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STRONGLY AMBIGUOUS HILBERT SQUARES OF PROJECTIVE K3

SURFACES WITH PICARD NUMBER ONE

RICCARDO ZUFFETTI

Abstract. We provide a criterion for when Hilbert squares of complex projective K3
surfaces with Picard number one are strongly ambiguous. This criterion is the same as
[DM, Proposition 3.14], but is obtained by a different method. In particular, this enables
us to compute the automorphism groups of these Hilbert squares from a different point
of view with respect to [BCNS].

Introduction

Let X be a nonsingular projective surface over C. We recall that X [n], the Hilbert
scheme of n points on X, is the space parametrizing 0-dimensional subschemes Z ⊂ X of
length n (see for further details [Be1, Deuxième Partie], [Na] and [GHJ, Section 21]). If S

is a projective K3 surface, the Hilbert square S[2] is an irreducible holomorphic symplectic
fourfold. We say that S[2] is strongly ambiguous if there exists another K3 surface S′ such
that S 6∼= S′ but S[2] ∼= S′[2]. We want to study the strongly ambiguous Hilbert squares
of projective K3 surfaces with Picard number one. The main result is [DM, Proposition
3.14], proved there through derived categories. In these pages we prove the same result
(see Theorem 7.3) only with the glueing of lattices, the Hodge decomposition, the Torelli

theorems and some properties of the ample and movable cones of S[2]. The method here
exposed is also applied to compute Aut(S[2]) (see Theorem 8.1). This is the main result
in [BCNS], but proved from a different point of view. In [C] one can find how to compute

Aut(S[n]) with n ≥ 2, while in [Ok] and [MMY] one can find a study on birational maps
between Hilbert squares.

In Sections 1, 2 we recall some general results on lattices, while in Sections 3, 4 we recall
some properties on Hilbert squares of projective K3 surfaces and their nef and movable
cones. Let S be a projective K3 surface with Picard number one, let h be an ample class
on S with h2 = 2e with e ∈ N. In Section 5 we recall the definition of FM partners of
S (see Definition 5.1), and the number of (isomorphism classes of) FM partners of S via
the glueing of lattices. In Sections 6, 7 we study a relation between the FM partners of
S and their Hilbert squares, in particular we want to understand for which e there exist
non isomorphic K3 surfaces such that their Hilbert squares are isomorphic. In Section 8
we apply the previous methods to determine Aut(S[2]).

Acknowledgments. We would like to thank Chiara Camere and Bert van Geemen
for their ideas and clarifications, and Alberto Cattaneo and Ciaran Meachan for their
suggestions on the final version of this work.

1. Lattices

A lattice is a pair (Γ, Q) consisting of a free Z-module of finite rank Γ together with
a symmetric bilinear form Q : Γ × Γ ! Z. Every lattice defines a quadratic form q(v) =
v2 := Q(v, v).
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Given a Z-basis e1, . . . , er of Γ, the Gram matrix of Γ (with this basis) is the n × n
symmetric matrix which represents Q on this basis. The discriminant of a lattice (Γ, Q)
is dis(Γ, Q) := detG, where G is a Gram matrix of that lattice.

A lattice (Γ, Q) is said to be non degenerate if dis(Γ, Q) 6= 0, even if Q(v, v) ∈ 2Z for
all v ∈ S, unimodular if dis(Γ, Q) = ±1.

We say that a map f : Γ1 ! Γ2 is an isometry between lattices if it is an isomorphism
of Z-modules and preserves the bilinear forms.

A sublattice of a lattice (Γ, Q) is a free submodule Γ′ of Γ with the induced bilinear form
(Γ′, Q|Γ′×Γ′). If Γ/Γ′ is a finite group then

(1) dis(Γ′) = [Γ : Γ′]2 · dis(Γ).
A sublattice is said to be primitive if the quotient module Γ/Γ′ is a free module.

Example 1.1. Let V be a subset of Γ and consider

V ⊥ := {v′ ∈ Γ : Q(v′, v) = 0 ∀v ∈ V },
then V ⊥ is a primitive sublattice of Γ.

The dual lattice of a non degenerate lattice (Γ, Q) is the Z-module

Γ∗ := { v ∈ ΓQ : Q(v,w) ∈ Z ∀w ∈ Γ } ⊂ ΓQ := Γ⊗Q,

together with the extension of Q on Γ∗, that is denoted again by Q. It is well known that
[Γ∗ : Γ] = |det(G)| = |dis(Γ, Q)|, in particular if Γ is unimodular then Γ ∼= Γ∗ as lattices.

Let (Γ, Q) be a non degenerate lattice, then the discriminant group of Γ is the finite
group

AΓ := Γ∗/Γ,

which has order [Γ∗ : Γ] = |dis(Γ, Q)|. When Γ is an even lattice, there is a well defined
quadratic form qΓ on the discriminant group given by the quadratic form q:

qΓ : AΓ ! Q/2Z, qΓ(v) := Q(v, v) mod 2Z.

Proposition 1.2 (see [BPV, Chapter I, Lemma 2.5]). For a primitive sublattice E of a
unimodular lattice S there is an isomorphism AE ! AE⊥.

Definition 1.3. The group of self-isometries of a lattice (Γ, Q) is denoted by O(Γ); an
element of O(Γ) is called an isometry (or automorphism) of Γ.

An automorphism M ∈ O(Γ) of the lattice extends Q-linearly to an automorphism of
the Q-vector space ΓQ which preserves the Q-bilinear extension of Q. Therefore we have
a homomorphism

O(Γ) ! O(AΓ), M !M,

where M is the induced action on the discriminant group.

2. Glueing lattices and glueing automorphisms

Let (Γ, Q) be an even lattice, E1 ⊂ Γ a primitive sublattice and E2 := E⊥
1 . It is obvious

that E1 ⊕ E2 ⊆ Γ ⊆ E∗
1 ⊕ E∗

2 .

Remark 2.1. As Γ is even and E1, E2 are perpendicular, if s ∈ Γ and writing s = (s1, s2) ∈
E∗

1 ⊕ E∗
2 we get:

Q(s, s) = Q(s1, s1) +Q(s2, s2) ∈ 2Z.

So by the definition of the quadratic form on a discriminant group, we have that qE1(s1) =
−qE2(s2).
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Remark 2.2. Consider the abelian group AE1×AE2 = (E∗
1⊕E∗

2)/(E1⊕E2) with quadratic
form qE1 + qE2 . The lattice Γ defines a subgroup

IΓ := Γ/(E1 ⊕E2) = { (s1, s2) ∈ AE1 ×AE2 : s ∈ Γ } ,

that is isotropic (i.e. (qE1+qE2)|IΓ = 0), by Remark 2.1, of cardinality #IΓ = [Γ : E1⊕E2].
Moreover, if Γ is unimodular then Γ/(E1 ⊕ E2) ∼= AE1

∼= AE2 by Proposition 1.2. So
there exists an isomorphism ϕ : AE1 ! AE2 such that qE1(a1) = −qE2(ϕ(a1)) for all
a1 ∈ AE1 , and we simply write qE1 = −qE2 in this case.

Definition 2.3. Given two non degenerate lattices (E1, Q1), (E2, Q2), we say that (Γ, Q)
arises from glueing (E1, Q1) and (E2, Q2) if it is a finite index overlattice of (E1⊕E2, Q1+
Q2).

The following well known proposition gives a relation between glued lattices and isotropic
subgroups.

Proposition 2.4. Let (E1, Q1), (E2, Q2) be even non degenerate lattices. There is a bijec-
tion between:

(1) isotropic subgroups I ⊂ AE1 ×AE2 ,
(2) even lattices (Γ, Q) obtained by glueing (E1, Q1) and (E2, Q2),

given by

I 7! ΓI := (π1 × π2)
−1(I),

Γ 7! IΓ := Γ/(E1 ⊕ E2),

where πi : E
∗
i ! AEi

for i = 1, 2 are the quotient maps.
Moreover if AE1

∼= AE2 and qE1 = −qE2 then the unimodular even lattices obtained
by glueing E1 with E2 are in bijection with the (maximal) isotropic subgroups defined as
Iϕ = { (x, ϕ(x)) : x ∈ AE1 } for suitable isomorphisms ϕ : AE1 ! AE2 such that qE1(x) =
−qE2(ϕ(x)) for all x ∈ AE1.

Proof. Let (Γ, Q) be a lattice such that E1 ⊕ E2 ⊂ Γ, with finite index and such that Q
restricts to Q1 + Q2 on E1 ⊕ E2, thus E2 = E⊥

1 in Γ. By Remark 2.2, IΓ is an isotropic
subgroup of AE1 ×AE2 .

Every isotropic subgroup of AE1 × AE2 defines an even lattice (Γ, Q) containing the
Ei as orthogonal sublattices. Indeed, let I be an isotropic subgroup of AE1 × AE2 =
E∗

1/E1 × E∗
2/E2. Let ΓI := (π1 × π2)

−1(I) and let Q be the restriction to ΓI of the Q-
linear extension of Q1 +Q2 to E∗

1 × E∗
2 . The isotropy condition shows that Q(s, s) ∈ 2Z

for all s ∈ ΓI . Moreover Q(x, y) ∈ Z for all x, y ∈ ΓI , indeed:

2Z ∋ Q(x+ y, x+ y) = Q(x, x) +Q(y, y) + 2Q(x, y)

and, since Q is even, Q(x, y) ∈ Z. Hence (ΓI , Q) is an even lattice. Since 0 ∈ IΓ,
π−1(0) = E1 ⊕ E2 ⊆ ΓI and E1, E2 are obviously orthogonal.

Eventually, we prove the assertion about unimodular even lattices. Suppose that Γ
is unimodular, then the claim follows by Remark 2.2. Conversely, let ϕ : AE1 ! AE2

be an isomorphism such that qE1(a1) = −qE2(ϕ(a1)). Let I := { (x, ϕ(x)) : x ∈ AE1 } ⊂
AE1 ×AE2 , this is obviously isotropic and #I = #AE1 . We know, see Formula (1), that

dis(E1 ⊕ E2) = [ΓI : E1 ⊕ E2]
2 · dis(Γ).

But |dis(E1 ⊕ E2)| = |dis(E1)| · |dis(E2)| = (#AE1)
2, hence dis(Γ) = ±1. �

We can also glue automorphisms on lattices obtained by glueing.
3



Corollary 2.5. Let (E1, Q1), (E2, Q2) be two even non degenerate lattices and let I, J ⊂
AE1 ×AE2 be two isotropic subgroups.

If SI , SJ are two overlattices of E1 ⊕ E2 defined by two isotropic subgroups I, J and
M : SI ! SJ is an isometry such that M(Ei) ⊆ Ei for i = 1, 2 then (M1,M2)(I) = J ,
where M1 :=M |E1 and M2 :=M |E2 .

Conversely, let Mi ∈ O(Ei) for i = 1, 2 such that (M1,M2)(I) = J . Then (M1,M2)
extends to an isometry M : SI ! SJ .

3. Hilbert squares of projective K3 surfaces

In this section we recall some useful results on Hilbert squares of projective K3 surfaces
which we will use in the following sections.

In [BPV, Chapter VIII] one can find basic properties on K3 surfaces. We recall, to fix the
notation, that if S is a K3 surface then H2(S,Z), endowed with the intersection product,
is a lattice with signature (3, 19) isometric to ΛK3 := U⊕U⊕U⊕E8(−1)⊕E8(−1), where
U is the hyperbolic plane and E8 is the root lattice with rank 8.

Definition 3.1. Let X be a nonsingular projective surface over C. We define X [n], called
Hilbert scheme of n points on X, as the space parametrizing 0-dimensional subschemes
Z ⊂ X of length n, i.e. h0(OZ) = n where H0(OZ) is the space of sections of the sheaf
OZ .

If S is a projective K3 surface then S[2] is an irreducible holomorphic symplectic fourfold
(see [GHJ, Section 21.2]). Moreover, the second cohomology group H2(S[2],Z) carries a

natural integral primitive quadratic form qBB : H2(S[2],Z) ! Z, called the Beauville–
Bogomolov form (see for further details [Ogr, Section 4.2] or [GHJ, Section 23]).

Proposition 3.2 (see [Be1, §6 Proposition 6] and [GHJ, Example 23.19]). Let S be a

projective K3 surface. There exists an injective homomorphism i : H2(S,Z) !֒ H2(S[2],Z)
which is compatible with the Hodge structures, and moreover

H2(S[2],Z) = i(H2(S,Z)) ⊕ Zξ,

for a suitable ξ ∈ H2(S[2],Z) such that ξ2 := qBB(ξ) = −2.

Definition 3.3. Every smooth projective hyperkähler fourfold F is called of K3[2]-type if
there exists a projective K3 surface S such that F is a deformation of S[2].

By the Torelli Theorem, two projective K3 surfaces S and S′ are isomorphic if and only if
there exists a Hodge isometry (i.e. an isometry which preserves the Hodge decompositions)
between H2(S,Z) and H2(S′,Z) that is effective (i.e. it maps ample classes in ample
classes). The following theorem generalizes the previous statement to (smooth projective)

hyperkähler fourfolds of K3[2]-type. We will call it the Generalized Torelli Theorem.

Theorem 3.4 (Verbitsky, Markman, [DM, Theorem 2.2]). Let F1 and F2 be projective

hyperkähler fourfolds of K3[2]-type, with h1 and h2 ample classes of F1 and F2 respectively.
Let Φ : H2(F1,Z) ! H2(F2,Z) be a Hodge isometry such that Φ(h1) = h2; then there is
an isomorphism ϕ : F2 ! F1 such that Φ = ϕ∗.

Remark 3.5. Notice that, with the notation of Theorem 3.4, if Φ is a pullback of an
isomorphism then it is obviously effective.

4. Pell-type equations, nef and movable cones of S[2]

In this section we fix the notation on Pell-type equations and we recall how the solutions
of this kind of equations are useful to understand the geometry of the nef and movable
cones of the Hilbert squares (see Theorem 4.4).
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Definition 4.1. The Pell-type equation Pd(m) is

x2 − dy2 = m,

where d,m are non zero integers with d > 0.
A solution (U, V ) ∈ Z2 of Pd(m) is called positive if U > 0 and V > 0, minimal if it is

positive and U is as small as possible.

Lemma 4.2 (see [Jo, Section 40, Lemma 14]). Assume d is not a square. Let (U, V ) be

the (positive) minimal solution of the equation Pd(1) and put ε := U + V
√
d. The integral

solutions of Pd(1) are obtained as integral powers of ε, in the sense that if ±εn = 1
2(u+v

√
d)

with n ∈ Z, (u, v) is a new solution and all solutions can be obtained in this way.

Moreover, if Pd(−1) has a minimal solution (U ′, V ′), then, putting η := U ′ + V ′
√
d, the

integral solutions of Pd(1) are ±η2n with n ∈ Z.

Let X be a projective manifold, NS(X) := H1,1(X)∩H2(X,Z) is its Néron–Severi group
and TX := NS(X)⊥ ⊂ H2(X,Z) is its transcendental lattice. The nef cone of X is defined
as the set Nef(X) of all classes α ∈ NS(X)⊗R with α ·C ≥ 0 for all curves C ⊂ X, while
the movable cone Mov(X) is the cone generated by the movable classes (i.e. the classes of
divisors L on X such that the base locus of |L| has codimension ≥ 2). The nef and the
movable cones of X are convex (see [Hu, Chapter 8, Section 1] and [Ma, Section 6.5]).

Let S be a K3 surface such that NS(S) = Zh with h ample and h2 = 2e. We know

that H2(S[2],Z) is a lattice with the Beauville–Bogomolov quadratic form qBB , and it is
naturally isometric to H2(S,Z)⊕Zξ (see Proposition 3.2). We denote again by h the class

induced by h in H2(S[2],Z).

Remark 4.3. The Néron–Severi of S[2] is NS(S[2]) = Zh⊕ Zξ.

We will see now some results on the two-dimensional vector space NS(S[2])⊗ R. Every
non trivial convex cone in R2 has obviously two boundary walls. Hence, if the Picard
number of S[2] is two, there are two boundary walls for every non trivial convex cone C in
NS(S[2])⊗ R.

The class h is nef, not ample, and spans one of the two boundary walls of the nef cone
Nef(S[2]) ⊂ NS(S[2])⊗ R (see [DM, Section 3.2]). The other boundary wall of Nef(S[2]) is
spanned by a class h − νSξ, where νS is a positive real number. Similarly, the boundary
walls of the movable cone Mov(S[2]) are spanned by h and h− µSξ.

The following result shows that νS and µS are rational numbers and only depend on the
positive integer e.

Theorem 4.4 (Bayer–Macrì, [BM, Section 13], or [DM, Theorem 3.4]). Let S be a K3
surface such that NS(S) = Zh with h ample and h2 = 2e. The slopes νS and µS are
respectively equal to the rational numbers νe and µe defined as follows.

• Assume that the equation P4e(5) has no solutions.
(1) If e is a perfect square, we have νe :=

√
e and µe :=

√
e.

(2) If e is not a perfect square and (a1, b1) is the minimal solution of the equation

Pe(1), we have νe := e b1
a1

and µe := e b1
a1

.

• Assume that the equation P4e(5) has a solution.

(1) If (a5, b5) is its minimal solution, we have νe := 2e b5
a5

and µe := e b1
a1
> νe.

5. Fourier–Mukai partners of K3 surfaces

Let S be a K3 surface. From now on if V is a sublattice of H2(S,Z) and p, q ≥ 0 such

that p+ q = 2 then V p,q := (V ⊗ C) ∩Hp,q(S). The same holds for S[2].
5



Definition 5.1. Let S, S′ be two K3 surfaces and TS,TS′ their transcendental lattices.
We say that S and S′ are Fourier–Mukai partners (or FM partners) if there exists a Hodge
isometry ϕ : TS ! TS′ , i.e. an isometry ϕ such that ϕC

(

Tp,q
S

)

= Tp,q
S′ .

Lemma 5.2. Let S, S′ be two K3 surfaces and TS ,TS′ their transcendental lattices. An
isometry ϕ : TS ! TS′ is a Hodge isometry if and only if ϕC

(

H2,0(S)
)

= H2,0(S′).

In particular, if f : H2(S,Z) ! H2(S′,Z) is an isometry such that f |TS
: TS ! TS′ is

a Hodge isometry, then f is a Hodge isometry.

Proof. It follows trivially from the fact that H2,0(S) ⊥ H0,2(S), H1,1(S) = (H2,0(S) ⊕
H0,2(S))⊥ and H2,0(S) = H0,2(S). �

Remark 5.3. In Lemma 5.2, if we replace S, S′ with S[2], S′[2] respectively, where S, S′

are projective K3 surfaces, an analogous result holds.

Let S be a K3 surface with Picard number one, such that NS(S) = Zh with h ample
and h2 = 2e. Let T := TS be the transcendental lattice of S and let t be an element in T
such that AT = 〈t/2e〉 and t2 = −h2.
Remark 5.4. The only Hodge isometries ϕ : T ! T are ± id. In other words OHodge(T) =
{± id } (see [Hu, Section 3.3, Corollary 3.5]).

We define
FM(S) := { isomorphism classes [S′] : TS′

∼=
Hodge

T } .

The following result is well known (see [Ogu, Proposition 1.10]). We provide a proof of
this result using the glueing of lattices, since we will use the same idea in Section 6.

Proposition 5.5 (Oguiso). Let S be as above, then #FM(S) = 2p(e)−1, where p(1) = 1
and p(e), with e ≥ 2, is the number of primes q such that q|e.
Proof. Let πT : T∗

! AT, πZh : (Zh)∗ ! AZh be the projection maps. By Proposition
2.4, every even unimodular overlattice of T⊕Zh is of the form ΓI := (πT × πZh)

−1(I) for
an isotropic subgroup I ⊂ AT × AZh. Note that ΓI

∼= ΛK3 as lattices, indeed they are
even, indefinite and unimodular, with signature (3, 19), see [Se, Theorem 6, pag. 54]. We

fix a Hodge structure on ΓI by Γ2,0
I := T2,0. By the surjectivity of the period map, there

exists a K3 surface SI such that H2(SI ,Z) ∼= ΓI as Hodge structures. By the Weak Torelli
Theorem (see [BPV, Corollary 11.2]) this surface is unique up to isomorphism.

Obviously such an SI is a FM partner of S, indeed every SI has transcendental lattice
T. Hence the problem is equivalent to counting all the even unimodular lattices Γ obtained
by the glueing of T and Zh.

We know (see Proposition 1.2) that AT
∼= AZh, moreover

AT ×AZh =

〈

1

2e

(

t, 0
)

,
1

2e

(

0, h
)

〉

.

Let I ⊂ AT × AZh be an isotropic subgroup that corresponds to an even unimodular
overlattice ΓI . The projections onto AT and AZh are isomorphisms, so there is a unique
a ∈ (Z/2eZ)∗ such that

(2) I := Ia :=

〈

( 1

2e
t,
a

2e
h
)

〉

⊂ AT ×AZh.

Since I has to be isotropic, we have a2 ≡ 1 mod 4e.
To solve our problem we have to determine when an isotropic subgroup Ib defines a K3

surface SIb such that SIa
∼= SIb . For this purpose, we note that H2(SIa ,Z)

∼= H2(SIb ,Z)
if and only if there exists a Hodge isometry ϕ : ΓIa ! ΓIb . Note that ϕ|T ∈ OHodge(T) =

6



{± id } by Remark 5.4 and ϕ|Zh ∈ O(Zh) = {± id }, thus such a Hodge isometry ϕ arises
by glueing ± idT with ± idZh (see Lemma 5.2). By Corollary 2.5, this is equivalent to either
Ia = Ib or Ia = (id,− id)(Ib), i.e. b = ±a.

It is easy to compute that # { a ∈ Z/2eZ : a2 ≡ 1 mod 4e } = 2p(e), hence the number
of isomorphism classes of FM partners of S is 2p(e)/2 = 2p(e)−1. The computation follows
by the Chinese Remainder Theorem and the following well known facts:

(1) #((Z/2Z)∗)2 = 1,
(2) #((Z/4Z)∗)2 = 2,
(3) #((Z/2kZ)∗)2 = 4 for all k ≥ 3,
(4) #((Z/pkZ)∗)2 = 2 for all p 6= 2 and k ≥ 1,

where, given an abelian group H, Hn is the subgroup of the n-torsion elements. Moreover,
notice that if 4e = 2k0pk11 . . . pknn is the prime decomposition of 4e then

( Z

4eZ

)∗

2
=

( Z

2k0Z

)∗

2
×

( Z

pk11 Z

)∗

2
× · · · ×

( Z

pknn Z

)∗

2
. �

6. Glueing Hodge isometries

Definition 6.1. Let S be a K3 surface (not necessarily with Picard number one). We

say that S[2] is ambiguous if there exists a K3 surface S′ and an isomorphism S[2]
! S′[2]

which is not induced by any isomorphism S ! S′.
We say that S[2] is strongly ambiguous if there exists such a K3 surface S′ which is in

addition not isomorphic to S.

We want to understand when there is strong ambiguity of Hilbert squares of projective
K3 surfaces with Picard number one. For this purpose, we follow the argument of Section 5.
As before, let S be a K3 surface with Picard number one, such that NS(S) = Zh with h
ample and h2 = 2e. Let T = TS be the transcendental lattice of S and let t ∈ T such that
AT =

〈

1
2e t

〉

and t2 = −h2. The following result of Ploog enables us to consider only the

Hilbert squares of FM partners of S to study if S[2] is strongly ambiguous.

Theorem 6.2 (see [P, Proposition 10]). Let S, S′ be projective K3 surfaces. If S[2] ∼= S′[2]

then S and S′ are FM partners.

Proof. Let f : S[2]
! S′[2] be an isomorphism. The map f∗ : H2(S′[2],Z) ! H2(S[2],Z)

is a Hodge isometry. Hence f∗ maps the Néron–Severi group of S′[2] to the Néron–Severi
group of S[2] isomorphically. By the properties of the Beauville–Bogomolov form on Hilbert
schemes (see Section 3) it follows that TS

∼= NS(S[2])⊥ and TS′
∼= NS(S′[2])⊥. But f∗ is

an isometry, hence f∗|T
S′

: TS′ ! TS is a well defined Hodge isometry. �

Since det(ΛK3⊕〈−2〉) = 2, the lattice H2(S,Z)⊕Zξ ∼= ΛK3⊕〈−2〉 is not a unimodular
lattice.

By Remark 4.3, we get ANS(S[2]) = AZh⊕〈−2〉 = AZh ×A〈−2〉 and

AT ×AZh ×A〈−2〉 =
〈(

1
2e t, 0, 0

)

,
(

0, 1
2eh, 0

)

,
(

0, 0, 12ξ
)〉

.

Lemma 6.3. Let J ⊂ AT × AZh × A〈−2〉 be an isotropic subgroup which defines an even

overlattice T⊕NS(S[2]) !֒ ΓJ with ΓJ
∼= ΛK3⊕〈−2〉 and T ⊆ ΛK3, then #J = 2e = #AT.

Moreover, J =
〈(

1
2e t,

a
2eh,

z
2ξ
)〉

for suitable a ∈ Z/2eZ and z ∈ Z/2Z.

Proof. We know that #J = [ΓJ : (T⊕NS(S[2]))], thus (see Formula 1)

dis(T⊕NS(S[2])) = (#J)2 · dis(ΓJ),

but dis(ΓJ) = 2 and dis(T⊕NS(S[2])) = dis(T) ·dis(Zh) ·dis(Zξ) = (−2e) ·2e · (−2) = 8e2.
Hence #J = 2e.
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We know that T ⊂ ΛK3 !֒ ΛK3 ⊕ 〈−2〉, hence the projections Λ∗
K3 ⊕ 〈−2〉∗ ! AT,

Λ∗
K3 ⊕ 〈−2〉∗ ! J are surjective. It follows that also the projection pT : J ! AT is

surjective. In particular #J = #AT, so pT is an isomorphism. As AT
∼= Z/2eZ is cyclic,

also J is cyclic and it is generated by
(

1
2e t,

a
2eh,

b
2ξ
)

for suitable a ∈ Z/2eZ and z ∈ Z/2Z,
as in the claim. �

The isotropy condition for J as in Lemma 6.3 is −1/2e + a2/2e − z2/2 ∈ 2Z, that is
equivalent to −1 + a2 − ez2 ∈ 4eZ. Hence a2 − ez2 ≡ 1 mod 4e. We have two cases:

• Case z = 0
We have a2 ≡ 1 mod 4e, as in Section 5. In particular there exists a trivial

bijection
{Ja :=

〈(

1
2e t,

a
2eh, 0

)〉

} ↔ {Ia :=
〈(

1
2e t,

a
2eh

)〉

},
where Ia !֒ AT ×AZh is as in (2).

• Case z = 1
We have a2 ≡ 1 + e mod 4e.

The following result will allow us to consider only the case z = 0.

Lemma 6.4. With the notation of Lemma 6.3, let Ja :=
〈(

1
2e t,

a
2eh, 0

)〉

with a2 ≡ 1 mod

4e. We fix a Hodge structure on ΓJa by ΓJa
2,0 := T 2,0. Then ΓJa

∼= H2(SIa
[2],Z) as Hodge

structures, where Ia :=
〈(

1
2e t,

a
2eh

)〉

and SIa arises as in the proof of Proposition 5.5.

Proof. Suppose that z = 0. Let π1 : T∗
! AT, π2 : (Zh)∗ ! AZh and π3 : 〈−2〉∗ !

A〈−2〉 be the quotient maps. We have π−1
3 (0) = 〈−2〉. It follows immediately that ΓJ =

(π1 × π2 × π3)
−1(J) = (π1 × π2)

−1
( 〈(

1
2e t,

a
2eh

)〉 )

⊕ 〈−2〉, where a2 ≡ 1 mod 4e. We

define Ia :=
〈(

1
2e t,

a
2eh

)〉

. As in Proposition 5.5, one can see that there exists only one

(up to isomorphism) K3 surface SIa such that H2(SIa,Z)
∼= (π1 × π2)

−1(Ia) as Hodge
structures. �

Remark 6.5. A K3 surface X ∈ FM(S) is such that X ∼= SIa for a suitable Ia :=
〈(

1
2e t,

a
2eh

)〉

with a2 ≡ 1 mod 4e, by the proof of Proposition 5.5. By Lemma 6.4 and

the Generalized Torelli Theorem (see Theorem 3.4), X [2] is a strongly ambiguous Hilbert
square if there exists an effective Hodge isometry between ΓJa and ΓJb such that SIa 6∼= SIb ,
i.e. such that a 6= ±b (see the proof of Proposition 5.5).

Now we study when there exists a Hodge isometry betweenH2(SIa
[2],Z) andH2(SIb

[2],Z)
with a 6= ±b.

As OHodge(T) = {± id }, we want to find for which subgroups Ja, Jb ⊂ AT × ANS(S[2])

we have
(±īd, ϕ̄)(Ja) = Jb

for some ϕ ∈ O(NS(S[2])) and a 6= ±b. Recall that ϕ̄ means the image of ϕ by the map

O(NS(S[2])) ! O(ANS(S[2])), the same holds with T instead of NS(S[2]).

Remark 6.6 (see [GLP, Section 3.2]). If e is not a square then O(NS(S[2])) ∼= 〈θ,α〉 ×
{± id }, where, on the basis h, ξ of NS(S[2]):

θ :=

(

U V
eV U

)

, α :=

(

1 0
0 −1

)

,

and (U, V ) is the minimal positive solution of Pe(1).

If e is a square then O(NS(S[2])) = 〈α〉 × {± id } = {±α,± id }.
A simple computation shows that θ̄ ∈ O(ANS(S[2])) is an involution.

The following result gives us a criterium to easily find some cases where there is no
strong ambiguity.
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Lemma 6.7. Let S be a K3 surface with Picard number one, such that NS(S) = Zh with
h ample and h2 = 2e for a fixed e. If either e is a power of a prime, i.e. p(e) = 1, or e is

a square, then S[2] is not strongly ambiguous.

Proof. Suppose that e is a power of a prime. By Proposition 5.5 #FM(S) = 20 = 1, hence
all the FM partners of S are isomorphic. The claim follows by Theorem 6.2.

Suppose that e is a square. By Remark 6.6, O(NS(S[2])) = {±α,± id }. Hence

(īd,±ᾱ)(Ja) =
〈(

1
2e t,± a

2eh, 0
)〉

= J±a = (īd,±īd)(Ja). Then whenever SIa
[2] ∼= SIb

[2]

we have a = ±b, and so, by the proof of Proposition 5.5, SIa
∼= SIb . �

We propose here three non trivial examples.

Example 6.8 (e = 6). Let e = 6. The minimal positive solution of P6(1) is (U, V ) = (5, 2).
With easy simplifications modulo 12 we know, by Remark 6.6, that

O(Zh⊕ Zξ) =

〈

θ,α :=

(

1 0
0 −1

)〉

× {± id } , θ :=

(

5 2
12 5

)

, θ̄ :=

(

5 2
0 5

)

.

It follows that

(īd, θ̄) : Ja :=
〈(

1
12t,

a
12h, 0

)〉

7! J5a :=
〈(

1
12t,

5a
12h, 0

)〉

,

with a2 ≡ 1 mod 24. Note that (5a)2 = 25a2 ≡ a2 ≡ 1 mod 24. Moreover 5a 6≡ ±a mod
24.

Hence the 2p(6)−1 = 2 isomorphism classes of FM partners of S define Hilbert squares
that could be isomorphic, indeed (īd, θ̄) induces a Hodge isometry between their second
cohomology groups, but we do not know yet if there is an effective one.

Example 6.9 (e = 10). Let e = 10. The minimal positive solution of P10(1) is (U, V ) =
(19, 6). With easy simplifications modulo 20 we know that

O(Zh⊕ Zξ) =

〈

θ,α :=

(

1 0
0 −1

)〉

× {± id } , θ̄ :=

(

−1 6
0 −1

)

.

It is easy to see that

(īd, θ̄) : Ja :=
〈(

1
20 t,

a
20h, 0

)〉

7! J−a :=
〈(

1
20t,

−a
20 h, 0

)〉

,

with a2 ≡ 1 mod 40. Hence the 2p(10)−1 = 2 isomorphism classes of FM partners define
Hilbert squares that are not isomorphic. In particular there is not strong ambiguity.

Example 6.10 (e = 15). Let e = 15. The minimal positive solution of P15(1) is (U, V ) =
(4, 1). With easy simplifications modulo 30 we know that

O(Zh⊕ Zξ) =

〈

θ,α :=

(

1 0
0 −1

)〉

× {± id } , θ̄ :=

(

4 1
15 4

)

.

It is easy to see that Ja maps to either J±a or an isotropic subgroup with z = 1. Hence
there is not strong ambiguity (see Remark 6.5).

In Proposition 6.12 we give a general result on glueing Hodge isometries on T and
NS(S[2]). We need the following technical lemma.

Lemma 6.11. Let (U, V ) be the (positive) minimal solution of Pe(1). If V is even then
U 6≡ 1 mod 2e. Moreover, V is even and U ≡ −1 mod 2e if and only if Pe(−1) is solvable.

Proof. Suppose that V is even and U ≡ 1 mod 2e. Then V = 2m and U = 1 + 2ek for
suitable m,k ∈ N>0. Hence:

1 = U2 − eV 2 = (1 + 2ek)2 − 4em2 = 1 + 4e2k2 + 4ek − 4em2,
9



which is equivalent to m2 = k(1 + ek), thus k = t2 and 1 + ek = s2 for suitable t, s ∈ N>0.
Then s2 − et2 = 1, in particular (U, V ) is not minimal: a contradiction.

Suppose now that Pe(−1) admits a minimal solution (s, t), then U = s2 + et2 and
V = 2st is even (see Lemma 4.2). Moreover s2 = −1 + et2, hence

U = s2 + et2 = −1 + 2et2 ≡ −1 mod 2e.

Conversely, suppose that V is even and U ≡ −1 mod 2e. Then V = 2m and U = −1+2ek
for suitable m,k ∈ N>0, in particular:

1 = U2 − eV 2 = (−1 + 2ek)2 − 4em2 = 1 + 4e2k2 − 4ek − 4em2.

This is equivalent to m2 = k(ek − 1), in particular k = t2 and −1 + ek = s2 for suitable
s, t ∈ N>0. Note that s2 − et2 = −1 + ek − ek = −1, hence Pe(−1) is solvable. The claim
follows. �

The following result gives necessary and sufficient conditions to have non trivial Hodge
isometries between the second cohomology groups of Hilbert squares as in Lemma 6.4.

Proposition 6.12. The following are equivalent:

(1) the equation Pe(1) has a positive minimal solution (U, V ) with V even and U 6≡ −1
mod 2e;

(2) there exists a (glued) Hodge isometry ψ : H2(SIa
[2],Z) ! H2(SIb

[2],Z) such that
SIa 6∼= SIb (i.e. a 6= ±b), where a, b ∈ {α ∈ Z/2eZ : α2 ≡ 1 mod 4e} ⊂ (Z/2eZ)∗.

Proof. Let (U, V ) be the positive minimal solution of Pe(1), and let θ :=

(

U V
eV U

)

. We

get an isomorphism

(īd, θ̄) : Ja :=
〈(

1
2e t,

a
2eh, 0

)〉

7! JaU :=
〈(

1
2e t,

aU
2e h, 0

)〉

,

which lifts to a Hodge isometry ψ as in the statement by Corollary 2.5 and Remark 5.3.
Moreover a 6≡ ±b := ±aU mod 4e by Lemma 6.11.

Conversely, let ψ : H2(SIa
[2],Z) ! H2(SIb

[2],Z) be a Hodge isometry such that SIa 6∼= SIb
(i.e. a 6= ±b). Then there exists an isometry θ ∈ O(NS(S[2])), θ 6= ± id. Hence (see also
Remark 6.6) there exists a (positive) minimal solution (U, V ) of Pe(1) with V even and
U 6≡ ±1 mod 2e. This proves the equivalence in the statement. �

Lemma 6.13. Suppose that e is not a square and let (U, V ) be the (positive) minimal
solution of Pe(1). If e is a power of a prime then either V is odd or Pe(−1) is solvable.

Proof. Let e = pk for suitable k ∈ N odd and p 6= 2 prime. Suppose that V is even, then

U2 = 1 + pkV 2 ≡ 1 mod 2pk.

It is known that

#
(

( Z

2pkZ

)∗
)

2
= #

(

( Z

2Z

)∗
)

2
·#

(

( Z

pkZ

)∗
)

2
= 1 · 2.

It follows that U ≡ ±1 mod 2pk. By Lemma 6.11, if U ≡ 1 then V is odd, a contradiction,
hence U ≡ −1, so Pe(−1) is solvable.

Let e = 22k+1 for a suitable k ∈ N. If k = 0 (i.e. e = 2) the positive minimal solution of
P2(1) is (U, V ) = (3, 2) with V even and Pe(−1) solvable. We prove by induction that if
k > 0 then U, V are odd. First of all, if k = 1 (i.e. e = 8) then (U, V ) = (3, 1). Suppose

now that k > 0 and, by inductive hypothesis, that the positive minimal solution (Ũ , Ṽ )

of P22k+1(1) has Ũ , Ṽ odd. Let (U, V ) be the minimal positive solution of P22(k+1)+1(1).
Notice that

P22(k+1)+1(1) : x2 − 22(k+1)+1y2 = x2 − 22k+1(2y)2 = 1,
10



hence by Lemma 4.2 (U, V ) is obtained by (Ũ+ Ṽ
√
22k+1)2 = Ũ2+22k+1Ṽ 2+2Ũ Ṽ

√
22k+1,

i.e. (U, V ) = (Ũ2 + 22k+1Ṽ 2, Ũ Ṽ ). By hypothesis Ũ and Ṽ are odd, hence also U =

Ũ2 + 22k+1Ṽ 2 and V = Ũ Ṽ are odd. �

Remark 6.14. A necessary condition to the equivalent statements in Proposition 6.12 is,
by Lemma 6.13, that e is not a square or a power of a prime. In fact, this condition is in
Lemma 6.7.

7. Strong ambiguity

As before, let S be a K3 surface such that NS(S) = Zh with h ample and h2 = 2e.
Let T = TS be the transcendental lattice of S and let t ∈ T such that AT =

〈

1
2e t

〉

and

t2 = −h2.
In this section we present some results on the effectiveness of the glued Hodge isometries

obtained in Section 6, in order to see when S[2] is strongly ambiguous.

Remark 7.1. Suppose that ψ : H2(SIa
[2],Z) ! H2(SIb

[2],Z) is a Hodge isometry, where
SIa, SIb ∈ FM(S), as in the proof of Proposition 5.5, are such that a 6= ±b, and let Ca, Cb be

the ample cones (i.e. the cones in NS(SIa
[2])⊗R and NS(SIb

[2])⊗R generated by the ample

divisors) of SIa
[2], SIb

[2] respectively. It follows from the Generalized Torelli Theorem that

there exists an isomorphism f : SIb
[2]

! SIa
[2] such that f∗ = ψ if and only if ψ(Ca) = Cb

(i.e. ψ preserves the ample cones).

We know (see Theorem 4.4) that the movable cone and the ample cone of S[2] depend
on the resolvability of P4e(5).

Lemma 7.2 (see also [BCNS, Proposition 4.3]). With the notation as in Lemma 6.6, the

only non trivial isometry in O(NS(S[2])) that maps the movable cone of S[2] in itself is the
involution

β := αθ =

(

1 0
0 −1

)(

U V
eV U

)

=

(

U V
−eV −U

)

,

which exists only if e is not a square.

Proof. Let M ⊂ NS(S[2]) ⊗ R be the movable cone of S[2]. Notice that every isometry in

O(NS(S[2])) is of the form ±θk or ±αθk for suitable k ∈ Z. By Theorem 4.4, the movable
cone has boundary walls hR>0 and (h − µeξ)R>0, where µe := eV/U and (U, V ) is the
minimal positive solution of Pe(1).

First of all, we prove that the cone C with boundary walls (h +
√
eξ)R>0 and (h −√

eξ)R>0 is the union of {θk(M)}k∈Z, where θm(M)∩θn(M) is either empty or a boundary
wall. To show this claim, notice that the map θ has eigenvectors h±√

eξ and θ(C) = C.
Moreover

θ : (h− µeξ)R>0 7! hR>0,

θ : hR>0 7! (h+ µeξ)R>0,

θ : (h+ µeξ)R>0 7! (h+ cξ)R>0,

where µe < c <
√
e. Indeed, if c ≤ µe then θ has a third eigenvector, a contradiction. The

claim follows by iterating the previous argument. Hence ±θk does not preserve M for all
k ∈ Z\{0}.

The lemma follows by the fact that α is the reflection with respect to h. Indeed, with
a simple computation one can see that

β : hR>0 7! (h− νeξ)R>0,

β : (h− νeξ)R>0 7! hR>0. �
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The following theorem gives us necessary and sufficient conditions to have strong ambi-
guity of Hilbert squares of projective K3 surfaces with Picard number one. It is equivalent
to [DM, Proposition 3.14], see Remark 7.4.

Theorem 7.3. Let S be a K3 surface such that NS(S) = Zh with h ample and h2 = 2e.
The Hilbert square S[2] is strongly ambiguous if and only if:

(1) the Pell-type equation Pe(1) has a (positive) minimal solution (U, V ) with V even
and U 6≡ −1 mod 2e;

(2) the Pell-type equation P4e(5) is not solvable;

Proof. Let S = SIa for a suitable a ∈ (Z/2eZ)∗ such that a2 ≡ 1 mod 4e, as in the proof of

Proposition 5.5. The Hilbert square SIa
[2] is strongly ambiguous if and only if there exists

a Hodge isometry ψ : H2(SIa
[2],Z) ! H2(SIb

[2],Z) such that SIa 6∼= SIb (i.e. a 6= ±b) where
b ∈ (Z/2eZ)∗ and b2 ≡ 1 mod 4e, as in Proposition 6.12, and moreover ψ is effective. By

Lemma 7.2 the only isometry in O(NS(SIa
[2])) that preserves the movable cone is β := αθ.

Hence SIa
[2] is strongly ambiguous if and only if the Hodge isometry ψ obtained by glueing

id with β is effective.
We prove now that this isometry is effective if and only if P4e(5) is not solvable. If P4e(5)

is not solvable then by Theorem 4.4 the movable cone is equal to the ample cone, so ψ is
effective. Conversely, suppose that P4e(5) is solvable; then by Theorem 4.4 the boundary

walls of the ample cone are hR>0 and (h − νeξ)R>0, where νe := 2e b5
a5

with (a5, b5) the

positive minimal solution of P4e(5) and νe < µe, in particular the ample cone is contained
in the movable cone. Notice that

β : hR>0 7! (h− µeξ)R>0,

β : (h− νeξ)R>0 7! (h− cξ)R>0,

where 0 < c < µe. Suppose that 0 < c < νe, then ψ is the pullback of an isomorphism
between the Hilbert squares Sa

[2] and Sb
[2] by the Generalized Torelli Theorem. But not

every ample divisor maps to ample divisor, a contradiction. Hence νe ≤ c < µe and ψ can
not be effective. �

Remark 7.4. By Lemma 6.11, it is trivial that Theorem 7.3 is equivalent to [DM, Propo-
sition 3.14], but here it is proved from a different point of view.

Corollary 7.5. In Example 6.8 there is strong ambiguity, in Examples 6.9, 6.10 there is
no strong ambiguity.

Proof. The claim follows easily by Theorem 7.3. In the Example 6.9 the equation Pe(−1)
is solvable, take for instance (3, 1). In the Example 6.10 the equation Pe(1) has minimal
solution (U, V ) = (4, 1) and V is odd. �

8. Automorphisms of Hilbert squares

We now apply the previous algorithm to compute Aut(S[2]). The following result is
[BCNS, Theorem 1.1], but proved from another point of view.

Theorem 8.1. Let S be a K3 surface with Picard number one such that NS(S) = Zh with

h ample and h2 = 2e. The automorphism group Aut(S[2]) is either trivial or generated by

a non trivial involution. In particular Aut(S[2]) is not trivial if and only if:

(1) e is not a square;
(2) the Pell-type equation Pe(−1) is solvable;
(3) the Pell-type equation P4e(5) is not solvable.
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Proof. Let S = SIa for a suitable a ∈ (Z/2eZ)∗ such that a2 ≡ 1 mod 4e, as in the proof

of Proposition 5.5. Then the group Aut(S[2]) is in bijection with the group

G := {ψ : H2(SIa
[2],Z) ! H2(SIa

[2],Z) |ψ is an effective Hodge isometry}.
A necessary condition to have a non trivial ψ ∈ G is that e is not a square (see Remark

6.6). Under this hypothesis, by Lemma 7.2 the only non trivial isometry in O(NS(S[2]))

that maps the movable cone of S[2] in itself is the involution β := αθ. Let (U, V ) be the
minimal positive solution of Pe(1). We need V even, hence by Lemma 6.11 U 6≡ 1 mod 2e.
Then we have to impose U ≡ −1 mod 2e, otherwise (±īd, β̄) does not preserve Ja. Again
by Lemma 6.11, U ≡ −1 mod 2e and V even is equivalent to Pe(−1) solvable. To preserve
Ja, the only possibility is ψ obtained by glueing − id with β, indeed

(−īd, β̄) : Ja :=

〈

( 1

2e
t,
a

2e
h, 0

)

〉

7!

〈

(−1

2e
t,
−a
2e
h, 0

)

〉

= Ja.

In this case, as in the proof of Theorem 7.3, ψ is effective if and only if P4e(5) is not
solvable. �
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