
ar
X

iv
:1

80
7.

07
00

8v
3 

 [
m

at
h.

A
G

] 
 2

9 
A

ug
 2

01
9

HALVES OF POINTS OF AN ODD DEGREE HYPERELLIPTIC

CURVE IN ITS JACOBIAN

YURI G. ZARHIN

Abstract. Let f(x) be a degree (2g+1) monic polynomial with coefficients in
an algebraically closed field K with char(K) 6= 2 and without repeated roots.

Let R ⊂ K be the (2g + 1)-element set of roots of f(x). Let C : y2 = f(x) be
an odd degree genus g hyperelliptic curve over K. Let J be the jacobian of C
and J [2] ⊂ J(K) the (sub)group of points of order dividing 2. We identify C
with the image of its canonical embedding into J (the infinite point of C goes
to the identity element of J). Let P = (a, b) ∈ C(K) ⊂ J(K) and

M1/2,P = {a ∈ J(K) | 2a = P} ⊂ J(K),

which is J [2]-torsor. In a previous work we established an explicit bijection
between the sets M1/2,P and

R1/2,P := {r : R → K | r(α)2 = a− α ∀α ∈ R;
∏

α∈R

r(α) = −b}.

The aim of this paper is to describe the induced action of J [2] on R1/2,P (i.e.,

how signs of square roots r(α) =
√
a− α should change).

1. Introduction

Let K be an algebraically closed field of characteristic different from 2, g a
positive integer, R ⊂ K a (2g + 1)-element set,

f(x) = fR(x) :=
∏

α∈R

(x − α)

a degree (2g + 1) polynomial with coefficients in K and without repeated roots,
C : y2 = f(x) the corresponding genus g hyperelliptic curve over K, and J the
jacobian of C. We identify C with the image of its canonical embedding

C →֒ J, P 7→ cl((P )− (∞))

into J (the infinite point ∞ of C goes to the identity element of J). Let J [2] ⊂ J(K)
be the kernel of multiplication by 2 in J(K), which is a 2g-dimensional F2-vector
space. All the (2g + 1) points

Wα := (α, 0) ∈ C(K) ⊂ J(K) (α ∈ R)
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2 YURI G. ZARHIN

lie in J [2] and generate it as the 2g-dimensional F2-vector space; they satisfy the
only relation

∑

α∈R

Wα = 0 ∈ J [2] ⊂ J(K).

This leads to a well known canonical isomorphism [4] between F2-vector spaces J [2]
and

(F2
R)0 = {φ : R → F2 |

∑

α∈R

φ(α) = 0}.

Namely, each function φ ∈ (F2
R)0 corresponds to
∑

α∈R

φ(α)Wα ∈ J [2].

For example, for each β ∈ R the point Wβ =
∑

α6=β Wα corresponds to the function
ψβ : R → F2 that sends β to 0 and all other elements of R to 1.

If b ∈ J(K) then the finite set

M1/2,b := {a ∈ J(K) | 2a = b} ⊂ J(K)

consists of 22g elements and carries the natural structure of a J [2]-torsor.
Let

P = (a, b) ∈ C(K) ⊂ J(K).

Let us consider, the set

R1/2,P := {r : R → K | r(α)2 = a− α ∀α ∈ R;
∏

α∈R

r(α) = −b}.

Changes of signs in the (even number of) square roots provide R1/2,P with the

natural structure of a (F2
R)0-torsor. Namely, let

χ : F2 → K∗

be the additive character such that

χ(0) = 1, χ(1) = −1.

Then the result of the action of a function φ : R → F2 from (F2
R)0 on r : R → K

from R1/2,P is just the product

χ(φ)r : R → K, α 7→ χ(φ(α))r(α).

On the other hand, I constructed in [9] an explicit bijection of finite sets

R1/2,P
∼=M1/2,P , r 7→ ar ∈M1/2,P ⊂ J(K).

Identifying (as above) J [2] and (F2
R)0, we obtain a second structure of a (F2

R)0-
torsor on R1/2,P . Our main result asserts that these two structures actually coin-
cide. In down-to-earth terms this means the following.

Theorem 1.1. Let r ∈ R1/2,P and β ∈ R. Let us define rβ ∈ R1/2,P as follows.

rβ(β) = r(β), rβ(α) = −r(α) ∀α ∈ R \ {β}.
Then

arβ = ar +Wβ = ar +





∑

α6=β

Wα



 .
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Remark 1.2. In the case of elliptic curves (i.e., when g = 1) the assertion of
Theorem 1.1 was proven in [2, Th. 2.3(iv)].

Example 1.3. If P = Wβ = (β, 0) then

ar +Wβ = ar −Wβ = ar − 2ar = −ar

while

−ar = a−r

(see [9, Remark 3.5]). On the other hand, r(β) =
√
β − β = 0 for all r and

rβ = −r : α 7→ −r(α) ∀α ∈ R.

This implies that

arβ = a−r = ar +Wβ .

This proves Theorem 1.1 in the special case P = Wβ.

The paper is organized as follows. In Section 2 we recall basic facts about
Mumford representations of points of J(K) and review results of [9], including an
explicit description of the bijection between R1/2,P and M1/2,P . In Section 3 we
give explicit formulas for the Mumford representation of a+Wβ when a lies neither
on the theta divisor of J nor on its translation by Wβ, assuming that we know the
Mumford representation of a. In Section 4 we prove Theorem 1.1, using auxiliary
results from commutative algebra that are proven in Section 5.

2. Halves and square roots

Let C be the smooth projective model of the smooth affine plane K-curve

y2 = f(x) =
∏

α∈R

(x− α)

where R is a (2g + 1)-element subset of K. In particular, f(x) is a monic degree
(2g + 1) polynomial without repeated roots. It is well known that C is a genus g
hyperelliptic curve over K with precisely one infinite point, which we denote by ∞.
In other words,

C(K) = {(a, b) ∈ K2 | b2 =
∏

α∈R

(a− αi)}
⊔

{∞}.

Clearly, x and y are nonconstant rational functions on C, whose only pole is ∞.
More precisely, the polar divisor of x is 2(∞) and the polar divisor of y is (2g+1)(∞).
The zero divisor of y is

∑

α∈R
(Wα). In particular, y is a local parameter at (every)

Wα.
We write ι for the hyperelliptic involution

ι : C → C, (x, y) 7→ (x,−y), ∞ 7→ ∞.

The set of fixed points of ι consists of ∞ and all Wα (α ∈ R). It is well known
that for each P ∈ C(K) the divisor (P ) + ι(P )− 2(∞) is principal. More precisely,
if P = (a, b) ∈ C(K) then (P ) + ι(P )− 2(∞) is the divisor of the rational function
x− a on C. In particular, if P = Wα = (α, 0) then

2(Wα)− 2(∞) = div(x− α).

In particular, x−α has a double zero at Wα (and no other zeros). If D is a divisor
on C then we write supp(D) for its support, which is a finite subset of C(K).
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Recall that the jacobian J of C is a g-dimensional abelian variety over K. If D
is a degree zero divisor on C then we write cl(D) for its linear equivalence class,
which is viewed as an element of J(K). Elements of J(K) may be described in
terms of so called Mumford representations (see [4, Sect. 3.12], [8, Sect. 13.2]
and Subsection 2.3 below).

We will identify C with its image in J with respect to the canonical regular
map C →֒ J under which ∞ goes to the identity element of J . In other words, a
point P ∈ C(K) is identified with cl((P ) − (∞)) ∈ J(K). Then the action of the
hyperelliptic involution ι on C(K) ⊂ J(K) coincides with multiplication by −1 on
J(K). In particular, the list of points of order 2 on C consists of all Wα (α ∈ R).

2.1. Since K is algebraically closed, the commutative group J(K) is divisible. It
is well known that for each b ∈ J(K) there are exactly 22g elements a ∈ J(K) such
that 2a = b. In [9] we established explicitly the following bijection r 7→ ar between
the 22g-element sets R1/2,P and M1/2,P .

If r ∈ R1/2,P then for each positive integer i ≤ 2g + 1 let us consider si(r) ∈ K
defined as the value of ith basic symmetric function at (2g+1) elements {r(α) | α ∈
R} (notice that all r(α) are distinct, since their squares r(α)2 = a−α are distinct).
Let us consider the degree g monic polynomial

Ur(x) = (−1)g



(a− x)g +

g
∑

j=1

s2j(r)(a − x)g−j



 ,

and the polynomial

Vr(x) =

g
∑

j=1

(s2j+1(r)− s1(r)s2j(r)) (a− x)g−j

whose degree is strictly less than g. Let {c1, . . . , cg} ⊂ K be the collection of all g
roots of Ur(x), i.e.,

Ur(x) =

g
∏

j=1

(x− cj) ∈ K[x].

Let us put

dj = Vr(cj) ∀j = 1, . . . , g.

It is proven in [9, Th. 3.2] that Qj = (cj , dj) lies in C(K) for all j and

ar := cl









g
∑

j=1

(Qj)



− g(∞)



 ∈ J(K)

satisfies 2ar = P , i.e., ar ∈M1/2,P . In addition, none of Qj coincides with any

Wα, i.e.,

Ur(α) 6= 0, cj 6= α, dj 6= 0.

The main result of [9] asserts that the map

R1/2,P →M1/2,P , r 7→ ar

is a bijection.
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Remark 2.2. Notice that one may express explicitly r in terms of Ur(x) and Vr(x).
Namely [9, Th. 3.2], none of α ∈ R is a root of Ur(x) and

(1) r(α) = s1(r) + (−1)g
Vr(α)

Ur(α)
for all α ∈ R.

In order to determine s1(r), let us fix two distinct roots β, γ ∈ R. Then [9, Cor.
3.4]

Vr(γ)

Ur(γ)
6= Vr(β)

Ur(β)

and

(2) s1(r) =
(−1)g

2
×

(

β +
(

Vr(β)
Ur(β)

)2
)

−
(

γ +
(

Vr(γ)
Ur(γ)

)2
)

Vr(γ)
Ur(γ)

− Vr(β)
Ur(β)

.

2.3. Mumford representations (see [4, Sect. 3.12], [8, Sect. 13.2, pp. 411–415,
especially, Prop. 13.4, Th. 13.5 and Th. 13.7]). Recall [8, Sect. 13.2, p. 411] that
if D is an effective divisor on C of (nonnegative) degree m, whose support does
not contain ∞, then the degree zero divisor D −m(∞) is called semi-reduced if it
enjoys the following properties.

• If Wα lies in supp(D) then it appears in D with multiplicity 1.
• If a point Q of C(K) lies in supp(D) and does not coincide with any of Wα

then ι(Q) does not lie in supp(D).

If, in addition, m ≤ g then D −m(∞) is called reduced.
It is known ([4, Ch. 3a], [8, Sect. 13.2, Prop. 3.6 on p. 413]) that for each

a ∈ J(K) there exist exactly one nonnegative m and (effective) degree m divisor D
such that the degree zero divisor D −m(∞) is reduced and cl(D −m(∞)) = a. If

m ≥ 1, D =

m
∑

j=1

(Qj) where Qj = (aj , bj) ∈ C(K) for all j = 1, . . . ,m

(here Qj do not have to be distinct) then the corresponding

a = cl(D −m(∞)) =

m
∑

j=1

Qj ∈ J(K).

The Mumford representation of a ∈ J(K) is the pair (U(x), V (x)) of polynomials
U(x), V (x) ∈ K[x] such that

U(x) =
m
∏

j=1

(x − aj)

is a degree m monic polynomial while V (x) has degree < m = deg(U), the polyno-
mial V (x)2 − f(x) is divisible by U(x), and

bj = V (aj), Qj = (aj , V (aj)) ∈ C(K) for all j = 1, . . .m.

(Here (aj , bj) are as above.) Such a pair always exists, is unique, and (as we have
just seen) uniquely determines not only a but also divisors D and D −m(∞).

Conversely, if U(x) is a monic polynomial of degreem ≤ g and V (x) a polynomial
such that deg(V ) < deg(U) and V (x)2 − f(x) is divisible by U(x) then there exists
exactly one a = cl(D−m(∞)) whereD−m(∞) is a reduced divisor and (U(x), V (x))
is the Mumford representation of a = cl(D −m(∞)).
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2.4. In the notation of Subsect. 2.1, let us consider the effective degree g divisor

Dr :=
∑

j=1

(Qj)

on C. Then supp(Dr) (obviously) does contain neither ∞ nor any of Wα’s. It
is proven in [9, Th. 3.2] that the divisor Dr − g(∞) is reduced and the pair
(Ur(x), Vr(x)) is the Mumford representation of

ar := cl(Dr − g(∞)).

In particular, if Q ∈ C(K) lies in supp(D) (i.e., is one of Qj’s) then ι(Q) does not.

Lemma 2.5. Let D be an effective divisor on C of degreem > 0 such thatm ≤ 2g+1
and supp(D) does not contain ∞. Assume that the divisor D−m(∞) is principal.

(1) Suppose that m is odd. Then:
(i) m = 2g + 1 and there exists exactly one polynomial v(x) ∈ K[x] such

that the divisor of y−v(x) coincides with D−(2g+1)(∞). In addition,
deg(v) ≤ g.

(ii) If Wα lies in supp(D) then it appears in D with multiplicity 1.
(iii) If b is a nonzero element of K and P = (a, b) ∈ C(K) lies in supp(D)

then ι(P ) = (a,−b) does not lie in supp(D).
(iv) D − (2g + 1)(∞) is semi-reduced (but not reduced).

(2) Suppose that m = 2d is even. Then:
(i) there exists exactly one monic degree d polynomial u(x) ∈ K[x] such

that the divisor of u(x) coincides with D −m(∞);
(ii) every point Q ∈ C(K) appears in D−m(∞) with the same multiplicity

as ι(Q);
(iii) every Wα appears in D −m(∞) with even multiplicity.

Proof. All the assertions except (2)(iii) are already proven in [9, Lemma 2.2]. In
order to prove the remaining one, let us split the polynomial v(x) into a product
v(x) = (x − α)dv1(x) where d is a nonnegative integer and v1(x) ∈ K[x] satisfies
v1(α) 6= 0. Then Wα appears in D −m(∞) with multiplicy 2d, because (x − α)
has a double zero at Wα. (See also [5].) �

Let d ≤ g be a positive integer and Θd ⊂ J be the image of the regular map

Cd → J, (Q1, . . . , Qd) 7→
d
∑

i=1

Qi ⊂ J.

It is well known that Θd is an irreducible closed d-dimensional subvariety of J that
coincides with C for d = 1 and with J if d = g; in addition, Θd ⊂ Θd+1 for all
d < g. Clearly, each Θd is stable under multiplication by −1 in J . We write Θ for
the (g − 1)-dimensional theta divisor Θg−1.

Theorem 2.6 (See Th. 2.5 of [9]). Suppose that g > 1 and let

C1/2 := 2−1C ⊂ J

be the preimage of C with respect to multiplication by 2 in J . Then the intersection
of C1/2(K) and Θ consists of points of order dividing 2 on J . In particular, the
intersection of C and C1/2 consists of ∞ and all Wα’s.
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3. Adding Weierstrass points

In this section we discuss how to compute a sum a+Wβ in J(K) when a ∈ J(K)
lies neither on Θ nor on its translation Θ + Wβ . Let D − g(∞) be the reduced
divisor on C, whose class represents a. Here

D =

g
∑

j=1

(Qj) where Qj = (aj , bj) ∈ C(K) \ {∞}

is a degree g effective divisor. Let (U(x), V (x)) be the Mumford representation of
cl(D − g(∞)). We have

deg(U) = g > deg(V )

,

U(x) =

g
∏

j=1

(x− aj), bj = V (aj) ∀j

and f(x)− V (x)2 is divisible by U(x).

Example 3.1. Assume additionally that none of Qj coincides with Wβ = (β, 0),
i.e.,

U(β) 6= 0.

Let us find explicitly the Mumford representation (U [β](x), V [β ](x)) of the sum

a+Wβ = cl(D−m(∞))+cl((Wβ)−(∞)) = cl((D+(Wβ))−(g+1)(∞)) = cl(D1−(g+1)(∞)).

where

D1 := D + (Wβ) =





g
∑

j=1

(Qj)



+ (Wβ)

is a degree (g+1) effective divisor on C. (We will see that deg(Ũ [β]) = g.) Clearly,
D1 − (g + 1)(∞) is semi-reduced but not reduced.

Let us consider the polynomials

U1(x) = (x− β)U(x), V1(x) = V (x) − V (β)

U(β)
U(x) ∈ K[x].

Then U1 is a degree (g + 1) monic polynomial, deg(V1) ≤ g,

V1(β) = 0, V1(aj) = V (aj) = bj ∀j
and f(x)−V1(x)

2 is divisible by U1(x). (The last assertion follows from the divisi-
bility of both f(x) and V1(x) by x−β combined with the divisibility of f(x)−V (x)2

by U(x).) If we put

ag+1 = β, bg+1 = 0, Qg+1 = Wβ = (β, 0)

then

U1(x) =

g+1
∏

j=1

(x− aj), D1 =

g+1
∑

j=1

(Qj) where Qj = (aj , bj) ∈ C(K), bj = V1(aj)∀j

and f(x) − V1(x)
2 is divisible by U1(x). In particular, (U1(x), V1(x)) is the pair

of polynomials that corresponds to semi-reduced D1 − (g + 1)(∞) as described
in [8, Prop. 13.4 and Th. 3.5]. In order to find the Mumford representation of
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cl(D1 − (g + 1)(∞)), we use an algorithm described in [8, Th. 13.9]. Namely, let
us put

Ũ(x) =
f(x)− V1(x)

2

U1(x)
∈ K[x].

Since deg(V1(x)) ≤ g and deg(f) = 2g + 1, we have

deg
(

V1(x)
2
)

≤ 2g, deg
(

f(x)− V1(x)
2
)

= 2g + 1, deg
(

Ũ(x)
)

= g.

Since f(x) is monic, f(x) − V1(x)
2 is also monic and therefore Ũ(x) is also monic,

because U1(x) is monic. By [8, Th. 13.9], U [β](x) = Ũ(x) (since the latter is monic
and has degree g ≤ g) and V [β](x) is the remainder of −V1(x) with respect to

division by Ũ(x). Let us find this remainder. We have

−V1(x) = −
(

V (x)− V (β)

U(β)
U(x)

)

= −V (x) +
V (β)

U(β)
U(x).

Recall that
deg(V ) < g = deg(U) = deg(Ũ).

This implies that the coefficient of −V1 at xg equals V (β)/U(β) and therefore

V [β](x) =

(

−V (x) +
V (β)

U(β)
U(x)

)

− V (β)

U(β)
Ũ(x) = −V (x) +

V (β)

U(β)

(

U(x)− Ũ(x)
)

.

Using formulas above for U1, V1, Ũ , we obtain that

(3) U [β](x) =
f(x)−

(

V (x)− V (β)
U(β)U(x)

)2

(x− β)U(x)
,

(4) V [β](x) = −V (x) +
V (β)

U(β)






U(x)−

f(x)−
(

V (x)− V (β)
U(β)U(x)

)2

(x− β)U(x)






.

Remark 3.2. There is an algorithm of David Cantor [8, Sect. 13.3] that explains
how to compute the Mumford representation of a sum of arbitrary divisor classes
(elements of J(K)) when their Mumford representations are given.

Remark 3.3. Suppose that a ∈ J(K) and P = 2a lies in C(K) but is not the
zero of the group law. Then a does not lie on the theta divisor (Theorem 2.6) and
satisfies the conditions of Example 3.1 for all β ∈ R (see Subsect. 2.1).

4. Proof of Main Theorem

Let us choose an order on R. This allows us to identify R with {1, . . . , 2g, 2g+1}
and list elements of R as {α1, . . . , α2g, α2g+1}. Then

f(x) =

2g+1
∏

i=1

(x− αi)

and the affine equation for C \ {∞} is

y2 =

2g+1
∏

i=1

(x− αi).

Slightly abusing notation, we denote Wαi
by Wi.
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Let us consider the closed affine K-subset C̃ in the affine K-space A
2g+1 with

coordinate functions z1, . . . , z2g, z2g+1 that is cut out by the system of quadratic
equations

z21 + α1 = z22 + α2 = · · · = z22g+1 + α2g+1.

We write x for the regular function z2i +αi on C̃, which does not depend on a choice

of i. By Hilbert’s Nullstellensatz, the K-algebra K[C̃] of regular functions on C̃
is canonically isomorphic to the following K-algebra. First, we need to consider
the quotient A of the polynomial K[x]-algebra K[x][T1, . . . , T2g+1] by the ideal

generated by all quadratic polynomials T 2
i − (x − αi). Next, K[C̃] is canonically

isomorphic to the quotient A/N (A) where N (A) is the nilradical of A. In the
next section (Example 5.4) we will prove that A has no zero divisors (in particular,

N (A) = {0}) and therefore C̃ is irreducible. (See also [3].) We write y for the
regular function

y = −
2g
∏

i=1

zi ∈ K[C̃].

Clearly, y2 =
∏2g

i=1(x − αi) in K[C̃]. The pair (x, y) gives rise to the finite regular
map of affine K-varieties (actually, curves)

(5) h : C̃ → C \ {∞}, (r1, . . . , r2g, r2g+1) 7→ (a, b) =

(

r21 + α1,−
2g+1
∏

i=1

ri

)

of degree 22g. For each

P = (a, b) ∈ K2 = A
2(K) with b2 =

2g+1
∏

i=1

(a− αi)

the fiber h−1(P ) = R1/2,P consists of (familiar) collections of square roots

r = {ri =
√
a− αi | 1 ≤ i ≤ 2g + 1}

with
∏2g+1

i=1 ri = −b. Each such r gives rise to ar ∈ J(K) such that

2ar = P ∈ C(K) ⊂ J(K)

(see [9, Th. 3.2]). On the other hand, for each Wl = (αl, 0) (with 1 ≤ l ≤ 2g + 1)
the sum ar+Wl is also a half of P and therefore corresponds to a certain collection
of square roots. Which one? The answer is given by Theorem 1.1. We repeat its
statement, using the new notation.

Theorem 4.1. Let P = (a, b) be a K-point on C and r = (r1, . . . , r2g, r2g+1) be a

collection of square roots ri =
√
a− αi ∈ K such that

∏2g+1
i=1 ri = −b. Let l be an

integer that satisfies 1 ≤ l ≤ 2g + 1 and let

(6) r[l] =
(

r
[l]
1 , . . . , r

[l]
2g, r

[l]
2g+1

)

∈ h−1(P ) ⊂ C̃(K)

be the collection of square roots r
[l]
i =

√
a− αi such that

(7) r
[l]
l = rl, r

[l]
i = −ri ∀ i 6= l.

Then

ar +Wl = ar[l] .
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Example 4.2. Let us take as P the point Wl = (αl, 0). Then

rl =
√
αl − αl = 0 ∀ r = (r1, . . . , r2g, r2g+1) ∈ h−1(Wl)

and therefore
r[l] = (−r1, . . . ,−r2g,−r2g+1) = −r.

It follows from Example 1.3 (if we take β = αl) that

ar +Wl = ar −Wl = ar − 2ar = −ar = ar[l] .

This proves Theorem 4.1 in the case of P = Wl. We are going to deduce the general
case from this special one.

4.3. Before starting the proof of Theorem 4.1, let us define for each collections of
signs

ε = {ǫi = ±1 | 1 ≤ i ≤ 2g + 1,

2g+1
∏

i=1

ǫi = 1}

the biregular automorphism

Tε : C̃ → C̃, zi 7→ ǫizi ∀i.
Clearly, all Tε constitute a finite automorphism group of C̃ that leaves invariant
every K-fiber of h : C̃ → C \ {∞}, acting on it transitively. Notice that if Tε
leaves invariant all the points of a certain fiber h−1(P ) with P ∈ C(K) then all the
ǫi = 1, i.e., Tε is the identity map.

Proof of Theorem 4.1. Let us put

β := αl.

Then we have

Wl = (αl, 0) = (β, 0).

Let us consider the automorphism (involution)

s[l] : C̃ → C̃, r 7→ r[l]

of C̃ defined by (6) and (7). We need to define another (actually, it will turn out
to be the same) involution (and therefore an automorphism)

t[l] : C̃ → C̃
that is defined by

at[l](r) = ar +Wl

as a composition of the following regular maps. First, r ∈ C̃(K) goes to the pair of
polynomials (Ur(x), Vr(x)) as in Remark 2.2, which is the Mumford representation
of ar (see Subsect. 2.4). Second, (Ur(x), Vr(x)) goes to the pair of polynomials
(U [β](x), V [β](x)) defined by formulas (3) and (3) in Section 3, which is the Mumford
representation of ar +Wl. Third, applying formulas (1) and (2) in Remark 2.2 to

(U [β](x), V [β](x)) (instead of (U(x), V (x))), we get at last t[l](r) ∈ C̃(K) such that

at[l](r) = ar +Wl.

Clearly, t[l] is a regular selfmap of C̃ that is an involution, which implies that t[l] is
a biregular automorphism of C̃. It is also clear that both s[l] and t[l] leave invariant
every fiber of h : C̃ → C \ {∞} and coincide on h−1(Wl), thanks to Example 4.2.

This implies that u :=
(

s[l]
)−1

t[l] is a biregular automorphism of C̃ that leaves
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invariant every fiber of h : C̃ → C \ {∞} and acts as the identity map on h−1(Wl).

The invariance of each fiber of h implies that C̃(K) coincides with the finite union

of its closed subsets C̃ε defined by the condition

C̃ε := {Q ∈ C̃(K) | u(Q) = Tε(Q)}.
Since C̃ is irreducible, the whole C̃(K) coincides with one of C̃ε. In particular, the
fiber

h−1(Wl) ⊂ C̃ε
and therefore Tε acts identically on all points of h−1(Wl). In light of arguments of
Subsect. 4.3, Tε is the identity map and therefore u acts identically on the whole
C̃(K). This means that s[l] = t[l], i.e.,

ar +Wl = ar[l] .

�

4.4. Let φ : R → F2 be a function that satisfies
∑

α∈R
φ(α) = 0, i.e. φ ∈ (FR

2 )0.
Then the finite subset

supp(φ) = {α ∈ R | φ(α) 6= 0} ⊂ R

has even cardinality and the corresponding point of J [2] is

Tφ =
∑

α∈R

φ(α)Wα =
∑

α∈supp(φ)

Wα =
∑

γ 6∈supp(φ)

Wγ .

Theorem 4.5. Let r ∈ R1/2,P . Let us define r(φ) ∈ R1/2,P as follows.

r(φ)(α) = −r(α) ∀α ∈ supp(φ); r(φ)(γ) = r(γ) ∀γ 6∈ supp(φ).

Then
ar + Tφ = ar(φ) .

Remark 4.6. If φ is identically zero then

Tφ = 0 ∈ J [2], r(φ) = r

and the assertion of Theorem 4.5 is obviously true. If αl ∈ R and φ = ψαl
, i.e.

supp(φ) = R \ {αl} then

Tφ = Wl ∈ J [2], r(φ) = r[l]

and the assertion of Theorem 4.5 follows from Theorem 4.1.

Proof of Theorem 4.5. We may assume that φ is not identically zero. We need to
apply Theorem 4.1 d times where d is the (even) cardinality of supp(φ) in order to
get r′ ∈ R1/2,P such that

ar +
∑

α∈supp(φ)

Wα = ar′ .

Let us check how many times do we need to change the sign of each r(β). First,
if β 6∈ supp(φ) then we need to change to sign of r(β) at every step, i.e., we do it
exactly d times. Since d is even, the sign of r(β) remains the same, i.e.,

r′(β) = r(β) ∀β 6∈ supp(φ).

Now if β ∈ supp(φ) then we need to change the sign of r(β) every time when we
add Wα with α 6= β and it occurs exactly (d− 1) times. On the other hand, when
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we add Wβ, we don’t change the sign of r(β). So, we change the sign of r(β) exactly
(d− 1) times, which implies that

r′(β) = −r(β) ∀β ∈ supp(φ).

Combining the last two displayed formula, we obtained that

r′ = r(φ).

�

5. Useful Lemma

As usual, we define the Kronecker delta δik as 1 if i = k and 0 if i 6= k.
The following result is probably well known but I did not find a suitable reference.

(However, see [3, Lemma 5.10] and [1, pp. 425–427].)

Lemma 5.1. Let n be a positive integer, E a field provided with n distinct discrete
valuation maps

νi : E
∗
։ Z, (i = 1, . . . , n).

For each i let Oνi ⊂ E the discrete valuation ring attached to νi and πi ∈ Oνi its
uniformizer, i.e., a generator of the maximal ideal in Oνi . Suppose that for each
i we are given a prime number pi such that the characteristic of the residue field
Oνi/πi is different from pk for all k 6= i. Let us assume also that

νi(πk) = δik ∀i, k = 1, . . . n,

i.e, each πi is a νk-adic unit if i 6= k.
Then the the quotient B = E[T1, . . . , Tn]/(T

p1

1 − π1, . . . , T
pn
n − πn) of the poly-

nomial E-algebra E[T1, . . . Tn] by the ideal generated by all T pi

i − πi is a field that
is an algebraic extension of E of degree

∏n
i=1 pi. In addition, the set of monomials

S = {
n
∏

i=1

T ei
i | 0 ≤ ei ≤ pi − 1} ⊂ E[T1, . . . Tn]

maps injectively into B and its image is a basis of the E-vector space B.

Remark 5.2. By definition of a uniformizer, νi(πi) = 1 for all i.

Proof of Lemma 5.1. First, the cardinality of S is
∏n

i=1 pi and the image of S gen-
erates B as the E-vector space. This implies that if the E-dimension of B is

∏n
i=1 pi

then the image of S is a basis of the E-vector space B. Second, notice that for each
i the polynomial T pi − πi is irreducible over E, thanks to the Eisenstein criterion
applied to νi and therefore E[Ti]/(T

pi − πi) is a field that is an algebraic degree
pi extension of E. In particular, the E-dimension of E[Ti]/(T

pi − πi) is pi. This
proves Lemma for n = 1.

Induction by n. Suppose that n > 1 and consider the finite degree pi field
extension En = E[Tn]/(T

pn − πn) of E.
Clearly, the E-algebra B is isomorphic to the quotient En[T1, . . . Tn−1]/(T

p1

1 −
π1, . . . , T

pn−1

n−1 − πn−1) of the polynomial ring En[T1, . . . Tn−1] by the ideal gener-
ated by all polynomials T pi

i − πi with i < n. Our goal is to apply the induction
assumption to En instead of E. In order to do that, let us consider for each i < n
the integral closure Õi of Oνi in En. It is well known that Õi is a Dedekind ring.
Our conditions imply that En/E is unramified at all νi for all i < n. This means
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that if Pi is a maximal ideal of Õi that contains πiÕi (such an ideal always exists)
and

ordPi
: E∗

n ։ Z

is the discrete valuation map attached to Pi then the restriction of ordPi
to E∗

coincides with νi. This implies that for all positive integers i, k ≤ n− 1

ordPi
(πk) = νi(πk) = δik.

In particular,

ordPi
(πi) = νi(πi) = 1,

i.e, πi is a uniformizer in the corresponding discrete valuation (sub)ring OordPi
of

En attached to ordPi
. Now the induction assumption applied to En and its (n− 1)

discrete valuation maps ordPi
(1 ≤ i ≤ n−1) implies that B/En is a field extension

of degree
∏n−1

i=1 pi. This implies that the degree

[B : E] = [B : En][En : E] =

(

n−1
∏

i=1

pi

)

pn =

n
∏

i=1

pi.

This means that the E-dimension of B is
∏n

i=1 pi and therefore the image of S is
a basis of the E-vector space B. �

Corollary 5.3. We keep the notation and assumptions of Lemma 5.1. Let R be
a subring of E that contains 1 and all πi (1 ≤ i ≤ n). Then the quotient BR =
R[T1, . . . , Tn]/(T

p1

1 − π1, . . . , T
pn
n − πn) of the polynomial R-algebra R[T1, . . . , Tn]

by the ideal generated by all T pi

i − πi has no zero divisors.

Proof. There are the natural homomorphisms of R-algebras

R[T1, . . . Tn] ։ BR → B

such that the first homomorphism is surjective and the injective image of

S ⊂ R[T1, . . . Tn] ⊂ E[T1, . . . Tn]

in B is a basis of the E-vector space B. On the other hand, the image of S generates
BR as R-module. It suffices to prove that BR → B is injective, since B is a field
by Lemma 5.1.

Suppose that u ∈ BR goes to 0 in B. Clearly, u is a linear combination of (the
images of) elements of S with coefficients in R. Since the image of u in B is 0, all
these coefficients are zeros, i.e., u = 0 in BR. �

Example 5.4. We use the notation of Section 4. Let us put n = 2g + 1, R =
K[x], E = K(x), πi = x− αi, pi = 2 and let

νi : E
∗ = K(x)∗ ։ Z

be the discrete valuation map of the field of rational functions K(x) attached to

αi. Then K[C̃] = BR/N (BR) where N (BR) is the nilradical of BR. It follows from

Corollary 5.3 that N (BR) = {0} and K[C̃] has no zero divisors, i.e., C̃ is irreducible.
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Stutgart, 1984.

[5] M. Stoll, Arithmetic of Hyperelliptic Curves. Available at Summer Semester 2014, Uni-
versity of Bayreuth. http://www.mathe2.uni-bayreuth.de/stoll/teaching/ArithHypKurven-
SS2014/Skript-ArithHypCurves-pub-screen.pdf .

[6] E. Schaefer, 2-descent on the Jacobians of hyperelliptic curves. J. Number Theory 51 (1995),
no. 2, 219–232.

[7] J.-P. Serre, Algebraic groups and class fields. Graduate Texts in Math. 117, Springer-Verlag,
New York, 1988.

[8] L.C. Washington, Elliptic Curves: Number Theory and Cryptography. Second edition. Chap-
man & Hall/CRC Press, Boca Raton London New York, 2008.

[9] Yu. G. Zarhin, Division by 2 on odd degree hyperelliptic curves and their jacobians. Izvestiya
RAN 83:3 (2019), 93–112; Izvestiya Mathematics 83:3 (2019), 501–520.

Pennsylvania State University, Department of Mathematics, University Park, PA

16802, USA

E-mail address: zarhin@math.psu.edu


