ON THE RELATIVE TWIST FORMULA OF ℓ-ADIC SHEAVES

ENLIN YANG AND YIGENG ZHAO

ABSTRACT. We propose a conjecture on the relative twist formula of ℓ -adic sheaves, which can be viewed as a generalization of Kato-Saito's conjecture. We verify this conjecture under some transversal assumptions.

We also define a relative cohomological characteristic class and prove that its formation is compatible with proper push-forward. A conjectural relation is also given between the relative twist formula and the relative cohomological characteristic class.

CONTENTS

1. INTRODUCTION

As an analogy of the theory of D-modules, Beilinson [\[Bei16\]](#page-18-1) and T. Saito [\[Sai17a\]](#page-19-0) define the singular support and the characteristic cycle of an ℓ -adic sheaf on a smooth variety respectively. As an application of their theory, we prove a twist formula of epsilon factors in [\[UYZ\]](#page-19-1), which is a modification of a conjecture due to Kato and T. Saito[\[KS08,](#page-19-2) Conjecture 4.3.11].

1.1. Kato-Saito's conjecture.

1.1.1. Let X be a smooth projective scheme purely of dimension d over a finite field k of characteristic p. Let Λ be a finite field of characteristic $\ell \neq p$ or $\Lambda = \overline{\mathbb{Q}}_{\ell}$. Let $\mathcal{F} \in D_{c}^{b}(X,\Lambda)$ and $\chi(X_{\bar{k}}, \mathcal{F})$ be the Euler-Poincaré characteristic of \mathcal{F} . The Grothendieck L-function $L(X, \mathcal{F}, t)$ satisfies the following functional equation

(1.1.1.1)
$$
L(X, \mathcal{F}, t) = \varepsilon(X, \mathcal{F}) \cdot t^{-\chi(X_{\bar{k}}, \mathcal{F})} \cdot L(X, D(\mathcal{F}), t^{-1}),
$$

where $D(F)$ is the Verdier dual $R\mathcal{H}om(\mathcal{F}, Rf^!\Lambda)$ of $\mathcal{F}, f : X \to \text{Spec } k$ is the structure morphism and

(1.1.1.2)
$$
\epsilon(X, \mathcal{F}) = \det(-\text{Frob}_k; R\Gamma(X_{\bar{k}}, \mathcal{F}))^{-1}
$$

is the epsilon factor (the constant term of the functional equation $(1.1.1.1)$) and Frob_k is the geometric Frobenius (the inverse of the Frobenius substitution).

Date: April 5, 2022.

²⁰¹⁰ Mathematics Subject Classification. Primary 14F20; Secondary 11G25, 11S40.

1.1.2. In [\(1.1.1.1\)](#page-0-1), both $\chi(X_{\bar{k}}, \mathcal{F})$ and $\varepsilon(X, \mathcal{F})$ are related to ramification theory. Let $cc_{X/k}(\mathcal{F})$ = $0_X^! (CC(\mathcal{F}, X/k)) \in CH_0(X)$ be the characteristic class of \mathcal{F} (cf. [\[Sai17a,](#page-19-0) Definition 5.7]), where $0_X: X \to T^*X$ is the zero section and $CC(\mathcal{F}, X/k)$ is the characteristic cycle of \mathcal{F} . Then $\chi(X_{\bar{k}}, \mathcal{F}) = \deg(c_{X/k}(\mathcal{F}))$ by the index formula [\[Sai17a,](#page-19-0) Theorem 7.13]. The following theorem proved in [\[UYZ\]](#page-19-1) gives a relation between $\varepsilon(X, \mathcal{F})$ and $cc_{X/k}(\mathcal{F})$, which is a modified version of the formula conjectured by Kato and T. Saito in [\[KS08,](#page-19-2) Conjecture 4.3.11].

Theorem 1.1.3 (Twist formula, [\[UYZ,](#page-19-1) Theorem 1.5]). *We have*

(1.1.3.1) $\varepsilon(X, \mathcal{F} \otimes \mathcal{G}) = \varepsilon(X, \mathcal{F})^{\text{rank}\mathcal{G}} \cdot \det \mathcal{G}(\rho_X(-cc_{X/k}(\mathcal{F}))) \quad \text{in } \Lambda^\times,$

where $\rho_X : CH_0(X) \to \pi_1^{ab}(X)$ is the reciprocity map defined by sending the class [s] of a closed point $s \in X$ to the geometric Frobenius Frob_s and $\det G : \pi_1^{ab}(X) \to \Lambda^\times$ is the representation *associated to the smooth sheaf* det G *of rank 1.*

When F is the constant sheaf Λ , this is proved by S. Saito [\[SS84\]](#page-19-3). If F is a smooth sheaf on an open dense subscheme U of X such that F is tamely ramified along $D = X \setminus U$, then Theorem [1.1.3](#page-1-0) is a consequence of [\[Sai93,](#page-19-4) Theorem 1]. In [\[Vi09a,](#page-19-5) [Vi09b\]](#page-19-6), Vidal proves a similar result on a proper smooth surface over a finite field of characteristic $p > 2$ under certain technical assumptions. Our proof of Theorem [1.1.3](#page-1-0) is based on the following theories: one is the theory of singular support [\[Bei16\]](#page-18-1) and characteristic cycle [\[Sai17a\]](#page-19-0), and another is Laumon's product formula [\[Lau87\]](#page-19-7).

1.2. ε -factorization.

1.2.1. Now we assume that X is a smooth projective geometrically connected curve of genus g over a finite field k of characteristic p. Let ω be a non-zero rational 1-form on X and F an ℓ -adic sheaf on X. The following formula is conjectured by Deligne and proved by Laumon [\[Lau87,](#page-19-7) 3.2.1.1]:

(1.2.1.1)
$$
\varepsilon(X,\mathcal{F}) = p^{[k:\mathbb{F}_p](1-g)\mathrm{rank}(\mathcal{F})} \prod_{v\in |X|} \varepsilon_v(\mathcal{F}|_{X_{(v)}},\omega).
$$

For higher dimensional smooth scheme X over k, it is still an open question whether there is an ε factorization formula (respectively a geometric ε -factorization formula) for $\varepsilon(X, \mathcal{F})$ (respectively $\det R\Gamma(X, \mathcal{F})$.

1.2.2. In [\[Bei07\]](#page-18-2), Beilinson develops the theory of topological epsilon factors using K-theory spectrum and he asks whether his construction admits a motivic $(\ell$ -adic or de Rham) counterpart. For de Rham cohomology, such a construction is given by Patel in [\[Pat12\]](#page-19-8). Based on [\[Pat12\]](#page-19-8), Abe and Patel prove a similar twist formula in [\[AP17\]](#page-18-3) for global de Rham epsilon factors in the classical setting of \mathcal{D}_X -modules on smooth projective varieties over a field of characteristic zero. In the ℓ -adic situation, such a geometric ε -factorization formula is still open even if X is a curve. Since the classical local ε -factors depend on an additive character of the base field, a satisfied geometric ε -factorization theory will lie in an appropriate gerbe rather than be a super graded line (cf. [\[Bei07,](#page-18-2) [Pat12\]](#page-19-8)).

1.2.3. More generally, we could also ask similar questions in a relative situation. Now let $f: X \to S$ be a proper morphism between smooth schemes over k. Let F be an l-adic sheaf on X such that f is universally locally acyclic relatively to \mathcal{F} . Under these assumptions, we know that $Rf_*\mathcal{F}$ is locally constant on S. Now we can ask if there is an analogue geometric ε -factorization for the determinant det $Rf_*\mathcal{F}$. This problem is far beyond the authors' reach at this moment. But, similar to $(1.1.3.1)$, we may consider twist formulas for det $Rf_*\mathcal{F}$. One of the purposes of this paper is to formulate such a twist formula and prove it under certain assumptions.

1.2.4. *Relative twist formula.* Let S be a regular Noetherian scheme over $\mathbb{Z}[1/\ell]$ and $f: X \to S$ a proper smooth morphism purely of relative dimension n. Let $\mathcal{F} \in D_c^b(X,\Lambda)$ such that f is universally locally acyclic relatively to \mathcal{F} . Then we conjecture that (see Conjecture [2.1.4\)](#page-4-0) there exists a unique cycle class $cc_{X/S}(\mathcal{F}) \in \mathrm{CH}^n(X)$ such that for any locally constant and constructible sheaf G of Λ -modules on X, we have an isomorphism of smooth sheaves of rank 1 on S

(1.2.4.1)
$$
\det Rf_*(\mathcal{F}\otimes\mathcal{G}) \cong (\det Rf_*\mathcal{F})^{\otimes \text{rank}\mathcal{G}} \otimes \det \mathcal{G}(cc_{X/S}(\mathcal{F}))
$$

where det $\mathcal{G}(cc_{X/S}(\mathcal{F}))$ is a smooth sheaf of rank 1 on S (see [2.1.3](#page-4-1) for the definition). We call [\(1.2.4.1\)](#page-2-0) the relative twist formula. As an evidence, we prove a special case of the above conjecture in Theorem [2.4.4.](#page-8-0) It is also interesting to consider a similar relative twist formula for de Rham epsilon factors in the sense of [\[AP17\]](#page-18-3). We will pursue this question elsewhere.

1.2.5. If S is moreover a smooth connected scheme of dimension r over a perfect field k , we construct a candidate for $cc_{X/S}(\mathcal{F})$ in Definition [2.4.3.](#page-7-0) We also relate the relative characteristic class $cc_{X/S}(\mathcal{F})$ to the total characteristic class of F. Let $K_0(X,\Lambda)$ be the Grothendieck group of $D_c^b(X, \Lambda)$. In [\[Sai17a,](#page-19-0) Definition 6.7.2], T. Saito defines the following morphism

(1.2.5.1)
$$
cc_{X,\bullet} : K_0(X,\Lambda) \to \mathrm{CH}_{\bullet}(X) = \bigoplus_{i=0}^{r+n} \mathrm{CH}_i(X),
$$

which sends $\mathcal{F} \in D_c^b(X, \Lambda)$ to the total characteristic class $cc_{X,\bullet}(\mathcal{F})$ of \mathcal{F} . Under the assumption that $f: X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal, we show that $(-1)^r \cdot cc_{X/S}(\mathcal{F}) = cc_{X,r}(\mathcal{F})$ in Proposition [2.5.2.](#page-9-0)

1.2.6. Following Grothendieck $[SGA5]$, it's natural to ask whether the following diagram

(1.2.6.1)
\n
$$
K_0(X, \Lambda) \xrightarrow{cc_X, \bullet} CH_{\bullet}(X)
$$
\n
$$
f_* \downarrow \qquad f_*
$$
\n
$$
K_0(Y, \Lambda) \xrightarrow{cc_Y, \bullet} CH_{\bullet}(Y)
$$

is commutative or not for any proper map $f: X \to Y$ between smooth schemes over k. If $k = \mathbb{C}$, the diagram $(1.2.6.1)$ is commutative by [\[Gin86,](#page-18-5) Theorem A.6]. By the philosophy of Grothendieck, the answer is no in general if $char(k) > 0$ (cf. [\[Sai17a,](#page-19-0) Example 6.10]). If k is a finite field and if $f: X \to Y$ is moreover projective, as a corollary of Theorem [1.1.3,](#page-1-0) we prove in [\[UYZ,](#page-19-1) Corollary 5.26] that the degree zero part of [\(1.2.6.1\)](#page-2-1) commutes. In general, motivated by the conjectural formula [\(1.2.4.1\)](#page-2-0), we propose the following question. Let $f: X \to S$ and $g: Y \to S$ be smooth morphisms. Let $D_c^b(X/S, \Lambda)$ be the thick subcategory of $D_c^b(X, \Lambda)$ consists of $\mathcal{F} \in D_c^b(X, \Lambda)$ such that f is $SS(\mathcal{F}, X/k)$ -transversal. Let $K_0(X/S, \Lambda)$ be the Grothendieck group of $D_c^b(X/S, \Lambda)$. Then for any proper morphism $h: X \to Y$ over S, we conjecture that the following diagram commutes (see Conjecture [2.5.4\)](#page-10-1)

$$
(1.2.6.2)
$$
\n
$$
K_0(X/S,\Lambda) \xrightarrow{cc_{X,r}} CH_r(X)
$$
\n
$$
h_* \downarrow \qquad \qquad h_*
$$
\n
$$
K_0(Y/S,\Lambda) \xrightarrow{cc_{Y,r}} CH_r(Y).
$$

1.2.7. As an evidence for [\(1.2.6.2\)](#page-2-2), we construct a relative cohomological characteristic class (1.2.7.1) $ccc_{X/S}(\mathcal{F}) \in H^{2n}(X, \Lambda(n))$

in Definition [3.2.4](#page-16-0) if $X \to S$ is smooth and $SS(\mathcal{F}, X/k)$ -transversal. We prove that the formation of $ccc_{X/S}(\mathcal{F})$ is compatible with proper push-forward (see Corollary [3.3.4](#page-18-6) for a precise statement). Similar to [\[Sai17a,](#page-19-0) Conjecture 6.8.1], we conjecture that we have the following equality (see Conjecture [3.2.6\)](#page-16-1)

(1.2.7.2)
$$
\mathrm{cl}(cc_{X/S}(\mathcal{F})) = cc_{X/S}(\mathcal{F}) \quad \text{in} \quad H^{2n}(X, \Lambda(n))
$$

where cl: $\text{CH}^n(X) \to H^{2n}(X, \Lambda(n))$ is the cycle class map.

Acknowledgements. Both authors are partially supported by the DFG through CRC 1085 *Higher Invariants* (Universität Regensburg). The authors are thank Naoya Umezaki for sharing ideas and for helpful discussion during writing the paper [\[UYZ\]](#page-19-1). The authors are also thank Professor Weizhe Zheng for discussing his paper [\[Zh15\]](#page-19-9), and Haoyu Hu for his valuable comments. The first author would like to thank his advisor Professor Linsheng Yin (1963-2015) for his constant encouragement during 2010-2015.

Notation and Conventions.

- (1) Let p be a prime number and Λ be a finite field of characteristic $\ell \neq p$ or $\Lambda = \overline{\mathbb{Q}}_{\ell}$.
- (2) We say that a complex F of étale sheaves of Λ -modules on a scheme X over $\mathbb{Z}[1/\ell]$ is *constructible* (respectively *smooth*) if the cohomology sheaf $\mathcal{H}^q(\mathcal{F})$ is constructible for every q and if $\mathcal{H}^q(\mathcal{F}) = 0$ except finitely many q (respectively moreover $\mathcal{H}^q(\mathcal{F})$ is locally constant for all q).
- (3) For a scheme S over $\mathbb{Z}[1/\ell]$, let $D_c^b(S, \Lambda)$ be the triangulated category of bounded complexes of Λ -modules with constructible cohomology groups on S and let $K_0(S,\Lambda)$ be the Grothendieck group of $D_c^b(S, \Lambda)$.
- (4) For a scheme X, we denote by $|X|$ the set of closed points of X.
- (5) For any smooth morphism $X \to S$, we denote by $T^*_X(X/S) \subseteq T^*(X/S)$ the zero section of the relative cotangent bundle $T^*(X/S)$ of X over S. If S is the spectrum of a field, we simply denote $T^*(X/S)$ by T^*X .

2. Relative twist formula

2.1. Reciprocity map.

2.1.1. For a smooth proper variety X purely of dimension n over a finite field k of characteristic p, the reciprocity map $\rho_X: \mathrm{CH}^n(X) \to \pi_1^{\mathrm{ab}}(X)$ is given by sending the class [s] of closed point $s \in X$ to the geometric Frobenius Frob_s at s. The map ρ_X is injective with dense image [\[KS83\]](#page-19-10).

2.1.2. Let S be a regular Noetherian scheme over $\mathbb{Z}[1/\ell]$ and X a smooth proper scheme purely of relative dimension n over S. By $[Sai94, Proposition 1]$, there exists a unique way to attach a pairing

CHⁿ pXq ˆ π ab 1 pSq Ñ π ab 1 (2.1.2.1) pXq

satisfying the following two conditions:

(1) When $S = \text{Spec}k$ is a point, for a closed point $x \in X$, the pairing with the class $[x]$ coincides with the inseparable degree times the Galois transfer $\text{tran}_{k(x)/k}$ (cf. [\[Tat79,](#page-19-12) 1]) followed by i_{x*} for $i_x: x \to X$

$$
\mathrm{Gal}(k^{\mathrm{ab}}/k)\xrightarrow{\mathrm{tran}_{k(x)/k}\times[k(x):k]_i}\mathrm{Gal}(k(x)^{\mathrm{ab}}/k(x))\xrightarrow{i_{x*}}\pi_1^{\mathrm{ab}}(X).
$$

(2) For any point $s \in S$, the following diagram commutes

$$
\begin{array}{ccc}\n\text{CH}^n(X) & \times & \pi_1^{\text{ab}}(S) \longrightarrow & \pi_1^{\text{ab}}(X) \\
\downarrow & & \uparrow & \uparrow \\
\text{CH}^n(X_s) & \times & \pi_1^{\text{ab}}(s) \longrightarrow & \pi_1^{\text{ab}}(X_s).\n\end{array}
$$

2.1.3. For any locally constant and constructible sheaf G of Λ -modules on X and any $z \in \mathbb{R}$ $CH^n(X)$, we have a map

(2.1.3.1)
$$
\pi_1^{\text{ab}}(S) \xrightarrow{(z, \bullet)} \pi_1^{\text{ab}}(X) \xrightarrow{\det \mathcal{G}} \Lambda^{\times}
$$

where (z, \bullet) is the map determined by the paring $(2.1.2.1)$ and det G is the representation associated to the locally constant sheaf det G of rank 1. The composition det $\mathcal{G} \circ (z, \bullet) \colon \pi_1^{\text{ab}}(S) \to$ Λ^{\times} determines a locally constant and constructible sheaf of rank 1 on S, which we simply denote by det $\mathcal{G}(z)$. Now we propose the following conjecture.

Conjecture 2.1.4 (Relative twist formula). Let S be a regular Noetherian scheme over $\mathbb{Z}[1/\ell]$ and $f: X \to S$ *a smooth proper morphism purely of relative dimension* n. Let $\mathcal{F} \in D_c^b(X, \Lambda)$ *such that* f *is universally locally acyclic relatively to* F*. Then there exists a unique cycle class* $cc_{X/S}(\mathcal{F}) \in \mathrm{CH}^n(X)$ such that for any locally constant and constructible sheaf $\mathcal G$ of Λ -modules *on* X*, we have an isomorphism*

(2.1.4.1)
$$
\det Rf_*(\mathcal{F}\otimes\mathcal{G}) \cong (\det Rf_*\mathcal{F})^{\otimes \text{rank}\mathcal{G}} \otimes \det \mathcal{G}(cc_{X/S}(\mathcal{F})) \text{ in } K_0(S,\Lambda),
$$

where $K_0(S, \Lambda)$ *is the Grothendieck group of* $D_c^b(S, \Lambda)$ *.*

We call this cycle class $cc_{X/S}(\mathcal{F}) \in \mathrm{CH}^n(X)$ the relative characteristic class of $\mathcal F$ if it exists. If S is a smooth scheme over a perfect field k, we construct a candidate for $cc_{X/S}(\mathcal{F})$ in Definition [2.4.3.](#page-7-0)

As an evidence, we prove a special case of the above conjecture in Theorem [2.4.4.](#page-8-0) In order to construct a cycle class $cc_{X/S}(\mathcal{F})$ satisfying [\(2.1.4.1\)](#page-4-2), we use the theory of singular support and characteristic cycle.

2.2. Transversal condition and singular support.

2.2.1. Let $f: X \to S$ be a smooth morphism of Noetherian schemes over $\mathbb{Z}[1/\ell]$. We denote by $T^*(X/S)$ the vector bundle $Spec(Sym_{\mathcal{O}_X}(\Omega^1_{X/S})^{\vee})$ on X and call it *the relative cotangent bundle on* X with respect to S. We denote by $T_X^*(X/S) = X$ the zero-section of $T^*(X/S)$. A constructible subset C of $T^*(X/S)$ is called *conical* if C is invariant under the canonical \mathbb{G}_m -action on $T^*(X/S)$.

Definition 2.2.2 ([\[Bei16,](#page-18-1) §1.2] and [\[HY17,](#page-18-7) §2]). Let $f: X \rightarrow S$ be a smooth morphism of Noetherian schemes over $\mathbb{Z}[1/\ell]$ and C a closed conical subset of $T^*(X/S)$. Let Y be a Noetherian scheme smooth over S and $h: Y \to X$ an S-morphism.

(1) We say that $h: Y \to X$ is C-transversal relatively to S at a geometric point $\bar{y} \to Y$ if for every non-zero vector $\mu \in C_{h(\bar{y})} = C \times_X \bar{y}$, the image $dh_{\bar{y}}(\mu) \in T^*_{\bar{y}}(Y/S) := T^*(Y/S) \times_Y \bar{y}$ is not zero, where $dh_{\bar{y}}\colon T^*_{h(\bar{y})}(X/\tilde{S})\to T^*_{\bar{y}}(Y/S)$ is the canonical map. We say that $h\colon Y\to X$ is C-*transversal relatively to* S if it is C-transversal relatively to S at every geometric point of Y. If $h: Y \to X$ is C-transversal relatively to S, we put $h^{\circ}C = dh(C \times_X Y)$ where $dh: T^*(X/S) \times_X Y \to T^*(Y/S)$ is the canonical map induced by h. By the same argument of [\[Bei16,](#page-18-1) Lemma 1.1], $h^{\circ}C$ is a conical closed subset of $T^{*}(Y/S)$.

(2) Let Z be a Noetherian scheme smooth over S and $g: X \to Z$ an S-morphism. We say that $g: X \to Z$ is C-transversal relatively to S at a geometric point $\bar{x} \to X$ if for every non-zero vector $\nu \in T^*_{g(\bar{x})}(Z/S)$, we have $dg_{\bar{x}}(\nu) \notin C_{\bar{x}}$, where $dg_{\bar{x}} \colon T^*_{g(\bar{x})}(Z/S) \to T^*_{\bar{x}}(X/S)$ is the canonical map. We say that $g: X \to Z$ is C-transversal relatively to S if it is C-transversal relatively to S at all geometric points of X. If the base $B(C) \coloneqq C \cap T_X^*(X/S)$ of C is proper over Z, we put $g_{\circ}C := \text{pr}_1(dg^{-1}(C)),$ where $\text{pr}_1: T^*(Z/S) \times_Z X \to T^*(Z/S)$ denotes the first projection and $dg: T^{*}(Z/S) \times_{Z} X \to T^{*}(X/S)$ is the canonical map. It is a closed conical subset of $T^{*}(Z/S)$.

(3) A *test pair of* X *relative to* S is a pair of S-morphisms $(q, h): Y \leftarrow U \rightarrow X$ such that U and Y are Noetherian schemes smooth over S. We say that (q, h) is C-transversal relatively to

S if $h: U \to X$ is C-transversal relatively to S and $g: U \to Y$ is $h^{\circ}C$ -transversal relatively to S.

Definition 2.2.3 ([\[Bei16,](#page-18-1) §1.3] and [\[HY17,](#page-18-7) §4]). Let $f: X \rightarrow S$ be a smooth morphism of Noetherian schemes over $\mathbb{Z}[1/\ell]$. Let F be an object in $D_c^b(X, \Lambda)$.

(1) We say that a test pair $(g, h) : Y \leftarrow U \rightarrow X$ relative to S is F-*acyclic* if $g : U \rightarrow Y$ is universally locally acyclic relatively to $h^* \mathcal{F}$.

(2) For a closed conical subset C of $T^*(X/S)$, we say that F is *micro-supported on* C *relatively* to S if every C -transversal test pair of X relative to S is \mathcal{F} -acyclic.

(3) Let $\mathcal{C}(\mathcal{F}, X/S)$ be the set of all closed conical subsets $C' \subseteq T^*(X/S)$ such that $\mathcal F$ is microsupported on C' relatively to S. Note that $\mathcal{C}(\mathcal{F}, X/S)$ is non-empty if $f : X \to S$ is universally locally acyclic relatively to F. If $\mathcal{C}(\mathcal{F}, X/S)$ has a smallest element, we denote it by $SS(\mathcal{F}, X/S)$ and call it the *singular support* of F *relative to* S.

Theorem 2.2.4 (Beilinson). Let $f : X \to S$ be a smooth morphism between Noetherian schemes *over* $\mathbb{Z}[1/\ell]$ *and* F *an object of* $D_c^b(X, \Lambda)$ *.*

- (1) ($[HY17, Theorem 5.2$ $[HY17, Theorem 5.2$) If we further assume that $f : X \rightarrow S$ is projective and universally *locally acyclic relatively to* F, the singular support $SS(\mathcal{F}, X/S)$ exists.
- (2) p[\[HY17,](#page-18-7) Theorem 5.2 and Theorem 5.3]q *In general, after replacing* S *by a Zariski open dense subscheme, the singular support* $SS(\mathcal{F}, X/S)$ *exists, and for any* $s \in S$ *, we have*

$$
(2.2.4.1) \t\t SS(\mathcal{F}|_{X_s}, X_s/s) = SS(\mathcal{F}, X/S) \times_S s.
$$

(3) ([\[Bei16,](#page-18-1) Theorem 1.3]) If $S =$ Speck for a field k and if X is purely of dimension d, then $SS(\mathcal{F}, X/S)$ is purely of dimension d.

2.3. Characteristic cycle and index formula.

2.3.1. Let k be a perfect field of characteristic p. Let X be a smooth scheme purely of dimension n over k, let C be a closed conical subset of T^*X and $f: X \to \mathbb{A}^1_k$ a k-morphism. A closed point $v \in X$ is called *at most an isolated C-characteristic point of* $f: X \to \mathbb{A}^1_k$ if there is an open neighborhood $V \subseteq X$ of v such that $f : V - \{v\} \to \mathbb{A}^1_k$ is C-transversal. A closed point $v \in X$ is called an *isolated* C*-characteristic point* if v is at most an isolated C-characteristic point of $f: X \to \mathbb{A}^1_k$ but $f: X \to \mathbb{A}^1_k$ is not C-transversal at v.

Theorem 2.3.2 (T. Saito, [\[Sai17a,](#page-19-0) Theorem 5.9]). *Let* X *be a smooth scheme purely of dimension n over* a perfect field k of characteristic p. Let F be an object of $D_c^b(X, \Lambda)$ and $\{C_\alpha\}_{\alpha \in I}$ $\sum_{\alpha \in I} m_{\alpha} [C_{\alpha}]$ ($m_{\alpha} \in \mathbb{Z}$) of T^*X supported on $SS(\mathcal{F}, X/k)$, satisfying the following Milnor for*the set of irreducible components of* $SS(\mathcal{F}, X/k)$ *. There exists a unique n-cycle* $CC(\mathcal{F}, X/k)$ = *mula [\(2.3.2.1\)](#page-5-0):*

For any étale morphism $g: V \to X$, any morphism $f: V \to \mathbb{A}^1_k$, any isolated $g^{\circ}SS(\mathcal{F}, X/k)$ *characteristic point* $v \in V$ *of* $f : V \to \mathbb{A}^1_k$ *and any geometric point* \overline{v} *of* V *above* v *, we have*

(2.3.2.1)
$$
-\dim \text{tot } R\Phi_{\bar{v}}(g^* \mathcal{F}, f) = (g^* CC(\mathcal{F}, X/k), df)_{T^* V, v},
$$

where $R\Phi_{\bar{v}}(g^*\mathcal{F},f)$ denotes the stalk at \bar{v} of the vanishing cycle complex of $g^*\mathcal{F}$ relative to f, \dim tot $R\Phi_{\bar{v}}(g^*{\cal F},f)$ *is the total dimension of* $R\Phi_{\bar{v}}(g^*{\cal F},f)$ *and* $g^*CC({\cal F},X/k)$ *is the pull-back of* $CC(\mathcal{F}, X/k)$ *to* T^*V *.*

We call $CC(\mathcal{F}, X/k)$ the *characteristic cycle of* \mathcal{F} . It satisfies the following index formula.

Theorem 2.3.3 (T. Saito, $[Sail7a, Theorem 7.13]$). Let \overline{k} be an algebraic closure of a perfect *field* k of characteristic p, X a smooth projective scheme over k and $\mathcal{F} \in D_c^b(X, \Lambda)$. Then, we *have*

(2.3.3.1) $\chi(X_{\bar{k}}, \mathcal{F}|_{X_{\bar{k}}}) = \deg(CC(\mathcal{F}, X/k), T_X^* X)_{T^*X},$

where $\chi(X_{\bar k}, \mathcal{F}|_{X_{\bar k}})$ denotes the Euler-Poincaré characteristic of $\mathcal{F}|_{X_{\bar k}}$.

We give a generalization in Theorem [2.3.5.](#page-6-0) For a smooth scheme $\pi: X \to \text{Spec} k$, and two objects \mathcal{F}_1 and \mathcal{F}_2 in $D_c^b(X, \Lambda)$, we denote $\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2 \coloneqq \text{pr}_1^* \mathcal{F}_1 \otimes^L \text{pr}_2^* \mathcal{F}_2 \in D_c^b(X \times X, \Lambda)$, where $pr_i: X \times X \to X$ is the *i*th projection, for $i = 1, 2$. We also denote $D_X(\mathcal{F}_1) = R\mathcal{H}om(\mathcal{F}_1, \mathcal{K}_X)$, where $\mathcal{K}_X = \mathbf{R}\pi^!\Lambda$.

Lemma 2.3.4. *Let* X *be a smooth variety purely of dimension* n *over a perfect field* k *of characteristic* p. Let \mathcal{F}_1 and \mathcal{F}_2 be two objects in $D_c^b(X, \Lambda)$. Then the diagonal map $\delta: \Delta =$ $X \hookrightarrow X \times X$ is $SS(\mathcal{F}_2 \boxtimes^L D_X \mathcal{F}_1, X \times X/k)$ -transversal if and only if $SS(\mathcal{F}_2 \boxtimes^L_k D_X \mathcal{F}_1, X \times X/k) \subseteq$ $T_{\Delta}^*(X \times X)$. If we are in this case, then the canonical map

$$
R\mathcal{H}om(\mathcal{F}_1,\Lambda)\otimes^L \mathcal{F}_2 \xrightarrow{\cong} R\mathcal{H}om(\mathcal{F}_1,\mathcal{F}_2)
$$

is an isomorphism.

Proof. The first assertion follows from the short exact sequence of vector bundles on X associated to $\delta: \Delta = X \hookrightarrow X \times X$:

$$
0 \to T_{\Delta}^*(X \times X) \to T^*(X \times X) \times_{X \times X} \Delta \xrightarrow{d\delta} T^*X \to 0.
$$

 (1)

For the second claim, we have the following canonical isomorphisms

$$
R\mathcal{H}om(\mathcal{F}_1, \Lambda) \otimes^L \mathcal{F}_2 \cong R\mathcal{H}om(\mathcal{F}_1, \Lambda(n)[2n]) \otimes^L \Lambda(-n)[-2n] \otimes^L \mathcal{F}_2 \stackrel{(*)}{\cong} D_X \mathcal{F}_1 \otimes^L R\delta^! \Lambda \otimes^L \mathcal{F}_2
$$
\n
$$
(2.3.4.1) \cong \delta^*(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1) \otimes^L R\delta^! \Lambda \stackrel{(2)}{\cong} R\delta^! (\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1)
$$
\n
$$
\stackrel{(3)}{\cong} R\delta^! (R\mathcal{H}om(\text{pr}_2^*\mathcal{F}_1, R\text{pr}_1^!\mathcal{F}_2)) \cong R\mathcal{H}om(\delta^*\text{pr}_2^*\mathcal{F}_1, R\delta^! R\text{pr}_1^!\mathcal{F}_2)
$$
\n
$$
\cong R\mathcal{H}om(\mathcal{F}_1, \mathcal{F}_2),
$$

where

(1) follows from the purity for the closed immersion δ [\[ILO14,](#page-19-13) XVI, Théorème 3.1.1];

(2) follows from the assumption that δ is $SS(\mathcal{F}_2 \boxtimes_k^L D_X \bar{\mathcal{F}}_1)$ -transversal by [\[Sai17a,](#page-19-0) Proposition 8.13 and Definition 8.5];

(3) follows from the Künneth formula [\[SGA5,](#page-18-4) Exposé III, $(3.1.1)$].

Theorem 2.3.5. *Let* X *be a smooth projective variety purely of dimension* n *over an algebraically closed field* k *of characteristic* p *. Let* \mathcal{F}_1 *and* \mathcal{F}_2 *be two objects in* $D_c^b(X, \Lambda)$ *such that the diagonal map* $\delta: \Delta = X \hookrightarrow X \times X$ *is properly* $SS(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1, X \times X/k)$ -transversal. Then *we have*

(2.3.5.1)
$$
(-1)^n \cdot \dim_{\Lambda} \operatorname{Ext}(\mathcal{F}_1, \mathcal{F}_2) = \deg (CC(\mathcal{F}_1, X/k), CC(\mathcal{F}_2, X/k))_{T^*X}
$$

where dim_A $Ext(\mathcal{F}_1, \mathcal{F}_2) = \sum_i$ $(-1)^i \dim_\Lambda \operatorname{Ext}^i_{D^b_c(X,\Lambda)}(\mathcal{F}_1,\mathcal{F}_2).$

Proof. By the isomorphisms $(2.3.4.1)$, the left hand side of $(2.3.5.1)$ equals to

$$
(-1)^n \cdot \chi(X, R\delta^!(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1)) = (-1)^n \cdot \chi(X, \delta^*(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1)
$$

$$
= (-1)^n \cdot \deg(CC(\delta^*(\mathcal{F}_2 \boxtimes_k^L D_X (\mathcal{F}_1), X/k), T_X^* X)_{T^*X}.
$$

Since $\delta: X \to X \times X$ is properly $SS(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1, X \times X/k)$ -transversal, we have

(2.3.5.3) $CC(\delta^*(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1), X/k) = (-1)^n \delta^* CC(D(\mathcal{F}_2 \boxtimes_k^L D_X \mathcal{F}_1, X \times X/k))$

where the equality $(2.3.5.3)$ follows from [\[Sai17a,](#page-19-0) Theroem 7.6], and $(2.3.5.4)$ follows from [\[Sai17b,](#page-19-14) Theorem 2.2.2]. Consider the following commutative diagram

$$
T^*X \times T^*X \xrightarrow{\text{diag}} T^*(X \times X) \xleftarrow{\text{pr}} T^*(X \times X) \times_{X \times X} \Delta \xrightarrow{d\delta} T^*X
$$

$$
T^*X \xrightarrow{\cong} T^*(X \times X) \xrightarrow{\Box} T^*X \xrightarrow{\Box} T^*X.
$$

We have $\delta^*(CC(\mathcal{F}_2, X/k) \times CC(\mathcal{F}_1, X/k)) = d\delta_* \text{pr}^! (CC(\mathcal{F}_2, X/k) \times CC(\mathcal{F}_1, X/k))$ and $\deg(\delta^*(CC(\mathcal{F}_2, X/k) \times CC(\mathcal{F}_1, X/k)), T_X^*X)_{T^*X} = \deg (CC(\mathcal{F}_1, X/k), CC(\mathcal{F}_2, X/k))_{T^*X}$.

Then $(2.3.5.1)$ follows from the above formula and $(2.3.5.2)$.

Remark 2.3.6. If \mathcal{F}_1 is the constant sheaf Λ , then Theorem [2.3.5](#page-6-0) is the index formula [\(2.3.3.1\)](#page-5-1). Theorem [2.3.5](#page-6-0) can be viewed as the ℓ -adic version of the global index formula in the setting of \mathcal{D}_X -modules (cf. [\[Gin86,](#page-18-5) Theorem 11.4.1]).

2.4. Relative twist formula.

2.4.1. Let S be a Noetherian scheme over $\mathbb{Z}[1/\ell], f : X \to S$ a smooth morphism of finite type and F an object of $D_c^b(X, \Lambda)$. Assume that the relative singular support $SS(\mathcal{F}, X/S)$ exists. A cycle $B = \sum_{i \in I} m_i[B_i]$ in $T^*(X/S)$ is called the *characteristic cycle of* $\mathcal F$ *relative to* S if each B_i is a subset of $SS(\mathcal{F}, X/S)$, each $B_i \to S$ is open and equidimensional and if, for any algebraic geometric point \bar{s} of S , we have

(2.4.1.1)
$$
B_{\bar{s}} = \sum_{i \in I} m_i [(B_i)_{\bar{s}}] = CC(\mathcal{F}|_{X_{\bar{s}}}, X_{\bar{s}}/\bar{s}).
$$

We denote by $CC(\mathcal{F}, X/S)$ the characteristic cycle of $\mathcal F$ on X relative to S. Notice that relative characteristic cycles may not exist in general.

Proposition 2.4.2 (T. Saito, [\[HY17,](#page-18-7) Proposition 6.5]). *Let* k *be a perfect field of characteristic* p. Let S be a smooth connected scheme of dimension r over k, $f: X \to S$ a smooth morphism of *finite type and* $\mathcal F$ *an object of* $D^b_c(X, \Lambda)$ *. Assume that* $f : X \to S$ *is* $SS(\mathcal F, X/k)$ -transversal and *that each irreducible component of* $SS(\mathcal{F}, X/k)$ *is open and equidimensional over* S. Then the *relative singular support* $SS(\mathcal{F}, X/S)$ *and the relative characteristic cycle* $CC(\mathcal{F}, X/S)$ *exist, and we have*

(2.4.2.1) $SS(\mathcal{F}, X/S) = \theta(SS(\mathcal{F}, X/k)),$

$$
(2.4.2.2) \qquad \qquad CC(\mathcal{F}, X/S) = (-1)^r \theta_*(CC(\mathcal{F}, X/k)),
$$

where $\theta: T^*X \to T^*(X/S)$ denotes the projection induced by the canonical map $\Omega^1_{X/k} \to \Omega^1_{X/S}$.

Definition 2.4.3. Let k be a perfect field of characteristic p and S a smooth connected scheme of dimension r over k. Let $f: X \to S$ be a smooth morphism purely of relative dimension n and F an object of $D_c^b(X, \Lambda)$. Assume that $f : X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal. Consider the following cartesian diagram

(2.4.3.1)
$$
T^*S \times_S X \longrightarrow T^*X
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
X \xrightarrow{\qquad \qquad 0_{X/S}} T^*(X/S)
$$

where $0_{X/S} : X \to T^*(X/S)$ is the zero section. Since $f : X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal, the refined Gysin pull-back $0^!_{X/S}(CC(\mathcal{F}, X/k))$ of $CC(\mathcal{F}, X/k)$ is a r-cycle class supported on X. We define the *relative characteristic class* of $\mathcal F$ to be

(2.4.3.2)
$$
cc_{X/S}(\mathcal{F}) = (-1)^r \cdot 0^!_{X/S}(CC(\mathcal{F}, X/k)) \text{ in } CH^n(X).
$$

Now we prove a special case of Conjecture [2.1.4.](#page-4-0)

Theorem 2.4.4 (Relative twist formula). *Let* S *be a smooth connected scheme of dimension* r *over a finite field* k *of characteristic* p. Let $f: X \to S$ be a smooth projective morphism of relative dimension *n*. Let $\mathcal{F} \in D_c^b(X, \Lambda)$ and G *a* locally constant and constructible sheaf of Λ -modules *on* X. Assume that f is properly $SS(\mathcal{F}, X/k)$ -transversal. Then there is an isomorphism

$$
(2.4.4.1) \qquad \qquad \det Rf_*(\mathcal{F}\otimes\mathcal{G}) \cong (\det Rf_*\mathcal{F})^{\otimes \mathrm{rank}\mathcal{G}} \otimes \det \mathcal{G}(cc_{X/S}(\mathcal{F})) \quad \text{in } K_0(S,\Lambda).
$$

Note that we also have $cc_{X/S}(\mathcal{F}) = (CC(\mathcal{F}, X/S), T_X^*X)_{T^*(X/S)} \in \text{CH}^n(X)$.

Proof. We may assume $\mathcal{G} \neq 0$. Since \mathcal{G} is a smooth sheaf, we have $SS(\mathcal{F}, X/k) = SS(\mathcal{F}\otimes\mathcal{G}, X/k)$. Since f is proper and $SS(\mathcal{F}, X/k)$ -transversal, by [\[Sai17a,](#page-19-0) Lemma 4.3.4], $Rf_*\mathcal{F}$ and $Rf_*(\mathcal{F}\otimes\mathcal{G})$ are smooth sheaves on S. For any closed point $s \in S$, we have the following commutative diagram

$$
T^*X \times_X X_s \xrightarrow{\theta_s} T^*X_s \cong T^*(X/S) \times_X X_s \xleftarrow{0_{X_s}} X_s
$$

\n
$$
\downarrow \text{pr}
$$

\n
$$
\square \qquad \qquad \downarrow \text{pr}
$$

\n
$$
T^*X \xrightarrow{\theta} T^*(X/S) \xleftarrow{0_{X/S}} X
$$

where $0_{X/S}$ and 0_{Xs} are the zero sections. Hence we have

$$
cc_{X_s}(\mathcal{F}|_{X_s}) = (CC(\mathcal{F}|_{X_s}, X_s/s), X_s)_{T^*X_s} = 0_{X_s}^! CC(\mathcal{F}|_{X_s}, X_s/s) \stackrel{(a)}{=} 0_{X_s}^! i^! CC(\mathcal{F}, X/k)
$$

\n
$$
= (-1)^r 0_{X_s}^! i^* CC(\mathcal{F}, X/k) = (-1)^r 0_{X_s}^! \theta_{s*} pr^! CC(\mathcal{F}, X/k)
$$

\n
$$
= (-1)^r 0_{X_s}^! pr^! \theta_* CC(\mathcal{F}, X/k) = (-1)^r 0_{X_s}^! pr^! ((-1)^r CC(\mathcal{F}, X/S))
$$

\n
$$
= 0_{X_s}^! pr^! CC(\mathcal{F}, X/S) = i^! 0_{X/S}^! CC(\mathcal{F}, X/S) = i^! cc_{X/S}(\mathcal{F}),
$$

where the equality (a) follows from [\[Sai17a,](#page-19-0) Theorem 7.6] since f is properly $SS(\mathcal{F}, X/k)$ transversal.

By Chebotarev density (cf. [\[Lau87,](#page-19-7) Théorème 1.1.2]), we may assume that S is the spectrum of a finite field. Then it is sufficient to compare the Frobenius action. Then one use [\(2.4.4.2\)](#page-8-1) and Theorem [1.1.3.](#page-1-0)

Example 2.4.5. Let S be a smooth projective connected scheme over a finite field k of characteristic $p > 2$. Let $f: X \to S$ be a smooth projective morphism of relative dimension n, $\chi = \text{rank}Rf_*\mathbb{Q}_\ell$ the Euler-Poincaré number of the fibers and let $\mathcal F$ be a constructible étale sheaf of A-modules on S. Then by the projection formula, we have $Rf_* f^* \mathcal{F} \cong \mathcal{F} \otimes Rf_* \overline{\mathbb{Q}}_\ell$. Since f is projective and smooth, $Rf_*\overline{\mathbb{Q}}_\ell$ is a smooth sheaf on S. Using Theorem [1.1.3,](#page-1-0) we get

(2.4.5.1)
$$
\varepsilon(S, Rf_*f^*\mathcal{F}) = \varepsilon(S, \mathcal{F})^{\chi} \cdot \det Rf_*\overline{\mathbb{Q}}_{\ell}(-cc_{Y/k}(\mathcal{F})).
$$

By [\[Sai94,](#page-19-11) Theorem 2], $\det Rf_*\overline{\mathbb{Q}}_{\ell} = \kappa_{X/S}(-\frac{1}{2}n\chi)$, where $\kappa_{X/S}$ is a character of order at most 2 and is determined by the following way:

(1) If *n* is odd, then $\kappa_{X/S}$ is trivial.

(2) If $n = 2m$ is even, then $\kappa_{X/S}$ is the quadratic character defined by the square root of $(-1)^{\frac{\chi(\chi-1)}{2}} \cdot \delta_{\mathrm{dR},X/S}$, where $\delta_{\mathrm{dR},X/S}$: $(\det H_{\mathrm{dR}}(X/S))^{\otimes 2} \stackrel{\simeq}{\to} \mathcal{O}_S$ is the de Rham discriminant defined by the non-degenerate symmetric bilinear form $H_{\text{dR}}(X/S)\otimes^L H_{\text{dR}}(X/S)\to \mathcal{O}_S[-2n],$ and $H_{\text{dR}}(X/S) = Rf_*\Omega^{\bullet}_{X/S}$ is the perfect complex of \mathcal{O}_S -modules whose cohomology computes the relative de Rham cohomology of X/S .

Similarly, if F is a locally constant and constructible etale sheaf of Λ -modules on S, then

$$
\det Rf_* f^* \mathcal{F} \cong \det(\mathcal{F} \otimes Rf_* \overline{\mathbb{Q}}_{\ell}) \cong (\det \mathcal{F})^{\otimes \chi} \otimes (\det Rf_* \overline{\mathbb{Q}}_{\ell})^{\otimes \text{rank}\mathcal{F}}
$$

$$
\cong (\det \mathcal{F})^{\otimes \chi} \otimes (\kappa_{X/S}(-\frac{1}{2}n\chi))^{\otimes \text{rank}\mathcal{F}}.
$$

2.5. Total characteristic class.

2.5.1. In the rest of this section, we relate the relative characteristic class $cc_{X/S}(\mathcal{F})$ to the total characteristic class of $\mathcal F$. Let X be a smooth scheme purely of dimension d over a perfect field k of characteristic p. In [\[Sai17a,](#page-19-0) Definition 6.7.2], T. Saito defines the following morphism

(2.5.1.1)
$$
cc_{X,\bullet} : K_0(X,\Lambda) \to \text{CH}_{\bullet}(X) = \bigoplus_{i=0}^d \text{CH}_i(X),
$$

which sends $\mathcal{F} \in D_c^b(X, \Lambda)$ to the total characteristic class $cc_{X,\bullet}(\mathcal{F})$ of \mathcal{F} . For our convenience, for any integer n we put

(2.5.1.2)
$$
cc_X^n(\mathcal{F}) \coloneqq cc_{X,d-n}(\mathcal{F}) \text{ in } CH^n(X).
$$

By [\[Sai17a,](#page-19-0) Lemma 6.9], for any $\mathcal{F} \in D_c^b(X, \Lambda)$, we have

(2.5.1.3)
$$
cc_X^d(\mathcal{F}) = cc_{X,0}(\mathcal{F}) = (CC(\mathcal{F}, X/k), T_X^*X)_{T^*X} \text{ in } CH_0(X),
$$

(2.5.1.4)
$$
cc_X^0(\mathcal{F}) = cc_{X,d}(\mathcal{F}) = (-1)^d \cdot \text{rank}\mathcal{F} \cdot [X] \quad \text{in} \quad \text{CH}_d(X) = \mathbb{Z}.
$$

The following proposition gives a computation of $cc_X^n \mathcal{F}$ for any n.

Proposition 2.5.2. *Let* S *be a smooth connected scheme of dimension* r *over a perfect field* k *of characteristic* p. Let $f: X \to S$ be a smooth morphism purely of relative dimension n. Assume *that* f *is* $SS(\mathcal{F}, X/k)$ -transversal. Then we have

(2.5.2.1)
$$
cc_X^n(\mathcal{F}) = (-1)^r \cdot cc_{X/S}(\mathcal{F}) \text{ in } CH^n(X)
$$

where $cc_{X/S}(\mathcal{F})$ *is defined in Definition [2.4.3.](#page-7-0)*

Proof. We use the notation of [\[Sai17a,](#page-19-0) Lemma 6.2]. We put $F = (T^*S \times_S X) \oplus \mathbb{A}^1_X$ and $E = T^*X \oplus \mathbb{A}^1_X$. We have a canonical injection $i: F \to E$ of vector bundles on X induced by $df: T^*S \times_S X \longrightarrow T^*X$. Let $\bar{i}: \mathbb{P}(F) \longrightarrow \mathbb{P}(E)$ be the canonical map induced by $i: F \longrightarrow E$. By [\[Sai17a,](#page-19-0) Lemma 6.1.2 and Lemma 6.2.1], we have a commutative diagram:

$$
\text{CH}_r(\mathbb{P}(F)) \leftarrow \text{CH}_{n+r}(\mathbb{P}(E))
$$
\n
$$
\approx \uparrow
$$
\n
$$
\text{CH}_{n+r}(\mathbb{P}(E))
$$
\n
$$
\approx \uparrow
$$
\n
$$
\text{CH}_q(X) \leftarrow \text{can} \qquad \text{CH}_q(X)
$$
\n
$$
\text{can} \qquad \text{can} \
$$

Since f is smooth and $SS(\mathcal{F}, X/k)$ -transversal, the intersection $SS(\mathcal{F}, X/k) \cap (T^*S \times_S X)$ is contained in the zero section of $T^*S \times_S X$. Thus the Gysin pull-back $i^*(CC(\mathcal{F}, X/k))$ is supported on the zero section of $T^*S \times_S X$. Let $\overline{CC(\mathcal{F}, X/k)}$ be any extension of $CC(\mathcal{F}, X/k)$ to $\mathbb{P}(E)$ (cf. [\[Sai17a,](#page-19-0) Definition 6.7.2]). Then $\bar{i}^*(\overline{CC(\mathcal{F}, X/k)})$ is an extension of $i^*(CC(\mathcal{F}, X/k))$ to $\mathbb{P}(F)$. By [\[Sai17a,](#page-19-0) Definition 6.7.2], the image of $\overline{CC(\mathcal{F}, X/k)}$ in $\mathrm{CH}^{n}(X)$ by the right vertical map of $(2.5.2.2)$ equals to $cc_X^n(\mathcal{F}) = cc_{X,r}(\mathcal{F})$. The image of $\bar{i}^*(\overline{CC(\mathcal{F}, X/k)})$ in $\text{CH}^n(X)$ by the left vertical map of $(2.5.2.2)$ equals to $(-1)^r \cdot cc_{X/S}(\mathcal{F})$ (cf. $(2.4.3.2)$). Now the equality $(2.5.2.1)$ follows from the commutativity of $(2.5.2.2)$.

(2.5.3.1)
\n
$$
K_0(X, \Lambda) \xrightarrow{cc_X, \bullet} CH_{\bullet}(X)
$$
\n
$$
f_* \downarrow \qquad \qquad f_*
$$
\n
$$
K_0(Y, \Lambda) \xrightarrow{cc_Y, \bullet} CH_{\bullet}(Y)
$$

commutative for any proper map $f: X \to Y$ between smooth schemes over a perfect field k? If $k = \mathbb{C}$, the diagram [\(2.5.3.1\)](#page-10-2) is commutative by [\[Gin86,](#page-18-5) Theorem A.6]. By the philosophy of Grothendieck, the answer is no in general if $char(k) > 0$ (cf. [\[Sai17a,](#page-19-0) Example 6.10]). However, in [\[UYZ,](#page-19-1) Corollary 1.9], we prove that the degree zero part of the diagram [\(2.5.3.1\)](#page-10-2) is commutative, i.e., if $f: X \to Y$ is a proper map between smooth projective schemes over a finite field k of α characteristic p , then we have the following commutative diagram

(2.5.3.2)
\n
$$
K_0(X, \Lambda) \xrightarrow{cc_{X,0}} CH_0(X)
$$
\n
$$
f_* \downarrow \qquad f_*
$$
\n
$$
K_0(Y, \Lambda) \xrightarrow{cc_{Y,0}} CH_0(Y).
$$

Now we propose the following:

Conjecture 2.5.4. *Let* S *be a smooth connected scheme over a perfect field* k *of characteristic* p. Let $f: X \to S$ be a smooth morphism purely of relative dimension n and $g: Y \to S$ a smooth *morphism purely of relative dimension* m. Let $D_c^b(X/S, \Lambda)$ be the thick subcategory of $D_c^b(X, \Lambda)$ *consists of* $\mathcal{F} \in D_c^b(X, \Lambda)$ *such that* $f: X \to S$ *is* $SS(\mathcal{F}, X/k)$ -transversal. Let $K_0(X/S, \Lambda)$ be *the Grothendieck group of* $D_c^b(X/S, \Lambda)$. Then for any proper morphism $h: X \to Y$ over S,

$$
X \xrightarrow{h} Y
$$
\n
$$
f \xrightarrow{f} g
$$
\n
$$
S
$$

the following diagram commutes

$$
(2.5.4.2)
$$
\n
$$
K_0(X/S, \Lambda) \xrightarrow{cc_X^n} CH^n(X)
$$
\n
$$
h_* \downarrow \qquad \qquad h_*
$$
\n
$$
K_0(Y/S, \Lambda) \xrightarrow{cc_Y^m} CH^m(Y).
$$

That is to say, for any $\mathcal{F} \in D_c^b(X, \Lambda)$ *, if* f *is* $SS(\mathcal{F}, X/k)$ -transversal, then we have

(2.5.4.3)
$$
h_*(cc_X^n(\mathcal{F})) = cc_Y^m(Rh_*\mathcal{F}) \text{ in } CH^m(Y).
$$

Remark 2.5.5. If f is $SS(\mathcal{F}, X/k)$ -transversal, by [\[Sai17a,](#page-19-0) Lemma 3.8 and Lemma 4.2.6], the morphism $g: Y \to S$ is $SS(Rh_*\mathcal{F}, Y/k)$ -transversal. Thus we have a well-defined map $h_*: K_0(X/S, \Lambda) \to K_0(Y/S, \Lambda).$

In next section, we formulate and prove a cohomological version of Conjecture [2.5.4](#page-10-1) (cf. Corollary [3.3.4\)](#page-18-6).

3. Relative cohomological characteristic class

In this section, we assume that S is a smooth connected scheme over a perfect field k of characteristic p and Λ is a finite field of characteristic ℓ . To simplify our notations, we omit to write R or L to denote the derived functors unless otherwise stated explicitly or for $R\mathcal{H}om$.

We briefly recall the content of this section. Let $X \to S$ be a smooth morphism purely of relative dimension n and $\mathcal{F} \in D_c^b(X, \Lambda)$. If $X \to S$ is $SS(\mathcal{F}, X/k)$ -transversal, we construct a relative cohomological characteristic class $ccc_{X/S}(\mathcal{F}) \in H^{2n}(X,\Lambda(n))$ following the method of [\[AS07,](#page-18-8) [SGA5\]](#page-18-4). We conjecture that the image of the cycle class $cc_{X/S}(\mathcal{F})$ by the cycle class map cl : CHⁿ(X) \rightarrow H²ⁿ(X, Λ (n)) is ccc_{X/S}(F) (cf. Conjecture [2.1.4\)](#page-4-0). In Corollary [3.3.4,](#page-18-6) we prove that the formation of $ccc_{X/S}F$ is compatible with proper push-forward.

3.1. Relative cohomological correspondence.

3.1.1. Let $\pi_1: X_1 \to S$ and $\pi_2: X_2 \to S$ be smooth morphisms purely of relative dimension n_1 and n_2 respectively. We put $X = X_1 \times_S X_2$ and consider the following cartesian diagram

$$
\begin{array}{ccc}\n & X & \xrightarrow{\text{pr}_2} & X_2 \\
\text{(3.1.1.1)} & & \text{pr}_1 \downarrow & \text{pr}_2 \\
 & X_1 & \xrightarrow{\pi_1} & S.\n\end{array}
$$

Let \mathcal{E}_i and \mathcal{F}_i be objects of $D_c^b(X_i, \Lambda)$ for $i = 1, 2$. We put

(3.1.1.2)
$$
\mathcal{F} \coloneqq \mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2 \coloneqq \text{pr}_1^* \mathcal{F}_1 \otimes^L \text{pr}_2^* \mathcal{F}_2,
$$

(3.1.1.3)
$$
\mathcal{E} \coloneqq \mathcal{E}_1 \boxtimes_S^L \mathcal{E}_2 \coloneqq \mathrm{pr}_1^* \mathcal{E}_1 \otimes^L \mathrm{pr}_2^* \mathcal{E}_2,
$$

which are objects of $D_c^b(X, \Lambda)$. Similarly, we can define $\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2$, which is an object of $D_c^b(X_1 \times_k \Lambda)$ X_2, Λ). We first compare $SS(\mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2, X_1 \times_S X_1/k)$ and $SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_1/k)$.

Lemma 3.1.2. *Assume that* $\pi_1: X_1 \to S$ *is* $SS(\mathcal{F}_1, X_1/k)$ -transversal. Then we have

(3.1.2.1)
$$
SS(\mathrm{pr}_1^* \mathcal{F}_1, X/k) \cap SS(\mathrm{pr}_2^* \mathcal{F}_2, X/k) \subseteq T_X^* X.
$$

Moreover, the closed immersion $i: X_1 \times_S X_2 \hookrightarrow X_1 \times_k X_2$ *is* $SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k)$ -transversal *and*

$$
(3.1.2.2) \t SS(\mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2, X_1 \times_S X_2/k) \subseteq i^{\circ}(SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k)).
$$

Proof. We first prove $(3.1.2.1)$. Since $X_i \to S$ is smooth, we obtain an exact sequence of vector bundles on X_i for $i = 1, 2$

(3.1.2.3)
$$
0 \to T^*S \times_S X_i \xrightarrow{d\pi_i} T^*X_i \to T^*(X_i/S) \to 0.
$$

Since $\pi_1: X_1 \to S$ is $SS(\mathcal{F}_1, X_1/k)$ -transversal, we have

(3.1.2.4)
$$
SS(\mathcal{F}_1, X_1/k) \cap (T^*S \times_S X_1) \subseteq T_S^*S \times_S X_1.
$$

Consider the following diagram with exact rows and exact columns:

$$
(3.1.2.5)
$$
\n
$$
\begin{array}{ccc}\n & 0 & 0 \\
 & \uparrow & \uparrow \\
 & T^*(X_2/S) \times_{X_2} X \xrightarrow{\cong} T^*(X/X_1) \\
 & \uparrow & \uparrow \\
 & \uparrow & \uparrow \\
 & 0 \xrightarrow{\qquad} T^*X_2 \times_{X_2} X \xrightarrow{\qquad} T^*X \xrightarrow{\qquad} T^*(X/X_2) \xrightarrow{\qquad} 0 \\
 & \uparrow & \uparrow \\
 & 0 \xrightarrow{\qquad} T^*S \times_S X \xrightarrow{\qquad} T^*X_1 \times_{X_1} X \xrightarrow{\qquad} T^*(X_1/S) \times_{X_1} X \xrightarrow{\qquad} 0 \\
 & \uparrow & \uparrow \\
 & 0 \xrightarrow{\qquad} 0\n\end{array}
$$

Since pr_i is smooth, by [\[Sai17a,](#page-19-0) Corollary 8.15], we have

$$
SS(\mathrm{pr}_i^* \mathcal{F}_i, X/k) = \mathrm{pr}_i^{\circ} SS(\mathcal{F}_i, X_i/k) = SS(\mathcal{F}_i, X_i/k) \times_{X_i} X.
$$

It follows from $(3.1.2.4)$ and $(3.1.2.5)$ that $pr_1^{\circ} SS(\mathcal{F}_1, X_1/k) \cap pr_2^{\circ} SS(\mathcal{F}_2, X_2/k) \subseteq T_X^*X$. Thus $SS(\text{pr}_1^* \mathcal{F}_1, X/k) \cap SS(\text{pr}_2^* \mathcal{F}_2, X/k) \subseteq T_X^* X$. This proves [\(3.1.2.1\)](#page-11-0).

Now we consider the cartesian diagram

(3.1.2.6)

$$
X = X_1 \times_S X_2 \xrightarrow{i} X_1 \times_k X_2
$$

$$
\downarrow \qquad \qquad \square
$$

$$
S \xrightarrow{\delta} S \times_k S
$$

where $\delta: S \to S \times_k S$ is the diagonal. We get the following commutative diagram of vector bundles on X with exact rows:

$$
T^*X_1 \times_S T^*X_2
$$
\n
$$
\parallel
$$
\n
$$
0 \longrightarrow \mathcal{N}_{X/(X_1 \times_k X_2)} \longrightarrow T^*(X_1 \times_k X_2) \times_{X_1 \times_k X_2} X \xrightarrow{di} T^*X \longrightarrow 0
$$
\n
$$
\uparrow \cong \qquad \qquad \uparrow
$$
\n
$$
0 \longrightarrow \mathcal{N}_{S/(S \times_k S)} \times_S X \longrightarrow T^*(S \times_k S) \times_{S \times_k S} X \xrightarrow{d\delta} T^*S \times_S X \longrightarrow 0
$$
\n
$$
\parallel
$$
\n
$$
T^*S \times_S X \longrightarrow (T^*S \times_S X_1) \times_S (T^*S \times_S X_2)
$$

where $\mathcal{N}_{S/(S\times_kS)}$ is the conormal bundle associated to $\delta: S \to S \times_k S$. By [\[Sai17b,](#page-19-14) Theorem 2.2.3], we have $SS(\mathcal{F}_1 \boxtimes_k^L \mathcal{F}_2, X_1 \times_k X_2/k) = SS(\mathcal{F}_1, X_1/k) \times SS(\mathcal{F}_2, X_2/k)$. Therefore by [\(3.1.2.4\)](#page-11-1), $\mathcal{N}_{X/(X_1\times_kX_2)}$ \cap $SS(\mathcal{F}_1\boxtimes_k^L \mathcal{F}_2, X_1\times_k X_2/k)$ is contained in the zero section of $\mathcal{N}_{X/(X_1\times_kX_2)}$. Hence $i: X \hookrightarrow X_1\times_k X_2$ is $SS(\mathcal{F}_1\boxtimes_k^L \mathcal{F}_2, X_1\times_k X_2/k)$ -transversal. Now the assertion $(3.1.2.2)$ follows from [\[Sai17a,](#page-19-0) Lemma 4.2.4].

Proposition 3.1.3. *Under the notation in [3.1.1,](#page-11-4) we assume that*

- (1) $SS(\mathcal{E}_i, X_i/k) \cap SS(\mathcal{F}_i, X_i/k) \subseteq T^*_{X_i} X_i$ for all $i = 1, 2;$
- (2) $\pi_1: X_1 \to S$ *is* $SS(\mathcal{E}_1, X_1/k)$ -transversal or $\pi_2: X_2 \to S$ *is* $SS(\mathcal{F}_2, X_2/k)$ -transversal;
- (3) $\pi_1 \colon X_1 \to S$ *is* $SS(\mathcal{F}_1, X_1/k)$ -transversal or $\pi_2 \colon X_2 \to S$ *is* $SS(\mathcal{E}_2, X_2/k)$ -transversal.

Then the following canonical map (*cf.* [\[Zh15,](#page-19-9) $(7.2.2)$] *and* [\[SGA5,](#page-18-4) Exposé III, $(2.2.4)$]

(3.1.3.1)
$$
R\mathcal{H}om(\mathcal{E}_1,\mathcal{F}_1)\boxtimes_S^L R\mathcal{H}om(\mathcal{E}_2,\mathcal{F}_2)\to R\mathcal{H}om(\mathcal{E},\mathcal{F}).
$$

is an isomorphism.

If S is the spectrum of a field, then the above result is proved in $[SGA5, Ex]$ Expose III, Proposition 2.3]. Our proof below is different from that of *loc.cit.* and is based on [\[Sai17a\]](#page-19-0).

Proof. In the following, we put $\mathcal{E}_i^{\vee} := \mathbb{R}\mathcal{H}$ *om* (\mathcal{E}_i, Λ) . Since $SS(\mathcal{E}_i, X_i/k) \cap SS(\mathcal{F}_i, X_i/k) \subseteq T^*_{X_i}X_i$, Lemma [2.3.4](#page-6-6) implies that

(3.1.3.2)
$$
\mathcal{F}_i \otimes^L \mathcal{E}_i^{\vee} = \mathcal{F}_i \otimes^L R\mathcal{H}om(\mathcal{E}_i, \Lambda) \xrightarrow{\cong} R\mathcal{H}om(\mathcal{E}_i, \mathcal{F}_i), \text{ for all } i = 1, 2,
$$

Hence we have

(3.1.3.3)
$$
R\mathcal{H}om(\mathcal{E}_1, \mathcal{F}_1) \boxtimes_S^L R\mathcal{H}om(\mathcal{E}_2, \mathcal{F}_2) \cong (\mathcal{F}_1 \otimes^L \mathcal{E}_1^{\vee}) \boxtimes_S^L (\mathcal{F}_2 \otimes^L \mathcal{E}_2^{\vee})
$$

$$
\cong (\mathcal{F}_1 \boxtimes_S^L \mathcal{F}_2) \otimes^L (\mathcal{E}_1^{\vee} \boxtimes_S^L \mathcal{E}_2^{\vee}).
$$

Note that we also have

$$
\mathcal{E}_1^{\vee} \boxtimes_S^L \mathcal{E}_2^{\vee} = \text{pr}_1^* R\mathcal{H}om(\mathcal{E}_1, \Lambda) \otimes^L \text{pr}_2^* R\mathcal{H}om(\mathcal{E}_2, \Lambda)
$$

\n
$$
\cong R\mathcal{H}om(\text{pr}_1^*\mathcal{E}_1, \Lambda) \otimes^L R\mathcal{H}om(\text{pr}_2^*\mathcal{E}_2, \Lambda)
$$

\n
$$
\cong R\mathcal{H}om(\text{pr}_1^*\mathcal{E}_1, R\mathcal{H}om(\text{pr}_2^*\mathcal{E}_2, \Lambda))
$$

\n
$$
\cong R\mathcal{H}om(\text{pr}_1^*\mathcal{E}_1 \otimes^L \text{pr}_2^*\mathcal{E}_2, \Lambda) = \mathcal{E}^{\vee},
$$

where the isomorphism (a) follows from Lemma $2.3.4$ by the fact that (cf. Lemma $3.1.2$)

$$
SS(\mathrm{pr}_1^*\mathcal{E}_1, X/k) \cap SS(\mathrm{pr}_2^*\mathcal{E}_2, X/k) \subseteq T_X^*X.
$$

By Lemma [3.1.2,](#page-11-5) we have

$$
SS(\mathcal{E}, X/k) \cap SS(\mathcal{F}, X/k)
$$

\n
$$
\subseteq i^{\circ}(SS(\mathcal{E}_{1} \boxtimes_{k}^{L} \mathcal{E}_{2}, X_{1} \times_{k} X_{2}/k)) \cap i^{\circ}(SS(\mathcal{F}_{1} \boxtimes_{k}^{L} \mathcal{F}_{2}, X_{1} \times_{k} X_{2}/k))
$$

\n
$$
\stackrel{(b)}{=} i^{\circ}(SS(\mathcal{E}_{1}, X_{1}) \times SS(\mathcal{E}_{2}, X_{2})) \cap i^{\circ}(SS(\mathcal{F}_{1}, X_{1}) \times SS(\mathcal{F}_{2}, X_{2}))
$$

\n
$$
\stackrel{(c)}{\subseteq} T_{X}^{*}X,
$$

where the equality (b) follows from $[Sai17b, Theorem 2.2.3]$, and (c) follows from the assumptions (2) and (3) (cf. [\[Sai17b,](#page-19-14) Lemma 2.7.2]). Thus by Lemma [2.3.4,](#page-6-6) we have

(3.1.3.5)
$$
\mathcal{F} \otimes^L \mathcal{E}^{\vee} \cong R\mathcal{H}om(\mathcal{E}, \mathcal{F}).
$$

Combining [\(3.1.3.3\)](#page-12-0), [\(3.1.3.4\)](#page-12-1) and [\(3.1.3.5\)](#page-13-0), we get

$$
(3.1.3.6) \t\t R\mathcal{H}om(\mathcal{E}_1,\mathcal{F}_1)\boxtimes_{S}^{L}R\mathcal{H}om(\mathcal{E}_2,\mathcal{F}_2)\cong \mathcal{F}\otimes^{L}\mathcal{E}^{\vee}\cong R\mathcal{H}om(\mathcal{E},\mathcal{F}).
$$

This finishes the proof. \Box

3.1.4. *K¨unneth formula.* We have the following canonical morphism

(3.1.4.1)
$$
\mathcal{F}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{F}_2, \pi_2^!\Lambda_S) \to R\mathcal{H}om(\text{pr}_2^*\mathcal{F}_2, \text{pr}_1^!\mathcal{F}_1),
$$

by taking the adjunction of the following composition map

$$
\begin{aligned} \operatorname{pr}_1^* \mathcal{F}_1 \otimes \operatorname{pr}_2^* R\mathcal{H}om(\mathcal{F}_2, \pi_2^! \Lambda_S) \otimes \operatorname{pr}_2^* \mathcal{F}_2 &\to \operatorname{pr}_1^* \mathcal{F}_1 \otimes \operatorname{pr}_2^* (\mathcal{F}_2 \otimes R\mathcal{H}om(\mathcal{F}_2, \pi_2^! \Lambda_S)) \\ &\xrightarrow{\text{evaluation}} \operatorname{pr}_1^* \mathcal{F}_1 \otimes \operatorname{pr}_2^* \pi_2^! \Lambda_S &\to \operatorname{pr}_1^* \mathcal{F}_1 \otimes \operatorname{pr}_1^! \Lambda_{X_1} &\to \operatorname{pr}_1^! \mathcal{F}_1. \end{aligned}
$$

Corollary 3.1.5. *Assume that* $\pi_1: X_1 \to S$ *is* $SS(\mathcal{F}_1, X_1/k)$ -transversal or $\pi_2: X_2 \to S$ *is* $SS(\mathcal{F}_2, X_2/k)$ -transversal. Then the canonical map [\(3.1.4.1\)](#page-13-1) *is an isomorphism.*

If S is the spectrum of a field, then the above result is proved in $[SGA5, Exposé III, (3.1.1)].$ Our proof below is different from that of *loc.cit*.

Proof. By Proposition [3.1.3,](#page-12-2) we have the following isomorphisms

$$
\mathcal{F}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{F}_2, \pi_2^!\Lambda_S) \stackrel{Prop. 3.1.3}{\cong} R\mathcal{H}om(\text{pr}_2^*\mathcal{F}_2, \text{pr}_1^*\mathcal{F}_1 \otimes \text{pr}_1^!\Lambda_S)
$$

$$
\stackrel{(a)}{\cong} R\mathcal{H}om(\text{pr}_2^*\mathcal{F}_2, \text{pr}_1^!\mathcal{F}_1),
$$

where (a) follows from the fact that pr_1 is smooth (cf. [\[ILO14,](#page-19-13) XVI, Théorème 3.1.1] and [\[SGA4,](#page-18-9) XVIII, Theoréme 3.2.5]).

Definition 3.1.6. Let X_i , \mathcal{F}_i be as in [3.1.1](#page-11-4) for $i = 1, 2$. A *relative correspondence* between X_1 and X_2 is a scheme C over S with morphisms $c_1: C \to X_1$ and $c_2: C \to X_2$ over S. We put $c = (c_1, c_2): C \to X_1 \times_S X_2$ the corresponding morphism. A morphism $u: c_2^* \mathcal{F}_2 \to c_1^! \mathcal{F}_1$ is called a *relative cohomological correspondence* from \mathcal{F}_2 to \mathcal{F}_1 on C.

3.1.7. Given a correspondence C as above, we recall that there is a canonical isomorphism [\[SGA4,](#page-18-9) XVIII, 3.1.12.2]

(3.1.7.1)
$$
R\mathcal{H}om(c_2^*\mathcal{F}_2,c_1^!\mathcal{F}_1) \xrightarrow{\cong} c^!R\mathcal{H}om(\text{pr}_2^*\mathcal{F}_2,\text{pr}_1^!\mathcal{F}_1).
$$

3.1.8. For $i = 1, 2$, consider the following diagram of S-morphisms

where π_i and q_i are smooth morphisms. We put $X = X_1 \times_S X_2$, $Y = Y_1 \times_S Y_2$ and $f =$ $f_1 \times_S f_2 \colon X \to Y$. Let $\mathcal{M}_i \in D_c^b(Y_i, \Lambda)$ for $i = 1, 2$. We have a canonical map (cf. [\[Zh15,](#page-19-9) Construction 7.4] and $[SGA5, Exposé III, (1.7.3)]$

(3.1.8.1)
$$
f_1^!\mathcal{M}_1 \boxtimes_S^L f_2^!\mathcal{M}_2 \to f^!(\mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2)
$$

which is adjoint to the composite

$$
(3.1.8.2) \t f_!(f_1^!\mathcal{M}_1 \boxtimes_S^L f_2^!\mathcal{M}_2) \xrightarrow[a]{} f_{1!}f_1^!\mathcal{M}_1 \boxtimes_S^L f_{2!}f_2^!\mathcal{M}_2 \xrightarrow{adj(\boxtimes_\mathbf{A}^1 \boxtimes_S^L \mathcal{M}_2 \boxtimes_S^L \mathcal{M}_2)} \mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2
$$

where (a) is the Künneth isomorphism $[SGA4, XVII, Théorème 5.4.3]$.

Proposition 3.1.9. *If* $q_2: Y_2 \rightarrow S$ *is* $SS(\mathcal{M}_2, Y_2/k)$ -transversal, then the map [\(3.1.8.1\)](#page-14-0) *is an isomorphism.*

If S is the spectrum of a field, the above result is proved in $[SGA5, Ex]$ Expose III, Proposition 1.7.4].

Proof. Consider the following cartesian diagrams

$$
X_1 \times_S X_2 \xrightarrow{f_1 \times id} Y_1 \times_S X_2 \longrightarrow X_2
$$

\n
$$
X_1 \times_S Y_2 \xrightarrow{f_1 \times id} Y_1 \times_S Y_2 \xrightarrow{pr_2} Y_2
$$

\n
$$
Y_1 \xrightarrow{f_1} Y_1 \xrightarrow{q_1} Y_2
$$

\n
$$
X_1 \xrightarrow{f_1} Y_1 \xrightarrow{q_1} S
$$

\n
$$
X_1 \xrightarrow{f_1} Y_1 \xrightarrow{q_1} S
$$

\n
$$
S.
$$

We may assume that $X_2 = Y_2$ and $f_2 = id$, i.e., it suffices to show that the canonical map

(3.1.9.1)
$$
f_1^!\mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2 \xrightarrow{\cong} (f_1 \times \mathrm{id})^!(\mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2).
$$

is an isomorphism. Since we have

$$
\mathcal{M}_2 \cong D_{Y_2} D_{Y_2} \mathcal{M}_2 \cong R\mathcal{H}om(D_{Y_2} \mathcal{M}_2, \mathcal{K}_{Y_2})
$$

$$
\cong R\mathcal{H}om(D_{Y_2}(\mathcal{M}_2)(-\text{dim} S)[-2\text{dim} S], q_2^! \Lambda_S),
$$

we may assume $\mathcal{M}_2 = R\mathcal{H}om(\mathcal{L}_2, q_2^{\dagger}\Lambda_S)$ for some $\mathcal{L}_2 \in D_c^b(Y_2, \Lambda)$. By [\[Sai17a,](#page-19-0) Corollary 4.9], we have $SS(\mathcal{M}_2, Y_2/k) = SS(\mathcal{L}_2, Y_2/k)$. Thus by assumption, the morphism $q_2 \colon Y_2 \to S$ is $SS(\mathcal{L}_2, Y_2/k)$ -transversal. By Corollary [3.1.5,](#page-13-2) we have an isomorphism

 $(3.1.9.2)$ $\mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, q_2^{\dagger} \Lambda_S) \cong R\mathcal{H}om(\text{pr}_2^*\mathcal{L}_2, \text{pr}_1^{\dagger} \mathcal{M}_1)$ in $D_c^b(Y_1 \times_S Y_2, \Lambda)$, (3.1.9.3) $f_1^1 \mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, q_2^1 \Lambda_S) \cong R\mathcal{H}om((f_1 \times id)^* \text{pr}_2^* \mathcal{L}_2, \text{pr}_1^1 f_1^1 \mathcal{M}_1) \text{ in } D_c^b(X_1 \times_S Y_2, \Lambda).$ We have

$$
(f_1 \times id)^!(\mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2) = (f_1 \times id)^!(\mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, q_2^!\Lambda_S))
$$

\n
$$
\cong (f_1 \times id)^!(R\mathcal{H}om(\mathrm{pr}_2^*\mathcal{L}_2, \mathrm{pr}_1^!\mathcal{M}_1))
$$

\n
$$
\cong (3.1.9.4)
$$

\n
$$
\cong (3.1.7.1)
$$

\n
$$
\cong R\mathcal{H}om((f_1 \times id)^* \mathrm{pr}_2^*\mathcal{L}_2, (\mathcal{L}_1 \times id)^* \mathrm{pr}_1^!\mathcal{M}_1)
$$

\n
$$
\cong R\mathcal{H}om((f_1 \times id)^* \mathrm{pr}_2^*\mathcal{L}_2, \mathrm{pr}_1^!f_1^!\mathcal{M}_1)
$$

\n
$$
\cong (3.1.9.3)
$$

\n
$$
\cong f_1^!\mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, q_2^!\Lambda_S) \cong f_1^!\mathcal{M}_1 \boxtimes_S^L \mathcal{M}_2.
$$

This finishes the proof. \Box

3.2. Relative cohomological characteristic class.

3.2.1. We introduce some notation for convenience. For any commutative diagram

of schemes, we put

 $\mathcal{K}_W \coloneqq Rf^!\Lambda,$ (3.2.1.2) $\mathcal{K}_{W/V} \coloneqq Rh^! \Lambda_V.$

Under the notation in $3.1.1$, by Proposition $3.1.9$, we have an isomorphism

(3.2.1.3) $\mathcal{K}_{X_1/S} \boxtimes_S^L \mathcal{K}_{X_2/S} \simeq \mathcal{K}_{X/S}.$

3.2.2. Consider a cartesian diagram

(3.2.2.1)

of schemes over k. Let F, G and H be objects of $D_c^b(X, \Lambda)$ and $\mathcal{F} \otimes \mathcal{G} \to \mathcal{H}$ any morphism. By the Künneth isomorphism $[SGA4, XVII, Théorème 5.4.3]$ and adjunction, we have

 $C \xrightarrow{c} X$

e ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ /D

d ŗ

E

 $\overline{}$

$$
e_!(c^! \mathcal{F} \boxtimes_X^L d^! \mathcal{G}) \xrightarrow{\simeq} c_! c^! \mathcal{F} \otimes^L d_! d^! \mathcal{G} \to \mathcal{F} \otimes \mathcal{G} \to \mathcal{H}.
$$

By adjunction, we get a morphism

(3.2.2.2) $c^! \mathcal{F} \boxtimes_X^L d^! \mathcal{G} \to e^! \mathcal{H}.$

Thus we get a pairing

$$
(3.2.2.3) \qquad \qquad \langle, \rangle: H^0(C, c^! \mathcal{F}) \otimes H^0(D, d^! \mathcal{G}) \to H^0(E, e^! \mathcal{H}).
$$

3.2.3. Now we define the relative Verdier pairing by applying the map [\(3.2.2.3\)](#page-15-0) to relative cohomological correspondences. Let $\pi_1: X_1 \to S$ and $\pi_2: X_2 \to S$ be smooth morphisms. Consider a cartesian diagram

$$
\begin{array}{ccc}\n & E & \longrightarrow D \\
 & e & \downarrow d=(d_1, d_2) \\
 & C & \longrightarrow X = X_1 \times_S X_2\n\end{array}
$$

of schemes over S. Let $\mathcal{F}_1 \in D_c^b(X_1, \Lambda)$ and $\mathcal{F}_2 \in D_c^b(X_2, \Lambda)$. Assume that one of the following conditions holds:

- (1) $\pi_1: X_1 \to S$ is $SS(\mathcal{F}_1, X_1/k)$ -transversal;
- (2) $\pi_2 \colon X_2 \to S$ is $SS(\mathcal{F}_2, X_2/k)$ -transversal.

By Corollary [3.1.5,](#page-13-2) we have

(3.2.3.2)
\n
$$
\tilde{R}\text{Hom}(\text{pr}_2^* \mathcal{F}_2, \text{pr}_1^! \mathcal{F}_1) \otimes^L R\text{Hom}(\text{pr}_1^* \mathcal{F}_1, \text{pr}_2^! \mathcal{F}_2)
$$
\n
$$
\tilde{\longrightarrow} (\mathcal{F}_1 \boxtimes_S^L R\text{Hom}(\mathcal{F}_2, \pi_2^! \Lambda_S)) \otimes^L (R\text{Hom}(\mathcal{F}_1, \pi_1^! \Lambda_S) \boxtimes_S^L \mathcal{F}_2)
$$
\n
$$
\xrightarrow{\text{evaluation}} \pi_1^! \Lambda_S \boxtimes_S^L \pi_2^! \Lambda_S \stackrel{(3.2.1.3)}{\cong} \mathcal{K}_{X/S}.
$$

By [\(3.1.7.1\)](#page-13-3), [\(3.2.2.2\)](#page-15-2), [\(3.2.2.3\)](#page-15-0) and [\(3.2.3.2\)](#page-16-2), we get the following pairings

(3.2.3.3) $c_1R\mathcal{H}om(c_2^*\mathcal{F}_2,c_1^!\mathcal{F}_1)\otimes^L d_1R\mathcal{H}om(d_1^*\mathcal{F}_1,d_2^!\mathcal{F}_2)\rightarrow e_1\mathcal{K}_{E/S},$

$$
(3.2.3.4) \qquad \langle , \rangle: Hom(c_2^*\mathcal{F}_2,c_1^!\mathcal{F}_1)\otimes Hom(d_1^*\mathcal{F}_1,d_2^!\mathcal{F}_2)\rightarrow H^0(E,e^!(\mathcal{K}_{X/S}))=H^0(E,\mathcal{K}_{E/S}).
$$

The pairing $(3.2.3.4)$ is called the *relative Verdier pairing* (cf. [\[SGA5,](#page-18-4) Expose III $(4.2.5)$]).

Definition 3.2.4. Let $f: X \to S$ be a smooth morphism purely of relative dimension n and $\mathcal{F} \in D^b_c(X, \Lambda)$. We assume that f is $SS(\mathcal{F}, X/k)$ -transversal. Let $c = (c_1, c_2): C \to X \times_S X$ be a closed immersion and $u: c_2^* \mathcal{F} \to c_1^! \mathcal{F}$ be a relative cohomological correspondence on C. We define the *relative cohomological characteristic class* $cc_{X/S}(u)$ of u to be the cohomology class $\langle u, 1 \rangle \in H_{C \cap X}^0(X, \mathcal{K}_{X/S})$ defined by the pairing [\(3.2.3.4\)](#page-16-3).

In particular, if $C = X$ and $c: C \to X \times_S X$ is the diagonal and if $u: \mathcal{F} \to \mathcal{F}$ is the identity, we write

$$
ccc_{X/S}(\mathcal{F}) = \langle 1, 1 \rangle
$$
 in $H^{2n}(X, \Lambda(n))$

and call it the *relative cohomological characteristic class* of F.

If S is the spectrum of a perfect field, then the above definition is [\[AS07,](#page-18-8) Definition 2.1.1].

Example 3.2.5. If F is a locally constant and constructible sheaf of Λ -modules on X, then we have $ccc_{X/S}F = \text{rank}\mathcal{F} \cdot c_n(\Omega^{\vee}_{X/S}) \cap [X] \in CH^n(X)$.

Conjecture 3.2.6. *Let* S *be a smooth connected scheme over a perfect field* k *of characteristic* p. Let $f: X \to S$ be a smooth morphism purely of relatively dimension n and $\mathcal{F} \in D_c^b(X, \Lambda)$. Assume that f is $SS(\mathcal{F}, X/k)$ -transversal. Let cl: CHⁿ(X) \rightarrow H²ⁿ(X, $\Lambda(n)$) be the cycle class *map. Then we have*

(3.2.6.1)
$$
\operatorname{cl}(cc_{X/S}(\mathcal{F})) = ccc_{X/S}(\mathcal{F}) \quad \text{in} \quad H^{2n}(X, \Lambda(n)),
$$

where $cc_{X/S}(\mathcal{F})$ *is the relative characteristic class defined in Definition [2.4.3.](#page-7-0)*

If S is the spectrum of a perfect field, then the above conjecture is [\[Sai17a,](#page-19-0) Conjecture 6.8.1].

3.3. Proper push-forward of relative cohomological characteristic class.

3.3.1. For $i = 1, 2$, let $f_i: X_i \to Y_i$ be a proper morphism between smooth schemes over S. Let $X = X_1 \times_S X_2$, $Y = Y_1 \times_S Y_2$ and $f = f_1 \times_S f_2$. Let $p_i: X \to X_i$ and $q_i: Y \to Y_i$ be the canonical projections for $i = 1, 2$. Consider a commutative diagram

$$
\begin{array}{ccc}\n & X <^c & C \\
\downarrow & & & \downarrow \\
 & & & \downarrow \\
 & & & Y <^d \\
 & & & D\n\end{array}
$$
\n(3.3.1.1)

of schemes over S. Assume that c is proper. Put $c_i = p_i c$ and $d_i = q_i d$. By [\[Zh15,](#page-19-9) Construction 7.17], we have the following push-forward maps for cohomological correspondence (see also $[SGA5, Expose III, (3.7.6)]$ $[SGA5, Expose III, (3.7.6)]$ if S is the spectrum of a field):

$$
(3.3.1.2) \t f_*: Hom(c_2^* \mathcal{L}_2, c_1^! \mathcal{L}_1) \to Hom(d_2^*(f_{2!} \mathcal{L}_2), d_1^!(f_{1*} \mathcal{L}_1)),
$$

(3.3.1.3) $f_*: g_* R\mathcal{H}om(c_2^*\mathcal{L}_2, c_1^!\mathcal{L}_1) \to R\mathcal{H}om(d_2^*(f_{2!}\mathcal{L}_2), d_1^!(f_{1*}\mathcal{L}_1)).$

Theorem 3.3.2 ([\[SGA5,](#page-18-4) Théorème 4.4]). For $i = 1, 2$, let $f_i: X_i \rightarrow Y_i$ be a proper morphism *between smooth schemes over* S. Let $X = X_1 \times_S X_2$, $Y = Y_1 \times_S Y_2$ and $f = f_1 \times_S f_2$. Let $p_i \colon X \to X_i$ and $q_i \colon Y \to Y_i$ be the canonical projections for $i = 1, 2$. Consider the following *commutative diagram with cartesian horizontal faces*

where c', c'', d' and d'' are proper morphisms between smooth schemes over *S*. Let $c'_i = p_i c', c''_i =$ $p_i c'', d'_i = q_i d', d''_i = q_i d''$ for $i = 1, 2$. Let $\mathcal{L}_i \in D_c^b(X_i, \Lambda)$ and we put $\mathcal{M}_i = f_{i*} \mathcal{L}_i$ for $i = 1, 2$. *Assume that one of the following conditions holds:*

 (4)

- (1) $X_1 \rightarrow S$ *is* $SS(\mathcal{L}_1, X_1/k)$ -transversal;
- (2) $X_2 \rightarrow S$ *is* $SS(\mathcal{L}_2, X_2/k)$ -transversal.

Then we have the following commutative diagram

$$
(3.3.2.1)
$$
\n
$$
f_* c'_* R\mathcal{H}om(c_2'^*\mathcal{L}_2, c_1'^!\mathcal{L}_1) \otimes^L f_* c''_* R\mathcal{H}om(c_1''^*\mathcal{L}_1, c_2''^!\mathcal{L}_2) \xrightarrow{(1)} f_* c_* \mathcal{K}_{C/S}
$$
\n
$$
(3.3.2.1)
$$
\n
$$
d'_* R\mathcal{H}om(d_2'^*\mathcal{M}_2, d_1'^!\mathcal{M}_1) \otimes^L d''_* R\mathcal{H}om(d_1''^*\mathcal{M}_1, d_2''^!\mathcal{M}_2) \xrightarrow{(3)} d_* \mathcal{K}_{D/S}
$$

where (3) *is given by* [\(3.2.3.3\)](#page-16-4)*,* (1) *is the composition of* $f_*((3.2.3.3))$ *with the canonical map* $f_*c'_* \otimes^L f_*c''_* \to f_*(c'_* \otimes c''_*)$, (2) is induced from [\(3.3.1.3\)](#page-17-0), and (4) is defined by

(3.3.2.2)
$$
f_* c_* \mathcal{K}_{C/S} \simeq d_* g_* \mathcal{K}_{C/S} = d_* g_! g^! \mathcal{K}_{D/S} \xrightarrow{\text{adj}} d_* \mathcal{K}_{D/S}.
$$

If S is the spectrum of a field, this is proved in $SGA5$, Théoreème 4.4.. We use the same notation as *loc.cit.*

Proof. By [\[Sai17a,](#page-19-0) Lemma 3.8 and Lemma 4.2.6] and the assumption, one of the following conditions holds:

- (a1) $Y_1 \rightarrow S$ is $SS(\mathcal{M}_1, Y_1/k)$ -transversal;
- (a2) $Y_2 \rightarrow S$ is $SS(\mathcal{M}_2, Y_2/k)$ -transversal.

Now we can use the same proof of $[SGA5, Théorème 4.4]$. We only sketch the main step. Put

- (3.3.2.3) $\mathcal{P} = \mathcal{L}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{L}_2, \mathcal{K}_{X_2/S}), \quad \mathcal{Q} = R\mathcal{H}om(\mathcal{L}_1, \mathcal{K}_{X_1/S}) \boxtimes_S^L \mathcal{L}_2$
- (3.3.2.4) $\mathcal{E} = \mathcal{M}_1 \boxtimes_S^L R\mathcal{H}om(\mathcal{M}_2, \mathcal{K}_{Y_2/S}), \quad \mathcal{F} = R\mathcal{H}om(\mathcal{M}_1, \mathcal{K}_{Y_1/S}) \boxtimes_S^L \mathcal{M}_2.$

Then the theorem follows from the following commutative diagram

$$
f_* c'_* c'^! \mathcal{P} \otimes^L f_* c''_* c''! \mathcal{Q} \longrightarrow f_* c_* c^! (\mathcal{P} \otimes^L \mathcal{Q}) \longrightarrow f_* c_* c^! \mathcal{K}_{X/S}
$$
\n
$$
d'_* d'^! f_* \mathcal{P} \otimes^L d''_* d''^! f_* \mathcal{Q} \longrightarrow d_* d^! (f_* \mathcal{P} \otimes^L f_* \mathcal{Q}) \longrightarrow d_* d^! f_* (\mathcal{P} \otimes^L \mathcal{Q}) \longrightarrow d_* d^! f_* \mathcal{K}_{X/S}
$$
\n
$$
d'_* d'^! \mathcal{E} \otimes^L d''_* d''^! \mathcal{F} \longrightarrow d_* d^! (\mathcal{E} \otimes^L \mathcal{F}) \longrightarrow d_* d^! \mathcal{K}_{Y/S}
$$

where commutativity can be verified following the same argument of [\[SGA5,](#page-18-4) Théorème 4.4]. \Box

Corollary 3.3.3 ([\[SGA5,](#page-18-4) Corollaire 4.5]). *Under the assumptions of Theorem [3.3.2,](#page-17-1) we have a commutative diagram*

$$
(3.3.3.1) \quad Hom(c_2^{\prime *} \mathcal{L}_2, c_1^{\prime \prime} \mathcal{L}_1) \otimes Hom(c_1^{\prime \prime *} \mathcal{L}_1, c_2^{\prime \prime \prime} \mathcal{L}_2) \longrightarrow H^0(C, \mathcal{K}_{C/S})
$$
\n
$$
(3.3.1.2) \otimes (3.3.1.2) \qquad \downarrow g_*
$$
\n
$$
Hom(d_2^{\prime *} f_{2*} \mathcal{L}_2, d_1^{\prime \prime} f_{1*} \mathcal{L}_1) \otimes Hom(d_1^{\prime \prime *} f_{1*} \mathcal{L}_1, d_2^{\prime \prime \prime} f_{2*} \mathcal{L}_2) \longrightarrow H^0(D, \mathcal{K}_{D/S}).
$$

Corollary 3.3.4. *Let* S *be a smooth connected scheme over a perfect field* k *of characteristic* p*.* Let $f: X \to S$ be a smooth morphism purely of relative dimension n and $g: Y \to S$ a smooth *morphism purely of relative dimension* m. Assume that f is $SS(\mathcal{F}, X/k)$ -transversal. Then for *any proper morphism* $h: X \rightarrow Y$ *over* S,

$$
X \xrightarrow{h} Y
$$
\n
$$
S \xrightarrow{f} S
$$

we have

(3.3.4.2)
$$
f_* c c c_{X/S}(\mathcal{F}) = c c c_{Y/S}(R f_* \mathcal{F}) \quad \text{in} \quad H^{2m}(Y, \Lambda(m)).
$$

Proof. This follows from Corollary [3.3.3](#page-18-10) and Definition [3.2.4.](#page-16-0) □

REFERENCES

- [AP17] T. Abe and D. Patel, On a localization formula of epsilon factors via microlocal geometry, to appear in Annals of K-theory.
- [AS07] A. Abbes and T. Saito, *The characteristic class and ramification of an l-adic étale sheaf*, Inventiones Mathematicae, 168 (2007):567-612.
- [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics, vol. 269,270,305, Springer-Verlag, 1972-1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963-64 (SGA4).
- [Bei16] A. Beilinson, Constructible sheaves are holonomic, Selecta Mathematica, 22, Issue 4 (2016):1797-1819.
- [Bei07] A. Beilinson, Topological E-factors, Pure Appl. Math. Q., 3(1, part 3) (2007): 357-39.
- [Del72] P. Deligne, Les constantes des equations fonctionnelles des fonctions L, Modular Functions of One Variables II, Lecture Notes in Math. 349, Springer, Berlin-Heidelberg-New York, 1972.
- [Del80] P. Deligne, La conjecture de Weil, II, Inst. Hautes Etudes Sci. Publ. Math. 52 (1980): 137-252. ´
- [DH81] P. Deligne and G. Henniart, Sur la variation, par torsion, des constantes locales d'´equations fonctionnelles de fonctions L, Inventiones Mathematicae 64 (1981): 89-118.
- [Gin86] V. Ginsburg, Characteristic varieties and vanishing cycles, Inventiones Mathematicae 84 (1986): 327-402.
- [SGA5] A. Grothendieck et al., Cohomologie l-adique et fonctions L. Séminaire de Géométrie Algébrique du Bois-Marie 1965–1966 (SGA 5). dirigé par A. Grothendieck avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J-P. Serre. Lecture Notes in Mathematics 589, Springer-verlag, Berlin-New York, (1977).
- [HY17] H. Hu and E. Yang, Relative singular support and the semi-continuity of characteristic cycles for étale sheaves, Selecta Mathematica, Volume 24, Issue 3 (2018):2235-2273.
- [ILO14] L. Illusie, Y. Lazslo, and F. Orgogozo, Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schémas quasi-excellents, Astérisque, vol. 363-364, Soc. Math. France, 2014, Séminaire à l'École Polytechnique 2006-2008.
- [Lau87] G. Laumon, Transformation de Fourier, constantes d'´equations fonctionnelles et conjecture de Weil, Publications Mathématiques de l'IHÉS 65 (1987): 131-210.
- [KS13] K. Kato and T. Saito, Ramification theory for varieties over a local field, Publications Mathématiques de l'IHES 117 (2013): 1-178. ´
- [KS08] K. Kato and T. Saito, Ramification theory for varieties over a perfect field, Annals of Mathematics, 168 (2008): 33-96.
- [KS83] K. Kato and S. Saito, Unramified class field theory of arithmetical surfaces, Annals of Mathematics, 118(1983): 241-275.
- [Kat88] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, volume 116 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1988.
- [KeS16] M. Kerz and S. Saito, Chow group of 0-cycles with modulus and higher dimensional class field theory, Duke Mathematical Journal 165(15) (2016): 2811-2897.
- [Pat12] D. Patel, De Rham ε-factors, Inventiones Mathematicae, Volume 190, Number 2, (2012): 299-355.
- [Sai93] T. Saito, ε-factor of a tamely ramified sheaf on a variety, Inventiones Mathematicae 113 (1993): 389-417.
- [Sai94] T. Saito, Jacobi sum Hecke characters, de Rham discriminant, and the determinant of ℓ-adic cohomologies, Journal of Algebraic Geometry, 3 (1994): 411-434.
- [Sai17a] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones Mathematicae, 207 (2017): 597-695.
- [Sai17b] T. Saito, Characteristic cycle of the external product of constructible sheaves, Manuscripta Mathematica, Volume 154, Issue 12 (2017): 1-12.
- [SY16] T. Saito and Y. Yatagawa, Wild ramification determines the characteristic cycle, Annales Scientifiques de l'ENS 50, fascicule 4 (2017): 1065-1079.
- [SS84] S. Saito, Functional equations of L-functions of varieties over finite fields, J. Fac. Sci. Univ. of Tokyo, Sec. IA 31 (1984): 287-296.
- [Tat79] J. Tate, Number theoretic background, in Automorphic forms, representations and L-functions, PSPM, vol 33, part II. A. M. S., Providence (1979): 3-26.
- [UYZ] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε -factor of an étale sheaf, [arXiv:1701.02841,](https://arxiv.org/pdf/1701.02841.pdf) submitted.
- [Vi09a] I. Vidal, Formule du conducteur pour un caractère l-adique, Compositio Mathematica, 145 (2009): 687-717.
- [Vi09b] I. Vidal, Formule de torsion pour le facteur epsilon d'un caractère sur une surface, Manuscripta Mathematica, 130 (2009): 21-44.
- [Zh15] W. Zheng, Six operations and Lefschetz-Verdier formula for Deligne-Mumford stacks, Science China Mathematics 58 (2015), no. 3 (special issue for Algebraic Geometry in East Asia 2013), pp. 565-632.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT REGENSBURG, 93040 REGENSBURG, GERMANY E-mail address: enlin.yang@mathematik.uni-regensburg.de, yangenlin0727@126.com

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT REGENSBURG, 93040 REGENSBURG, GERMANY $E\text{-}mail\;address:$ yigeng.zhao@mathematik.uni-regensburg.de