}, X/S)$ the characteristic cycle of \mathcal{F} on X relative to S. Notice that relative characteristic cycles may not exist in general.

Proposition 2.4.2 (T. Saito, [HY17, Proposition 6.5]). Let k be a perfect field of characteristic p. Let S be a smooth connected scheme of dimension r over k, $f : X \to S$ a smooth morphism of finite type and \mathcal{F} an object of $D_c^b(X, \Lambda)$. Assume that $f : X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal and that each irreducible component of $SS(\mathcal{F}, X/k)$ is open and equidimensional over S. Then the relative singular support $SS(\mathcal{F}, X/S)$ and the relative characteristic cycle $CC(\mathcal{F}, X/S)$ exist, and we have

- (2.4.2.1) $SS(\mathcal{F}, X/S) = \theta(SS(\mathcal{F}, X/k)),$

where $\theta: T^*X \to T^*(X/S)$ denotes the projection induced by the canonical map $\Omega^1_{X/k} \to \Omega^1_{X/S}$.

Definition 2.4.3. Let k be a perfect field of characteristic p and S a smooth connected scheme of dimension r over k. Let $f: X \to S$ be a smooth morphism purely of relative dimension n and \mathcal{F} an object of $D_c^b(X, \Lambda)$. Assume that $f: X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal. Consider the following cartesian diagram

$$(2.4.3.1) \qquad \begin{array}{c} T^*S \times_S X \longrightarrow T^*X \\ \downarrow & \downarrow \\ X \xrightarrow{0_{X/S}} T^*(X/S) \end{array}$$

where $0_{X/S}: X \to T^*(X/S)$ is the zero section. Since $f: X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal, the refined Gysin pull-back $0^!_{X/S}(CC(\mathcal{F}, X/k))$ of $CC(\mathcal{F}, X/k)$ is a *r*-cycle class supported on X. We define the *relative characteristic class* of \mathcal{F} to be

(2.4.3.2)
$$cc_{X/S}(\mathcal{F}) = (-1)^r \cdot 0^!_{X/S}(CC(\mathcal{F}, X/k)) \quad in \quad CH^n(X).$$

Now we prove a special case of Conjecture 2.1.4.

Theorem 2.4.4 (Relative twist formula). Let S be a smooth connected scheme of dimension r over a finite field k of characteristic p. Let $f: X \to S$ be a smooth projective morphism of relative dimension n. Let $\mathcal{F} \in D_c^b(X, \Lambda)$ and \mathcal{G} a locally constant and constructible sheaf of Λ -modules on X. Assume that f is properly $SS(\mathcal{F}, X/k)$ -transversal. Then there is an isomorphism

(2.4.4.1)
$$\det Rf_*(\mathcal{F} \otimes \mathcal{G}) \cong (\det Rf_*\mathcal{F})^{\otimes \operatorname{rank}\mathcal{G}} \otimes \det \mathcal{G}(cc_{X/S}(\mathcal{F})) \quad \text{in } K_0(S,\Lambda).$$

Note that we also have $cc_{X/S}(\mathcal{F}) = (CC(\mathcal{F}, X/S), T_X^*X)_{T^*(X/S)} \in CH^n(X).$

Proof. We may assume $\mathcal{G} \neq 0$. Since \mathcal{G} is a smooth sheaf, we have $SS(\mathcal{F}, X/k) = SS(\mathcal{F} \otimes \mathcal{G}, X/k)$. Since f is proper and $SS(\mathcal{F}, X/k)$ -transversal, by [Sai17a, Lemma 4.3.4], $Rf_*\mathcal{F}$ and $Rf_*(\mathcal{F} \otimes \mathcal{G})$ are smooth sheaves on S. For any closed point $s \in S$, we have the following commutative diagram

$$T^*X \times_X X_s \xrightarrow{\theta_s} T^*X_s \cong T^*(X/S) \times_X X_s \xleftarrow{0_{X_s}} X_s$$

$$\downarrow^{\text{pr}} \qquad \Box \qquad \downarrow^{\text{pr}} \qquad \downarrow^{i}$$

$$\mathbb{T}^*X \xrightarrow{\theta} T^*(X/S) \xleftarrow{0_{X/S}} X$$

where $0_{X/S}$ and 0_{X_s} are the zero sections. Hence we have

$$cc_{X_{s}}(\mathcal{F}|_{X_{s}}) = (CC(\mathcal{F}|_{X_{s}}, X_{s}/s), X_{s})_{T^{*}X_{s}} = 0^{!}_{X_{s}}CC(\mathcal{F}|_{X_{s}}, X_{s}/s) \stackrel{(a)}{=} 0^{!}_{X_{s}}i^{!}CC(\mathcal{F}, X/k)$$

$$= (-1)^{r}0^{!}_{X_{s}}i^{*}CC(\mathcal{F}, X/k) = (-1)^{r}0^{!}_{X_{s}}\theta_{s*}\mathrm{pr}^{!}CC(\mathcal{F}, X/k)$$

$$= (-1)^{r}0^{!}_{X_{s}}\mathrm{pr}^{!}\theta_{*}CC(\mathcal{F}, X/k) = (-1)^{r}0^{!}_{X_{s}}\mathrm{pr}^{!}((-1)^{r}CC(\mathcal{F}, X/S))$$

$$= 0^{!}_{X_{s}}\mathrm{pr}^{!}CC(\mathcal{F}, X/S) = i^{!}0^{!}_{X/S}CC(\mathcal{F}, X/S) = i^{!}cc_{X/S}(\mathcal{F}),$$

where the equality (a) follows from [Sai17a, Theorem 7.6] since f is properly $SS(\mathcal{F}, X/k)$ -transversal.

By Chebotarev density (cf. [Lau87, Théorème 1.1.2]), we may assume that S is the spectrum of a finite field. Then it is sufficient to compare the Frobenius action. Then one use (2.4.4.2) and Theorem 1.1.3.

Example 2.4.5. Let S be a smooth projective connected scheme over a finite field k of characteristic p > 2. Let $f: X \to S$ be a smooth projective morphism of relative dimension n, $\chi = \operatorname{rank} Rf_*\overline{\mathbb{Q}}_\ell$ the Euler-Poincaré number of the fibers and let \mathcal{F} be a constructible étale sheaf of Λ -modules on S. Then by the projection formula, we have $Rf_*f^*\mathcal{F} \cong \mathcal{F} \otimes Rf_*\overline{\mathbb{Q}}_\ell$. Since f is projective and smooth, $Rf_*\overline{\mathbb{Q}}_\ell$ is a smooth sheaf on S. Using Theorem 1.1.3, we get

(2.4.5.1)
$$\varepsilon(S, Rf_*f^*\mathcal{F}) = \varepsilon(S, \mathcal{F})^{\chi} \cdot \det Rf_*\overline{\mathbb{Q}}_{\ell}(-cc_{Y/k}(\mathcal{F})).$$

By [Sai94, Theorem 2], det $Rf_*\overline{\mathbb{Q}}_\ell = \kappa_{X/S}(-\frac{1}{2}n\chi)$, where $\kappa_{X/S}$ is a character of order at most 2 and is determined by the following way:

(1) If n is odd, then $\kappa_{X/S}$ is trivial.

(2) If n = 2m is even, then $\kappa_{X/S}$ is the quadratic character defined by the square root of $(-1)^{\frac{\chi(\chi-1)}{2}} \cdot \delta_{\mathrm{dR},X/S}$, where $\delta_{\mathrm{dR},X/S}$: $(\det H_{\mathrm{dR}}(X/S))^{\otimes 2} \xrightarrow{\simeq} \mathcal{O}_S$ is the de Rham discriminant defined by the non-degenerate symmetric bilinear form $H_{\mathrm{dR}}(X/S) \otimes^L H_{\mathrm{dR}}(X/S) \to \mathcal{O}_S[-2n]$, and $H_{\mathrm{dR}}(X/S) = Rf_*\Omega^{\bullet}_{X/S}$ is the perfect complex of \mathcal{O}_S -modules whose cohomology computes the relative de Rham cohomology of X/S.

Similarly, if \mathcal{F} is a locally constant and constructible étale sheaf of Λ -modules on S, then

(2.4.5.2)
$$\det Rf_*f^*\mathcal{F} \cong \det(\mathcal{F} \otimes Rf_*\overline{\mathbb{Q}}_\ell) \cong (\det \mathcal{F})^{\otimes \chi} \otimes (\det Rf_*\overline{\mathbb{Q}}_\ell)^{\otimes \operatorname{rank}\mathcal{F}}$$
$$\cong (\det \mathcal{F})^{\otimes \chi} \otimes (\kappa_{X/S}(-\frac{1}{2}n\chi))^{\otimes \operatorname{rank}\mathcal{F}}.$$

2.5. Total characteristic class.

2.5.1. In the rest of this section, we relate the relative characteristic class $cc_{X/S}(\mathcal{F})$ to the total characteristic class of \mathcal{F} . Let X be a smooth scheme purely of dimension d over a perfect field k of characteristic p. In [Sai17a, Definition 6.7.2], T. Saito defines the following morphism

(2.5.1.1)
$$cc_{X,\bullet} \colon K_0(X,\Lambda) \to \operatorname{CH}_{\bullet}(X) = \bigoplus_{i=0}^d \operatorname{CH}_i(X),$$

which sends $\mathcal{F} \in D^b_c(X, \Lambda)$ to the total characteristic class $cc_{X,\bullet}(\mathcal{F})$ of \mathcal{F} . For our convenience, for any integer n we put

(2.5.1.2)
$$cc_X^n(\mathcal{F}) \coloneqq cc_{X,d-n}(\mathcal{F}) \text{ in } CH^n(X).$$

By [Sai17a, Lemma 6.9], for any $\mathcal{F} \in D_c^b(X, \Lambda)$, we have

(2.5.1.3)
$$cc_X^d(\mathcal{F}) = cc_{X,0}(\mathcal{F}) = (CC(\mathcal{F}, X/k), T_X^*X)_{T^*X}$$
 in $CH_0(X)$,

(2.5.1.4)
$$cc_X^0(\mathcal{F}) = cc_{X,d}(\mathcal{F}) = (-1)^d \cdot \operatorname{rank} \mathcal{F} \cdot [X] \quad \text{in } \operatorname{CH}_d(X) = \mathbb{Z}.$$

The following proposition gives a computation of $cc_X^n \mathcal{F}$ for any n.

Proposition 2.5.2. Let S be a smooth connected scheme of dimension r over a perfect field k of characteristic p. Let $f: X \to S$ be a smooth morphism purely of relative dimension n. Assume that f is $SS(\mathcal{F}, X/k)$ -transversal. Then we have

(2.5.2.1)
$$cc_X^n(\mathcal{F}) = (-1)^r \cdot cc_{X/S}(\mathcal{F}) \quad \text{in} \quad CH^n(X)$$

where $cc_{X/S}(\mathcal{F})$ is defined in Definition 2.4.3.

Proof. We use the notation of [Sail7a, Lemma 6.2]. We put $F = (T^*S \times_S X) \oplus \mathbb{A}^1_X$ and $E = T^*X \oplus \mathbb{A}^1_X$. We have a canonical injection $i: F \to E$ of vector bundles on X induced by $df: T^*S \times_S X \to T^*X$. Let $\overline{i}: \mathbb{P}(F) \to \mathbb{P}(E)$ be the canonical map induced by $i: F \to E$. By [Sail7a, Lemma 6.1.2 and Lemma 6.2.1], we have a commutative diagram:

$$(2.5.2.2) \qquad \begin{array}{c} \operatorname{CH}_{r}(\mathbb{P}(F)) & \longleftarrow & \operatorname{CH}_{n+r}(\mathbb{P}(E)) \\ & \simeq & \uparrow & \simeq & \uparrow \\ & & & \simeq & \uparrow \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Since f is smooth and $SS(\mathcal{F}, X/k)$ -transversal, the intersection $SS(\mathcal{F}, X/k) \cap (T^*S \times_S X)$ is contained in the zero section of $T^*S \times_S X$. Thus the Gysin pull-back $i^*(CC(\mathcal{F}, X/k))$ is supported on the zero section of $T^*S \times_S X$. Let $\overline{CC(\mathcal{F}, X/k)}$ be any extension of $CC(\mathcal{F}, X/k)$ to $\mathbb{P}(E)$ (cf. [Sai17a, Definition 6.7.2]). Then $\overline{i^*}(\overline{CC(\mathcal{F}, X/k)})$ is an extension of $i^*(CC(\mathcal{F}, X/k))$ to $\mathbb{P}(F)$. By [Sai17a, Definition 6.7.2], the image of $\overline{CC(\mathcal{F}, X/k)}$ in $CH^n(X)$ by the right vertical map of (2.5.2.2) equals to $cc_X^n(\mathcal{F}) = cc_{X,r}(\mathcal{F})$. The image of $\overline{i^*}(\overline{CC(\mathcal{F}, X/k)})$ in $CH^n(X)$ by the left vertical map of (2.5.2.2) equals to $(-1)^r \cdot cc_{X/S}(\mathcal{F})$ (cf. (2.4.3.2)). Now the equality (2.5.2.1) follows from the commutativity of (2.5.2.2).

(2.5.3.1)
$$\begin{array}{cccc} K_0(X,\Lambda) \xrightarrow{cc_{X,\bullet}} CH_{\bullet}(X) \\ f_* & & & & \\ f_* & & & & \\ K_0(Y,\Lambda) \xrightarrow{cc_{Y,\bullet}} CH_{\bullet}(Y) \end{array}$$

commutative for any proper map $f: X \to Y$ between smooth schemes over a perfect field k? If $k = \mathbb{C}$, the diagram (2.5.3.1) is commutative by [Gin86, Theorem A.6]. By the philosophy of Grothendieck, the answer is no in general if char(k) > 0 (cf. [Sai17a, Example 6.10]). However, in [UYZ, Corollary 1.9], we prove that the degree zero part of the diagram (2.5.3.1) is commutative, i.e., if $f: X \to Y$ is a proper map between smooth projective schemes over a finite field k of characteristic p, then we have the following commutative diagram

(2.5.3.2)
$$\begin{array}{cccc} K_0(X,\Lambda) \xrightarrow{cc_{X,0}} CH_0(X) \\ f_* & & & \downarrow f_* \\ K_0(Y,\Lambda) \xrightarrow{cc_{Y,0}} CH_0(Y). \end{array}$$

Now we propose the following:

Conjecture 2.5.4. Let S be a smooth connected scheme over a perfect field k of characteristic p. Let $f: X \to S$ be a smooth morphism purely of relative dimension n and $g: Y \to S$ a smooth morphism purely of relative dimension m. Let $D_c^b(X/S, \Lambda)$ be the thick subcategory of $D_c^b(X, \Lambda)$ consists of $\mathcal{F} \in D_c^b(X, \Lambda)$ such that $f: X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal. Let $K_0(X/S, \Lambda)$ be the Grothendieck group of $D_c^b(X/S, \Lambda)$. Then for any proper morphism $h: X \to Y$ over S,

the following diagram commutes

That is to say, for any $\mathcal{F} \in D^b_c(X, \Lambda)$, if f is $SS(\mathcal{F}, X/k)$ -transversal, then we have

(2.5.4.3)
$$h_*(cc_X^n(\mathcal{F})) = cc_Y^m(Rh_*\mathcal{F}) \quad \text{in} \quad CH^m(Y).$$

Remark 2.5.5. If f is $SS(\mathcal{F}, X/k)$ -transversal, by [Sai17a, Lemma 3.8 and Lemma 4.2.6], the morphism $g: Y \to S$ is $SS(Rh_*\mathcal{F}, Y/k)$ -transversal. Thus we have a well-defined map $h_*: K_0(X/S, \Lambda) \to K_0(Y/S, \Lambda)$.

In next section, we formulate and prove a cohomological version of Conjecture 2.5.4 (cf. Corollary 3.3.4).

3. Relative cohomological characteristic class

In this section, we assume that S is a smooth connected scheme over a perfect field k of characteristic p and Λ is a finite field of characteristic ℓ . To simplify our notations, we omit to write R or L to denote the derived functors unless otherwise stated explicitly or for RHom.

We briefly recall the content of this section. Let $X \to S$ be a smooth morphism purely of relative dimension n and $\mathcal{F} \in D^b_c(X, \Lambda)$. If $X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal, we construct a relative cohomological characteristic class $ccc_{X/S}(\mathcal{F}) \in H^{2n}(X, \Lambda(n))$ following the method of [AS07, SGA5]. We conjecture that the image of the cycle class $cc_{X/S}(\mathcal{F})$ by the cycle class map cl : $CH^n(X) \to H^{2n}(X, \Lambda(n))$ is $ccc_{X/S}(\mathcal{F})$ (cf. Conjecture 2.1.4). In Corollary 3.3.4, we prove that the formation of $ccc_{X/S}\mathcal{F}$ is compatible with proper push-forward.

3.1. Relative cohomological correspondence.

3.1.1. Let $\pi_1: X_1 \to S$ and $\pi_2: X_2 \to S$ be smooth morphisms purely of relative dimension n_1 and n_2 respectively. We put $X \coloneqq X_1 \times_S X_2$ and consider the following cartesian diagram

$$(3.1.1.1) \qquad \begin{array}{c} X \xrightarrow{\operatorname{pr}_2} X_2 \\ & & \downarrow \\ & & \downarrow \\ X_1 \xrightarrow{} & & I \\ & & X_1 \xrightarrow{} & S. \end{array}$$

Let \mathcal{E}_i and \mathcal{F}_i be objects of $D^b_c(X_i, \Lambda)$ for i = 1, 2. We put

(3.1.1.2)
$$\mathcal{F} \coloneqq \mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2 \coloneqq \operatorname{pr}_1^* \mathcal{F}_1 \otimes^L \operatorname{pr}_2^* \mathcal{F}_2,$$

(3.1.1.3)
$$\mathcal{E} \coloneqq \mathcal{E}_1 \boxtimes_S^L \mathcal{E}_2 \coloneqq \operatorname{pr}_1^* \mathcal{E}_1 \otimes^L \operatorname{pr}_2^* \mathcal{E}_2,$$

which are objects of $D_c^b(X, \Lambda)$. Similarly, we can define $\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2$, which is an object of $D_c^b(X_1 \times_k X_2, \Lambda)$. We first compare $SS(\mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2, X_1 \times_S X_1/k)$ and $SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_1/k)$.

Lemma 3.1.2. Assume that $\pi_1: X_1 \to S$ is $SS(\mathcal{F}_1, X_1/k)$ -transversal. Then we have

$$(3.1.2.1) \qquad \qquad SS(\mathrm{pr}_1^*\mathcal{F}_1, X/k) \cap SS(\mathrm{pr}_2^*\mathcal{F}_2, X/k) \subseteq T_X^*X$$

Moreover, the closed immersion $i: X_1 \times_S X_2 \hookrightarrow X_1 \times_k X_2$ is $SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k)$ -transversal and

$$(3.1.2.2) \qquad SS(\mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2, X_1 \times_S X_2/k) \subseteq i^{\circ}(SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k)).$$

Proof. We first prove (3.1.2.1). Since $X_i \to S$ is smooth, we obtain an exact sequence of vector bundles on X_i for i = 1, 2

$$(3.1.2.3) 0 \to T^*S \times_S X_i \xrightarrow{d\pi_i} T^*X_i \to T^*(X_i/S) \to 0.$$

Since $\pi_1: X_1 \to S$ is $SS(\mathcal{F}_1, X_1/k)$ -transversal, we have

$$(3.1.2.4) \qquad \qquad SS(\mathcal{F}_1, X_1/k) \cap (T^*S \times_S X_1) \subseteq T^*_S S \times_S X_1.$$

Consider the following diagram with exact rows and exact columns:

$$(3.1.2.5) \qquad \begin{array}{c} 0 & & 0 \\ \uparrow & & \uparrow \\ T^*(X_2/S) \times_{X_2} X \xrightarrow{\cong} T^*(X/X_1) \\ \uparrow & & \uparrow \\ 0 \longrightarrow T^*X_2 \times_{X_2} X \xrightarrow{\longrightarrow} T^*X \xrightarrow{\longrightarrow} T^*(X/X_2) \longrightarrow 0 \\ \uparrow & & \uparrow \\ 0 \longrightarrow T^*S \times_S X \xrightarrow{\longrightarrow} T^*X_1 \times_{X_1} X \xrightarrow{\longrightarrow} T^*(X_1/S) \times_{X_1} X \longrightarrow 0 \\ \uparrow & & \uparrow \\ 0 & & 0 \end{array}$$

Since pr_i is smooth, by [Sai17a, Corollary 8.15], we have

$$SS(\mathrm{pr}_i^*\mathcal{F}_i, X/k) = \mathrm{pr}_i^\circ SS(\mathcal{F}_i, X_i/k) = SS(\mathcal{F}_i, X_i/k) \times_{X_i} X.$$

It follows from (3.1.2.4) and (3.1.2.5) that $\operatorname{pr}_1^\circ SS(\mathcal{F}_1, X_1/k) \cap \operatorname{pr}_2^\circ SS(\mathcal{F}_2, X_2/k) \subseteq T_X^*X$. Thus $SS(\operatorname{pr}_1^*\mathcal{F}_1, X/k) \cap SS(\operatorname{pr}_2^*\mathcal{F}_2, X/k) \subseteq T_X^*X$. This proves (3.1.2.1).

Now we consider the cartesian diagram

$$(3.1.2.6) \qquad \begin{array}{c} X = X_1 \times_S X_2 \xrightarrow{i} X_1 \times_k X_2 \\ \downarrow & \Box \\ S \xrightarrow{\delta} S \times_k S \end{array}$$

where $\delta: S \to S \times_k S$ is the diagonal. We get the following commutative diagram of vector bundles on X with exact rows:

$$T^*X_1 \times_S T^*X_2$$

$$\|$$

$$0 \longrightarrow \mathcal{N}_{X/(X_1 \times_k X_2)} \longrightarrow T^*(X_1 \times_k X_2) \times_{X_1 \times_k X_2} X \xrightarrow{di} T^*X \longrightarrow 0$$

$$\uparrow^{\cong} \uparrow \uparrow \uparrow$$

$$0 \longrightarrow \mathcal{N}_{S/(S \times_k S)} \times_S X \longrightarrow T^*(S \times_k S) \times_{S \times_k S} X \xrightarrow{d\delta} T^*S \times_S X \longrightarrow 0$$

$$\|$$

$$T^*S \times_S X \longrightarrow (T^*S \times_S X_1) \times_S (T^*S \times_S X_2)$$

where $\mathcal{N}_{S/(S \times_k S)}$ is the conormal bundle associated to $\delta \colon S \to S \times_k S$. By [Sai17b, Theorem 2.2.3], we have $SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k) = SS(\mathcal{F}_1, X_1/k) \times SS(\mathcal{F}_2, X_2/k)$. Therefore by (3.1.2.4), $\mathcal{N}_{X/(X_1 \times_k X_2)} \cap SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k)$ is contained in the zero section of $\mathcal{N}_{X/(X_1 \times_k X_2)}$. Hence $i: X \hookrightarrow X_1 \times_k X_2$ is $SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k)$ -transversal. Now the assertion (3.1.2.2) follows from [Sai17a, Lemma 4.2.4].

Proposition 3.1.3. Under the notation in 3.1.1, we assume that

- (1) $SS(\mathcal{E}_i, X_i/k) \cap SS(\mathcal{F}_i, X_i/k) \subseteq T^*_{X_i} X_i \text{ for all } i = 1, 2;$ (2) $\pi_1 \colon X_1 \to S \text{ is } SS(\mathcal{E}_1, X_1/k) \text{-transversal or } \pi_2 \colon X_2 \to S \text{ is } SS(\mathcal{F}_2, X_2/k) \text{-transversal};$

(3) $\pi_1: X_1 \to S$ is $SS(\mathcal{F}_1, X_1/k)$ -transversal or $\pi_2: X_2 \to S$ is $SS(\mathcal{E}_2, X_2/k)$ -transversal.

Then the following canonical map (cf. [Zh15, (7.2.2)] and [SGA5, Exposé III, (2.2.4)])

$$(3.1.3.1) \qquad \qquad R\mathcal{H}om(\mathcal{E}_1,\mathcal{F}_1)\boxtimes^L_S R\mathcal{H}om(\mathcal{E}_2,\mathcal{F}_2) \to R\mathcal{H}om(\mathcal{E},\mathcal{F}).$$

is an isomorphism.

If S is the spectrum of a field, then the above result is proved in [SGA5, Exposé III, Proposition 2.3]. Our proof below is different from that of *loc.cit.* and is based on [Sai17a].

Proof. In the following, we put $\mathcal{E}_i^{\vee} \coloneqq R\mathcal{H}om(\mathcal{E}_i, \Lambda)$. Since $SS(\mathcal{E}_i, X_i/k) \cap SS(\mathcal{F}_i, X_i/k) \subseteq T_{X_i}^*X_i$, Lemma 2.3.4 implies that

(3.1.3.2)
$$\mathcal{F}_i \otimes^L \mathcal{E}_i^{\vee} = \mathcal{F}_i \otimes^L R\mathcal{H}om(\mathcal{E}_i, \Lambda) \xrightarrow{\cong} R\mathcal{H}om(\mathcal{E}_i, \mathcal{F}_i), \text{ for all } i = 1, 2,$$

Hence we have

$$(3.1.3.3) \qquad \qquad R\mathcal{H}om(\mathcal{E}_1, \mathcal{F}_1) \boxtimes_S^L R\mathcal{H}om(\mathcal{E}_2, \mathcal{F}_2) \cong (\mathcal{F}_1 \otimes^L \mathcal{E}_1^{\vee}) \boxtimes_S^L (\mathcal{F}_2 \otimes^L \mathcal{E}_2^{\vee}) \\ \cong (\mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2) \otimes^L (\mathcal{E}_1^{\vee} \boxtimes_S^L \mathcal{E}_2^{\vee}).$$

Note that we also have

$$\mathcal{E}_{1}^{\vee} \boxtimes_{S}^{L} \mathcal{E}_{2}^{\vee} = \mathrm{pr}_{1}^{*} R \mathcal{H}om(\mathcal{E}_{1}, \Lambda) \otimes^{L} \mathrm{pr}_{2}^{*} R \mathcal{H}om(\mathcal{E}_{2}, \Lambda)$$

$$\cong R \mathcal{H}om(\mathrm{pr}_{1}^{*} \mathcal{E}_{1}, \Lambda) \otimes^{L} R \mathcal{H}om(\mathrm{pr}_{2}^{*} \mathcal{E}_{2}, \Lambda)$$

$$\stackrel{(a)}{\cong} R \mathcal{H}om(\mathrm{pr}_{1}^{*} \mathcal{E}_{1}, R \mathcal{H}om(\mathrm{pr}_{2}^{*} \mathcal{E}_{2}, \Lambda))$$

$$\cong R \mathcal{H}om(\mathrm{pr}_{1}^{*} \mathcal{E}_{1} \otimes^{L} \mathrm{pr}_{2}^{*} \mathcal{E}_{2}, \Lambda) = \mathcal{E}^{\vee},$$

where the isomorphism (a) follows from Lemma 2.3.4 by the fact that (cf. Lemma 3.1.2)

$$SS(\mathrm{pr}_1^*\mathcal{E}_1, X/k) \cap SS(\mathrm{pr}_2^*\mathcal{E}_2, X/k) \subseteq T_X^*X.$$

By Lemma 3.1.2, we have

$$SS(\mathcal{E}, X/k) \cap SS(\mathcal{F}, X/k)$$

$$\subseteq i^{\circ}(SS(\mathcal{E}_1 \boxtimes_k^L \mathcal{E}_2, X_1 \times_k X_2/k)) \cap i^{\circ}(SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k))$$

$$\stackrel{(b)}{=} i^{\circ}(SS(\mathcal{E}_1, X_1) \times SS(\mathcal{E}_2, X_2)) \cap i^{\circ}(SS(\mathcal{F}_1, X_1) \times SS(\mathcal{F}_2, X_2))$$

$$\stackrel{(c)}{\subseteq} T_X^*X,$$

where the equality (b) follows from [Sai17b, Theorem 2.2.3], and (c) follows from the assumptions (2) and (3) (cf. [Sai17b, Lemma 2.7.2]). Thus by Lemma 2.3.4, we have

$$(3.1.3.5) \qquad \qquad \mathcal{F} \otimes^L \mathcal{E}^{\vee} \cong R\mathcal{H}om(\mathcal{E}, \mathcal{F})$$

Combining (3.1.3.3), (3.1.3.4) and (3.1.3.5), we get

$$(3.1.3.6) \qquad \qquad R\mathcal{H}om(\mathcal{E}_1,\mathcal{F}_1)\boxtimes^L_S R\mathcal{H}om(\mathcal{E}_2,\mathcal{F}_2)\cong \mathcal{F}\otimes^L \mathcal{E}^{\vee}\cong R\mathcal{H}om(\mathcal{E},\mathcal{F})$$

This finishes the proof.

3.1.4. Künneth formula. We have the following canonical morphism

(3.1.4.1)
$$\mathcal{F}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{F}_2, \pi_2^! \Lambda_S) \to R\mathcal{H}om(\mathrm{pr}_2^* \mathcal{F}_2, \mathrm{pr}_1^! \mathcal{F}_1),$$

by taking the adjunction of the following composition map

$$pr_1^*\mathcal{F}_1 \otimes pr_2^*R\mathcal{H}om(\mathcal{F}_2, \pi_2^!\Lambda_S) \otimes pr_2^*\mathcal{F}_2 \to pr_1^*\mathcal{F}_1 \otimes pr_2^*(\mathcal{F}_2 \otimes R\mathcal{H}om(\mathcal{F}_2, \pi_2^!\Lambda_S))$$

$$\xrightarrow{\text{evaluation}} pr_1^*\mathcal{F}_1 \otimes pr_2^*\pi_2^!\Lambda_S \to pr_1^*\mathcal{F}_1 \otimes pr_1^!\Lambda_{X_1} \to pr_1^!\mathcal{F}_1.$$

Corollary 3.1.5. Assume that $\pi_1: X_1 \to S$ is $SS(\mathcal{F}_1, X_1/k)$ -transversal or $\pi_2: X_2 \to S$ is $SS(\mathcal{F}_2, X_2/k)$ -transversal. Then the canonical map (3.1.4.1) is an isomorphism.

If S is the spectrum of a field, then the above result is proved in [SGA5, Exposé III, (3.1.1)]. Our proof below is different from that of *loc.cit*.

Proof. By Proposition 3.1.3, we have the following isomorphisms

$$\mathcal{F}_{1} \boxtimes_{S}^{L} R\mathcal{H}om(\mathcal{F}_{2}, \pi_{2}^{!}\Lambda_{S}) \stackrel{Prop. \mathbf{3.1.3}}{\cong} R\mathcal{H}om(\mathrm{pr}_{2}^{*}\mathcal{F}_{2}, \mathrm{pr}_{1}^{*}\mathcal{F}_{1} \otimes \mathrm{pr}_{1}^{!}\Lambda_{S})$$
$$\stackrel{(a)}{\cong} R\mathcal{H}om(\mathrm{pr}_{2}^{*}\mathcal{F}_{2}, \mathrm{pr}_{1}^{!}\mathcal{F}_{1}),$$

where (a) follows from the fact that pr_1 is smooth (cf. [ILO14, XVI, Théorème 3.1.1] and [SGA4, XVIII, Theoréme 3.2.5]).

Definition 3.1.6. Let X_i, \mathcal{F}_i be as in 3.1.1 for i = 1, 2. A relative correspondence between X_1 and X_2 is a scheme C over S with morphisms $c_1: C \to X_1$ and $c_2: C \to X_2$ over S. We put $c = (c_1, c_2): C \to X_1 \times_S X_2$ the corresponding morphism. A morphism $u: c_2^* \mathcal{F}_2 \to c_1^! \mathcal{F}_1$ is called a relative cohomological correspondence from \mathcal{F}_2 to \mathcal{F}_1 on C.

3.1.7. Given a correspondence C as above, we recall that there is a canonical isomorphism [SGA4, XVIII, 3.1.12.2]

(3.1.7.1)
$$R\mathcal{H}om(c_2^*\mathcal{F}_2, c_1^!\mathcal{F}_1) \xrightarrow{\cong} c^!R\mathcal{H}om(\mathrm{pr}_2^*\mathcal{F}_2, \mathrm{pr}_1^!\mathcal{F}_1).$$

3.1.8. For i = 1, 2, consider the following diagram of S-morphisms

where π_i and q_i are smooth morphisms. We put $X \coloneqq X_1 \times_S X_2$, $Y \coloneqq Y_1 \times_S Y_2$ and $f \coloneqq f_1 \times_S f_2 \colon X \to Y$. Let $\mathcal{M}_i \in D^b_c(Y_i, \Lambda)$ for i = 1, 2. We have a canonical map (cf. [Zh15, Construction 7.4] and [SGA5, Exposé III, (1.7.3)])

(3.1.8.1)
$$f_1^! \mathcal{M}_1 \boxtimes_S^L f_2^! \mathcal{M}_2 \to f^! (\mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2)$$

which is adjoint to the composite

(3.1.8.2)
$$f_!(f_1^!\mathcal{M}_1\boxtimes^L_S f_2^!\mathcal{M}_2) \xrightarrow{\simeq} f_{1!}f_1^!\mathcal{M}_1\boxtimes^L_S f_{2!}f_2^!\mathcal{M}_2 \xrightarrow{\operatorname{adj}\boxtimes \operatorname{adj}} \mathcal{M}_1\boxtimes^L_S \mathcal{M}_2$$

where (a) is the Künneth isomorphism [SGA4, XVII, Théorème 5.4.3].

Proposition 3.1.9. If $q_2: Y_2 \to S$ is $SS(\mathcal{M}_2, Y_2/k)$ -transversal, then the map (3.1.8.1) is an isomorphism.

If S is the spectrum of a field, the above result is proved in [SGA5, Exposé III, Proposition 1.7.4].

Proof. Consider the following cartesian diagrams

We may assume that $X_2 = Y_2$ and $f_2 = id$, i.e., it suffices to show that the canonical map

(3.1.9.1)
$$f_1^! \mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2 \xrightarrow{\cong} (f_1 \times \mathrm{id})^! (\mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2).$$

is an isomorphism. Since we have

$$\mathcal{M}_2 \cong D_{Y_2} D_{Y_2} \mathcal{M}_2 \cong R\mathcal{H}om(D_{Y_2} \mathcal{M}_2, \mathcal{K}_{Y_2})$$
$$\cong R\mathcal{H}om(D_{Y_2}(\mathcal{M}_2)(-\dim S)[-2\dim S], q_2^! \Lambda_S),$$

we may assume $\mathcal{M}_2 = R\mathcal{H}om(\mathcal{L}_2, q_2^!\Lambda_S)$ for some $\mathcal{L}_2 \in D^b_c(Y_2, \Lambda)$. By [Sai17a, Corollary 4.9], we have $SS(\mathcal{M}_2, Y_2/k) = SS(\mathcal{L}_2, Y_2/k)$. Thus by assumption, the morphism $q_2: Y_2 \to S$ is $SS(\mathcal{L}_2, Y_2/k)$ -transversal. By Corollary 3.1.5, we have an isomorphism

 $(3.1.9.2) \quad \mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, q_2^! \Lambda_S) \cong R\mathcal{H}om(\mathrm{pr}_2^* \mathcal{L}_2, \mathrm{pr}_1^! \mathcal{M}_1) \quad \text{in } D_c^b(Y_1 \times_S Y_2, \Lambda),$ $(3.1.9.3) \quad f_1^! \mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, q_2^! \Lambda_S) \cong R\mathcal{H}om((f_1 \times \mathrm{id})^* \mathrm{pr}_2^* \mathcal{L}_2, \mathrm{pr}_1^! f_1^! \mathcal{M}_1) \text{ in } D_c^b(X_1 \times_S Y_2, \Lambda).$ We have

$$(f_{1} \times \mathrm{id})^{!}(\mathcal{M}_{1} \boxtimes_{S}^{L} \mathcal{M}_{2}) = (f_{1} \times \mathrm{id})^{!}(\mathcal{M}_{1} \boxtimes_{S}^{L} R\mathcal{H}om(\mathcal{L}_{2}, q_{2}^{!}\Lambda_{S}))$$

$$\stackrel{(\mathbf{3.1.9.2})}{\cong} (f_{1} \times \mathrm{id})^{!}(R\mathcal{H}om(\mathrm{pr}_{2}^{*}\mathcal{L}_{2}, \mathrm{pr}_{1}^{!}\mathcal{M}_{1}))$$

$$\stackrel{(\mathbf{3.1.7.1})}{\cong} R\mathcal{H}om((f_{1} \times \mathrm{id})^{*}\mathrm{pr}_{2}^{*}\mathcal{L}_{2}, (f_{1} \times \mathrm{id})^{!}\mathrm{pr}_{1}^{!}\mathcal{M}_{1})$$

$$\cong R\mathcal{H}om((f_{1} \times \mathrm{id})^{*}\mathrm{pr}_{2}^{*}\mathcal{L}_{2}, \mathrm{pr}_{1}^{!}f_{1}^{!}\mathcal{M}_{1})$$

$$\stackrel{(\mathbf{3.1.9.3})}{\cong} f_{1}^{!}\mathcal{M}_{1} \boxtimes_{S}^{L} R\mathcal{H}om(\mathcal{L}_{2}, q_{2}^{!}\Lambda_{S}) \cong f_{1}^{!}\mathcal{M}_{1} \boxtimes_{S}^{L} \mathcal{M}_{2}.$$

This finishes the proof.

3.2. Relative cohomological characteristic class.

3.2.1. We introduce some notation for convenience. For any commutative diagram

of schemes, we put

(3.2.1.1) $\mathcal{K}_W \coloneqq Rf^! \Lambda,$ (3.2.1.2) $\mathcal{K}_{W/V} \coloneqq Rh^! \Lambda_V.$

Under the notation in 3.1.1, by Proposition 3.1.9, we have an isomorphism

(3.2.1.3) $\mathcal{K}_{X_1/S} \boxtimes_S^L \mathcal{K}_{X_2/S} \simeq \mathcal{K}_{X/S}.$

3.2.2. Consider a cartesian diagram

(3.2.2.1)

of schemes over k. Let \mathcal{F} , \mathcal{G} and \mathcal{H} be objects of $D^b_c(X, \Lambda)$ and $\mathcal{F} \otimes \mathcal{G} \to \mathcal{H}$ any morphism. By the Künneth isomorphism [SGA4, XVII, Théorème 5.4.3] and adjunction, we have

 $E \longrightarrow D$ $\downarrow \qquad e \qquad \downarrow d$

$$e_!(c^!\mathcal{F}\boxtimes^L_X d^!\mathcal{G}) \xrightarrow{\simeq} c_!c^!\mathcal{F} \otimes^L d_!d^!\mathcal{G} \to \mathcal{F} \otimes \mathcal{G} \to \mathcal{H}.$$

By adjunction, we get a morphism

 $(3.2.2.2) c' \mathcal{F} \boxtimes_X^L d' \mathcal{G} \to e' \mathcal{H}.$

Thus we get a pairing

$$(3.2.2.3) \qquad \langle,\rangle: H^0(C,c^!\mathcal{F})\otimes H^0(D,d^!\mathcal{G}) \to H^0(E,e^!\mathcal{H}).$$

3.2.3. Now we define the relative Verdier pairing by applying the map (3.2.2.3) to relative cohomological correspondences. Let $\pi_1: X_1 \to S$ and $\pi_2: X_2 \to S$ be smooth morphisms. Consider a cartesian diagram

$$(3.2.3.1) \qquad \qquad \begin{array}{c} E & \longrightarrow D \\ \downarrow & \downarrow \\ C & \longleftarrow \\ c = (c_1, c_2) \end{array} \\ X = X_1 \times_S X_2 \end{array}$$

of schemes over S. Let $\mathcal{F}_1 \in D^b_c(X_1, \Lambda)$ and $\mathcal{F}_2 \in D^b_c(X_2, \Lambda)$. Assume that one of the following conditions holds:

- (1) $\pi_1: X_1 \to S$ is $SS(\mathcal{F}_1, X_1/k)$ -transversal;
- (2) $\pi_2: X_2 \to S$ is $SS(\mathcal{F}_2, X_2/k)$ -transversal.

By Corollary 3.1.5, we have

$$(3.2.3.2) \qquad \begin{array}{l} \mathcal{R}\mathcal{H}om(\mathrm{pr}_{2}^{*}\mathcal{F}_{2},\mathrm{pr}_{1}^{!}\mathcal{F}_{1})\otimes^{L}\mathcal{R}\mathcal{H}om(\mathrm{pr}_{1}^{*}\mathcal{F}_{1},\mathrm{pr}_{2}^{!}\mathcal{F}_{2}) \\ \xrightarrow{\simeq} (\mathcal{F}_{1}\boxtimes_{S}^{L}\mathcal{R}\mathcal{H}om(\mathcal{F}_{2},\pi_{2}^{!}\Lambda_{S}))\otimes^{L}(\mathcal{R}\mathcal{H}om(\mathcal{F}_{1},\pi_{1}^{!}\Lambda_{S})\boxtimes_{S}^{L}\mathcal{F}_{2}) \\ \xrightarrow{\mathrm{evaluation}} \pi_{1}^{!}\Lambda_{S}\boxtimes_{S}^{L}\pi_{2}^{!}\Lambda_{S} \xrightarrow{(3.2.1.3)} \mathcal{K}_{X/S}. \end{array}$$

By (3.1.7.1), (3.2.2.2), (3.2.2.3) and (3.2.3.2), we get the following pairings

 $(3.2.3.3) \qquad c_1 R \mathcal{H}om(c_2^* \mathcal{F}_2, c_1^! \mathcal{F}_1) \otimes^L d_1 R \mathcal{H}om(d_1^* \mathcal{F}_1, d_2^! \mathcal{F}_2) \to e_1 \mathcal{K}_{E/S},$

$$(3.2.3.4) \qquad \langle,\rangle: Hom(c_2^*\mathcal{F}_2, c_1^!\mathcal{F}_1) \otimes Hom(d_1^*\mathcal{F}_1, d_2^!\mathcal{F}_2) \to H^0(E, e^!(\mathcal{K}_{X/S})) = H^0(E, \mathcal{K}_{E/S}).$$

The pairing (3.2.3.4) is called the *relative Verdier pairing* (cf. [SGA5, Exposé III (4.2.5)]).

Definition 3.2.4. Let $f: X \to S$ be a smooth morphism purely of relative dimension n and $\mathcal{F} \in D^b_c(X, \Lambda)$. We assume that f is $SS(\mathcal{F}, X/k)$ -transversal. Let $c = (c_1, c_2): C \to X \times_S X$ be a closed immersion and $u: c_2^* \mathcal{F} \to c_1^! \mathcal{F}$ be a relative cohomological correspondence on C. We define the relative cohomological characteristic class $ccc_{X/S}(u)$ of u to be the cohomology class $\langle u, 1 \rangle \in H^0_{C \cap X}(X, \mathcal{K}_{X/S})$ defined by the pairing (3.2.3.4).

In particular, if C = X and $c: C \to X \times_S X$ is the diagonal and if $u: \mathcal{F} \to \mathcal{F}$ is the identity, we write

$$ccc_{X/S}(\mathcal{F}) = \langle 1, 1 \rangle$$
 in $H^{2n}(X, \Lambda(n))$

and call it the relative cohomological characteristic class of \mathcal{F} .

If S is the spectrum of a perfect field, then the above definition is [AS07, Definition 2.1.1].

Example 3.2.5. If \mathcal{F} is a locally constant and constructible sheaf of Λ -modules on X, then we have $ccc_{X/S}\mathcal{F} = \operatorname{rank}\mathcal{F} \cdot c_n(\Omega_{X/S}^{\vee}) \cap [X] \in CH^n(X)$.

Conjecture 3.2.6. Let S be a smooth connected scheme over a perfect field k of characteristic p. Let $f: X \to S$ be a smooth morphism purely of relatively dimension n and $\mathcal{F} \in D^b_c(X, \Lambda)$. Assume that f is $SS(\mathcal{F}, X/k)$ -transversal. Let cl: $CH^n(X) \to H^{2n}(X, \Lambda(n))$ be the cycle class map. Then we have

(3.2.6.1)
$$\operatorname{cl}(cc_{X/S}(\mathcal{F})) = ccc_{X/S}(\mathcal{F}) \quad \text{in} \quad H^{2n}(X, \Lambda(n)),$$

where $cc_{X/S}(\mathcal{F})$ is the relative characteristic class defined in Definition 2.4.3.

If S is the spectrum of a perfect field, then the above conjecture is [Sai17a, Conjecture 6.8.1].

3.3. Proper push-forward of relative cohomological characteristic class.

3.3.1. For i = 1, 2, let $f_i: X_i \to Y_i$ be a proper morphism between smooth schemes over S. Let $X \coloneqq X_1 \times_S X_2$, $Y \coloneqq Y_1 \times_S Y_2$ and $f \coloneqq f_1 \times_S f_2$. Let $p_i: X \to X_i$ and $q_i: Y \to Y_i$ be the canonical projections for i = 1, 2. Consider a commutative diagram

of schemes over S. Assume that c is proper. Put $c_i = p_i c$ and $d_i = q_i d$. By [Zh15, Construction 7.17], we have the following push-forward maps for cohomological correspondence (see also [SGA5, Exposé III, (3.7.6)] if S is the spectrum of a field):

$$(3.3.1.2) f_*: Hom(c_2^*\mathcal{L}_2, c_1^!\mathcal{L}_1) \to Hom(d_2^*(f_{2!}\mathcal{L}_2), d_1^!(f_{1*}\mathcal{L}_1)),$$

(3.3.1.3) $f_*: g_* R\mathcal{H}om(c_2^*\mathcal{L}_2, c_1^!\mathcal{L}_1) \to R\mathcal{H}om(d_2^*(f_{2!}\mathcal{L}_2), d_1^!(f_{1*}\mathcal{L}_1)).$

Theorem 3.3.2 ([SGA5, Théorème 4.4]). For i = 1, 2, let $f_i: X_i \to Y_i$ be a proper morphism between smooth schemes over S. Let $X \coloneqq X_1 \times_S X_2$, $Y \coloneqq Y_1 \times_S Y_2$ and $f \coloneqq f_1 \times_S f_2$. Let $p_i: X \to X_i$ and $q_i: Y \to Y_i$ be the canonical projections for i = 1, 2. Consider the following commutative diagram with cartesian horizontal faces

where c', c'', d' and d'' are proper morphisms between smooth schemes over S. Let $c'_i = p_i c', c''_i = p_i c'', d'_i = q_i d', d''_i = q_i d''$ for i = 1, 2. Let $\mathcal{L}_i \in D^b_c(X_i, \Lambda)$ and we put $\mathcal{M}_i = f_{i*}\mathcal{L}_i$ for i = 1, 2. Assume that one of the following conditions holds:

(1)

- (1) $X_1 \to S$ is $SS(\mathcal{L}_1, X_1/k)$ -transversal;
- (2) $X_2 \to S$ is $SS(\mathcal{L}_2, X_2/k)$ -transversal.

Then we have the following commutative diagram

where (3) is given by (3.2.3.3), (1) is the composition of $f_*((3.2.3.3))$ with the canonical map $f_*c'_* \otimes^L f_*c''_* \to f_*(c'_* \otimes c''_*)$, (2) is induced from (3.3.1.3), and (4) is defined by

(3.3.2.2)
$$f_*c_*\mathcal{K}_{C/S} \simeq d_*g_*\mathcal{K}_{C/S} = d_*g_!g_!\mathcal{K}_{D/S} \xrightarrow{\operatorname{adj}} d_*\mathcal{K}_{D/S}.$$

If S is the spectrum of a field, this is proved in [SGA5, Théoreème 4.4]. We use the same notation as *loc.cit*.

Proof. By [Sai17a, Lemma 3.8 and Lemma 4.2.6] and the assumption, one of the following conditions holds:

- (a1) $Y_1 \to S$ is $SS(\mathcal{M}_1, Y_1/k)$ -transversal;
- (a2) $Y_2 \to S$ is $SS(\mathcal{M}_2, Y_2/k)$ -transversal.

Now we can use the same proof of [SGA5, Théorème 4.4]. We only sketch the main step. Put

 $(3.3.2.3) \qquad \mathcal{P} = \mathcal{L}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, \mathcal{K}_{X_2/S}), \quad \mathcal{Q} = R\mathcal{H}om(\mathcal{L}_1, \mathcal{K}_{X_1/S}) \boxtimes_S^L \mathcal{L}_2$

$$(3.3.2.4) \qquad \qquad \mathcal{E} = \mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{M}_2, \mathcal{K}_{Y_2/S}), \quad \mathcal{F} = R\mathcal{H}om(\mathcal{M}_1, \mathcal{K}_{Y_1/S}) \boxtimes_S^L \mathcal{M}_2.$$

Then the theorem follows from the following commutative diagram

where commutativity can be verified following the same argument of [SGA5, Théorème 4.4]. \Box

Corollary 3.3.3 ([SGA5, Corollaire 4.5]). Under the assumptions of Theorem 3.3.2, we have a commutative diagram

Corollary 3.3.4. Let S be a smooth connected scheme over a perfect field k of characteristic p. Let $f: X \to S$ be a smooth morphism purely of relative dimension n and $g: Y \to S$ a smooth morphism purely of relative dimension m. Assume that f is $SS(\mathcal{F}, X/k)$ -transversal. Then for any proper morphism $h: X \to Y$ over S,

we have

(3.3.4.2)
$$f_*ccc_{X/S}(\mathcal{F}) = ccc_{Y/S}(Rf_*\mathcal{F}) \quad \text{in} \quad H^{2m}(Y, \Lambda(m)).$$

Proof. This follows from Corollary 3.3.3 and Definition 3.2.4.

References

- [AP17] T. Abe and D. Patel, On a localization formula of epsilon factors via microlocal geometry, to appear in Annals of K-theory.
- [AS07] A. Abbes and T. Saito, The characteristic class and ramification of an l-adic étale sheaf, Inventiones Mathematicae, 168 (2007):567-612.
- [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, *Théorie des topos et cohomologie étale des schémas*, Lecture Notes in Mathematics, vol. 269,270,305, Springer-Verlag, 1972-1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963-64 (SGA4).
- [Bei16] A. Beilinson, Constructible sheaves are holonomic, Selecta Mathematica, 22, Issue 4 (2016):1797-1819.
- [Bei07] A. Beilinson, Topological E-factors, Pure Appl. Math. Q., 3(1, part 3) (2007): 357-39.
- [Del72] P. Deligne, Les constantes des equations fonctionnelles des fonctions L, Modular Functions of One Variables II, Lecture Notes in Math. 349, Springer, Berlin-Heidelberg-New York, 1972.
- [Del80] P. Deligne, La conjecture de Weil, II, Inst. Hautes Études Sci. Publ. Math. 52 (1980): 137-252.
- [DH81] P. Deligne and G. Henniart, Sur la variation, par torsion, des constantes locales d'équations fonctionnelles de fonctions L, Inventiones Mathematicae 64 (1981): 89-118.
- [Gin86] V. Ginsburg, Characteristic varieties and vanishing cycles, Inventiones Mathematicae 84 (1986): 327-402.
- [SGA5] A. Grothendieck et al., Cohomologie l-adique et fonctions L. Séminaire de Géométrie Algébrique du Bois-Marie 1965–1966 (SGA 5). dirigé par A. Grothendieck avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J-P. Serre. Lecture Notes in Mathematics 589, Springer-verlag, Berlin-New York, (1977).
- [HY17] H. Hu and E. Yang, Relative singular support and the semi-continuity of characteristic cycles for étale sheaves, Selecta Mathematica, Volume 24, Issue 3 (2018):2235-2273.

- [ILO14] L. Illusie, Y. Lazslo, and F. Orgogozo, Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schémas quasi-excellents, Astérisque, vol. 363-364, Soc. Math. France, 2014, Séminaire à l'École Polytechnique 2006-2008.
- [Lau87] G. Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Publications Mathématiques de l'IHÉS 65 (1987): 131-210.
- [KS13] K. Kato and T. Saito, Ramification theory for varieties over a local field, Publications Mathématiques de l'IHÉS 117 (2013): 1-178.
- [KS08] K. Kato and T. Saito, Ramification theory for varieties over a perfect field, Annals of Mathematics, 168 (2008): 33-96.
- [KS83] K. Kato and S. Saito, Unramified class field theory of arithmetical surfaces, Annals of Mathematics, 118(1983): 241-275.
- [Kat88] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, volume 116 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1988.
- [KeS16] M. Kerz and S. Saito, Chow group of 0-cycles with modulus and higher dimensional class field theory, Duke Mathematical Journal 165(15) (2016): 2811-2897.
- [Pat12] D. Patel, De Rham ε -factors, Inventiones Mathematicae, Volume 190, Number 2, (2012): 299-355.
- [Sai93] T. Saito, ε -factor of a tamely ramified sheaf on a variety, Inventiones Mathematicae 113 (1993): 389-417.
- [Sai94] T. Saito, Jacobi sum Hecke characters, de Rham discriminant, and the determinant of l-adic cohomologies, Journal of Algebraic Geometry, 3 (1994): 411-434.
- [Sai17a] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones Mathematicae, 207 (2017): 597-695.
- [Sai17b] T. Saito, Characteristic cycle of the external product of constructible sheaves, Manuscripta Mathematica, Volume 154, Issue 12 (2017): 1-12.
- [SY16] T. Saito and Y. Yatagawa, Wild ramification determines the characteristic cycle, Annales Scientifiques de l'ENS 50, fascicule 4 (2017): 1065-1079.
- [SS84] S. Saito, Functional equations of L-functions of varieties over finite fields, J. Fac. Sci. Univ. of Tokyo, Sec. IA 31 (1984): 287-296.
- [Tat79] J. Tate, Number theoretic background, in Automorphic forms, representations and L-functions, PSPM, vol 33, part II. A. M. S., Providence (1979): 3-26.
- [UYZ] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε -factor of an étale sheaf, arXiv:1701.02841, submitted.
- [Vi09a] I. Vidal, Formule du conducteur pour un caractère l-adique, Compositio Mathematica, 145 (2009): 687-717.
- [Vi09b] I. Vidal, Formule de torsion pour le facteur epsilon d'un caractère sur une surface, Manuscripta Mathematica, 130 (2009): 21-44.
- [Zh15] W. Zheng, Six operations and Lefschetz-Verdier formula for Deligne-Mumford stacks, Science China Mathematics 58 (2015), no. 3 (special issue for Algebraic Geometry in East Asia 2013), pp. 565-632.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT REGENSBURG, 93040 REGENSBURG, GERMANY *E-mail address*: enlin.yang@mathematik.uni-regensburg.de, yangenlin0727@126.com

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT REGENSBURG, 93040 REGENSBURG, GERMANY *E-mail address*: yigeng.zhao@mathematik.uni-regensburg.de