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HIGHER WIDTH MOONSHINE

MADELINE LOCUS DAWSEY* AND KEN ONO

Abstract. Weak moonshine for a finite group G is the phenomenon where an infinite dimen-
sional graded G-module

VG =
⊕

n≫−∞

VG(n)

has the property that its trace functions, known as McKay-Thompson series, are modular
functions. Recent work by DeHority, Gonzalez, Vafa, and Van Peski established that weak
moonshine holds for every finite group. Since weak moonshine only relies on character tables,
which are not isomorphism class invariants, non-isomorphic groups can have the same McKay-
Thompson series. We address this problem by extending weak moonshine to arbitrary width
s ∈ Z+. For each 1 ≤ r ≤ s and each irreducible character χi, we employ Frobenius’ r-

character extension χ
(r)
i

: G(r) → C to define width r McKay-Thompson series for V
(r)
G

:=

VG × · · · × VG (r copies) for each r-tuple in G(r) := G × · · · × G (r copies). These series are
modular functions which then reflect differences between r-character values. Furthermore, we
establish orthogonality relations for the Frobenius r-characters, which dictate the compatibility
of the extension of weak moonshine for VG to width s weak moonshine.

1. Introduction and Statement of Results

The Monstrous Moonshine Conjecture of Conway and Norton [4] offered a surprising relation-
ship between the largest sporadic simple group, the monster M, and modular functions. The
conjecture extended the observation of McKay and Thompson that the first few coefficients of

(1.1) J(τ) := j(τ)− 744 = q−1 + 196884q + 21493760q2 +O
(

q3
)

,

the Hauptmodul for SL2(Z) with q := e2πiτ and τ ∈ H, are simple sums of the dimensions of
the 194 irreducible representations of M. For example, if we let χ1, χ2, χ3 denote the first three
(ordered by dimension) irreducible characters of M, then we have

1 = χ1(1),

196884 = 1 + 196883 = χ1(1) + χ2(1),

21493760 = 1 + 196883 + 21296876 = χ1(1) + χ2(1) + χ3(1).

Thompson [18, 19] made the conjecture that there is a graded, infinite-dimensional M-module

V ♮ =
⊕

n≥−1

V ♮(n)

whose graded dimensions dimV ♮(n) are the Fourier coefficients of J(τ). Conway and Norton [4]
then formulated the overarching Monstrous Moonshine Conjecture, the assertion that, for each
g ∈ M, there is a genus zero subgroup Γg ⊆ SL2(R) such that the graded trace function

Tg(τ) :=
∑

n≥−1

Tr
(

g|V ♮(n)
)

qn,
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2 DAWSEY AND ONO

called the McKay-Thompson series, is the Hauptmodul for Γg. Borcherds [1] famously proved
this conjecture in 1992.

In the aftermath of Borcherds’ work, further examples of “moonshine” have been obtained.
Monstrous moonshine was extended, giving rise to Norton’s Generalized Moonshine conjecture
and Ryba’s Modular Moonshine conjecture (see [2]). The McKay-Thompson series have even
been mock modular forms, illustrating that there are many more types of moonshine than
mathematicians and physicists initially thought. Duncan, Griffin, and the second author gave
a survey [8] of the advancements in the theory of moonshine and its applications to physics as
of 2015, including their proof [9] of the Umbral Moonshine Conjecture of Cheng, Duncan and
Harvey [3]. Along these lines, there has been a flurry of recent work (for example, see [10,14]).

In 2017, DeHority, Gonzalez, Vafa, and Van Peski [7] examined the question of the extent
to which dimensions of irreducible representations of finite groups and Fourier coefficients of
modular functions are related. They proved (see Theorem 1.1 of [7]) that the seemingly rare
phenomenon of moonshine holds for every single finite group if we relax certain requirements.
Namely, for every finite group G there is an infinite-dimensional graded G-module

(1.2) VG =
⊕

n∈{−d}∪Z+

VG(n),

for sufficiently large d > 0, such that the McKay-Thompson series for each g ∈ G is a weakly
holomorphic1 modular function. We refer to this generalization as weak moonshine.

Remark. Monstrous moonshine, and other strong examples of moonshine, are equipped with
a rich algebra structure, typically as vertex operator algebras. Recent work by Evans and
Gannon [11] offers such moonshine for any finite solvable group G and cohomology class in
H4(G,Z).

Unfortunately, two non-isomorphic groups can have the same moonshine. This arises from
the fact that weak moonshine depends only on character tables, which do not uniquely de-
termine a group (for example, consider the dihedral group D4 and the quaternion group Q8).
This problem is acute for Brauer pairs, pairs of non-isomorphic finite groups which admit an
isomorphism of character tables that preserves power maps on conjugacy classes. A classic the-
orem of Dade [6] proves that there are infinitely many Brauer pairs.2 Therefore, it is natural
to ask for extensions of weak moonshine that distinguish such groups.

To answer this question, we make use of the generalized, “higher width” group characters
defined by Frobenius in [13]. Let G be a finite group, and let ρ1, . . . , ρt be the irreducible
representations of G; i.e., each ρi is a group homomorphism ρi : G → GL(Vi) for some C-
vector space Vi. Let χ1, . . . , χt be the irreducible characters of G, which are the class functions
χi : G → C defined by χi(g) := Tr (ρi(g)) for all g ∈ G.

We now turn to the Frobenius r-characters. For r ∈ Z+, we let G(r) := G×· · ·×G (r copies).
If χ is an irreducible character, then its r-character generalizations are defined by letting
χ(1)(g) := χ(g), χ(2) (g1, g2) := χ (g1)χ (g2)− χ (g1g2) , and for r ≥ 3 by the recursive relation

χ(r)
(

g1, . . . , gr
)

:= χ (g1)χ
(r−1) (g2, . . . , gr)(1.3)

− χ(r−1) (g1g2, . . . , gr)− χ(r−1) (g2, g1g3, . . . , gr)− · · · − χ(r−1) (g2, . . . , g1gr) .

For many years, the problem of determining the role of the Frobenius r-characters in group
theory remained open. Namely, to what extent do Frobenius r-characters uniquely determine

1A weakly holomorphic modular function is allowed to have poles at cusps.
2Dade’s theorem offers infinitely many Brauer pairs among p-groups.
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a group up to isomorphism? Hoehnke and Johnson [15, 16] gave the very satisfying answer
that a group is uniquely determined by its 1, 2, and 3-characters. Therefore, the goal here is
to construct an extension of weak moonshine that also makes use of the 2 and 3-characters. It
turns out to be quite simple.

We proceed with this goal in mind. Suppose that G satisfies weak moonshine with VG as in
(1.2). For 1 ≤ i ≤ t, we let mi(n) denote the multiplicity of the representation space for ρi in
VG(n). For g ∈ G, weak moonshine asserts that the McKay-Thompson series

Tg(τ) :=
∑

n≫−∞

Tr(g|VG(n))q
n =

∑

n≫−∞

∑

1≤i≤t

mi(n)χi(g)q
n

are modular functions.
To extend this moonshine, we assemble width r McKay-Thompson series using r-characters.

If 1 ≤ r ≤ s and g := (g1, . . . , gr) ∈ G(r), then we define the r-Frobenius of g on V
(r)
G (n) :=

VG(n)× · · · × VG(n) (r copies) by

(1.4) Frobr
(

g;n
)

:=
∑

1≤i≤t

mi(n)χ
(r)
i

(

g
)

.

For each 1 ≤ r ≤ s and each g ∈ G(r), we define the width r McKay-Thompson series

(1.5) T
(

r, g; τ
)

:=
∑

n≫−∞

Frobr

(

g;n
)

qn.

Definition. We say that G has width s ≥ 1 weak moonshine if for each 1 ≤ r ≤ s and
each g ∈ G(r) we have that T

(

r, g; τ
)

is a weakly holomorphic modular function.

Remark. If r = 1, then we have Frob1(g;n) = Tr (g|VG(n)) . In particular, if g = e is the
identity, then the graded dimensions dimVG(n) are the coefficients of T (1, e; q) = Te(τ).

Weak moonshine is complete if for each 1 ≤ i ≤ t there is a nonzero mi(n). Thanks to
standard facts about modular functions, complete weak moonshine has the property, for each
i, that mi(n) > 0 for infinitely many n. The deepest examples of moonshine are asymptotically
regular, a feature of monstrous moonshine which was confirmed in 2015 [8]. A moonshine
module VG is asymptotically regular if for each 1 ≤ i ≤ t we have that

(1.6) lim
n→∞

mi(n)
∑t

j=1mj(n)
=

dimχi
∑t

j=1 dimχj

.

We obtain the following theorem regarding the existence of width s ≥ 1 weak moonshine.

Theorem 1.1. If G is a finite group and s ∈ Z+, then weak moonshine for G extends to width
s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine for
every s ∈ Z

+.

Remark. We note that χ
(r)
i vanishes if r > dim(χi). Therefore, these moonshine modules are

trivial for sufficiently large s.

Remark. We can replace weakly holomorphic modular functions with weakly holomorphic mod-
ular forms of arbitrary weight k, in which case we refer to this moonshine as width s and weight k
weak moonshine. Furthermore, we can choose each T (1, g; τ) to be on the congruence subgroup
Γ0(ord(g)), where ord(g) is the order of g in G.

Remark. It would be very interesting to refine the notion of higher width moonshine that allows
one to reconstruct character tables from the Fourier expansions of McKay-Thompson series.
The results described here are insufficient in this regard.
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It is important to understand the algebraic compatibility of the higher width McKay-
Thompson series

(

i.e. T
(

r, g; τ
)

with r ≥ 2
)

under these extensions. In particular, these
series should satisfy relations which reveal the structure of the seed module VG. In this direc-
tion, we turn to the problem of computing the multiplicities mi(n) of the representation spaces
for the irreducible representations ρi in the nth graded components VG(n). The following the-
orem illustrates the compatibility of weak moonshine for VG when extended to width s. In
short, the multiplicity generating functions are compatible with the McKay-Thompson series
T
(

r, g; τ
)

.

Theorem 1.2. Suppose that width s weak moonshine holds for a finite group G with irreducible
characters χ1, . . . , χt and McKay-Thompson series

{

T
(

r, g; τ
)

: 1 ≤ r ≤ s and g ∈ G(r)
}

.

If 1 ≤ r ≤ s and dimχi ≥ r, then the multiplicity generating function for ρi in VG satisfies

Mi(τ) :=
∑

n≫−∞

mi(n)q
n =

(dimχi)
r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑

g∈G(r)

χ
(r)
i

(

g
)

T
(

r, g; τ
)

.

Theorem 1.2 is obtained from new general results on the orthogonality of the Frobenius
r-characters. In Section 2 we develop these relations, completing work initiated by Frobenius,
Hoehnke, and Johnson [13,15–17]. These results are of independent interest in character theory.

In Section 3 we prove Theorem 1.1 and Theorem 1.2. In the last section we examine a
coincidental weak moonshine for D4 and Q8, and we illustrate how its width 2 extension
distinguishes these groups.

Acknowledgements

The authors thank John Duncan, Michael Mertens, Larry Rolen, Matt Tyler and the referees
for their helpful discussions. The second author thanks the National Science Foundation and
the Asa Griggs Candler Fund.

2. Orthogonality of Frobenius r-characters

Throughout, let G be a finite group, and let ρ1, . . . , ρt and χ1, . . . , χt be as above. Classical
work of Schur (for example, see [5]) asserts that if χ is nontrivial, then

∑

g∈G

χ(g) = 0,(2.1)

and offers the following orthogonality relations:
∑

g∈G

χi(g)χj(g) = |G|δij,(2.2)

where δij is the usual Kronecker delta function.
It is a natural problem to determine the orthogonality relations of the Frobenius r-characters

for r > 1. Frobenius, Hoehnke, and Johnson [13, 15–17] obtained some parts of this theory.
Here we obtain the remaining relations, results which are of independent interest. Generalizing
(2.2), we obtain the full orthogonality relations.
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Theorem 2.1. If G is a finite group with irreducible characters χ1, . . . , χt and 1 ≤ i, j ≤ t,
then for any r ≥ 1 we have that

∑

g∈G(r)

χ
(r)
i

(

g
)

χ
(r)
j

(

g
)

=
r!|G|rδij

(dimχi)
r−1 (dimχi − 1) · · · (dimχi − (r − 1)) .

Remark. If r = 1, then we consider the product (dimχi − 1) · · · (dimχi − (r − 1)) to be empty,
and we set the empty product to be 1. This gives the usual 1-character relation (2.2).

Remark. Theorem 2.1 when i 6= j was obtained earlier by Johnson (see Theorem 2.1 of [17]).

2.1. Some lemmas. We require preliminary lemmas about characters to prove Theorem 2.1.

Lemma 2.2. If χi is an irreducible character of G, and h1, h2 ∈ G, then the following are true:

(1) We have that
∑

g∈G

χi

(

gh1g
−1h−1

2

)

=
χi (h1)χi (h2)|G|

dimχi

.

(2) If χj is an irreducible character of G, then we have that

∑

g∈G

χi (h1g)χj (gh2) =
χi

(

h1h
−1
2

)

|G|δij

dimχi
.

Lemma 2.2 (1) was proved by Feit in [12, equation (5.5)]. We now recall a classical result
of Schur which will aid in the proof of Lemma 2.2 (2). The representations ρ1, ρ2, . . . , ρt can
be viewed as matrix representations ρi : G → GLmi

(C), where mi = dimρi for each 1 ≤ i ≤ t.
Namely, for each 1 ≤ i ≤ t and each g ∈ G, there is a corresponding matrix

(2.3) ρi(g) =:
[

a
(i)
jk (g)

]

1≤j,k≤mi

.

In particular, the image of the character χi for all g ∈ G is given as the trace

(2.4) χi(g) =
∑

1≤j≤mi

a
(i)
jj (g).

The following classic result of Schur (see Chapter 5 of [5]) gives the key relationship between
two representations which leads to all of the orthogonality relations between two characters.

Lemma 2.3 (Schur’s Lemma). Let G be a finite group, and let V and W be C-vector spaces
underlying ordinary irreducible representations of G. If f : V → W is a G-linear map, then f
is a scalar multiple of the identity map if V ∼= W and f = 0 if V 6∼= W .

In preparation for the proof of Lemma 2.2 (2), we let χi and χj be irreducible characters of
G, we let C be an arbitrary mi ×mj matrix, and we define the matrix BC by

(2.5) BC :=
∑

g∈G

ρi(g)Cρj
(

g−1
)

.

Since ρi and ρj are homomorphisms, it follows easily that ρi(h)BC = BCρj(h) for all h ∈ G.
Therefore, by Schur’s Lemma we have that

(2.6) BC =

{

0, if i 6= j,

bi(C) · I if i = j,
,

where bi(C) ∈ C, and I is the identity matrix of rank dimχi.
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Proof of Lemma 2.2 (2). To prove the claim, we shall make repeated use of (2.5) and (2.6).
Choose an arbitrary mi ×mj matrix C, and denote its entries by C := [cst]. We observe that

∑

g∈G

∑

1≤s≤mi

∑

1≤t≤mj

a(i)ws(g)csta
(j)
tz

(

g−1
)

= bi(C)δijδwz.

Since BC is a diagonal matrix, if C = C(x, y) = [cst] is defined for given x ≤ mi, y ≤ mj by
cst = δsxδty, then we have that

(2.7)
∑

g∈G

a(i)wx(g)a
(j)
yz

(

g−1
)

= bi(C(x, y))δijδwz.

Obviously, if i 6= j, then this expression vanishes, and so we consider the case where i = j, and
this becomes

∑

g∈G

a(i)wx(g)a
(i)
yz

(

g−1
)

= bi (C(x, y)) δwz.

The constant bi (C(x, y)) seems to depend on the choice of x and y. However, notice by replacing
g by h−1, this gives

∑

h∈G

a(i)yz (h)a
(i)
wx

(

h−1
)

= bi (C(x, y)) δwz = bi (C(w, z)) δxy,

which holds for all x, y, w, and z. The δxy term on the right hand side forces the left hand
side to be zero unless x = y, in which case bi(C(x, y)) = bi(C(x, x)). The δwz term similarly
implies that bi(C(w, z)) = bi(C(w,w)). If bi(C(w,w)) = bi(C(x, x)) for all x and all w, then
bi(C) must be a constant which depends only on χi.

Returning to the general case where i might not equal j, since ρi is a homomorphism, we
have

(2.8) a(i)sx (h1g) =
∑

1≤w≤mi

a(i)sw (h1) a
(i)
wx(g).

We multiply (2.7) by a
(i)
sw (h1) and sum on w to obtain

∑

g∈G

a(j)yz

(

g−1
)

∑

1≤w≤mi

a(i)sw (h1) a
(i)
wx(g) = bi(C)δijδxy

∑

1≤w≤mi

δwza
(i)
sw (h1) ,

which by (2.8) gives

(2.9)
∑

g∈G

a(i)sx (h1g) a
(j)
yz

(

g−1
)

= a(i)sz (h1) bi(C)δijδxy.

Similarly, we observe that

(2.10) a
(j)
tz

(

h−1
2 g−1

)

=
∑

1≤y≤mj

a
(j)
ty

(

h−1
2

)

a(j)yz

(

g−1
)

,

so we multiply (2.9) by a
(j)
ty

(

h−1
2

)

and sum on y to obtain

(2.11)
∑

g∈G

a(i)sx (h1g) a
(j)
tz

(

h−1
2 g−1

)

= a(i)sz (h1) a
(j)
tx

(

h−1
2

)

bi(C)δij .

Now choose x = s and z = t so that we have
∑

g∈G

a(i)ss (h1g) a
(j)
tt

(

h−1
2 g−1

)

= a
(i)
st (h1) a

(j)
ts

(

h−1
2

)

bi(C)δij .
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This becomes a statement about the group characters if we sum on both s and t to obtain

∑

1≤s≤mi
1≤t≤mj

∑

g∈G

a(i)ss (h1g) a
(j)
tt

(

h−1
2 g−1

)

=
∑

g∈G

[

∑

1≤s≤mi

a(i)ss (h1g)

]





∑

1≤t≤mj

a
(j)
tt

(

h−1
2 g−1

)





on the left hand side and

∑

1≤s≤mi
1≤t≤mj

a
(i)
st (h1) a

(j)
ts

(

h−1
2

)

bi(C)δij = bi(C)δij
∑

1≤s≤mi





∑

1≤t≤mj

a
(i)
st (h1) a

(j)
ts

(

h−1
2

)





= bi(C)δij
∑

1≤s≤mi

a(i)ss

(

h1h
−1
2

)

on the right. By definition, since χ (g−1) = χ(g), we obtain

(2.12)
∑

g∈G

χi (h1g)χj (gh2) = χi

(

h1h
−1
2

)

bi(C)δij.

Finally, we determine bi(C). If i 6= j, then bi(C) = 0 by Schur’s Lemma. If i = j, then we set
h1 = h2 = 1 in (2.12) and apply (2.2) to obtain

|G| =
∑

g∈G

χi(g)χi(g) = bi(C)mi.

Therefore bi(C) = |G|/dimχi, and this completes the proof. �

2.2. r-character theory and the proof of Theorem 2.1. Here we recall some basic facts
about r-characters, and we then use the results of the previous subsection to prove Theorem 2.1.

If r ≥ 2, then (1.3) offers a recursive formula for r-characters. For r = 2 and 3, if χ is an
irreducible character, then we find that χ(2) (g1, g2) = χ (g1)χ (g2)− χ (g1g2) and

χ(3) (g1, g2, g3) = χ (g1)χ (g2)χ (g3)− χ (g1)χ (g2g3)− χ (g3)χ (g1g2)

− χ (g2)χ (g1g3) + χ (g1g2g3) + χ (g2g1g3) .

For dimension r ≥ 2, these characters can be identically zero (see [15, p. 244]).

Lemma 2.4. Let G be a finite group. If χ is an irreducible character of G and r > dimχ, then
χ(r)

(

g
)

= 0 for all g ∈ G(r).

Generalizing (2.1), we obtain the following lemma.

Lemma 2.5. Let G be a finite group. If χ is a nontrivial irreducible character of G, then for
any integer r ≥ 1, we have that

∑

g∈G(r)

χ(r)
(

g
)

= 0.

Proof. When r = 1, the result is simply (2.1). Now, assume for r ≥ 1 that
∑

g1,...,gr∈G

χ
(r)
i (g1, . . . , gr) = 0.

Since G(r+1) = G×G(r), (1.3) implies that
∑

(g1,...,gr+1)∈G(r+1)

χ
(r+1)
i (g1, . . . , gr+1) =

∑

g1∈G

χi (g1)
∑

(g2,...,gr+1)∈G(r)

χ
(r)
i (g2, . . . , gr+1)



8 DAWSEY AND ONO

−
∑

g1∈G

[

∑

(g2,...,gr+1)∈G(r)

χ
(r)
i (g1g2, g3, . . . , gr+1)−

∑

(g2,...,gr+1)∈G(r)

χ
(r)
i (g2, g1g3, . . . , gr+1)

− · · · −
∑

(g2,...,gr+1)∈G(r)

χ
(r)
i (g2, g3, . . . , g1gr+1)

]

.

The bracketed expression inside the sum over g1 is the sequential shift of the location of g1
through the elements g2, . . . , gr+1. The induction hypothesis and the observation that g1gj
varies over G as gj varies over G then imply the result. �

We are now able to prove Theorem 2.1.

Proof of Theorem 2.1. If i 6= j, then it follows from [17, Theorem 2.1] that the sum is zero.
Also, if G is abelian, then G has only one-dimensional characters, so the sum is zero for all
r > 1 by Lemma 2.4.

For the remainder of the proof, we assume that G is non-abelian and that i = j, and we let
χ = χi for simplicity. We prove Theorem 2.1 by writing the r-character χ(r) in terms of the
action of the symmetric group Sr on products of χ-values. For σ ∈ Sr, let n(σ) be the number
of disjoint cycles in σ, including 1-cycles, and denote

(2.13) σ = (aσ1 (1), . . . , a
σ
1 (k

σ
1 )) (a

σ
2 (1), . . . , a

σ
2 (k

σ
2 )) · · ·

(

aσn(σ)(1), . . . , a
σ
n(σ)

(

kσ
n(σ)

))

.

The cycles have length kσ
1 , k

σ
2 , . . . , k

σ
n(σ), and as sets

{1, 2, . . . , r} =
{

aσ1 (1), . . . , a
σ
1 (k

σ
1 ) , a

σ
2 (1), . . . , a

σ
2 (k

σ
2 ) , . . . , a

σ
n(σ)(1), . . . , a

σ
n(σ)

(

kσ
n(σ)

)}

.

With this notation, it is easy to see that (1.3) (also see p. 301 of [17]) can be iterated to obtain
the following formulas for values of r-characters as products of χ-values. We abuse notation
and write a for ga.

χ(r) (g1, . . . , gr) =
∑

σ∈Sr

sgn(σ)χ (aσ1 (1) · · ·a
σ
1 (k

σ
1 )) · · ·χ

(

aσn(σ)(1) · · ·a
σ
n(σ)

(

kσ
n(σ)

))

.

Using the notation above, the sum in Theorem 2.1 can now be rewritten, where g = (g1, . . . , gr),
as

Ω :=
∑

g∈G(r)

χ(r)
(

g
)

χ(r)
(

g
)

=
∑

g=(g1,...,gr)∈G(r)

χ(r) (g1, . . . , gr)χ(r) (g1, . . . , gr)

=
∑

σ,τ∈Sr

sgn(σ)sgn(τ)
∑

g∈G(r)

χ (aσ1 (1) · · ·a
σ
1 (k

σ
1 )) · · ·χ

(

aσn(σ)(1) · · ·a
σ
n(σ)

(

kσ
n(σ)

))

(2.14)

× χ (aτ1(1) · · · a
τ
1 (k

τ
1 )) · · ·χ

(

aτn(τ)(1) · · ·a
τ
n(τ)

(

kτ
n(τ)

))

.

Now observe without loss of generality that we may order the cycles so that gr is in the last

cycles
(

aσn(σ)(1), . . . , a
σ
n(σ)

(

kσ
n(σ)

))

and
(

aτn(τ)(1), . . . , a
τ
n(τ)

(

kτ
n(τ)

))

. Therefore, it follows that

Ω =
∑

σ,τ∈Sr

sgn(σ)sgn(τ)
∑

g1,...,gr−1∈G

[

χ (aσ1 (1) · · ·a
σ
1 (k

σ
1 )) · · ·χ

(

aσn(σ)−1(1) · · ·a
σ
n(σ)−1

(

kσ
n(σ)−1

))

× χ (aτ1(1) · · ·a
τ
1 (k

τ
1)) · · ·χ

(

aτn(τ)−1(1) · · ·a
τ
n(τ)−1

(

kτ
n(τ)−1

))

]
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×
∑

gr∈G

χ
(

aσn(σ)(1) · · ·a
σ
n(σ)

(

kσ
n(σ)

))

χ
(

aτn(τ)(1) · · ·a
τ
n(τ)

(

kτ
n(τ)

))

.

This last inner sum on gr can be evaluated by Lemma 2.2. We assume without loss of generality
that the sum over gr is of the form

∑

gr
χ (A(σ) · gr)χ (gr · A(τ)), where we use A(σ), A(τ) to

denote the products of the remaining elements of G in this particular sum which of course
depend on σ and τ (respectively). Lemma 2.2 then eliminates gr from the sum and results
in χ (A(σ) · A(τ)−1) multiplied by |G|/dimχ. This leaves a sum on g1, . . . , gr−1, where each of
these elements appears in exactly one χ and exactly one χ, before possible cancellations. If
applying Lemma 2.2 results in the cancellation of a group element

(

for example, if the rightmost

element of A(σ) is the inverse of the leftmost element of A(τ)−1
)

, then the sum over that group
element is simply the sum of 1 over all elements in the group, so it contributes |G|.

To complete the proof, we repeat this argument one-by-one, first with gr−1, then gr−2, and
so on. By applying the appropriate 1-character orthogonality relation for each of the remaining
inner sums, we find that if we write the product στ−1 = x1x2x3 · · · into disjoint cycles, and if
we define

m(σ, τ) :=
∑

1≤j≤n(στ−1)

[length (xj)− 1] ,

then we have that

(2.15) Ω =
∑

σ,τ∈Sr

sgn(σ)sgn(τ)
|G|r

(dimχ)m(σ,τ)
.

It remains to show that

(2.16)
∑

σ,τ∈Sr

sgn(σ)sgn(τ)
|G|r

(dimχ)m(σ,τ)
=

r!|G|r

(dimχ)r−1
(dimχ− 1) · · ·

(

dimχ− (r − 1)
)

.

Recall that the Stirling numbers of the first kind [20, (3.5.2), p.82], denoted
[

n
k

]

, count the
number of permutations of n with exactly k disjoint cycles and are defined by the generating
function

n
∑

k=0

(−1)n−k

[

n

k

]

xk = x(x− 1)(x− 2) · · · (x− n+ 1).

The coefficient of (dimχ)i in the product (dimχ− 1) · · · (dimχ − (r − 1)) is (−1)r−i
[

r
i

]

/dimχ,
and so the coefficient of 1/(dimχ)r−i on the right-hand side of (2.16) is

(−1)r−i

[

r

i

]

r!|G|r.

Now, it suffices to show that the coefficient of 1/(dimχ)r−i in the sum

(2.17)
∑

σ,τ∈Sr

sgn(σ)sgn(τ)
1

(dimχ)m(σ,τ)

is (−1)r−i
[

r
i

]

r!. We rewrite m(σ, τ) as

m(σ, τ) =
∑

1≤j≤n(στ−1)

length (xj)− n
(

στ−1
)

= r − n
(

στ−1
)

,

since στ−1 = x1x2 · · ·xn(στ−1) is a product of disjoint cycles, including fixed points. We must
evaluate the term of the sum (2.17) corresponding to n (στ−1) = i. For fixed σ ∈ Sr, the number
of τ ∈ Sr such that n (στ−1) = i is equal to the number of τ ∈ Sr that can be written as a
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product of i disjoint cycles, since {στ−1 : τ ∈ Sr} = Sr as sets. Therefore, for fixed σ, there are
[

r
i

]

such τ ∈ Sr. Since there are r! possibilities for σ, we have that there are a total of
[

r
i

]

r! pairs

(σ, τ) ∈ S
(2)
r such that n (στ−1) = i. We now show that the product of signatures sgn(σ)sgn(τ)

for each such pair (σ, τ) equals (−1)r−i. Since sgn(σ)sgn(τ) = sgn (στ−1), it suffices to evaluate
sgn (στ−1) for each such (σ, τ). Suppose that in the decomposition στ−1 = x1x2 · · ·xi, there are
nℓ ℓ-cycles for each 1 ≤ ℓ ≤ r and one additional cycle, say xk, that is not written in this way.
Then we have that

∑

1≤ℓ≤r nℓ = i− 1, and the composition of all of the ℓ-cycles with xk makes

up στ−1. The composition of all ℓ-cycles except xk has signature (−1)
∑

2≤ℓ≤r nℓ(ℓ−1), where the
sum begins with ℓ = 2 since fixed points do not contribute to signature. The remaining cycle

xk has length r−
(
∑

1≤ℓ≤r nℓℓ
)

, so its signature is (−1)r−(
∑

1≤ℓ≤r nℓℓ)−1. Therefore, we have that

sgn
(

στ−1
)

= (−1)
∑

2≤ℓ≤r nℓ(ℓ−1)+r−(
∑

1≤ℓ≤r nℓℓ)−1 = (−1)r−i.

Thus, the coefficient of 1/(dimχ)r−i in the sum (2.17) is

(−1)r−i

[

r

i

]

r!.

This completes the proof. �

3. Proofs of Theorems 1.1 and 1.2

We now prove Theorems 1.1 and 1.2. Theorem 1.1 guarantees that weak moonshine can
be extended to width s. Theorem 1.2 shows that the higher width orthogonality relations for
Frobenius r-characters are compatible with width s weak moonshine. Namely, we show how to
determine the multiplicity generating functions for the representation space for each nontrivial
ρi in the graded G-module VG using the higher width McKay-Thompson series.

3.1. Proof of Theorem 1.1. By the Schur orthogonality relations for 1-characters, the mul-
tiplicity generating functions are given by

(3.1) Mi(τ) :=
∑

n≫−∞

mi(n)q
n =

∑

n≫−∞

1

|G|

∑

g∈G

χi(g)Frob1(g;n)q
n =

1

|G|

∑

g∈G

χi(g)T (1, g; τ).

Theorem 1.1 of [7] guarantees that there is a G-module VG =
⊕

n VG(n), q-graded traces
T (1, g; τ) which are modular functions for all g ∈ G, and non-negative integer multiplicities
mi(n) for the representation spaces of each ρi in VG(n). Moreover, the results in Section 5
of [7] guarantee that VG can be chosen to be asymptotically regular. Therefore, it suffices to

construct the McKay-Thompson series for V
(r)
G for r > 1. By the definitions of the generalized

graded trace functions and the r-Frobenius of g ∈ G(r) on V
(r)
G (n), for each 1 ≤ r ≤ s we have

T
(

r, g; τ
)

=
∑

n≫−∞

Frobr
(

g;n
)

qn =
∑

n≫−∞

∑

1≤j≤t

mj(n)χ
(r)
j

(

g
)

qn =
∑

1≤j≤t

χ
(r)
j

(

g
)

Mj(τ).

Since all of the Mj(τ) are modular functions by (3.1), we must have that the T
(

r, g; τ
)

are

modular functions as well for each g ∈ G(r). �
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3.2. Proof of Theorem 1.2. The multiplicity generating functionsMi(τ) =
∑

n≫−∞mi(n)q
n

may be expressed in terms of the T
(

r, g; τ
)

when dimχi ≥ r. By Theorem 2.1, we have that

Mi(τ) =
∑

n≫−∞

(dimχi)
r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑

g∈G(r)

χ
(r)
i

(

g
)

∑

1≤j≤t

mj(n)χ
(r)
j

(

g
)

qn

=
∑

n≫−∞

(dimχi)
r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑

g∈G(r)

χ
(r)
i

(

g
)

Frobr
(

g;n
)

qn

=
(dimχi)

r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑

g∈G(r)

χ
(r)
i

(

g
)

T
(

r, g; τ
)

.

Therefore, the number of copies of the representation space for ρi in all of the graded compo-

nents V
(r)
G (n) for all 1 ≤ r ≤ dimχi are given as the Fourier coefficients of the above linear

combination of the modular McKay-Thompson series. �

4. Example: D4 and Q8

The dihedral group D4 and the quaternion group Q8, given by

D4 = {1, r, r2, r3, s, rs, r2s, r3s} and Q8 = {1,−1, i,−i, j,−j, k,−k},

have the same character table.

Table 1. Character Table for D4 and Q8

D4 {1} {r2} {r, r3} {s, r2s} {rs, r3s}

Q8 {1} {−1} {i,−i} {j,−j} {k,−k}

C1 C2 C3 C4 C5

χ1 1 1 1 1 1

χ2 1 1 −1 1 −1

χ3 1 1 −1 −1 1

χ4 1 1 1 −1 −1

χ5 2 −2 0 0 0

We abused notation by letting C1, C2, C3, C4, and C5 denote the five conjugacy classes of both
D4 and Q8. In both cases C1 and C2 contain a single group element, while the other conjugacy
classes contain 2 group elements.
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These groups share weak moonshine where the McKay-Thompson series are the Haupt-
moduln for Γ0(1), Γ0(2), and Γ0(4). For convenience, we let f1(τ), f2(τ), and f4(τ) be these
Hauptmoduln, which are given by

f1(τ) := J(τ) = q−1 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4 +O
(

q5
)

,

f2(τ) :=

(

η(τ)

η(2τ)

)24

+ 24 = q−1 + 276q − 2048q2 + 11202q3 − 49152q4 + 184024q5 +O
(

q6
)

,

f4(τ) :=

(

η(τ)

η(4τ)

)8

+ 8 = q−1 + 20q − 62q3 + 216q5 − 641q7 + 1636q9 − 3778q11 +O
(

q13
)

.

Here η(τ) := q1/24
∏∞

n=1(1 − qn) is Dedekind’s eta-function. For each of the five conjugacy
classes Cj, denote the McKay-Thompson series corresponding to any g ∈ Cj by T (1, Cj; τ).
For D4, choose T (1, Cj; τ) to be the Hauptmodul fj(τ) of level ord(g) for elements g ∈ Cj . For
both groups, we have the following McKay-Thompson series:

T (1, C1; τ) := f1(τ), T (1, C2; τ) := f2(τ), T (1, C3; τ) := f4(τ),

T (1, C4; τ) := f2(τ), T (1, C5; τ) := f2(τ).

For each 1 ≤ i ≤ 5, we use (2.2) to compute the generating function Mi(τ) of the multiplicities
mi(n) of the representation spaces for each ρi in VD4(n) and VQ8(n) to be

Mi(τ) =
1

8

(

f1χi (C1) + f2χi (C2) + 2f4χi (C3) + 2f2χi (C4) + 2f2χi (C5)
)

,

where χi (Cj) denotes the value of the character χi at any element g ∈ Cj . The first few terms
of each multiplicity generating function for both D4 and Q8 are given below:

M1(τ) = q−1 + 24788q + 2685440q2 + 108044482q3 +O
(

q4
)

,

M2(τ) = 24640q + 2686464q2 + 108038912q3 +O
(

q4
)

,

M3(τ) = 24640q + 2686464q2 + 108038912q3 +O
(

q4
)

,

M4(τ) = 24512q + 2687488q2 + 108033280q3 +O
(

q4
)

,

M5(τ) = 49152q + 5373952q2 + 216072192q3 +O
(

q4
)

.

Note thatM2(τ) = M3(τ). It is not difficult to prove (for example, see [8]) that this moonshine
is asymptotically regular. More precisely, if 1 ≤ i ≤ 5, then let

δi(n) :=
mi(n)

m1(n) +m2(n) +m3(n) +m4(n) +m5(n)
.

The asymptotic regularity is given by

lim
n→+∞

δi(n) =
dimχi

∑5
j=1 dimχj

=

{

1
6

if 1 ≤ i ≤ 4,
1
3

if i = 5.

The table below illustrates the rapid convergence exhibited by this moonshine.
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Table 2. Asymptotic Distributions

n δ1(n) δ2(n) = δ3(n) δ4(n) δ5(n)

1 0.16779 . . . 0.16678 . . . 0.16592 . . . 0.33271 . . .

2 0.16659 . . . 0.16665 . . . 0.16671 . . . 0.33337 . . .

3 0.16666 . . . 0.16666 . . . 0.16665 . . . 0.33332 . . .

4 0.16666 . . . 0.16666 . . . 0.16666 . . . 0.33333 . . .

...
...

...
...

...

To illustrate Theorem 1.1, we now extend to width 2 weak moonshine. We consider the
2-character tables and McKay-Thompson series at corresponding pairs of elements (g1, g2) in

D
(2)
4 and Q

(2)
8 . The 2-character tables contain four rows of zeros corresponding to χ1, . . . , χ4

which have dimension 1, and one possibly non-zero row corresponding to the values of

χ
(2)
5 (g1, g2) := χ5 (g1)χ5 (g2)− χ5 (g1g2) .

All of the values in the 2-character tables of D4 and Q8 are identical except eight, which are
lined up below based on the elements’ conjugacy classes:

χ
(2)
5 (s, r2s) = 2, χ

(2)
5 (j,−j) = −2,

χ
(2)
5 (s, s) = −2, χ

(2)
5 (j, j) = 2,

χ
(2)
5 (r2s, s) = 2, χ

(2)
5 (−j, j) = −2,

χ
(2)
5 (r2s, r2s) = −2, χ

(2)
5 (−j,−j) = 2,

χ
(2)
5 (rs, r3s) = 2, χ

(2)
5 (k,−k) = −2,

χ
(2)
5 (rs, rs) = −2, χ

(2)
5 (k,−k) = 2,

χ
(2)
5 (r3s, rs) = 2, χ

(2)
5 (k,−k) = −2,

χ
(2)
5 (r3s, r3s) = −2, χ

(2)
5 (k,−k) = 2.

We now illustrate that the width 2 McKay-Thompson series are different for these two groups.

Consider the pair (r3s, rs) ∈ D
(2)
4 . Its McKay-Thompson series for V

(2)
D4

is given by

T
(

2,
(

r3s, rs
)

; τ
)

=
∑

1≤i≤5

χ
(2)
i

(

r3s, rs
)

Mi(τ) = χ
(2)
5

(

r3s, rs
)

M5(τ)

= 98304q + 10747904q2 + 432144384q3 +O
(

q4
)

.

The McKay-Thompson series of the corresponding pair (−k, k) ∈ Q
(2)
8 for V

(2)
Q8

is given by

T (2, (−k, k); τ) =
∑

1≤i≤5

χ
(2)
i (−k, k)Mi(τ) = χ

(2)
5 (−k, k)M5(τ)

= −98304q − 10747904q2 − 432144384q3 +O
(

q4
)

.

Therefore, width 2 weak moonshine distinguishes D4 and Q8.
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