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THE Hilb/Sym CORRESPONDENCE FOR C2:

DESCENDENTS AND FOURIER-MUKAI

RAHUL PANDHARIPANDE AND HSIAN-HUA TSENG

ABSTRACT. We study here the crepant resolution correspondence for the T-equivariant descendent

Gromov-Witten theories of Hilbn(C2) and Symn(C2). The descendent correspondence is obtained

from our previous matching of the associated CohFTs by applying Givental’s quantization formula to

a specific symplectic transformation K. The first result of the paper is an explicit computation of K.

Our main result then establishes a fundamental relationship between the Fourier-Mukai equivalence

of the associated derived categories (by Bridgeland, King, and Reid) and the symplectic transforma-

tion K via Iritani’s integral structure. The results use Haiman’s Fourier-Mukai calculations and are

exactly aligned with Iritani’s point of view on crepant resolution.
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0. INTRODUCTION

0.1. Overview. The diagonal action on C2 of the torus T = (C∗)2 lifts canonically to the Hilbert

scheme of n points Hilbn(C2) and the orbifold symmetric product

Symn(C2) = [(C2)n/Σn] .

Both the Hilbert-Chow morphism

(0.1) Hilbn(C2) → (C2)n/Σn

and the coarsification morphism

(0.2) Symn(C2) → (C2)n/Σn

are T-equivariant crepant resolutions of the singular quotient variety (C2)n/Σn.

The geometries of the two crepant resolutions Hilbn(C2) and Symn(C2) are connected in many

beautiful ways. The classical McKay correspondence [19] provides an isomorphism on the level
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2 PANDHARIPANDE AND TSENG

of T-equivariant cohomology: T-equivariant singular cohomology for Hilbn(C2) and T-equivariant

Chen-Ruan orbifold cohomology for Symn(C2). A lift of the McKay correspondence to an equiv-

alence of T-equivariant derived categories was proven by Bridgeland, King, and Reid [4] using a

Fourier-Mukai transformation.

Quantum cohomology provides a different enrichment of the McKay correspondence. For the

crepant resolutionsHilbn(C2) and Symn(C2), the genus 0 equivalence of the T-equivariant Gromov-

Witten theories was proven in [5] using [6, 22]. Going further, the crepant resolution correspon-

dence in all genera was proven in [25] by matching the associated R-matrices and Cohomological

Field Theories (CohFTs), see [24, Section 4] for a survey.

The results of [5, 25] concern the T-equivariant Gromov-Witten theory with primary insertions.

However, following a remarkable proposal of Iritani, to see the connection between the Fourier-

Mukai transformation of [4] and the crepant resolution correspondence for Gromov-Witten theory,

descendent insertions are required. Our first result here is a determination of the crepant resolution

correspondence for the T-equivariant Gromov-Witten theories of Hilbn(C2) and Symn(C2) with

descendent insertions via a symplectic transformation K which we compute explicitly. The main

result of the paper is a proof of a fundamental relationship between the Fourier-Mukai equivalence

of the associated derived categories [4] and the symplectic transformation K via Iritani’s integral

structure. The results use Haiman’s Fourier-Mukai calculations [12, 13] and are exactly aligned

with Iritani’s point of view on crepant resolutions [16, 17].

0.2. Descendent correspondence. The descendent correspondence for the T-equivariant Gromov-

Witten theories of Hilbn(C2) and Symn(C2) is obtained from the CohFT matching of [25] together

with the quantization formula of Givental [11]. Our first result is a formula for the symplectic

transformation

K ∈ Id + z−1 · End(H∗
T
(Hilbn(C2)))[[z−1]]

defining the descendent correspondence.1

The formula for K is best described in terms of the Fock space F which is freely generated over C

by commuting creation operators α−k for k ∈ Z>0 acting on the vacuum vector v∅. The annihilation

operators αk, k ∈ Z>0 satisfy

αk · v∅ = 0 , k > 0

and commutation relations

[αk, αl] = kδk+l .

The Fock space F admits an additive basis

|µ〉 = 1

z(µ)

∏

i

α−µi
v∅ , z(µ) = |Aut(µ)|

∏

i

µi ,

indexed by partitions µ = (µ1, µ2, ...).

An additive isomorphism

(0.3) F ⊗C C[t1, t2]
∼
=
⊕

n≥0

H∗
T
(Hilbn(C2)) ,

1Cohomology will always be taken here with C-coefficients.
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is given by identifying |µ〉 on the left with the corresponding Nakajima basis elements on the right.

The intersection pairing (−,−)Hilb on the T-equivariant cohomology of Hilbn(C2) induces a pairing

on Fock space,

η(µ, ν) =
(−1)|µ|−ℓ(µ)

(t1t2)ℓ(µ)
δµν
z(µ)

.

In the following result, we write the formula for K in terms of the Fock space,

K ∈ Id + z−1 · End(F ⊗C C[t1, t2])[[z
−1]], ,

using (0.3).

Theorem 1. The descendent correspondence is determined by the symplectic transformation K

given by the formula

K
(
Jλ
)
=

z|λ|

(2π
√
−1)|λ|


 ∏

w:T-weights of TanλHilb
n(C2)

Γ(w/z + 1)


♠Hλ

z .

Here, Jλ is the Jack symmetric function defined by equation (1.5) of Section 1, and Hλ
z is the

Macdonald polynomial2, see [12, 18, 23]. The linear operator

♠ : F → F
is defined by

♠|µ〉 = zℓ(µ)
(2π

√
−1)ℓ(µ)∏
i µi

∏

i

µ
µit1/z
i µ

µit2/z
i

Γ(µit1/z)Γ(µit2/z)
|µ〉 .

The descendent correspondence in genus 0, expressed in terms of Givental’s Lagrangian cones,

is explained3 in Theorem 10 of Section 3.2,

LSym = CKq−D/zLHilb ,

where D = −|(2, 1n−2)〉 is the T-equivariant first Chern class of the tautological vector bundle on

Hilbn(C2). The descendent correspondence for all g, formulated in terms of generating series,

e−F Sym
1 (t̃)DSym = Ĉ K̂ q̂−D/z

(
e−FHilb

1 (tD)DHilb
)
,

is discussed in Theorem 11 of Section 3.3.

For toric crepant resolutions, the symplectic transformation underlying the descendent corre-

spondence is constructed in [9] by using explicit slices of Givental’s Lagrangian cones constructed

via the Toric Mirror Theorem [7, 10]. We proceed differently here. The symplectic transformation

K is constructed by comparing the two fundamental solutions SHilb and SSym of the QDE given by

descendent Gromov-Witten invariants of Hilbn(C2) and Symn(C2) respectively. Via the Hilb/Sym
correspondence in genus 0, Theorem 1 is then simply a reformulation of the calculation of the

connection matrix in [23, Theorem 4].

2The footnote z indicates a rescaling of the parameters, Hλ
z = Hλ( t1z ,

t2
z ).

3See for (2.5) the definition of the symplectic isomorphism C.
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0.3. Fourier-Mukai. An equivalence of T-equivariant derived categories

FM : Db
T
(Hilbn(C2)) → Db

T
(Symn(C2))

is constructed by Bridgeland, King, and Reid in [4] via a tautological Fourier-Mukai kernel. We

also denote by FM the induced isomorphism on T-equivariant K-groups,

(0.4) FM : KT(Hilb
n(C2)) → KT(Symn(C2)) .

Iritani [16] has proposed a beautiful framework for the crepant resolution correspondence. In

the case of Hilbn(C2) and Symn(C2), the isomorphism (0.4) on K-theory should be related to a

symplectic transformation

HHilb → HSym

via Iritani’s integral structure. The Givental spaces HHilb and HSym will be defined below (in a

multivalued form). A discussion of Iritani’s perspective can be found in [17]. Our main result is

a formulation and proof of Iritani’s proposal for the crepant resolutions Hilbn(C2) and Symn(C2).
For the precise statement, further definitions are required.

• Define the operators degHilb
0 , ρHilb, and µHilb onH∗

T
(Hilbn(C2)) as follows. For φ ∈ Hk

T
(Hilbn(C2)),

degHilb
0 (φ) = kφ ,

µHilb(φ) =

(
k

2
− 2n

2

)
φ ,

ρHilb(φ) = cT1 (Hilb
n(C2)) ∪ φ .

The multi-valued Givental space H̃Hilb for Hilbn(C2) is defined by

H̃Hilb = H∗
T
(Hilbn(C2),C)⊗C[t1,t2] C(t1, t2)[[log(z)]]((z

−1)) .

Definition 2. Let ΨHilb : KT(Hilb
n(C2)) → H̃Hilb be defined by

ΨHilb(E) = z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(E)

)
,

where ch(−) is the T-equivariant Chern character, ΓHilb ∈ H∗
T
(Hilbn(C2)) is the T-equivariant

Gamma class of Hilbn(C2) of [9, Section 3.1], and the operators

z−µHilb

: H̃Hilb → H̃Hilb , zρ
Hilb

: H̃Hilb → H̃Hilb

are defined by

z−µHilb

=
∑

k≥0

(
−µHilb log z

)k

k!
, zρ

Hilb

=
∑

k≥0

(
ρHilb log z

)k

k!
.

Since |µ〉 is identified with the corresponding Nakajima basis element, we have

degHilb
0 |µ〉 = 2(n− ℓ(µ))|µ〉 .

Also, since t1, t2 both have degree 2, we have

degHilb
0 t1 = 2 = degHilb

0 t2 .
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• Define the operators4 deg
Sym
0 , ρSym, and µSym onH∗

T
(ISymn(C2)) as follows. For φ ∈ Hk

T
(ISymn(C2)),

deg
Sym
0 (φ) = kφ ,

µSym(φ) =

(
degCR(φ)

2
− 2n

2

)
φ ,

ρSym(φ) = cT1 (Symn(C2)) ∪CR φ .

There are two degree operators here: deg
Sym
0 extracts the usual degree of a cohomology class on the

inertia orbifold, and degCR extracts the age-shifted degree. Also, we have

degCRt1 = deg
Sym
0 t1 = 2 = degCRt2 = deg

Sym
0 t2 .

The multi-valued Givental space H̃Sym for Symn(C2) is defined by

H̃Sym = H∗
T
(ISymn(C2))⊗C[t1,t2] C(t1, t2)[[log z]]((z

−1)) .

Definition 3. Let ΨSym : KT(Symn(C2)) → H̃Sym be defined by

ΨSym(E) = z−µSym

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(E)

)
,

where c̃h(−) is the T-equivariant orbifold Chern character, ΓSym ∈ H∗
T
(ISymn(C2)) is the T-

equivariant Gamma class of Symn(C2) of [9, Section 3.1], and the operators

z−µSym

: H̃Sym → H̃Sym , zρ
Sym

: H̃Sym → H̃Sym

are defined by

z−µSym

=
∑

k≥0

(−µSym log z)k

k!
, zρ

Sym

=
∑

k≥0

(ρSym log z)k

k!
.

The precise relationship between FM and K via Iritani’s integral structure is the central result of

the paper.

Theorem 4. The following diagram is commutative5:

KT(Hilb
n(C2))

FM
//

ΨHilb

��

KT(Symn(C2))

ΨSym

��

H̃Hilb
CK

∣∣
z 7→−z

// H̃Sym.

The bottom row of the diagram of Theorem 4 is determined by the analytic continuation of so-

lutions of the quantum differential equation of Hilbn(C2) along the ray from 0 to −1 in the q-plane

[23, Theorem 4]. A lifting of monodromies of the quantum differential equation of Hilbn(C2) to

autoequivalences of Db
T
(Hilbn(C2)) has been announced by Bezrukavnikov and Okounkov in [20,

Sections 3.2.8 and 5.2.7] and [21, Section 3.2]. In their upcoming paper [2], commutative diagrams

4In the definition of ρSym we denote by ∪CR the Chen-Ruan cup product on cohomology of the inertia stack.
5Our variable z corresponds to −z in [9] as can be seen by the difference in the quantum differential equation (2.2)

here and the quantum differential equation [9, equation (2.5)]. After the substitution z 7→ −z in K, Theorem 4 matches

the conventions of Iritani’s framework in [9].
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parallel to Theorem 4 are constructed in cases of flops of holomorphic symplectic manifolds.6 The-

orem 4 fits into the framework of [2] if the relationship between Hilbn(C2) and Symn(C2) is viewed

morally as a flop in their sense.

A special aspect of the ray from 0 to −1 is the identification of the end result of the analytic con-

tinuation (the right side of the diagram) with the orbifold geometry Symn(C2). The identification

of the end results of other paths from 0 to −1 with geometric theories is an interesting direction of

study. Are there twisted orbifold theories which realize these analytic continuations?

0.4. Acknowledgments. We thank J. Bryan, T. Graber, Y.-P. Lee, A. Okounkov, and Y. Ruan for

many conversations about the crepant resolution correspondence for Hilbn(C2) and Symn(C2). The
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by NSF grant DMS-1506551. The research presented here was furthered during a visit of the

authors to Humboldt University in Berlin in June 2018.

The project has received funding from the European Research Council (ERC) under the European

Union Horizon 2020 Research and Innovation Program (grant No. 786580).

1. QUANTUM DIFFERENTIAL EQUATIONS

1.1. The differential equation. We recall the quantum differential equation for Hilbn(C2) calcu-

lated in [22] and further studied in [23]. We follow here the exposition [22, 23].

The quantum differential equation (QDE) for the Hilbert schemes of points on C2 is given by

(1.1) q
d

dq
Φ = MDΦ , Φ ∈ F ⊗C C(t1, t2),

where MD is the operator of quantum multiplication by D = −|2, 1n−2〉,

(1.2) MD = (t1 + t2)
∑

k>0

k

2

(−q)k + 1

(−q)k − 1
α−kαk − t1 + t2

2

(−q) + 1

(−q)− 1
| · |

+
1

2

∑

k,l>0

[
t1t2αk+lα−kα−l − α−k−lαkαl

]
.

Here | · | =
∑

k>0 α−kαk is the energy operator.

While the quantum differential equation (1.1) has a regular singular point at q = 0, the point

q = −1 is regular.

6In fact, the study of commutative diagrams connecting derived equivalences and the solutions of the quantum

differential equation has old roots in the subject. See, for example, [3, 14]. These papers refer to talks of Kontsevich

on homological mirror symmetry in the 1990s for the first formulations.
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The quantum differential equation considered in Givental’s theory contains a parameter z. In the

case of the Hilbert schemes of points on C2, the QDE with parameter z is

(1.3) zq
d

dq
Φ = MDΦ, Φ ∈ F ⊗C C(t1, t2) .

For Φ ∈ F ⊗C C(t1, t2), define

(1.4) Φz = Φ

(
t1
z
,
t2
z
, q

)
.

Define Θ ∈ Aut(F) by

Θ|µ〉 = zℓ(µ)|µ〉 .
The following Proposition allows us to use the results in [23].

Proposition 5. If Φ is a solution of (1.1), then ΘΦz is a solution of (1.3).

Proposition 5 follow immediately from the following direct computation.

Lemma 6. For k > 0, we have Θαk =
1
z
αkΘ and Θα−k = zα−kΘ.

1.2. Solutions. We recall the solution of QDE (1.1) constructed in [23]. Let

Jλ ∈ F ⊗C C(t1, t2)

be the integral form of the Jack symmetric function depending on the parameter α = 1/θ of [18, 23].

Then

(1.5) Jλ = t
|λ|
2 t

ℓ(·)
1 Jλ|α=−t1/t2

is an eigenfunction of MD(0) with eigenvalue −c(λ; t1, t2) := −
∑

(i,j)∈λ[(j − 1)t1 + (i − 1)t2].
The coefficient of

|µ〉 ∈ F ⊗C C(t1, t2)

in the expansion of Jλ is (t1t2)
ℓ(µ) times a polynomial in t1 and t2 of degree |λ| − ℓ(µ).

The paper [23] also uses a Hermitian pairing 〈−,−〉H on the Fock space F defined by the three

following properties

• 〈µ|ν〉H = 1
(t1t2)ℓ(µ)

δµν
z(µ)

,

• 〈af, g〉H = a〈f, g〉H, a ∈ C(t1, t2),

• 〈f, g〉H = 〈g, f〉H , where a(t1, t2) = a(−t1,−t2) .

By a direct calculation, we find

(1.6)
〈
Jλ, Jµ

〉
H
= η(Jλ, Jµ) ,

where η is the T-equivariant pairing on Hilbn(C2). Since Jλ corresponds to the T-equivariant class

of the T-fixed point of Hilbn(C2) associated to λ,

(1.7) ||Jλ||2 = ||Jλ||2H =
∏

w: tangent weights at λ

w

see [23].
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There are solutions to (1.1) of the form

Yλ(q)q−c(λ;t1,t2), Yλ(q) ∈ F ⊗C C(t1, t2)[[q]],

which converge for |q| < 1 and satisfy Yλ(0) = Jλ. We refer to [15, Chapter XIX] for a discussion

of how these solutions are constructed.

By [23, Corollary 1],

(1.8) 〈Yλ(q),Yµ(q)〉H = δλµ||Jλ||2H = 〈Jλ, Jµ〉H .

As in [23, Section 3.1.3], let Y be the matrix whose column vectors are Yλ. Fix an auxiliary basis

{eλ} of F . We then view Y as the matrix representation7 of an operator such that Y(eλ) = Yλ.

Define the following further diagonal matrices in the basis {eλ}:

Matrix Eigenvalues

L z−|λ|∏
w: tangent weights at λ w

1/2

L0 q−c(λ;t1,t2)/z

Define

Yz = Y

(
t1
z
,
t2
z
, q

)
.

Consider the following solution to (1.3),

(1.9) S = ΘYzL
−1L0 .

We may view S as the matrix representation of an operator where in the domain we use the basis

{eλ} while in the range we use the basis {|µ〉}.

Proposition 7. ΘYzL
−1 can be expanded into a convergent power series in 1/z with coefficients

End(F)-valued analytic functions in q, t1, t2.

Proof. Let Φλ be the column of ΘYzL
−1 indexed by λ. By construction of Y,

ΘYzL
−1
∣∣∣
q=0

= ΘJzL
−1,

hence Φλ
∣∣∣
q=0

= ΘJλzz
|λ|∏

w: tangent weights at λ w
−1/2. Write Jλ =

∑
ǫ J

λ
ǫ (t1, t2)|ǫ〉. Then we have

ΘJλzz
|λ| =

∑

ǫ

Jλǫ (t1/z, t2/z)z
ℓ(ǫ)z|λ||ǫ〉

=
∑

ǫ

Jλǫ (t1, t2)z
−2ℓ(ǫ)zℓ(ǫ)−|λ|zℓ(ǫ)z|λ||ǫ〉 = Jλ.

Together with (1.7), we find Φλ
∣∣∣
q=0

= Jλ/||Jλ||.

Since S is a solution to (1.3), Φλ is a solution to the differential equation

(1.10) zq
d

dq
Φλ = (MD + c(λ; t1, t2))Φ

λ.

7In the domain of Y we use the basis {eλ}, while in the range of Y we use the basis {|µ〉}.
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By uniqueness of solutions to (1.10) with given initial conditions, Φλ can also be constructed using

the Peano-Baker series (see [1]) with the initial condition

Φλ
∣∣∣
q=0

= Jλ/||Jλ|| .

As the Peano-Baker series is manifestly a power series in z−1 with analytic coefficients, the Propo-

sition follows. �

2. DESCENDENT GROMOV-WITTEN THEORY

2.1. Hilbert schemes. Let SHilb(q, tD) be the generating series of genus 0 descendent Gromov-

Witten invariants of Hilbn(C2),

(2.1) η(a, SHilb(q, tD)b) = η(a, b) +
∑

k≥0

z−1−k
∑

m,d

qd

m!
〈a, tDD, ..., tDD︸ ︷︷ ︸

m

, bψk
m+2〉

Hilb
n(C2)

0,d

By definition, SHilb is a formal power series in 1/z whose coefficients are in End(F)[tD][[q]], written

in the basis {|µ〉}. SHilb(q, tD) satisfies the following two differential equations:

(2.2) z
∂

∂tD
SHilb(q, tD) = (D⋆tD)S

Hilb(q, tD),

(2.3) zq
∂

∂q
SHilb(q, tD)− z

∂

∂tD
SHilb(q, tD) = −SHilb(q, tD)(D·).

Here (D⋆tD) = (D⋆tDD) is the operator of quantum multiplication by the divisor D at the point8

tDD,

η((D⋆tD)a, b) =
∑

m≥0,d≥0

qd

m!
〈D, a, tDD, ..., tDD︸ ︷︷ ︸

m

, b〉Hilb
n(C2)

0,d ,

and (D·) is the operator of classical cup product by D. In particular,

(2.4) (D⋆tD)
∣∣∣
tD=0

= MD(q), (D·) = (D·)
∣∣∣
tD=0

= MD(0) .

Equation (2.2) follows from the topological recursion relations in genus 0. Equation (2.3) follows

from the divisor equations for descendent Gromov-Witten invariants.

We first determine SHilb

∣∣∣
tD=0

. Combining (2.2) and (2.3) and setting tD = 0, we find

zq
∂

∂q

(
SHilb

∣∣∣
tD=0

)
= MD(q)

(
SHilb

∣∣∣
tD=0

)
−
(
SHilb

∣∣∣
tD=0

)
MD(0) .

So, we see

zq
∂

∂q

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)

= MD(q)

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)
−
(
SHilb

∣∣∣
tD=0

)
MD(0)J

λ/||Jλ||

= MD(q)

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)
+ c(λ; t1, t2)

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)
.

8We use tD to denote the coordinate of D.
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Since SHilb

∣∣∣
tD=0,q=0

= Id, we have

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)∣∣∣

q=0
= Jλ/||Jλ||. Comparing the result

with the proof of Proposition 7, we conclude

SHilb
∣∣∣
tD=0

Jλ/||Jλ|| = Φλ,

as F -valued power series.

Let A : F → F be defined by A(eλ) = Jλ/||Jλ|| . The above discussion yields the following

result.

Proposition 8. As power series in 1/z, we have SHilb

∣∣∣
tD=0

A = SL−1
0 .

By definition, SHilb is a formal power series in q. By Proposition 8, SHilb is analytic in q.

By the divisor equation for primary Gromov-Witten invariants, we have

q
∂

∂q
(D⋆tD)−

∂

∂tD
(D⋆tD) = 0 .

A direct calculation then shows that the two differential operators

z
∂

∂tD
− (D⋆tD) and zq

∂

∂q
− z

∂

∂tD
− (−)(D·)

commute. Therefore, equation (2.2) and Proposition 8 uniquely determine SHilb(q, tD).

2.2. Symmetric products. We introduce another copy of the Fock space F which we denote by

F̃ . An additive isomorphism

F̃ ⊗C C[t1, t2] ≃
⊕

n≥0

H∗
T
(ISymn(C2),C) ,

is given by identifying |µ〉 ∈ F̃ with the fundamental class [Iµ] of the component of the inertia

orbifold ISymn(C2) indexed by µ. The orbifold Poincaré pairing (−,−)Sym induces via this iden-

tification a pairing on F̃ ,

η̃(µ, ν) =
1

(t1t2)ℓ(µ)
δµν
z(µ)

.

Following [25, Equation (1.6)], we define

|µ̃〉 = (−
√
−1)ℓ(µ)−|µ||µ〉 ∈ F̃ .

We will use the following linear isomorphism

(2.5) C : F → F̃ , |µ〉 7→ |µ̃〉 ,
which is compatible with the pairings η and η̃.

We recall the definition of the ramified Gromov-Witten invariants of Symn(C2) following [25,

Section 3.2]. Consider the moduli space Mg,r+b(Symn(C2)) of stable maps to Symn(C2) and let

Mg,r,b(Symn(C2)) = [
(
ev−1

r+1(I(2)) ∩ ... ∩ ev−1
r+b(I(2))

)
/Σb]
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where the symmetric group Σb acts by permuting the last b marked points. Define ramified descen-

dent Gromov-Witten invariants by
〈

r∏

i=1

Iµiψki

〉Symn(C2)

g,b

=

∫

[Mg,r,b(Symn(C2))]vir

r∏

i=1

ev∗i ([Iµi ])ψki .

Let SSym(u, t̃) be the generating function of genus 0 ramified descendent Gromov-Witten invari-

ants of Symn(C2),

(2.6) η̃(a, SSym(u, t̃)b) = η̃(a, b) +
∑

k≥0

z−1−k
∑

m,d

ud

m!
〈a, t̃I(2), ..., t̃I(2)︸ ︷︷ ︸

m

, bψk
m+2〉

Symn(C2)
0,d .

By definition, SSym is a formal power series in 1/z whose coefficients are in End(F̃)[t̃][[u]], written

in the basis {|µ̃〉}. SSym satisfies the following two differential equations:

(2.7) z
∂

∂t̃
SSym(u, t̃) = (I(2)⋆t̃)S

Sym(u, t̃) ,

(2.8)
∂

∂u
SSym(u, t̃) =

∂

∂t̃
SSym(u, t̃) .

Here (I(2)⋆t̃) = (I(2)⋆t̃I(2)) is the operator of quantum multiplication by the divisor I(2) at the point

t̃I(2),

η̃((I(2)⋆t̃)a, b) =
∑

m,d

ud

m!
〈I(2), a, t̃I(2), ..., t̃I(2)︸ ︷︷ ︸

m

, b〉Symn(C2)
0,d .

Equation (2.7) follows from the genus 0 topological recursion relations for orbifold Gromov-Witten

invariants, see [26]. Equation (2.8) follows from divisor equations for ramified orbifold Gromov-

Witten invariants, see [5].

We first compare the operators (D⋆tDD) and (I(2)⋆t̃I(2)). For simplicity, write (2) for the partition

(2, 1n−2). By [25, Theorem 4], we have

〈D,D, ..., D︸ ︷︷ ︸
k

, λ, µ〉Hilb =(−1)k+1〈(2), (2), ..., (2)︸ ︷︷ ︸
k

, λ, µ〉Hilb

=(−1)k+1〈(2̃), (2̃), ..., (2̃)︸ ︷︷ ︸
k

, λ̃, µ̃〉Sym

=〈−(2̃),−(2̃), ...,−(2̃)︸ ︷︷ ︸
k

, λ̃, µ̃〉Sym,

where (−̃) is defined in [25, Equation (1.6)]. Therefore, under the identification |µ〉 7→ |µ̃〉, we have

(2.9) D⋆tDD = −(2̃) ⋆tD(−(2̃)) .

Now,

(2̃) = (−i)n−1−nI(2) = (−i)−1I(2) = iI(2) .

Hence we have, after −q = eiu,

(2.10) D⋆tDD = (−i)I(2)⋆t̃I(2), t̃ = (−i)tD .
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Consider now SSym

∣∣∣
t̃=0

. By (2.7) and (2.8), we have

z
∂

∂u
SSym(u, t̃) = (I(2)⋆t̃)S

Sym(u, t̃) .

Setting t̃ = 0 and using (2.4) and (2.10), we find

z
∂

∂u

(
SSym

∣∣∣
t̃=0

)
= iMD(−eiu)

(
SSym

∣∣∣
t̃=0

)
.

Since ∂
∂u

= iq ∂
∂q

, we find that, after −q = eiu,

(2.11) zq
∂

∂q

(
SSym

∣∣∣
t̃=0

)
= MD(q)

(
SSym

∣∣∣
t̃=0

)
.

Recall S = ΘYzL
−1L0 also satisfied the same equation. We may then compare ΘYzL

−1L0 and(
SSym

∣∣∣
t̃=0

)
by comparing them at u = 0 which corresponds to q = −1. Set

B = S

∣∣∣
q=−1

= ΘYzL
−1L0

∣∣∣
q=−1

.

Since SSym

∣∣∣
t̃=0,u=0

= Id, we have, after −q = eiu,

(2.12) SSym
∣∣∣
t̃=0

= CSB−1C−1 .

By Proposition 8, we have

(2.13) CSB−1C−1 = CSHilb
∣∣∣
tD=0

AL0B
−1C−1 .

Since AL0A
−1 = qD/z,

AL0B
−1 = AL0A

−1AB−1 = qD/zAB−1.

Define K = BA−1. We can then rewrite (2.13) as

(2.14) SSym
∣∣∣
t̃=0

= CSHilb
∣∣∣
tD=0

qD/zK−1C−1 .

By the divisor equation for orbifold Gromov-Witten invariants in [5] (see also [25, Section 3.2]),

we have
∂

∂u
(I(2)⋆t̃)−

∂

∂t̃
(I(2)⋆t̃) = 0 .

A direct calculation then shows that the two differential operators

z
∂

∂t̃
− (I(2)⋆t̃) and

∂

∂u
− ∂

∂t̃

commute. Therefore SSym(u, t̃) is uniquely determined by equation (2.7) and SSym

∣∣∣
t̃=0

. By (2.10),

we have

z
∂

∂tD
− (D⋆tD) = i

(
z
∂

∂t̃
− (I(2)⋆t̃))

)
,

after −q = eiu. Then equation (2.14) implies the following result.
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Theorem 9. After −q = eiu and t̃ = (−i)tD, we have

SSym(u, t̃) = CSHilb(q, tD)q
D/zK−1C−1.

2.3. Proof of Theorem 1. By the definition of B and Proposition 7, K is an End(F)-valued power

series in 1/z of the form

K = Id +O(1/z) .

By Theorem 9 and the fact that SHilb and SSym are symplectic, it follows that K is also symplectic.

Next, we explicitly evaluate K. By the definition of B and [23, Theorem 4], we have

B =
(
ΘYzL

−1L0

) ∣∣∣
q=−1

=
1

(2π
√
−1)|·|

ΘΓzHz

(
G−1

DTzL0

) ∣∣∣
q=−1

L−1 .
(2.15)

Here | · | =
∑

k>0 α−kαk is the energy operator. GDT is the diagonal matrix in the basis {eλ} with

eigenvalues

q−c(λ;t1,t2)
∏

w: tangent weights at λ

1

Γ(w + 1)
,

see [23, Section 3.1.2]. The operator Γ is given by

Γ|µ〉 = (2π
√
−1)ℓ(µ)∏
i µi

GGW(t1, t2)|µ〉 ,

see [23, Section 3.3], where

GGW(t1, t2)|µ〉 =
∏

i

g(µi, t1)g(µi, t2)|µ〉 ,

and

g(µi, t1)g(µi, t2) =
µµit1
i µµit2

i

Γ(µit1)Γ(µit2)
,

see [23, Section 3.1.2]. Define

Γz = Γ

(
t1
z
,
t2
z

)
.

Since

K = BA−1 =
1

(2π
√
−1)|·|

ΘΓzHz

(
G−1

DTzL0

) ∣∣∣
q=−1

L−1A−1,

and ||Jλ|| =
∏

w: tangent weights at λ w
1/2, we see that K is the operator given by

(2.16) K(Jλ) =
z|λ|

(2π
√
−1)|λ|

∏

w: tangent weights at λ

Γ(w/z + 1)ΘΓzH
λ
z .

The proof Theorem 1 is complete. �
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3. DESCENDENT CORRESPONDENCE

3.1. Variables. We compare the descendent Gromov-Witten theories of Hilbn(C2) and Symn(C2).
The following identifications will be used throughout:

(3.1) − q = eiu , t̃ = (−i)tD .

3.2. Genus 0. Following [11], consider the Givental spaces

HHilb = H∗
T
(Hilbn(C2))⊗C[t1,t2] C(t1, t2)[[q]]((z

−1)) ,

HSym = H∗
T
(Symn(C2))⊗C[t1,t2] C(t1, t2)[[u]]((z

−1)) ,

equipped with the symplectic forms

(f, g)H
Hilb

= Resz=0(f(−z), g(z))Hilb , f, g ∈ HHilb ,

(f, g)H
Sym

= Resz=0(f(−z), g(z))Sym , f, g ∈ HSym .

The choice of bases

{|µ〉
∣∣µ ∈ Part(n)} ⊂ H∗

T
(Hilbn(C2)) , {|µ̃〉

∣∣µ ∈ Part(n)} ⊂ H∗
T
(Symn(C2)) ,

yields Darboux coordinate systems {pµa , qνb }, {p̃µa , q̃νb }. General points of HHilb,HSym can be written

in the form

∑

a≥0

∑

µ

pµa |µ〉
(t1t2)

ℓ(µ)
z(µ)

(−1)|µ|−ℓ(µ)
(−z)−a−1

︸ ︷︷ ︸
p

+
∑

b≥0

∑

ν

qνb |ν〉zb

︸ ︷︷ ︸
q

∈ HHilb ,

∑

a≥0

∑

µ

p̃µa |µ̃〉
(t1t2)

ℓ(µ)
z(µ)

1
(−z)−a−1

︸ ︷︷ ︸
p̃

+
∑

b≥0

∑

ν

q̃νb |ν̃〉zb

︸ ︷︷ ︸
q̃

∈ HSym .

Define the Lagrangian cones associated to the generating functions of genus 0 descendent and

ancestor Gromov-Witten invariants as follows:

LHilb = {(p ,q)
∣∣p = dqFHilb

0 } ⊂ HHilb , LHilb
an,tD

= {(p,q)
∣∣p = dqFHilb

an,tD ,0} ⊂ HHilb ,

LSym = {(p̃, q̃)
∣∣p̃ = dq̃FSym

0 } ⊂ HSym , LSym

an,t̃
= {(p̃, q̃)

∣∣p̃ = dq̃FSym

a,t̃,0
} ⊂ HSym ,

where

FHilb
0 (t) =

∑

d,k≥0

qd

k!
〈t(ψ), ..., t(ψ)︸ ︷︷ ︸

k

〉Hilb
0,d , FHilb

an,tD ,0(t) =
∑

d,k,l≥0

qd

k!l!
〈t(ψ̄), ..., t(ψ̄)︸ ︷︷ ︸

k

, tDD, ..., tDD︸ ︷︷ ︸
l

〉Hilb
0,d ,

FSym
0 (̃t) =

∑

b,k≥0

ub

k!
〈t̃(ψ), ..., t̃(ψ)︸ ︷︷ ︸

k

〉Sym

0,b , FSym

an,t̃,0
(̃t) =

∑

b,k,l≥0

ub

k!l!
〈t̃(ψ̄), ..., t̃(ψ̄)︸ ︷︷ ︸

k

, tI(2), ..., tI(2)︸ ︷︷ ︸
l

〉Sym

0,b .

Here, q = t− 1z and q̃ = t̃− 1z are dilaton shifts.

By the descendent/ancestor relations [8], we have

LHilb = SHilb(q, tD)
−1LHilb

an,tD
, LSym = SSym(u, t̃)−1LSym

an,t̃
.
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By the genus 0 crepant resolution correspondence proven9 in [5], we have

CLHilb
an,tD

= LSym

an,t̃
.

Theorem 10. We have LSym = CKq−D/zLHilb.

Proof. Using Theorem 9, we calculate

LSym =SSym(u, t̃)−1LSym

an,t̃

=SSym(u, t̃)−1CLHilb
an,tD

=CKq−D/zSHilb(q, tD)
−1LHilb

an,tD

=CKq−D/zLHilb .

�

3.3. Higher genus. Consider the total descendent potentials,

DHilb = exp

(∑

g≥0

~
g−1FHilb

g

)
, FHilb

g (t) =
∑

d,k≥0

qd

k!
〈t(ψ), ..., t(ψ)︸ ︷︷ ︸

k

〉Hilb
g,d ,

DSym = exp

(∑

g≥0

~
g−1FSym

g

)
, FSym

g (̃t) =
∑

b,k≥0

ub

k!
〈t̃(ψ), ..., t̃(ψ)︸ ︷︷ ︸

k

〉Sym

g,b ,

and the total ancestor potentials10,

AHilb
an,tD

= exp

(∑

g≥0

~
g−1FHilb

an,tD,g

)
, FHilb

an,tD ,g(t) =
∑

d,k,l≥0

qd

k!l!
〈t(ψ̄), ..., t(ψ̄)︸ ︷︷ ︸

k

, tDD, ..., tDD︸ ︷︷ ︸
l

〉Hilb
g,d ,

ASym

an,t̃
= exp

(∑

g≥0

~
g−1FSym

an,t̃,g

)
, FSym

an,t̃,g
(̃t) =

∑

b,k,l≥0

ub

k!l!
〈t̃(ψ̄), ..., t̃(ψ̄)︸ ︷︷ ︸

k

, tI(2), ..., tI(2)︸ ︷︷ ︸
l

〉Sym

g,b .

Givental’s quantization formalism [11] produces differential operators by quantizing quadratic

Hamiltonians associated to linear symplectic transforms by the following rules:

q̂µaqνb =
qµaq

ν
b

~
, q̂µapνb = qµa

∂

∂qνb
, p̂µapνb = ~

∂

∂qµa

∂

∂qνb
,

̂̃qµa q̃νb =
q̃µa q̃

ν
b

~
, ̂̃qµa p̃νb = q̃µa

∂

∂q̃νb
, ̂̃pµa p̃νb = ~

∂

∂q̃µa

∂

∂q̃νb
.

By the descendent/ancestor relations [8], we have

DHilb = eF
Hilb
1 (tD) ̂SHilb(q, tD)−1AHilb

an,tD
,

DSym = eF
Sym
1 (t̃) ̂SSym(u, t̃)−1ASym

an,t̃
,

9In particular, the results of [5] implies that LHilb
an,tD is analytic in q.

10The results of [25] imply that AHilb
an,tD depends analytically in q.
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where FHilb
1 and F Sym

1 are generating functions of genus 1 primary invariants with insertions D and

I(2) respectively. F Sym
1 and FHilb

1 can be easily matched using [25, Theorem 4].

Theorem 11. We have e−F Sym
1 (t̃)DSym = ĈK̂q̂−D/z

(
e−FHilb

1 (tD)DHilb
)

.

Proof. By [25, Theorem 4], we have ĈAHilb
an,tD

= ASym

an,t̃
. Using Theorem 9, we calculate

̂SSym(u, t̃)−1ASym

an,t̃
= ĈK̂q−D/z ̂SHilb(q, tD)−1AHilb

an,tD
.

Therefore, we conclude

e−F
Sym
1 (t̃)DSym = ̂SSym(u, t̃)−1ASym

an,t̃

= ĈK̂q−D/z ̂SHilb(q, tD)−1AHilb
an,tD

= ĈK̂q−D/z
(
e−FHilb

1 (tD)DHilb
)
.

�

4. FOURIER-MUKAI TRANSFORMATION

4.1. Proof of Theorem 4. We first localize the top row of the diagram of Theorem 4:

KT(Hilb
n(C2))loc

FM
//

ΨHilb

��

KT(Symn(C2))loc

ΨSym

��

H̃Hilb
CK

∣∣
z 7→−z

// H̃Sym .

Here, loc denotes tensoring by Frac(R(T)), the field of fractions of the representation ring R(T) of

the torus T. The maps ΨHilb and ΨSym are still well-defined since the T-equivariant Chern character

of a representation is invertible. The commutation of the above diagram immediately implies the

commutation of the diagram of Theorem 4.

Let kλ ∈ KT(Hilb
n(C2)) be the skyscraper sheaf supported on the fixed point indexed by λ. The

set {kλ
∣∣λ ∈ Part(n)} is a basis of KT(Hilb

n(C2))loc as a Frac(R(T))-vector space. The commuta-

tion of the localized diagram is then a consequence of the following equality: for all λ ∈ Part(n),

(4.1) CK
∣∣
z 7→−z

◦ΨHilb(kλ) = ΨSym ◦ FM(kλ) .

To prove (4.1), we will match the two sides by explicit calculation.

4.2. Iritani’s Gamma class. For a vector bundle V on a Deligne-Mumford stack X ,

V → X ,

Iritani has defined a characteristic class called the Gamma class. Let

IX =
∐

i

Xi

be the decomposition of the inertia stack IX into connected components. By pulling back V to

IX and restricting to Xi, we obtain a vector bundle V
∣∣
Xi

on Xi. The stabilizer element gi of X
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associated to the component Xi acts on VXi
. The bundle V

∣∣
Xi

decomposes under gi into a direct

sum of eigenbundles

V
∣∣
Xi

= ⊕0≤f<1Vi,f ,

where gi acts on Vi,f by multiplication by exp(2π
√
−1f). The orbifold Chern character of V is

defined to be

(4.2) c̃h(V) =
⊕

i

∑

0≤f<1

exp(2π
√
−1f) ch(Vi,f) ∈ H∗(IX ) ,

where ch(−) is the usual Chern character.

For each i and f , let δi,f,j , for 1 ≤ j ≤ rankVi,f , be the Chern roots of Vi,f . Iritani’s Gamma

class11 is defined to be

(4.3) Γ(V) =
⊕

i

∏

0≤f<1

rank Vi,f∏

j=1

Γ(1− f + δi,f,j) .

As usual, ΓX = Γ(TX ).

If the vector bundle V is equivariant with respect to a T-action, the Chern character and Chern

roots above should be replaced by their equivariant counterparts to define a T-equivariant Gamma

class.

If X is a scheme, then the Gamma class simplifies considerably since there are no stabilizers.

Directly from the definition, the restriction of ΓHilb to the fixed point indexed by λ is

ΓHilb

∣∣∣
λ
=

∏

w: tangent weights at λ

Γ(w + 1) .

Recall that the inertia stack ISymn(C2) is a disjoint union indexed by conjugacy classes of Sn.

For a partition µ of n, the component Iµ ⊂ ISymn(C2) indexed by the conjugacy class of cycle

type µ is the stack quotient

[C2n
σ /C(σ)] ,

where σ ∈ Sn has cycle type µ, C2n
σ ⊂ C2n is the σ-invariant part, and C(σ) ⊂ Sn is the centralizer

of σ.

Lemma 12. The restriction of ΓSym to the component Iµ is given by

ΓSym

∣∣∣
µ
= (t1t2)

ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ−µit1
i µ−µit2

i

)(∏

i

Γ(µit1)Γ(µit2)

)
.

Proof. Using the description of eigenspaces of TSymn(C2) on the component of ISymn(C2) indexed

by µ (see [25, Section 6.2]), we find that

ΓSym

∣∣∣
µ
=
∏

i

µi−1∏

l=0

Γ

(
1− l

µi
+ t1

)
Γ

(
1− l

µi
+ t2

)
.

11The substitution of cohomology classes into Gamma function makes sense because the Gamma function Γ(1+ x)
has a power series expansion at x = 0.
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Using the formula
m−1∏

k=0

Γ

(
z +

k

m

)
= (2π)

m−1
2 m

1
2
−mzΓ(mz) ,

we find
µi−1∏

l=0

Γ

(
1− l

µi

+ t1

)
= t1(2π)

µi−1

2 µ
1
2
−µit1

i Γ(µit1) ,

and similarly for the other factor. Therefore,

ΓSym

∣∣∣
µ
= (t1t2)

ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ−µit1
i µ−µit2

i

)(∏

i

Γ(µit1)Γ(µit2)

)
,

which is the desired formula. �

4.3. Calculation of CK ◦ΨHilb. Since kλ is supported at the T-fixed point of Hilbn(C2) indexed by

λ, the T-equivariant Chern character ch(kλ) is also supported there. Using the Koszul resolution

(or Grothendieck-Riemann-Roch), we calculate

(4.4) ch(kλ) = Jλ
∏

w: tangent weights at λ

1− e−w

w
.

We have used the fact that the class of the T-fixed point of Hilbn(C2) indexed by λ corresponds to

the factor
Jλ∏
w
w
.

By the definition of degHilb
0 , we have

(2π
√
−1)

degHilb
0
2 ch(kλ) =

(2π
√
−1)

degHilb
0
2 Jλ∏

w
2π

√
−1w

∏

w: tangent weights at λ

(1− e−2π
√
−1w) .

Write Jλ =
∑

ǫ J
λ
ǫ (t1, t2)|ǫ〉. Since Jλǫ is (t1t2)

ℓ(ǫ) times a homogeneous polynomial in t1, t2 of

degree n− ℓ(ǫ), we have12

(2π
√
−1)

degHilb
0
2 Jλ =

∑

ǫ

(2π
√
−1)

degHilb
0
2 Jλǫ (t1, t2)|ǫ〉

=
∑

ǫ

Jλǫ (2π
√
−1t1, 2π

√
−1t2)(2π

√
−1)n−ℓ(ǫ)|ǫ〉

=
∑

ǫ

Jλǫ (t1, t2)(2π
√
−1)n+ℓ(ǫ)(2π

√
−1)n−ℓ(ǫ)|ǫ〉

=(2π
√
−1)2n

∑

ǫ

Jλǫ (t1, t2)|ǫ〉

=(2π
√
−1)2nJλ.

12The calculation also follows from the fact that Jλ is the class a T-fixed point (of real degree 4n).
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After putting the above formulas together, we obtain

ΓHilb ∪ (2π
√
−1)

degHilb
0
2 ch(kλ) =

(2π
√
−1)2nJλ∏

w
2π

√
−1w

∏

w: tangent weights at λ

Γ(w + 1)(1− e−2π
√
−1w) .

Recall the following identity for the Gamma function:

(4.5) Γ(1 + t)Γ(1− t) =
2π

√
−1t

eπ
√−1t − e−π

√−1t
.

We have

Γ(w + 1)(1− e−2π
√
−1w) =Γ(w + 1)(eπ

√−1w − e−π
√−1w)(e−π

√−1w)

=
2π

√
−1w

Γ(1− w)
(e−π

√−1w) .

Hence

ΓHilb ∪ (2π
√
−1)

degHilb
0
2 ch(kλ) = ((2π

√
−1)2nJλ)

∏

w: tangent weights at λ

1

Γ(1− w)
e−π

√
−1w .

Since the operator zρ
Hilb

is the operator of multiplication by zc
T
1 (Hilb

n(C2)), we have

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

)

= zn(t1+t2)((2π
√
−1)2nJλ)

∏

w: tangent weights at λ

1

Γ(1− w)
e−π

√
−1w

= zn(t1+t2)e−π
√
−1n(t1+t2)((2π

√
−1)2nJλ)

∏

w: tangent weights at λ

1

Γ(1− w)
,

where we use

cT1 (Hilb
n(C2))

∣∣∣
λ
=

∑

w: tangent weights at λ

w = n(t1 + t2) .

By the definition of µHilb, we have

z−µHilb

(φ) = znz−degHilb
0 /2(φ) = zn(

φ

zk/2
)

for φ ∈ Hk
T
(Hilbn(C2),C), we have

z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

)

= znzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)2n

Jλ
∏

w: tangent weights at λ

1

Γ(1− w/z)
.
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Here, the operator z−degHilb
0 /2 acts on zn(t1+t2) as follows:

z−degHilb
0 /2(zn(t1+t2)) =z−degHilb

0 /2(en(t1+t2) log z)

=z−degHilb
0 /2

(∑

k≥0

(n(t1 + t2) log z)
k

k!

)

=
∑

k≥0

(n log z)kz−degHilb
0 /2((t1 + t2)

k)

k!

=
∑

k≥0

(n log z)k((t1 + t2)
k/zk)

k!

=
∑

k≥0

(n log z((t1 + t2)/z))
k

k!

=zn(t1+t2)/z .

The actions of z−degHilb
0 /2 on e−π

√−1n(t1+t2) and Γ(1 + w) are similarly determined.

By Equation (2.16), we have

K
∣∣
z 7→−z

(Jλ) =
(−z)|λ|

(2π
√
−1)|λ|


 ∏

w: tangent weights at λ

Γ(−w/z + 1)


Θ′Γ−zH

λ
−z ,

where we define Θ′|µ〉 = (−z)ℓ(µ)|µ〉 . Hence,

K
∣∣
z 7→−z

(
z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

))

=znzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)2n

K
∣∣
z 7→−z

(Jλ)
∏

w: tangent weights at λ

1

Γ(1− w/z)

=znzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)2n
(−z)|λ|

(2π
√
−1)|λ|

Θ′Γ−zH
λ
−z

∏

w: tangent weights at λ

Γ(−w/z + 1)

Γ(1− w/z)

=(−1)nznzn(t1+t2)/ze−π
√−1n(t1+t2)/z

(
2π

√
−1

z

)n

Θ′Γ−zH
λ
−z .

By the definition of Γ−z, we have

Γ−z|µ〉 =
(2π

√
−1)ℓ(µ)∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)
|µ〉 .

Also, C|µ〉 = |µ̃〉, we thus obtain

CK
∣∣
z 7→−z

(
z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

))
= ∆Hilb(Hλ

−z) ,(4.6)
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where ∆Hilb : F → F̃ is the operator defined as follows:

∆Hilb|µ〉

=(−1)nznzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)n

(−z)ℓ(µ)
(2π

√
−1)ℓ(µ)∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)
|µ̃〉

=(−1)n+ℓ(µ)zn(t1+t2)/ze−π
√
−1n(t1+t2)/z(2π

√
−1)n+ℓ(µ)zℓ(µ)

1∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)
|µ̃〉 .

(4.7)

4.4. Haiman’s result. The homomorphism FM has been calculated by Haiman [12, 13]. Denote

by F the operator of taking Frobenius series of bigraded Sn-modules, as defined in [12, Definition

3.2.3]. Note that T-equivariant sheaves on

Symn(C2) = [(C2)n/Sn]

are T × Sn-equivariant sheaves on C2, and hence can be identified with bigraded Sn-equivariant

C[x,y]-modules13. Therefore, the composition

Φ = F ◦ FM
makes sense and takes values in a certain algebra of symmetric functions, see [12, Proposition

5.4.6]. For the analysis of the diagram of Theorem 4, we will need the following result of Haiman.

Theorem 13 ([12], Equation (95)). Let kλ ∈ KT(Hilb
n(C2)) be the skyscraper sheaf supported on

the T-fixed point indexed by λ. Then

Φ(kλ) = H̃λ(z; q, t) .

The Macdonald polynomial H̃λ(z; q, t) is a symmetric function in an infinite set of variables

z = {z1, z2, z3, ...}
and depends on two parameters q, t. As explained in [25, Section 9.1], H̃λ(z; q, t) of [12] is the

same as Hλ after the following identification: the parameters (q, t) and (t1, t2) are related by

(q, t) = (e2π
√−1t1 , e2π

√−1t2) .

Symmetric functions in z are viewed as elements of F̃ via the following convention. For a partition

µ, the power-sum symmetric function

pµ =
∏

k

(∑

i≥1

zµk
i

)

is identified with z(µ)|µ〉.
To make use of Haiman’s result, we must compare the operatorF taking Frobenius series with the

orbifold Chern character c̃h. Let V λ be the irreducible Sn-representation indexed by λ ∈ Part(n).
We construct the bigraded Sn-equivariant C[x,y]-module V λ ⊗ C[x,y], which is equivalent to a

T-equivariant sheaf Vλ on Symn(C2). Define the operator δ : F̃ → F̃ by

δ|µ〉 =
∏

i

(1− qµi)(1− tµi)|µ〉 .

13Here, x = {x1, ..., xn} and y = {y1, ..., yn}.
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By [12, Section 5.4.3], we have

FV λ⊗C[x,y] = sλ

[ Z

(1− q)(1− t)

]
,

where sλ is the Schur function. HereZ denotes the collection of variables z1, z2, ... that the functions

are symmetric with respect to, according to the convention of [12]. Using the definition of plethystic

substitution Z 7→ Z/(1− q)(1− t), see [12, Section 3.3], we obtain

δ(FV λ⊗C[x,y]) = sλ.

On the other hand, by the definition of orbifold Chern character14 recalled in Equation (4.2), we

have

c̃h(Vλ) = sλ .

Since KT(Symn(C2)) is freely spanned as a R(T )-module by V λ ⊗ C[x,y], we find

δ ◦ F = c̃h ,

after identifying15 q = e−t1 , t = e−t2 . Therefore,

c̃h(FM(kλ)) =δ(F (FM(kλ)))

=δ(Φ(kλ))

=δ(H̃λ) , q = e−t1 , t = e−t2 .

4.5. Calculation of ΨSym ◦ FM. We have

(2π
√
−1)

deg
Sym
0
2 c̃h(FM(kλ)) = δ(H̃λ) , q = e−2π

√−1t1 , t = e−2π
√−1t2 .

We have used the definition of deg
Sym
0 and the fact that |µ〉 ∈ F̃ as a class in H∗

T
(ISymn(C2)) has

degree 0.

By Lemma 12, we have

ΓSym ∪ (2π
√
−1)

deg
Sym
0
2 c̃h(FM(kλ)) = δ2(H̃λ) , q = e−2π

√
−1t1 , t = e−2π

√
−1t2 ,

where δ2 : F̃ → F̃ is defined by

δ2|µ〉 = (t1t2)
ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ−µit1
i µ−µit2

i

)

×
(∏

i

Γ(µit1)Γ(µit2)

)(∏

i

(1− e−2π
√
−1µit1)(1− e−2π

√
−1µit2)

)
|µ〉 .

Since cT1 (Symn(C2))
∣∣∣
µ
= n(t1 + t2), we have

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(FM(kλ))

)
= zn(t1+t2)δ2(H̃λ) , q = e−2π

√−1t1 , t = e−2π
√−1t2 .

14The natural basis of H∗
T
(ISymn(C2)) is identified with {|µ〉

∣∣µ ∈ Part(n)} ⊂ F̃ .
15The choice of T = (C∗)2-action on C2 in [12, Section 5.1.1] is dual to ours.
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Next, we write

z−µSym

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(FM(kλ))

)
= δ3(H

λ
−z) ,

where δ3 : F̃ → F̃ is defined by

δ3|µ〉 = znzn(t1+t2)/z(t1t2/z
2)ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ
−µit1/z
i µ

−µit2/z
i

)

×
(∏

i

Γ(µit1/z)Γ(µit2/z)

)(∏

i

(1− e−2π
√
−1µit1/z)(1− e−2π

√
−1µit2/z)

)
z−(n−ℓ(µ))|µ〉 .

We have used the definition of µSym and the fact that |µ〉 ∈ F̃ as a class in H∗
T
(ISymn(C2)) has

age-shifted degree 2(n− ℓ(µ)). We have also used

zdegCR/2
(
H̃λ

∣∣
q=e−2π

√
−1t1 , t=e−2π

√
−1t2

)
= H̃λ

∣∣
q=e−2π

√
−1t1/z, t=e−2π

√
−1t2/z

,

which is equal to Hλ
−z.

By (4.5), we have

Γ(t)Γ(−t) =Γ(1 + t)

t

Γ(1− t)

−t

=
1

−t
2π

√
−1

eπ
√
−1t − e−π

√
−1t

=
2π

√
−1

−t
1

(1− e−2π
√−1t)eπ

√−1t
.

Hence

Γ(t)(1− e−2π
√−1t) = (−1)e−π

√−1t2π
√
−1

1

t

1

Γ(−t) .

We then obtain

(∏

i

Γ(µit1/z)Γ(µit2/z)

)(∏

i

(1− e−2π
√−1µit1/z)(1− e−2π

√−1µit2/z)

)

=(−1)2ℓ(µ)e−π
√−1n(t1+t2)/z(2π

√
−1)2ℓ(µ)

(∏

i

z

µit1

z

µit2

)(∏

i

1

Γ(−µit1/z)Γ(−µit2/z)

)

=(−1)2ℓ(µ)e−π
√
−1n(t1+t2)/z(2π

√
−1)2ℓ(µ)

(
z2

t1t2

)ℓ(µ)
(∏

i

1

µi

)2(∏

i

1

Γ(−µit1/z)Γ(−µit2/z)

)
.
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Therefore, we can write δ3|µ〉 as

znzn(t1+t2)/z(t1t2/z
2)ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ
−µit1/z
i µ

−µit2/z
i

)

× (−1)2ℓ(µ)e−π
√
−1n(t1+t2)/z(2π

√
−1)2ℓ(µ)

(
z2

t1t2

)ℓ(µ)
(∏

i

1

µi

)2

×
(∏

i

1

Γ(−µit1/z)Γ(−µit2/z)

)
z−(n−ℓ(µ))|µ〉

= zℓ(µ)zn(t1+t2)/ze−π
√
−1n(t1+t2)/z

1∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)

× (2π)n−ℓ(µ)(2π
√
−1)2ℓ(µ)(−1)2ℓ(µ)|µ〉 .

4.6. Proof of Theorem 4. The last step of the proof is the matching

(4.8) δ3|µ〉 = ∆Hilb|µ〉 .
By comparing the expression above for δ3|µ〉 with Equation (4.7), we see the matching (4.8) follows

from the following equality in F̃ :

(4.9) (−1)n+ℓ(µ)(2π
√
−1)n+ℓ(µ)|µ̃〉 = (2π)n−ℓ(µ)(2π

√
−1)2ℓ(µ)(−1)2ℓ(µ)|µ〉 .

We verify (4.9) as follows. By definition, |µ̃〉 = (−
√
−1)ℓ(µ)−n|µ〉. Thus,

(−1)n+ℓ(µ)(2π
√
−1)n+ℓ(µ)|µ̃〉 = (−1)n+ℓ(µ)(2π

√
−1)n+ℓ(µ)(−

√
−1)ℓ(µ)−n|µ〉 .

We calculate

(−1)n+ℓ(µ)(2π
√
−1)n+ℓ(µ)(−

√
−1)ℓ(µ)−n = (2π)n+ℓ(µ)(−1)2ℓ(µ)

√
−1

2ℓ(µ)
,

(2π)n−ℓ(µ)(2π
√
−1)2ℓ(µ)(−1)2ℓ(µ) = (2π)n+ℓ(µ)(−1)2ℓ(µ)

√
−1

2ℓ(µ)
.

This proves (4.9), hence (4.8).

In summary, our calculations establish the equation

z−µSym

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(FM(kλ))

)

= CK
∣∣
z 7→−z

(
z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

))
,

which completes the proof of Theorem 4 . �
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[11] A. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Dedicated to the memory of

I. G. Petrovskii on the occasion of his 100th anniversary. Mosc. Math. J. 1 (2001), 551–568, 645.

[12] M. Haiman, Combinatorics, symmetric functions and Hilbert schemes, In: Current Developments in Mathematics

2002, 1 (2002), 39–111, International Press of Boston, Somerville, MA, USA.

[13] M. Haiman, Notes on Macdonald polynomials and the geometry of Hilbert schemes, In: Symmetric Functions

2001: Surveys of Developments and Perspectives, Proceedings of the NATO Advanced Study Institute held in

Cambridge, June 25-July 6, 2001, Sergey Fomin, editor. Kluwer, Dordrecht (2002), 1–64.

[14] R. P. Horja, Hypergeometric functions and mirror symmetry in toric varieties, Ph.D. Thesis – Duke University

(1999), math/9912109.

[15] E. L. Ince, Ordinary differential equations, Dover Publications, New York, 1944.

[16] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222

(2009), 1016–1079.

[17] H. Iritani, Ruan’s conjecture and integral structures in quantum cohomology, In: New developments in algebraic

geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math. 59, Math. Soc.

Japan, Tokyo, 2010, 111–166.

[18] I. Macdonald, Symmetric functions and Hall polynomials, Second edition. With contributions by A. Zelevinsky.

Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press,

New York, 1995.

[19] J. McKay, Graphs, singularities and finite groups, In: The Santa Cruz Conference on Finite Groups (Univ. Cal-

ifornia, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math. 37, Amer. Math. Soc., Providence, R.I., 1980,

183–186.

[20] A. Okounkov, Enumerative geometry and geometric representation theory, in: Algebraic geometry–Salt Lake

City 2015, Part 1, Proc. Sympos. Pure Math. 97, Part 1, Amer. Math. Soc., Providence, RI, 2018, 419–458,

arXiv:1701.00713.

[21] A. Okounkov, On the crossroads of enumerative geometry and geometric representation theory, in: Proceedings

of ICM 2018, arXiv:1801.09818.

[22] A. Okounkov, R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math.

179 (2010), 523–557.

[23] A. Okounkov, R. Pandharipande, The quantum differential equation of the Hilbert scheme of points in the plane,

Transform. Groups 15 (2010), 965–982.

[24] R. Pandharipande, Cohomological field theory calculations,in: Proceedings of ICM 2018,Vol. 1, 869898, World

Scientific, 2018, arXiv:1712.02528.

[25] R. Pandharipande, H.-H. Tseng, Higher genus Gromov-Witten theory of Hilbn(C2) and CohFTs associated to

local curves, Forum of Mathematics, Pi (2019), Vol. 7, e4, 63 pages, arXiv:1707.01406.

[26] H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1–81.
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