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HIGHER ORBITALS OF QUIZZY QUANTUM GROUP ACTIONS

TEODOR BANICA

Abstract. The hyperoctahedral group HN is known to have two natural liberations:
the “good” oneH+

N
, which is the quantum symmetry group ofN segments, and the “bad”

one ŌN , which is the quantum symmetry group of the N -hypercube. We study here this
phenomenon, in the general “quizzy” framework, which covers the various liberations
and twists of HN , ON . Our results include: (1) an interpretation of the embedding
ŌN ⊂ S+

2N
, as corresponding to the antisymmetric representation of ON , (2) a study of

the liberations of HN , notably with the result < H+

N
, ŌN >= O+

N
, and (3) a comparison

of the k-orbitals for the inclusions HN ⊂ H+

N
and HN ⊂ ŌN , for k ∈ N small.

Introduction

According to the quantum algebra theory, the twisted analogue of the commutation
relations ab = ba between the coordinates x1, . . . , xN of our ambient space RN is:

ab =

{
−ba for a 6= b

ba otherwise

At the matrix level, the twisted analogue of the commutation relations ab = ba between
the standard coordinates u11, . . . , uNN of the matrix algebra MN (R) is:

ab =

{
−ba for a 6= b on the same row or column of u

ba otherwise

These latter relations R can be used in order to construct a twisted analogue of the
orthogonal group ON , as abstract spectrum of the following universal algebra:

C(ŌN) = C∗
(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1,R
)

Generally speaking, the structure of ŌN is quite similar to that of ON , with the cor-
respondence ON ↔ ŌN being best understood via Schur-Weyl twisting, or via a cocycle
deformation method. There are many algebraic, geometric, analytic and probabilistic
results which can be obtained in this way, and all this material is quite standard.

One interesting feature of ŌN , however, which escapes the philosophy of the corre-
spondence ON ↔ ŌN , is that this appears as quantum symmetry group of the standard
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2 T. BANICA

hypercube in RN . This phenomenon was discovered about 10 years ago, in [5], and has
been since the subject of various investigations, with variable degree of success.

Our purpose here is to advance on this question, with a number of new results regarding
the action ŌN y {1, . . . , 2N}, and its relation with the action HN y {1, . . . , 2N}, notably
by using the recent quantum orbital theory from [3], [14], [25].

As a general framework, we use the theory of easy quantum groups [9], [29], in its
modified “quizzy” version, from [1], [2]. The idea is that any intermediate easy quantum
group HN ⊂ G ⊂ O+

N can be q-deformed at q = −1, into a certain intermediate quantum

group HN ⊂ Ḡ ⊂ O+
N . The easy quantum groups and their twists HN ⊂ Ġ ⊂ O+

N are
q-easy in some natural sense, with q = ±1, and are called “quizzy”.

The quizzy quantum groups can be fully classified, by starting with the list in [29], and
twisting. According to [2], these quantum groups are as follows:

ŌN
// Ō∗

N

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

HN
//

77♦♦♦♦♦♦♦♦♦♦♦♦♦

''PP
PP

PP
PP

PP
PP

P H×
N

// H+
N

// O+
N

ON
// O∗

N

77♥♥♥♥♥♥♥♥♥♥♥♥♥

To be more precise, here O×
N are the various versions of ON , obtained via liberation

and twisting, and H×
N are various versions of the hyperoctahedral group HN , which are

known to be equal to their own twists. There are in fact many such quantum groups H×
N ,

as explained in [29], and the dotted arrows in the middle stand for that.

Now back to our questions, the above diagram, fully covering the liberations and twists
of HN , ON , is precisely what we need. We will study the quantum groups appearing there,
from an algebraic and probabilistic point of view, our results being as follows:

(1) We will first study the representation ŌN ⊂ S+
2N
, our main result here being that

this corresponds to the antisymmetric representation of ON . We will compute as
well the magic unitary matrix of this representation, and its character.

(2) The fact that HN has at least two liberations, namely H+
N and ŌN , raises a number

of theoretical questions, regarding the concept of liberation. We will advance here
with a negative result, stating that we have < HN , ŌN >= O+

N .
(3) The known quizzy quantum group actions on finite sets are those coming from the

embeddings H+
N ⊂ S+

2N and ŌN ⊂ S+
2N
. We will compare here the k-orbitals for

the liberation inclusions HN ⊂ H+
N and HN ⊂ ŌN , for k ∈ N small.

There are of course many questions left. As an interesting algebraic question, for
instance, we conjecture that the above embeddings H+

N ⊂ S+
2N and ŌN ⊂ S+

2N
are the

unique ones which can make a quizzy quantum group a quantum permutation one.
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We refer to the body of the paper for the precise formulation of the results, which are
often quite technical, and sometimes rely on some new notions, to be introduced here.

The paper is organized as follows: 1-2 contain various preliminaries and generalities, in
3-4 we study the quantum permutation representation of ŌN , in 5-6 we discuss liberation
questions, in connection with the notion of quantum orbitals, and in 7-8 we present our
counting results for orbitals, and we discuss some open questions.

Acknowledgements. I would like to Poulette and her friends, for sharing with me some
of their knowledge, and for general advice and support.

1. Twisted orthogonality

We use Woronowicz’s quantum group formalism in [35], [36], under the extra assumption
S2 = id. To be more precise, the definition that we will need is:

Definition 1.1. Assume that (A, u) is a pair consisting of a C∗-algebra A, and a unitary

matrix u ∈ MN (A) whose coefficients generate A, such that the formulae

∆(uij) =
∑

k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗
ji

define morphisms of C∗-algebras ∆ : A → A ⊗ A, ε : A → C, S : A → Aopp. We write

then A = C(G), and call G a compact matrix quantum group.

The basic examples are the compact Lie groups, G ⊂ UN . Indeed, given such a group
we can set A = C(G), and let uij : G → C be the standard coordinates, uij(g) = gij .
The axioms are then satisfied, with ∆, ε, S being the functional analytic transposes of the
multiplication m : G×G → G, unit map u : {.} → G, and inverse map i : G → G.

There are many other interesting examples of such quantum groups, for the most going
back to [35], [36]. For a general introduction to the subject, in connection with what we
will be doing here, we refer to the book [28], or to the lecture notes [4].

The following key construction is due to Wang [32]:

Proposition 1.2. We have a compact quantum group O+
N , defined as follows:

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

This quantum group contains ON , and the inclusion ON ⊂ O+
N is not an isomorphism.

Proof. It is routine to check that if a matrix u = (uij) is orthogonal (u = ū, ut = u−1),
then so are the matrices u∆ = (

∑
k uik ⊗ ukj), u

ε = (δij), uS = (uji). Thus we can
construct ∆, ε, S as in Definition 1.1, by using the universal property of C(O+

N).
Regarding the last assertion, we have indeed a quotient map C(O+

N) → C(ON). Now
observe that if we denote by g1, . . . , gN the generators of Z∗N

2 , the matrix v = diag(gi) is
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orthogonal. Thus we have as well a quotient map C(O+
N) → C∗(Z∗N

2 ), the algebra C(O+
N)

follows to be not commutative, and so ON 6= O+
N , as claimed. See [32]. �

We are interested here in the twisted orthogonal group ŌN . In order to introduce this
quantum group, we can proceed as follows:

Proposition 1.3. We have the following results:

(1) The usual orthogonal group ON ⊂ O+
N is obtained by assuming that the standard

coordinates uij pairwise commute.

(2) We have a quantum group ŌN ⊂ O+
N , obtained by assuming that the coordinates

uij anticommute on the rows and columns of u, and commute otherwise.

Proof. Once again, this is something standard, the proof being as follows:
(1) Consider the quantum group O′

N ⊂ O+
N obtained by dividing C(O+

N) by its commu-
tator ideal. We have then ON ⊂ O′

N . On the other hand, O′
N must be a classical space,

and by using the coordinates uij we obtain O′
N ⊂ ON . Thus ON = O′

N , as claimed.
(2) This follows as in the proof of Proposition 1.2 above, the idea being that if u = (uij)

satisfies the relation in the statement, then so do the matrices u∆ = (
∑

k uik ⊗ ukj),
uε = (δij), u

S = (uji). Thus we can indeed construct ∆, ε, S, as claimed. �

Summarizing, ŌN appears as a kind of “twisted counterpart” of ON . In order to further
comment on the definition of ŌN , and on the correspondence ON ↔ ŌN , best is to use
quantum isometries. Let us recall that the free real sphere SN−1

R,+ is the noncommuta-
tive compact space having as coordinates self-adjoint variables x1, . . . , xN , subject to the
relation

∑
i x

2
i = 1. We have the following definition, coming from [2], [22]:

Definition 1.4. A closed subgroup G ⊂ O+
N is said to be acting affinely on an algebraic

submanifold X ⊂ SN−1
R,+ when we have a morphism of algebras, as follows:

Φ : C(X) → C(G)⊗ C(X) , xi →
∑

j

uij ⊗ xj

The biggest closed quantum group G ⊂ O+
N acting affinely on X is called affine orthogonal

quantum isometry group of X, and is denoted G+(X).

It is elementary to check that the usual sphere SN−1
R

⊂ SN−1
R,+ appears by imposing to

the coordinates the relations ab = ba. So, let us define a twisted sphere S̄N−1
R

⊂ SN−1
R,+ by

assuming that the coordinates are subject to the following relations:

ab =

{
−ba for a 6= b

ba otherwise

We have the following result, which provides an alternative definition for ŌN :
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Proposition 1.5. We have a diagram as follows,

SN−1
R,+

O+
N

S̄N−1
R

::✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈

ŌN

::✉✉✉✉✉✉✉✉✉
ON

dd■■■■■■■■■

SN−1
R

dd❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

with the dotted lines standing for the quantum isometry group construction.

Proof. Here the result for SN−1
R,+ is clear from definitions, the result for SN−1

R
is known since

[12], and follows by using some algebraic tricks, and the result for S̄N−1
R

can be proved in
a similar way, by using the same tricks. For details on all this, see [1]. �

Summarizing, we have a quite reasonable understanding of the definition of ŌN . There
are as well some more advanced ways of understanding the correspondence ON ↔ ŌN ,
via cocycle twists [5], or via Schur-Weyl twists [1]. We will be back to this, later.

Let us review now the quantum isometry result in [5], which is something quite non-
standard. Consider the group ZN

2 =< g1, . . . , gN >. Since the standard generators gi ∈
C∗(ZN

2 ) = C(ẐN
2 ) satisfy gi = g∗i , g

2
i = 1, we have an embedding ẐN

2 ⊂ SN−1
R,+ given by

zi =
gi√
N
. Moreover, the image of this embedding is the standard hypercube KN .

With these notions in hand, we can review the result in [5], as follows:

Theorem 1.6. With ZN
2 =< g1, . . . , gN > we have a coaction map

Φ : C∗(ZN
2 ) → C(ŌN)⊗ C∗(ZN

2 ) , gi →
∑

j

uij ⊗ gj

which makes ŌN the quantum isometry group of the hypercube KN = ẐN
2 , as follows:

(1) With KN viewed as an algebraic manifold, KN ⊂ SN−1
R

⊂ SN−1
R,+ .

(2) With KN viewed as a graph, with 2N vertices and 2N−1N edges.

(3) With KN viewed as a metric space, with the distance from RN .

Proof. This result is basically from [5], the proof being as follows:
(1) In order for G ⊂ O+

N to act affinely on KN , the variables Gi =
∑

j uij ⊗ gj must

satisfy the same relations as the generators gi ∈ ZN
2 . The self-adjointness being automatic,

the relations to be checked are therefore G2
i = 1, GiGj = GjGi. We have:

G2
i =

∑

kl

uikuil ⊗ gkgl = 1 +
∑

k<l

(uikuil + uiluik)⊗ gkgl

[Gi, Gj] =
∑

k<l

(uikujl − ujkuil + uilujk − ujluik)⊗ gkgl
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By working out these relations, this gives G ⊂ ŌN , as claimed.
(2) This follows from the fact that KN is the Cayley graph of ZN

2 .
(3) Indeed, the metric on KN comes from the Cayley graph structure. �

The above result was, at the time of [5], and since then, something quite surprizing.
One of our purposes in what follows will be that of answering the following question: is
the above result something exceptional, or is it part of some general theory?

2. Representation theory

In this section we discuss the representation theory of ŌN , and its connection with
the representation theory of the hyperoctahedral group HN , and with some other re-
lated quantum groups. We will heavily rely on the Tannakian techniques introduced by
Woronowicz in [36], further explained in [26], [28], and in the lecture notes [4].

The general idea is that since ŌN appears as a kind of q = −1 twist of ON , in a sense
close to the one of Drinfeld [19] and Jimbo [24], its representation theory should be very
similar to that of ON . As a first illustration for this principle, we have:

Proposition 2.1. The irreducible representations of ŌN are in one-to-one correspondence

with those of ON , with the fusion rules being the same.

Proof. This result is from [5], with the proof using a cocycle twisting interpretation of
ŌN , along with a Morita equivalence type argument. See [5]. �

The above result is of course not very explicit, and in addition the fusion rules in
question, meaning those for ON , are something quite complicated. In practice, better for
our purposes will be to use the “easiness” philosophy from [9]. We first have:

Proposition 2.2. The Tannakian category of ON is given by

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

where P2 is the category of pairings, and where π → Tπ is given by

Tπ(ei1 ⊗ . . .⊗ eik) =
∑

j:ker(ij)≤π

ej1 ⊗ . . .⊗ ejl

with e1, . . . , eN being the standard basis of CN .

Proof. This is an old theorem of Brauer [17]. In what follows we will rely on the proof
from [9] of this result, with categorical input coming from [26]. See [4]. �

Regarding now ŌN , this quantum group is not exactly easy in the sense of [9], but we
have the following result, making the link with [9]:
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Proposition 2.3. The Tannakian category of ŌN is given by

Hom(u⊗k, u⊗l) = span
(
T̄π

∣∣∣π ∈ P2(k, l)
)

where P2 is the category of pairings, and where π → T̄π is given by

T̄π(ei1 ⊗ . . .⊗ eik) =
∑

j:ker(ij)≤π

ε

(
ker

(
i1 . . . ik
j1 . . . jl

))
ej1 ⊗ . . .⊗ ejl

with ε : Peven → {±1} being the standard extension of the signature map S∞ → {±1}.
Proof. The point here is that, after reproving the Brauer result as in [9], the extension
to ŌN is straightforward, with the ± signs in the commutation relations between the
coordinates of ŌN producing the ± signs from the signature, as stated. See [1]. �

At a more advanced level now, it is known as well from [1] that a Weingarten type
integration formula for ŌN is available, in the spirit of the one in [18] for ON , with both
the Gram and the Weingarten matrices being invariant under twisting. See [1].

In what follows we will be rather interested in purely algebraic consequences of Propo-
sition 2.3. Following [1], [2], let us introduce the following notion:

Definition 2.4. An intermediate quantum group HN ⊂ Ġ ⊂ O+
N is called “quizzy”, with

deformation parameter q = ±1, when its Tannakian category appears as

Hom(u⊗k, u⊗l) = span
(
Ṫπ

∣∣∣π ∈ D(k, l)
)

for a certain category of partitions D, where the correspondence π → Ṫπ is the usual

π → Tπ correspondence at q = 1, and is the correspondence π → T̄π at q = −1.

Here the fact that we must assume HN ⊂ Ġ comes from the fact that the signature
map ε is defined only on Peven, and not on the whole P . Thus, in order for the twisted
maps T̄π to be well-defined, we must have D ⊂ Peven, which reads HN ⊂ Ġ. See [2].

In order to discuss now the classification of the quizzy quantum groups, we need to
introduce more some examples, coming from [1], [9], as follows:

Definition 2.5. We have intermediate compact quantum groups as follows,

ON ⊂ O∗
N ⊂ O+

N , ŌN ⊂ Ō∗
N ⊂ O+

N

obtained by imposing to the standard coordinates of O+
N the half-commutation relations

abc = cba, and the twisted half-commutation relations abc = ±cba.

To be more precise, the signs in above relations abc = ±cba are by definition those
producing an embedding ŌN ⊂ Ō∗

N . The precise formula of these signs, which is a bit
complicated, can be found in [1]. As an explanation here, however, let us mention that
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O∗
N , Ō

∗
N appear respectively as the quantum isometry groups of the half-classical spheres

SN−1
R,∗ , S̄N−1

R,∗ , whose coordinates are subject to the following relations:

xixjxk = xkxjxi , xixjxk = (−1)δij+δik+δjkxkxjxi

For more details on the structure of these quantum groups, on the half-liberation op-
eration, and on these latter noncommutative spheres, see [1], [15], [16].

As examples, we have as well the hyperoctahedral group HN , its free version H+
N ,

constructed in [5], and the various intermediate liberations HN ⊂ H×
N ⊂ H+

N . Following
[29], the definition and classification of these latter quantum groups is as follows:

Proposition 2.6. Consider the quantum group H+
N ⊂ O+

N obtained via the relations

stating that pij = u2
ij is magic, in the sense that pij are projections, summing up to 1 on

each row and column. The easy quantum groups HN ⊂ H×
N ⊂ H+

N are then:

(1) HN and H+
N themselves, as well as H∗

N = H+
N ∩ O∗

N .

(2) A higher half-liberation H∗
N ⊂ H

[∞]
N ⊂ H+

N , obtained by imposing the relations

abc = 0, for any a 6= c on the same row or column of u.

(3) An uncountable family of intermediate quantum groups HN ⊂ HΓ
N ⊂ H

[∞]
N , ob-

tained from the quotients Z∗∞
2 → Γ satisfying a certain uniformity condition.

(4) A series of intermediate quantum groups H
[∞]
N ⊂ H⋄k

N ⊂ H+
N , obtained via the

relations [a1 . . . ak−2b
2ak−2 . . . a1, c

2] = 0.

Proof. Here the fact that H+
N is indeed a quantum group, and that both HN , H

+
N are easy,

is from [5]. As for the classification result, this is from [29]. �

Let us mention as well that, in analogy with the decomposition HN = SN ≀Z2, we have
a decomposition H+

N = S+
N ≀∗ Z2, where S+

N is Wang’s quantum permutation group [33],
and where ≀∗ is a free wreath product in the sense of Bichon [13]. See [5].

We have the following classification result, from [2]:

Theorem 2.7. The quizzy quantum groups HN ⊂ Ġ ⊂ O+
N are as follows,

ŌN
// Ō∗

N

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

HN
//

77♦♦♦♦♦♦♦♦♦♦♦♦♦

''PP
PP

PP
PP

PP
PP

P H×
N

// H+
N

// O+
N

ON
// O∗

N

77♥♥♥♥♥♥♥♥♥♥♥♥♥

with H×
N standing for the various liberations of HN , which are all self-dual.

Proof. We already know from Proposition 2.3 above that ŌN is quizzy, appearing as a
Schur-Weyl twist of ON , in the sense that D remains the same, and q = ±1 changes. The
same happens for Ō∗

N and O∗
N , as explained in [2]. As for the converse, this follows from
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the classification work of Raum and Weber in [29], and from a case-by-case analysis of
the twists. To be more precise, what happens is that for the quantum groups listed in
[29] we have G = Ḡ, except for G = ON , O

∗
N . For details here, see [2]. �

The above abstract considerations extend to the unitary case, but the situation here is
considerably more complicated, with the classification of the easy quantum groups, and
therefore of the quizzy quantum groups as well, not known yet. See [23], [30].

There are many interesting twisting questions too in connection with the various gen-
eralizations of the easy quantum group formalism, as those in [20], [21].

3. Fourier transforms

Our purpose here is to compute the magic representation of ŌN , and its character. In
order to solve this question, we will need:

Proposition 3.1. The Fourier transform over ZN
2 is the map

α : C(ZN
2 ) → C∗(ZN

2 ) , δ
g
i1
1 ...g

iN
N

→ 1

2N

∑

j1...jN

(−1)<i,j>gj11 . . . gjNN

with the usual convention < i, j >=
∑

k ikjk, and its inverse is the map

β : C∗(ZN
2 ) → C(ZN

2 ) , gi11 . . . giNN →
∑

j1...jN

(−1)<i,j>δ
g
j1
1 ...g

jN
N

with all the exponents being binary, i1, . . . , iN , j1, . . . , jN ∈ {0, 1}.
Proof. Observe first that the group ZN

2 can be written as follows:

Z
N
2 =

{
gi11 . . . giNN

∣∣∣i1, . . . , iN ∈ {0, 1}
}

Thus both α, β are well-defined, and it is elementary to check that both are morphisms
of algebras. We have as well αβ = βα = id, coming from the standard formula:

1

2N

∑

j1...jN

(−1)<i,j> =
N∏

k=1

(
1

2

∑

jr

(−1)irjr

)
= δi0

Thus we have indeed a pair of inverse Fourier morphisms, as claimed. �

As an illustration here, at N = 1, with the notation Z2 = {1, g}, the map α is given by
δ1 → 1

2
(1 + g), δg → 1

2
(1− g) and its inverse β is given by 1 → δ1 + δg, g → δ1 − δg.

By using now these Fourier transforms, we obtain following formula:

Proposition 3.2. The magic unitary for the embedding ŌN ⊂ S+
2N

is given by

wi1...iN ,k1...kN =
1

2N

∑

j1...jN

∑

b1...bN

(−1)<i+kb,j>

(
1

N

)#(0∈j)
uj1
1b1

. . . ujN
NbN

where kb = (kb1, . . . , kbN ), with respect to multi-indices i, k ∈ {0, 1}N as above.
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Proof. By composing the coaction map Φ from Theorem 1.6 with the above Fourier trans-
form isomorphisms α, β, we have a diagram as follows:

C∗(ZN
2 )

Φ // C(ŌN)⊗ C∗(ZN
2 )

id⊗β

��

C(ZN
2 )

α

OO

Ψ // C(ŌN)⊗ C(ZN
2 )

In order to compute the composition on the bottom Ψ, we first recall from Theorem
1.6 above that the coaction map Φ is defined by the formula Φ(ga) =

∑
b uab ⊗ gb, for

any a ∈ {1, . . . , N}. Now by making products of such quantities, we obtain the following
global formula for Φ, valid for any exponents i1, . . . , iN ∈ {1, . . . , N}:

Φ(gi11 . . . giNN ) =

(
1

N

)#(0∈i) ∑

b1...bN

ui1
1b1

. . . uiN
NbN

⊗ gi1b1 . . . g
iN
bN

The term on the right can be put in “standard form” as follows:

gi1b1 . . . g
iN
bN

= g
∑

bx=1 ix
1 . . . g

∑
bx

ix
N

We therefore obtain the following formula for the coaction map Φ:

Φ(gi11 . . . giNN ) =

(
1

N

)#(0∈i) ∑

b1...bN

ui1
1b1

. . . uiN
NbN

⊗ g
∑

bx=1 ix
1 . . . g

∑
bx=N ix

N

Now by applying the Fourier transforms, we obtain the following formula:

Ψ(δ
g
i1
1 ...g

iN
N

)

= (id⊗ β)Φ

(
1

2N

∑

j1...jN

(−1)<i,j>gj11 . . . gjNN

)

=
1

2N

∑

j1...jN

∑

b1...bN

(−1)<i,j>

(
1

N

)#(0∈j)
uj1
1b1

. . . ujN
NbN

⊗ β
(
g
∑

bx=1 jx
1 . . . g

∑
bx=N jx

N

)

By using now the formula of β from Proposition 3.1, we obtain:

Ψ(δ
g
i1
1 ...g

iN
N

) =
1

2N

∑

j1...jN

∑

b1...bN

∑

k1...kN

(
1

N

)#(0∈j)

(−1)<i,j>(−1)<(
∑

bx=1 jx,...,
∑

bx=N jx),(k1,...,kN )>

uj1
1b1

. . . ujN
NbN

⊗ δ
g
k1
1 ...g

kN
N
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Now observe that, with the notation kb = (kb1 , . . . , kbN ), we have:

< (
∑

bx=1

jx, . . . ,
∑

bx=N

jx), (k1, . . . , kN) >=< j, kb >

Thus, we obtain the following formula for our map Ψ:

Ψ(δ
g
i1
1 ...g

iN
N

) =
1

2N

∑

j1...jN

∑

b1...bN

∑

k1...kN

(−1)<i+kb,j>

(
1

N

)#(0∈j)
uj1
1b1

. . . ujN
NbN

⊗ δ
g
k1
1 ...g

kN
N

But this gives the formula in the statement for the corresponding magic unitary, with
respect to the basis {δ

g
i1
1 ...g

iN
N

} of the algebra C(ZN
2 ), and we are done. �

Let us compute now the character of w. We first have:

Proposition 3.3. The character of the magic representation of ŌN is given by

χ =
∑

j1...jN

∑

b1...bN

(
1

N

)#(0∈j)
δj1,

∑
bx=1 jx

. . . δjN ,
∑

bx=N jxu
j1
1b1

. . . ujN
NbN

with binary indices j1, . . . , jN ∈ {0, 1}, and plain indices b1, . . . , bN ∈ {1, . . . , N}.
Proof. With the formula in Proposition 3.2, the character is:

χ =
∑

i1...iN

wi1...iN ,i1...iN

=
1

2N

∑

i1...iN

∑

j1...jN

∑

b1...bN

(−1)<i+ib,j>

(
1

N

)#(0∈j)
uj1
1b1

. . . ujN
NbN

=
∑

j1...jN

∑

b1...bN

(
1

2N

∑

i1...iN

(−1)<i+ib,j>

)(
1

N

)#(0∈j)
uj1
1b1

. . . ujN
NbN

The sum in the middle Sijb is a Fourier sum, computed as follows:

Sijb =
1

2N

∑

i1...iN

(−1)<i,j>(−1)ib1 j1+...+ibN jN

=
1

2N

∑

i1...iN

(−1)<i,j>(−1)i1
∑

bx=1 jx+...+iN
∑

bx=N jx

=
1

2N

∑

i1...iN

(−1)i1(j1+
∑

bx=1 jx)+...+iN (jN+
∑

bx=N jx)

= δj1,
∑

bx=1 jx
. . . . . . δjN ,

∑
bx=N jx

We therefore obtain the formula in the statement, and we are done. �

We can fine-tune the formula found above, as follows:
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Proposition 3.4. The magic character of ŌN is given by χ =
∑N

r=0 χr, where

χr =
1

NN−r

∑

|A|=r

∑

b<A

∏

a∈A
uaba

with the first sum being by definition over sets A ⊂ {1, . . . , N} satisfying |A| = r, the
second sum being over functions b : {1, . . . , N} → {1, . . . , N} satisfying the condition

b < A : |b−1(p) ∩ A| = χA(p) (mod 2), ∀p
and with the product being ordered, and written with the convention ba = b(a).

Proof. We use the formula in Proposition 3.3. With the notation r = #(1 ∈ j) we obtain

a decomposition χ =
∑N

r=0 χr as in the statement, with:

χr =
1

NN−r

∑

#(1∈j)=r

∑

b1...bN

δj1,
∑

bx=1 jx
. . . δjN ,

∑
bx=N jxu

j1
1b1

. . . ujN
NbN

Consider now the set A ⊂ {1, . . . , N} given by A = {a|ja = 1}. The binary multi-
indices j ∈ {0, 1}N satisfying #(1 ∈ j) = r being in bijection with such subsets A,
satisfying |A| = r, we can replace the sum over j with a sum over such subsets A.

We therefore obtain a formula as follows, where j is the index corresponding to A:

χr =
1

NN−r

∑

|A|=r

∑

b1...bN

δj1,
∑

bx=1 jx
. . . δjN ,

∑
bx=N jx

∏

a∈A
uaba

We must understand now which multi-indices b ∈ {1, . . . , N}N really contribute to the
sum, in the sense that all the associated Kronecker symbols in the middle are 1. For this
purpose, let us identify b with the corresponding function b : {1, . . . , N} → {1, . . . , N},
via b(a) = ba, as in the statement. Then for any p ∈ {1, . . . , N} we have:

δjp,
∑

bx=p jx
= 1 ⇐⇒

∑

bx=p

jx = jp (mod 2)

⇐⇒
∑

x∈b−1(p)

jx = jp (mod 2)

⇐⇒ |b−1(p) ∩ A| = χA(p) (mod 2)

We conclude that the multi-indices b ∈ {1, . . . , N}N which effectively contribute to
the sum are those coming from the functions b : {1, . . . , N} → {1, . . . , N} satisfying the
condition b < A from the statement. Thus, we obtain the formula in the statement. �

The above formula for the character is still not our final one. We can indeed further
study the condition b < A appearing there, and we are led to:
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Theorem 3.5. The magic character of ŌN is given by χ =
∑N

r=0 χr, where

χr =
∑

|A|=r

∑

σ∈SA
N

∏

a∈A
uaσ(a)

with the product being ordered, and where SA
N = {σ ∈ SN |σ|Ac = id}.

Proof. We use the formula in Proposition 3.4. By splitting the character χ =
∑N

r=0 χr

as indicated there, and then by further splitting each χr over the sets A ⊂ {1, . . . , N}
satisfying |A| = r, we must prove that for each of these sets we have:

1

NN−r

∑

b<A

∏

a∈A
uaba =

∑

σ∈SA
N

∏

a∈A
uaσ(a)

In order to do so, we must construct a certain correspondence b → σ, which leaves
invariant the product term, and which produces the multiplicity NN−r.

We know that the condition b < A corresponds to the following condition:

|b−1(p) ∩ A| = χA(p) (mod 2), ∀p
Now observe that the validity of this condition, and the value of the corresponding

product
∏

a∈A uaba as well, only concerns the restriction b|A. Thus, up to a multiplicity of

N |Ac| = NN−r, we can replace if we want the restriction b|Ac by the identity.
Summarizing, we must prove that we have the following formula:

∑

b<A,b|Ac=id

∏

a∈A
uaba =

∑

σ∈SA
N

∏

a∈A
uaσ(a)

Our claim is that this formula holds indeed, with the correspondence being given by
b = σ. In order to prove this latter fact, what we have to show is that we have:

b|Ac = id, |b−1(p) ∩A| = χA(p) (mod 2), ∀p ⇐⇒ b ∈ SA
N

Since everything here depends on A only, we can assume if we want that we have
A = {1, . . . , N}, and the statement to be proved becomes:

|b−1(p)| = 1 (mod 2), ∀p ⇐⇒ b ∈ SN

But this is clear, because the implication =⇒ follows from |b−1(p)| ≥ 1 for any p, and
the implication ⇐= is trivial. Thus, we have proved our claim, and we are done. �

4. Magic actions

We will be interested in what follows in further understanding the magic action of ŌN ,
and notably in computing the probabilistic distribution of its character, with respect to
the Haar measure of ŌN . For this purpose, simplest is to make the link with ON .

In order to do so, we must further study the quantities χr introduced in Theorem 3.5
above. As a first result here, at small or big values of r, we have:
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Proposition 4.1. The quantities χr from Theorem 3.5 are as follows:

(1) χ0 = 1.
(2) χ1 =

∑
a uaa.

(3) χ2 =
∑

a<c uaaucc + uacuca.

(4) χN−1 =
∑N

a=1

∑
σ∈SN ,σ(a)=a u1σ(1) . . . ua−1σ(a−1)ua+1σ(a+1) . . . uNσ(N).

(5) χN =
∑

σ∈SN
u1σ(1) . . . uNσ(N).

Also, at N = 2 we obtain χ = 1 + u11 + u22 + u11u22 + u12u21.

Proof. We use the formula found in Theorem 3.5 above, namely:

χr =
∑

|A|=r

∑

σ∈SA
N

∏

a∈A
uaσ(a)

(1) Here we must have A = ∅, and the result is clear.
(2) Here we can write A = {a}, the only permutation σ ∈ SA

N is the identity, and we
obtain the formula in the statement.

(3) Here we can write A = {a, c} with a < c, there are two permutations σ ∈ SA
N ,

namely the identity and the transposition a ↔ c, and we obtain the above formula.
(4) Here we can write A = {1, . . . , N} − {a}, and we obtain the above formula.
(5) Here we must have A = {1, . . . , N}, and the result is clear.
At N = 2 now, the various formulae that we have give χ0 = 1, χ1 = u11 + u22,

χ2 = u11u22 + u12u21, and so χ = 1 + u11 + u22 + u11u22 + u12u21, as claimed. �

Observe that at N = 2 the variable χ2 = χ − χ0 − χ1, and so all the variables χr in
this case, is a virtual character in the sense of [35]. This can be checked as well directly,
by applying the comultiplication to the formula χ2 = u11u22 + u12u21.

In fact, according to Theorem 1.6, the action of ŌN must leave invariant the N + 1
eigenspaces of the Laplacian of the cube, and one can prove that the above variables
χ0, . . . , χN are the precisely characters of the corresponding representations of ŌN .

In what follows, we will be rather interested in identifying these representations with
some similar representations of ON . The correspondence will come from:

Proposition 4.2. Consider the r-th antisymmetric representation of ON , on the space

Xr = span
(
ξi1...ir

∣∣∣i1 < . . . < ir

)
, ξi1...ir =

∑

σ∈Sr

ε(σ)eiσ(1)
⊗ . . .⊗ eiσ(r)

of antisymmetric vectors in (CN)⊗r. The character of this representation is given by

χr =
∑

|A|=r

∑

σ∈SA
N

ε(σ)
∏

a∈A
uaσ(a)

where SA
N = {σ ∈ SN |σ|Ac = id}, and where ε : SN → {±1} is the signature map.
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Proof. The fact thatXr is indeed invariant is well-known, and so we have a representation,
as stated. In order to compute now the character, observe that for g ∈ ON we have:

g⊗rξi1...ir =
∑

σ∈Sr

ε(σ)geiσ(1)
⊗ . . .⊗ geiσ(r)

=
∑

σ∈Sr

∑

j1...jr

ε(σ)gj1iσ(1)
. . . gjriσ(r)

ej1 ⊗ . . .⊗ ejr

=
∑

j1...jr

(∑

σ∈Sr

ε(σ)gj1iσ(1)
. . . gjriσ(r)

)
ej1 ⊗ . . .⊗ ejr

By using the properties of the signature map, we see that when the indices j1, . . . , jr
are not distinct, the corresponding contribution is 0. Thus, we can restrict the sum
over distinct indices j1, . . . , jr. Moreover, by arranging these indices increasingly, into a
sequence k1 < . . . < kr, we conclude that we must have, for a certain τ ∈ Sr:

j1 = kτ(1) , . . . , jr = kτ(r)

This correspondence between distinct indices j1, . . . , jr and pairs of increasing sequences
k1 < . . . < kr plus permutations τ ∈ Sr being bijective, we conclude that we have:

g⊗rξi1...ir =
∑

k1<...<kr

∑

τ∈Sr

(∑

σ∈Sr

ε(σ)gkτ(1)iσ(1)
. . . gkτ(r)iσ(r)

)
ekτ(1) ⊗ . . .⊗ ekτ(r)

Now by taking the scalar product with ξk1...kr , we obtain from this:

< g⊗rξi1...ir , ξk1...kr >=
∑

σ,τ∈Sr

ε(στ)gkτ(1)iσ(1)
. . . gkτ(r)iσ(r)

We can now compute the character. With respect to the basis {ξi1...ir}, we obtain:

χ(g) =
∑

i1<...<ir

∑

σ,τ∈Sr

ε(στ)giτ(1)iσ(1)
. . . giτ(r)iσ(r)

By permuting the terms on the right, and in terms of the permutation ρ = στ−1, which
has the same signature as the permutation στ appearing above, we obtain:

χ(g) =
∑

i1<...<ir

∑

ρ∈Sr

ε(ρ)gi1iρ(1) . . . giriρ(r)

Now if we set A = {i1, . . . , ir}, and we replace ρ by its extension σ ∈ SA
N , obtained by

fixing all the points of Ac, this gives the formula in the statement. �

Now by comparing Theorem 3.5 and Proposition 4.2, we obtain:

Theorem 4.3. The magic representation of ŌN corresponds to the antisymmetric repre-

sentation of ON , via the correspondence coming from Proposition 2.1.
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Proof. This follows by comparing the formulae in Theorem 3.5 and Proposition 4.2. In-
deed, the twisting operation ON → ŌN makes correspond the following products:

ε(σ)
∏

a∈A
uaσ(a) →

∏

a∈A
uaσ(a)

Now by summing over sets A and permutations σ, we conclude that the twisting oper-
ation ON → ŌN makes correspond the following quantities:

∑

|A|=r

∑

σ∈SA
N

ε(σ)
∏

a∈A
uaσ(a) →

∑

|A|=r

∑

σ∈SA
N

∏

a∈A
uaσ(a)

Thus the character χr computed for ON corresponds to the character χr computed for
ŌN , and by making a sum over r ∈ {0, 1, . . . , N}, this gives the result. �

Summarizing, we have now a good understanding of the magic representation of ŌN ,
that we will use later on. This representation, however, remains quite exceptional, and in
relation with all this, we have the following conjecture:

Conjecture 4.4. There are two types of possible actions of the quizzy quantum groups

HN ⊂ G ⊂ O+
N on finite spaces, as follows:

(1) Those coming from HN ⊂ ŌN ⊂ S+
2N
.

(2) Those coming from HN ⊂ G ⊂ H+
N ⊂ S+

2N .

Proving this looks like a heavy algebraic task, because there are many things to be
done, which all look non-trivial. To be more precise, taking into account the classification
result in Theorem 2.5 above, the precise list of results to be proved is as follows:

(1) First, we must prove that the above magic corepresentation of ŌN is the unique
one. In view of the correspondence ON ↔ ŌN , we must first solve a certain cate-
gorical problem for ON , involving Young tableaux, and then look for the “magic”
implementation of the solutions. This is certainly quite non-trivial.

(2) Then, we must prove that Ō∗
N has no magic corepresentation at all. Here we can

use the isomorphism PŌ∗
N = PŪN , and so we are led as well to Young tableaux

combinatorics, this time coming from ŪN . For the remaining representations,
which are not projective, we can use the classification resuls in [16].

(3) Finally, we must deal with the actions of the quantum groups HN ⊂ G ⊂ H+
N ,

on one hand by proving that in the non-classical case, G 6= HN , the only solution
comes as G ⊂ H+

N ⊂ S+
2N , and on the other hand by proving that in the classical

case, G = HN , the only extra solution comes as HN ⊂ S2N .

All this is extremely heavy. We believe however that Conjecture 4.4 is a good problem,
hiding many interesting things, and definitely worth investigating.
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5. Liberation theory

We know that the hyperoctahedral group HN has at least two natural “liberations”,
namely HN ⊂ H+

N and HN ⊂ ŌN . Our purpose here is to systematically investigate this
phenomenon. We will see that this will naturally lead us into certain questions regarding
the higher orbitals of HN , H

+
N , ŌN , which will require using Theorem 4.3.

Let us begin with the following very general definition:

Definition 5.1. A liberation of a closed subgroup G ⊂ ON is an intermediate quantum

group G ⊂ H ⊂ O+
N satisfying Hclass = G. Such a liberation is called:

(1) Maximal, when there is no bigger liberation H ⊂ H ′.
(2) Universal, when it contains any other liberation H ′.

As a basic example, let us take G = ON itself. The liberations of G are then the
intermediate quantum groups ON ⊂ O×

N ⊂ O+
N , and so O+

N is universal.
In general, however, the above notions are quite subtle, even for the trivial group

G = {1}, and this because the condition Hclass = {1} is quite poorly understood.
In order to further comment on these questions, let us recall that for an inclusion

of orthogonal quantum groups G ⊂ H the linear spaces Fix(u⊗l) must decrease, when
passing from G to H , and that G ⊂ H is proper precisely when one of these spaces
decreases strictly. This follows indeed from the Peter-Weyl theory from [35].

In view of this fact, let us introduce as well:

Definition 5.2. Let G ⊂ ON be a closed subgroup.

(1) The level of a liberation G ⊂ H ⊂ O+
N is the smallest l ∈ N such that the space

Fix(u⊗l) decreases, when passing from G to H.

(2) The stability level of G is the biggest k ∈ N such that the space Fix(u⊗k) remains

fixed, for any liberation G ⊂ H ⊂ O+
N .

Once again, as a basic example, let us take G = ON itself. The liberations of G being
the intermediate quantum groups ON ⊂ O×

N ⊂ O+
N , the stability level is k = 3, coming

from the fact that we have NC2(k) = P2(k) at k ≤ 3, but not at k = 4.
In fact, there are conjecturally only two proper liberations of ON , namely the free

version O+
N , having level 4, and the half-liberated version O∗

N , having level 6.
These observations have a natural generalization to the easy quantum group setting,

from [9]. The liberation theory for the easy groups was developed there, by using some
inspiration from the Weingarten formula [18], [34] and from the Bercovici-Pata bijection
from free probability theory [11], [31], the idea being that the passage G → G+ simply
appears by “removing the crossings” from the Tannakian category of G. See [9].

We will be interested in what follows only in the “true” liberations G → G+, which
are those having the property that the laws of the main characters are related by the
Bercovici-Pata bijection. As explained in [9], there are only 4 such liberations, namely
those of the groups ON , BN , SN , HN . We refer as well to [4] for this material.
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With these preliminaries in hand, we have the following result:

Proposition 5.3. Consider the truly liberable orthogonal easy groups, namely the quan-

tum groups ON , BN , SN , HN , and their easy liberations O+
N , B

+
N , S

+
N , H

+
N .

(1) These liberations are universal, in the easy setting.

(2) The stability level is k = 3, once again in the easy setting.

Proof. Here the first assertion follows from [9], or from the classification results from [29].
Regarding now the stability level, since in each case we have a universal liberation, this
is given by k = l − 1, where l is the level of the universal liberation.

The point now is that, in each of the cases under consideration, we have l = 4. Indeed,
as explained above, for G = ON this follows from NC2(l) = P2(l) at l ≤ 3, but not at
l = 4. As for G = BN , SN , HN , the situation here is similar, because if we denote by D
the corresponding category of partitions, which is respectively D = P12, P, Peven, we have
D(l) ⊂ NC(l) at l ≤ 3, but not at l = 4, because the basic crossing belongs to D. �

In the non-easy setting now, the results for G = ON still hold. However, in what con-
cerns G = BN , SN , HN , the problems here become considerably more difficult. Regarding
G = BN , SN , we believe that the easy liberations G+ = B+

N , S
+
N are universal, but we have

no idea on how to approach this problem. The maximality problem, which is in principle
a bit simpler, looks equally difficult. In Tannakian terms, we must prove:

C ⊂ span(NC12) , | ∈< C, /\ > =⇒ | ∈ C

C ⊂ span(NC) , | ,⊓⊓ ∈< C, /\ > =⇒ | ,⊓⊓ ∈ C

These questions are substantially more complicated than those usually solved in the
context of the easy quantum groups, as in [9], [29], [30], and we have no results.

Let us discuss now the case G = HN , which is the one that we are interested in. As a
starting point, we have the following fact, coming from [5]:

Proposition 5.4. The hyperoctahedral group HN has at least two natural liberations,

namely HN ⊂ H+
N and HN ⊂ ŌN , and neither of them is universal.

Proof. The fact that we have indeed liberations is known from [5], and follows for instance
from the following formula, valid for any finite graph X :

G+(X)class = G+(X)

Indeed, with X being the graph formed by N segments we obtain (H+
N)class = HN , and

with X being the N -hypercube, we obtain (ŌN)class = HN .
Regarding now the last assertion, this follows from the fact that we don’t have inclusions

H+
N ⊂ ŌN or ŌN ⊂ H+

N , because the coordinates of either quantum group don’t satisfy
the relations for the other. This is indeed clear in view of the definitions of these quantum
groups. We will obtain this result as well below, as part of something more general. �



HIGHER ORBITALS 19

In view of the above result, several natural questions appear, as follows:
(1) Are the above liberations maximal? Here we are led into difficult Tannakian ques-

tions, of the same flavor as the above-mentioned ones for BN , SN , namely:

C ⊂ span(NCeven) , ⊓⊓⊓ ∈< C, /\ > =⇒ ⊓⊓⊓ ∈ C

C ⊂ span(P̄2) , ⊓⊓⊓ ∈< C, /\ > =⇒ ⊓⊓⊓ ∈ C

(2) Are there any other maximal liberations of HN? Once again, this looks liks a quite
difficult problem, which is in need of some new ideas.

(3) What is the compact quantum group < H+
N , ŌN > generated by the maximal

liberations of HN that we have, namely H+
N and ŌN , inside O+

N?
(4) What is the level of the liberation HN ⊂ ŌN? And, what can be said about the

stability level of HN , in the sense of Definition 5.2 above?
In what follows we will solve (3), and then, later on, comment on (4). Regarding (3),

our answer is < H+
N , ŌN >= O+

N , coming as part of the following general result:

Theorem 5.5. The diagram of the basic quizzy quantum groups, namely

ŌN
// Ō∗

N

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

HN
//

77♦♦♦♦♦♦♦♦♦♦♦♦♦

''PP
PP

PP
PP

PP
PP

P H∗
N

77♦♦♦♦♦♦♦♦♦♦♦♦♦

''PP
PP

PP
PP

PP
PP

P
// H+

N
// O+

N

ON
// O∗

N

77♥♥♥♥♥♥♥♥♥♥♥♥♥

is both an intersection and generation diagram, in the sense that for any square subdiagram

A ⊂ B,C ⊂ D we have A = B ∩ C and < B,C >= D.

Proof. The various intersections and generation results are already known, and explained
in [4], except for the following two results, that remain to be proved now:

< ŌN , H
+
N >= O+

N , < ŌN , H
∗
N >= O∗

N

In order to prove these two formulae, we use the Tannakian approach. To be more
precise, we must prove that we have the following results:

span
(
T̄π

∣∣∣π ∈ P2

)⋂
span

(
Tπ

∣∣∣π ∈ NCeven

)
= span

(
Tπ

∣∣∣π ∈ NC2

)

span
(
T̄π

∣∣∣π ∈ P2

)⋂
span

(
Tπ

∣∣∣π ∈ P ∗
even

)
= span

(
Tπ

∣∣∣π ∈ P ∗
2

)

We will only prove the first formula, the proof of the second one being similar. Let us
first recall that the Möbius function of any lattice is given by:

µ(σ, π) =





1 if σ = π

−∑σ≤τ<π µ(σ, τ) if σ < π

0 if σ 6≤ π
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With this convention, we have the following formula from [2], which expresses the
twisted maps T̄π in terms of the untwised ones Tπ:

T̄π =
∑

σ≤τ≤π

ε(τ)µ(σ, τ)Tσ

To be more precise, this formula is valid for any π ∈ Peven, with the sum being over
all partitions σ, τ ∈ Peven satisfying σ ≤ τ ≤ π, and with µ being the Möbius function of
Peven. We refer to [2] for the proof, which follows from the definition of Ṫπ, and from the
Möbius inversion formula. As an illustration, we have the following computation:

T̄/\ = ε(/\)µ(/\, /\)T/\ + ε(/\)µ(|−|, /\)T|−| + ε(|−|)µ(|−|, |−|)T|−|

= (−1) · 1 · T/\ + (−1) · (−1) · T|−| + 1 · 1 · T|−|

= −T/\ + 2 T|−|

Observe that this agrees with T̄/\(ea ⊗ eb) = −eb ⊗ ea + 2δabea ⊗ ea. See [2].
With this formula in hand, let us go back to our problem. By Frobenius duality we can

restrict the attention to the fixed vectors, and we want to prove that we have:

span
(
T̄π

∣∣∣π ∈ P2(k)
)⋂

span
(
Tπ

∣∣∣π ∈ NCeven(k)
)
= span

(
Tπ

∣∣∣π ∈ NC2(k)
)

So, let us pick a vector ξ in the span on the left, as follows:

ξ =
∑

π∈P2(k)

απT̄π

By using the above Möbius formula, we obtain:

ξ =
∑

π∈P2(k)

απ

∑

σ≤τ≤π

ε(τ)µ(σ, τ)Tσ

=
∑

σ∈Peven(k)

Tσ

∑

π∈P2(k)

( ∑

σ≤τ≤π

ε(τ)µ(σ, τ)

)
απ

Our assumption that ξ belongs to the span in the middle reads:

∑

π∈P2(k)

( ∑

σ≤τ≤π

ε(τ)µ(σ, τ)

)
απ = 0 , ∀σ ∈ Peven(k)−NCeven(k)

In the case of pairings, σ ∈ P2(k)−NC2(k), this formula simplifies, because the condi-
tion σ ≤ τ ≤ π can only be satisfied when σ = τ = π. Thus, we obtain:

ασ = 0 , ∀σ ∈ P2(k)−NC2(k)

But this shows that ξ belongs to the span on the right, and we are done. �
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Summarizing, we have proved that we have < ŌN , H
+
N >= O+

N , and this is probably
quite interesting, in view of the various general questions regarding the liberations.

As already mentioned, we still have one concrete problem to be solved, namely that of
computing the level of HN ⊂ ŌN . We will be back to this in section 8 below.

As a conclusion, the liberation questions look quite difficult. We believe that a good
input might come from the quantum symmetry groups of the finite graphs, and as a
general problem here, we have: when is G+(X) a maximal liberation of G(X)?

This does not look obvious at all, and is open even for the empty graph.

6. Higher orbitals

In view of the above considerations, we would like to compute the level of HN ⊂ ŌN ,
and of some related inclusions. The notion of level, as constructed in Definition 5.2 above,
regards the fixed point spaces Fix(u⊗k), or rather the dimension of these spaces. This is
the case in general, but in the quantum permutation group case, that we are interested
in here, all this is related as well to the notions of orbits and orbitals.

In short, we would like to study the orbits and orbitals of the various quantum permu-
tation groups that we have. We will need some general theory. First, we have:

Proposition 6.1. Given a subgroup G ⊂ SN , consider its magic unitary u = (uij), given
by uij = χ{σ ∈ G|σ(j) = i}. The following conditions are then equivalent:

(1) σ(i1) = j1, . . . , σ(ik) = jk, for some σ ∈ G.

(2) ui1j1 . . . uikjk 6= 0.

These conditions produce an equivalence relation (i1, . . . , ik) ∼ (j1, . . . , jk), and the corre-

sponding equivalence classes are the k-orbitals of G.

Proof. The fact that we have indeed an equivalence as in the statement, which produces
an equivalence relation, is indeed clear from definitions. �

In the quantum case, the situation is more complicated. We follow the approach to the
orbits and orbitals developed in [14], [25], and in [27] as well. We first have:

Proposition 6.2. Let G ⊂ S+
N be a closed subgroup, with magic unitary u = (uij), and

let k ∈ N. The relation (i1, . . . , ik) ∼ (j1, . . . , jk) when ui1j1 . . . uikjk 6= 0 is:

(1) Reflexive.

(2) Symmetric.

(3) Transitive at k = 1, 2.

Proof. This is basically known from [14], [25], [27], the proof being as follows:
(1) This simply follows by using the counit:

ε(uirir) = 1, ∀r =⇒ ε(ui1i1 . . . uikik) = 1

=⇒ ui1i1 . . . uikik 6= 0

=⇒ (i1, . . . , ik) ∼ (i1, . . . , ik)
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(2) This follows by applying the antipode, and then the involution:

(i1, . . . , ik) ∼ (j1, . . . , jk) =⇒ ui1j1 . . . uikjk 6= 0

=⇒ ujkik . . . uj1i1 6= 0

=⇒ uj1i1 . . . ujkik 6= 0

=⇒ (j1, . . . , jk) ∼ (i1, . . . , ik)

(3) This is something more tricky. We need to prove that we have:

ui1j1 . . . uikjk 6= 0 , uj1l1 . . . ujklk 6= 0 =⇒ ui1l1 . . . uiklk 6= 0

In order to do so, we use the following formula:

∆(ui1l1 . . . uiklk) =
∑

s1...sk

ui1s1 . . . uiksk ⊗ us1l1 . . . usklk

At k = 1 the result is clear, because on the right we have a sum of projections, which
is therefore strictly positive when one of these projections is nonzero.

At k = 2 now, the result follows from the following trick, from [25]:

(ui1j1 ⊗ uj1l1)∆(ui1l1ui2l2)(ui2j2 ⊗ uj2l2)

=
∑

s1s2

ui1j1ui1s1ui2s2ui2j2 ⊗ uj1l1us1l1us2l2uj2l2

= ui1j1ui2j2 ⊗ uj1l1uj2l2

Indeed, we obtain from this that we have ui1l1ui2l2 6= 0, as desired. �

In view of the results that we have so far, we can formulate:

Definition 6.3. Given a closed subgroup G ⊂ S+
N , consider the relation ∼k defined by

(i1, . . . , ik) ∼ (j1, . . . , jk) when ui1j1 . . . uikjk 6= 0.

(1) The equivalence classes with respect to ∼1 are called orbits of G.

(2) The equivalence classes with respect to ∼2 are called orbitals of G.

In the case where ∼k with k ≥ 3 happens to be transitive, and so is an equivalence relation,

we call its equivalence classes the algebraic k-orbitals of G.

In order to have some non-trivial examples and counterexamples, let us study the group

duals. We recall that we have an embedding ẐN ⊂ S+
N , constructed as follows:

ẐN ≃ ZN ⊂ SN ⊂ S+
N

To be more precise, if we let w = e2πi/N and we denote by g1, . . . , gN the elements of
ZN , the formula of the corresponding magic unitary over C∗(ZN) is as follows:

uij =
1

N

∑

k

w(i−j)kgk
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Now given integers N1, . . . , Nl, we can make a dual free product of the embeddings

ẐNi
⊂ S+

Nl
, and we obtain an embedding as follows, with N = N1 + . . .+Nl:

̂ZN1 ∗ . . . ∗ ZNl
⊂ S+

N

Moreover, given any quotient ZN1 ∗ . . . ∗ZNl
→ Γ, we obtain in this way an embedding

Γ̂ ⊂ S+
N . By a result of Bichon in [14], any group dual Γ̂ ⊂ S+

N appears in this way.
We will assume in what follows, in order to simplify a number of technical aspects, that

our quotients Γ appear as intermediate subgroups, as follows:

ZN1 ∗ . . . ∗ ZNl
→ Γ → ZN1 × . . .× ZNl

For a number of comments on this assumption, in the context of various matrix mod-
elling questions for the quantum permutation groups, we refer to [6], [8].

Now back to our orbital questions, we first have:

Proposition 6.4. Given an intermediate group ZN1 ∗ . . . ∗ ZNl
→ Γ → ZN1 × . . .× ZNl

,

consider the associated embedding Γ̂ ⊂ S+
N , with N = N1 + . . .+Nl.

(1) The orbits of Γ̂ are the sets producing the partition {1, . . . , N} = A1 ⊔ . . . ⊔ Al

associated to the decomposition N = N1 + . . .+Nl.

(2) The orbitals of Γ̂ consist of Nr copies of the set Ar, for any r ∈ {1, . . . , l}, along
with all the sets Ar ×As, with r 6= s.

Proof. In order to prove this result, let us first discuss the case l = 1. Here the k-orbitals
in question are simply those for the usual action ZN ⊂ SN , and there are Nk−1 such
k-orbitals, each of them having size N . In general now, the proof is as follows:

(1) This is elementary to prove, starting from the above explicit description of the
associated magic unitary, and is well-known since [14].

(2) In order to have ui1j1ui2j2 6= 0 we must have ui1j1 6= 0, ui2j2 6= 0, and so i1, j1 ∈ Ar,
i2, j2 ∈ As, for certain r, s ∈ {1, . . . , l}. We have two cases, as follows:

r = s. In this case we have i1, j1, i2, j2 ∈ Ar, and so we are reduced to the study of the
orbitals for ZNr ⊂ SNr , where the answer is trivial, as explained above. Thus, we obtain
as orbitals Nr copies of the set Ar, for any r ∈ {1, . . . , l}, as in the statement.

r 6= s. In this case, due to the block diagonal structure of the magic matrix u = (uij),
the conditions ui1j1 6= 0, ui2j2 6= 0 automatically imply ui1j1ui2j2 6= 0. Thus, we obtain as
extra orbitals the sets Ar × As with r 6= s, as in the statement. �

Regarding now the higher orbitals, observe that in order to have ui1j1ui2j2ui3j3 6= 0 we
must have i1, j1 ∈ Ar, i2, j2 ∈ As, i3, j3 ∈ At for certain r, s, t ∈ {1, . . . , l}. Thus, the
problem naturally splits over the partitions ker(rst) ∈ P (3), in the sense that indices
coming from triples (rst) having different kernels cannot be connected by ∼3.

With this observation in hand, we have the following result:
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Proposition 6.5. For a group dual Γ̂ ⊂ S+
N as above, ∼3 is an equivalence relation on

the subsets of indices corresponding to the following partitions:

(1) ⊓⊓. The classes here consist of N2
r copies of Ar, for any r.

(2) ⊓ |. The classes here consist of Nr copies of Ar × As, for any r 6= s.
(3) | ⊓. The classes here consist of Nt copies of Ar ×At, for any r 6= t.
(4) | | |. The classes here consist of the sets Ar × As ×At, with r, s, t distinct.

As for the remaining partition, ⊓| , here the possible classes depend on Γ.

Proof. Let us first discuss the group dual G = ̂ZN1 × . . .× ZNl
. This is a classical group,

and so its ∼k relation is indeed transitive, as a consequence of Proposition 6.1. Regarding
now its 3-orbitals, in order to have ui1j1ui2j2ui3j3 6= 0 we must have i1, j1 ∈ Ar, i2, j2 ∈ As,
i3, j3 ∈ At for certain r, s, t ∈ {1, . . . , l}, and the situation is as follows:

(I) In the case r = s = t we obtain the 3-orbitals for the action ZNr ⊂ SNr , which
consist of N2

r copies of Ar. Thus, we obtain here N2
r copies of Ar, for any r.

(II) In the case r = s 6= t we obtain a product of an orbital at r, and an orbit at t. The
cases r = t 6= s and s = t 6= r are similar.

(III) Finally, in the case where the indices r, s, t are pairwise distinct, we have only 1
orbital, namely the whole set Ar × As × At.

In the general case now, as in the statement, the computation in case (I) is identical,
and gives (1), the computation in the first two cases of (II) is also identical, and gives (2)
and (3), and the computation for (III) gives (4).

Finally, regarding the last assertion, this follows by comparing the products and free
products of cyclic groups, and this will be explained in detail below. �

Regarding the partition which is left, namely ⊓| , we have results here only in the
extreme cases, namely the classical and the free case. In fact, for these two groups the
computations can be performed for any k, the conclusion being as follows:

Proposition 6.6. Consider the following quantum permutation groups:

̂ZN1 × . . .× ZNl
⊂ ̂ZN1 ∗ . . . ∗ ZNl

(1) In both cases, ∼k is transitive, for any k.
(2) These two quantum groups are distinguished by their 3-orbitals.

Proof. Let us go back to the proof of Proposition 6.5. For G = ̂ZN1 ∗ . . . ∗ ZNl
, what

changes at k = 3 is what happens in the case (2), and more specifically in the situation
s = t 6= r. Indeed, since the underlying algebra is no longer commutative, and is in fact
a free product, when assuming i1, j1, i3, j3 ∈ Ar and i2, j2 ∈ As with r 6= s we have:

ui1j1ui2j2ui3j3 6= 0 ⇐⇒ ui1j1 6= 0, ui2j2 6= 0, ui3j3 6= 0

Thus we have an equivalence relation, and the number of orbitals decreases.
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Summing up, we are done with the case k = 3. Regarding the higher orbitals, their

description for G = ̂ZN1 × . . .× ZNl
is similar to the one at k = 1, 2, 3, basically coming

by taking products of orbitals for the cyclic actions ZNr ⊂ SNr . Thus, we obtain in the
end, as full collection of k-orbitals, a certain disjoint union of products of the sets Ar.

In the free product case, G = ̂ZN1 ∗ . . . ∗ ZNl
, our claim is that the situation is quite

similar. Indeed, given a non-vanishing product w = ui1j1 . . . uikjk , we must have ui1j1 6=
0, . . . , uikjk 6= 0. Thus we must have i1, j1 ∈ Ar1 , . . . , ik, jk ∈ Ark for certain numbers
r1, . . . , rk ∈ {1, . . . , l}. Now if we group the consecutive terms of w at the places where
ra = ra+1, we obtain in this way a certain decomposition of type w = w1 . . . ws, with the
i, j indices of the uij components of consecutive wa terms belonging to different Ar sets.
Now since we are in a free product situation, we have an equivalence as follows:

w 6= 0 ⇐⇒ w1 6= 0, . . . , ws 6= 0

Thus, in a way which is similar, but not identical, to the one from the classical case,
we end up with an equivalence relation, and the corresponding full collection of k-orbitals
appears as a certain disjoint union of products of the sets Ar. �

Generally speaking, we believe that ∼3 is not transitive, in the general group dual case,
but we have no counterexample. Some interesting candidates here come from the various
examples worked out in the context of matrix modelling questions in [6], [8].

Regarding now the quantum permutation group S+
N itself, we have here:

Theorem 6.7. For the quantum permutation group S+
N , with N ≥ 4, we have

(i1, . . . , ik) ∼ (j1, . . . , jk) ⇐⇒





i1 = i2 ⇐⇒ j1 = j2

i2 = i3 ⇐⇒ j2 = j3
. . .

ik−1 = ik ⇐⇒ jk−1 = jk

and so ∼ is an equivalence relation, at any k ∈ N. The number of orbits is 2k−1.

Proof. The implication =⇒ is clear, because if one of the conditions on the right does
not hold, we have ui1j1 . . . uikjk = 0, due to a cancellation between consecutive terms.

Conversely now, we have to show that a vanishing formula of type ui1j1 . . . uikjk = 0 can
only come from “trivial reasons”, as in the statement. But this follows by using group
duals, and more specifically by using an embedding as follows:

Ẑ2 ∗ Z2 ⊂ S+
4 ⊂ S+

N

Finally, the last assertion is clear, because when counting the orbits for ∼, at the level
of the pairs (i1i2) we have one binary choice to be made, namely i1 = i2 vs. i2 6= i2, then
for the pairs (i2i3) we have another binary choice, and so on up to a final binary choice,
for (ik−1ik). Thus, we have k − 1 binary choices, and so 2k−1 orbits. �
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As an interesting consequence, the algebraic 3-orbitals differ for SN and S+
N :

Proposition 6.8. The algebraic 3-orbitals for SN and S+
N are as follows:

(1) For SN we have 5 such orbitals, corresponding to ⊓⊓, ⊓ |, | ⊓, ⊓| , | | |.
(2) For S+

N we have 4 such orbitals, corresponding to ⊓⊓, ⊓ |, | ⊓, | | |
..... .

Proof. For the symmetric group SN , it follows from definitions that the k-orbitals are
indexed by the partitions π ∈ P (k), as follows:

Cπ =
{
(i1, . . . , ik)

∣∣∣ ker i = π
}

Regarding now S+
N , the k-orbitals are those computed above, and at k = 3 they can be

naturally indexed by the above diagrams, with the last one standing for the fact that the
corresponding 3-orbital merges the ⊓| and | | | 3-orbitals from the classical case. �

7. Analytic orbitals

Generally speaking, we believe that under suitable “uniformity” assumptions, covering
the classical case, plus the examples in Proposition 6.6 and Theorem 6.7, and probably
many other examples, which still remain to be found, ∼3 should be an equivalence relation,
and that the corresponding theory of algebraic k-orbitals is worth developing.

However, the fact that the 3-orbitals for S+
N do not coincide with those for SN is quite

problematic for us, due to a number of reasons explained below. And, our feeling is that
the same kind of phenomenon might appear for H+

N , ŌN as well. So, it is perhaps better
at this point to stop with the algebraic theory, and use instead an analytic approach.

Let us begin with the following standard result:

Proposition 7.1. For a subgroup G ⊂ SN , which fundamental corepresentation denoted

u = (uij), the following numbers are equal:

(1) The number of k-orbitals.
(2) The dimension of space Fix(u⊗k).
(3) The number

∫
G
χk, where χ =

∑
i uii.

Proof. This is well-known, the proof being as follows:
(1) = (2) Given σ ∈ G and vector ξ =

∑
i1...ik

αi1...ikei1 ⊗ . . .⊗ eik , we have:

σ⊗kξ =
∑

i1...ik

αi1...ikeσ(i1) ⊗ . . .⊗ eσ(ik)

ξ =
∑

i1...ik

ασ(i1)...σ(ik)eσ(i1) ⊗ . . .⊗ eσ(ik)

Thus σ⊗kξ = ξ holds for any σ ∈ G precisely when α is constant on the k-orbitals of
G, and this gives the equality between the numbers in (1) and (2).

(2) = (3) This follows from the Peter-Weyl theory, because χ =
∑

i uii is the character
of the fundamental corepresentation u. �
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In the quantum case now, G ⊂ S+
N , by the general Peter-Weyl type results established

by Woronowicz in [35], we still have the following formula:

dimFix(u⊗k) =

∫

G

χk

The problem is that of understanding the k-orbital interpretation of this number. We
first have the following result, basically coming from [14], [25]:

Proposition 7.2. Given a closed subgroup G ⊂ S+
N , and a number k ∈ N, consider the

following linear space:

Fk =
{
ξ ∈ (CN)⊗k

∣∣∣ξi1...ik = ξj1...jk , ∀(i1, . . . , ik) ∼ (j1, . . . , jk)
}

(1) We have Fk ⊂ Fix(u⊗k).
(2) At k = 1, 2 we have Fk = Fix(u⊗k).
(3) In the classical case, we have Fk = Fix(u⊗k).
(4) For G = S+

N with N ≥ 4 we have F3 6= Fix(u⊗3).

Proof. The tensor power u⊗k being the corepresentation (ui1,...ik,j1...jk)i1...ik,j1...jk , the cor-
responding fixed point space Fix(u⊗k) consists of the vectors ξ satisfying:

∑

j1...jk

ui1j1 . . . uikjkξj1...jk = ξi1...ik , ∀i1, . . . , ik

With this formula in hand, the proof goes as follows:
(1) Assuming ξ ∈ Fk, the above fixed point formula holds indeed, because:

∑

j1...jk

ui1j1 . . . uikjkξj1...jk =
∑

j1...jk

ui1j1 . . . uikjkξi1...ik = ξi1...ik

(2) This is something more tricky, coming from the following formulae:

uik

(∑

j

uijξj − ξi

)
= uik(ξk − ξi)

ui1k1

(∑

j1j2

ui1j1ui2j2ξj1j2 − ξi1i2

)
ui2k2 = ui1k1ui2k2(ξk1k2 − ξi1i2)

(3) This follows indeed from Proposition 7.1 above.
(4) This follows from Proposition 6.8 above, and from the representation theory of S+

N

with N ≥ 4, the dimensions of the two spaces involved being 4 < 5. �

The above considerations suggest formulating the following definition:
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Definition 7.3. Given a closed subgroup G ⊂ U+
N , the integer

dimFix(u⊗k) =

∫

G

χk

is called number of analytic k-orbitals.

To be more precise here, in the classical case the situation is of course well understood,
and this is the number of k-orbitals. The same goes for the general case, with k = 1, 2,
where this is the number of k-orbitals, as constructed in section 6 above.

At k = 3 and higher, however, Proposition 7.2 (4) shows that, even in the case where
the algebraic 3-orbitals are well-defined, their number is not necessarily the above one.
However, we believe that the above definition is the “correct” one.

As a further illustration, let us discuss as well what happens for the group duals. With
notations from Proposition 6.4 above, if we denote by g1Nr

, . . . , grNr
the elements of each

ZNr , or rather the images of these elements inside Γ, with the order of these elements
being irrelevant, the following set satisfies 1 ∈ S = S−1, and is generating for Γ:

S =
{
girNr

∣∣∣r = 1, . . . , l, ir = 1, . . . , Nr

}

Thus, we can consider the Cayley graph of Γ with respect to this set, and then perform
random walks on this graph. With this convention, we have the following result:

Proposition 7.4. For the usual products or free products of cyclic groups, the following

numbers coincide:

(1) The number of algebraic k-orbitals.
(2) The number of analytic k-orbitals.
(3) The number of k-loops based at 1, on the Cayley graph of Γ.

Proof. It is well-known, as a consequence of u ∼ diag(S), that the numbers in (2) and (3)
coincide. Thus, in order to prove the result, we have to compare (1) and (3).

As a first observation, at k = 1, 2 this follows from Proposition 6.4, and this, without
product assumptions on Γ. Indeed, at k = 1 each set Ar corresponds to the loop 1− 1Nr ,
and at k = 2 the Nr copies of Ar correspond to the Nr loops of type 1 − gNr − gNrg

−1
Nr
,

and the sets Ar ×As correspond to the loops 1− 1Nr − 1Nr1Ns.
At k ≥ 3 the proof is similar for the classical products and the free products, by using

the description of the k-orbitals from Proposition 6.6 above. To be more precise, for the
classical products this is routine, and follows as well from the fact that we have (1) = (2).
As for the free product case, the point here is that, by using the word decomposition
w = w1 . . . ws from the proof of Proposition 6.6, each of the words wa must correspond to
a certain loop on the Cayley graph, and this gives the result. �

Now back to the definition of the analytic k-orbitals, this has of course the advantage
of being defined for any k. In the particular case k = 3, we have as well the following
result, from [3], which brings some more support for our definition:
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Proposition 7.5. For a closed subgroup G ⊂ S+
N , and an integer k ≤ 3, the following

conditions are equivalent:

(1) G is k-transitive, in the sense that Fix(u⊗k) has dimension 1, 2, 5.
(2) The k-th moment of the main character is

∫
G
χk = 1, 2, 5.

(3)
∫
G
ui1j1 . . . uikjk = (N−k)!

N !
for distinct indices ir and distinct indices jr.

(4)
∫
G
ui1j1 . . . uikjk equals

(N−| ker i|)!
N !

when ker i = ker j, and equals 0, otherwise.

Proof. Most of these implications are known since [3], the idea being as follows:
(1) ⇐⇒ (2) This follows from the Peter-Weyl type theory from [35], because the k-th

moment of the character counts the number of fixed points of u⊗k.
(2) ⇐⇒ (3) This follows from the Schur-Weyl duality results for SN , S

+
N and from

P (k) = NC(k) at k ≤ 3, as explained in [3].
(3) ⇐⇒ (4) Once again this follows from P (k) = NC(k) at k ≤ 3, and from a

standard integration result for SN , as explained in [3]. �

As a conclusion to all these considerations, we have:

Theorem 7.6. For a closed subgroup G ⊂ S+
N , and an integer k ∈ N, the number

dim(Fix(u⊗k)) =
∫
G
χk of “analytic k-orbitals” has the following properties:

(1) In the classical case, this is the number of k-orbitals.
(2) In general, at k = 1, 2, this is the number of k-orbitals.
(3) For the free products of cyclic groups, this is the number of algebraic k-orbitals.
(4) At k = 3, when this number is minimal, G is 3-transitive in the above sense.

Proof. This follows indeed from the above considerations. �

There are of course many questions left. A first one regards the case k = 4, where we
do not know what the correct analogue of Proposition 7.5 would be. This is of course
quite important, because it would bring more support for our definition at k = 4.

A second question regards the interpretation of
∫
G
χk, as “counting” certain objects,

that we can call afterwards “k-orbitals”. In the case G = S+
N we have

∫
G
χk = #NC(k),

so these k-orbitals that we are looking for can only be the elements of NC(k), in some
index-theoretic formulation. However, all this heavily relies on the easiness property of
S+
N , and for other quantum groups it is not clear what the “candidates” should be.
We believe, however, that this latter question can be subject to some further investi-

gation. From an analytic perspective, the relevant formula is:
∫

G

χk =
∑

i1...ik

∫

G

ui1i1 . . . uikik

The problem is to understand how the integrals on the right can be naturally grouped
into sums which are integers. This question can be probably investigated by using the
Weingarten formula [7], but we have no further results here.
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8. Reflection groups

Let us go back now to the quantum group ŌN , and the other quizzy quantum groups.
As explained in sections 4 and 5 above, we have two types of actions to be investigated,
namely HN ⊂ ŌN ⊂ S+

2N
and HN ⊂ H+

N ⊂ S+
2N . We will compute here the small order

higher orbitals of these actions, in the analytic sense explained in section 7 above.
Let us first study the actions of HN ⊂ ŌN ⊂ S+

2N
. We have here:

Proposition 8.1. The orbitals for HN ⊂ ŌN ⊂ S+
2N

are as follows:

(1) At k = 1 we have 1 orbit, in both cases.

(2) At k = 2 we have N + 1 orbitals, in both cases.

Proof. Indeed, the action of HN on the hypercube is transitive, and has N + 1 orbitals,
corresponding to the diagonals of the cube having lengths

√
0,
√
1,
√
2, . . . ,

√
N .

Regading now ŌN , we know from section 4 that the magic character decomposes as
χ = χ0 + . . . + χN , and it follows that we have

∫
χ2 ≥ N + 1. Now since for HN the

corresponding integral equals N +1, for ŌN we must obtain N +1 as well, as stated. �

Regarding now the higher k-orbitals for the action HN ⊂ S2N , these appear from the
k-simplices having the vertices on the standard cube, and so having edges of lengths√
0,
√
1,
√
2, . . . ,

√
N , which each simplex appearing with a certain multiplicity.

As for the quantum group ŌN , we can use the correspondence with ON , and we are
therefore led to questions regarding the antisymmetric representation of ON . Thus, we
can in principle compute the number of k-orbitals by using the Weingarten formula.

Both computations are non-trivial, and as a conclusion here, we have:

Conjecture 8.2. The quantum groups HN ⊂ ŌN are distinguished by their 3-orbitals.

Some good evidence for this statement comes from the fact that at k = 3 the problem
for ON looks purely combinatorial, while the problem for HN involves some analysis,
coming from triangle inequalities for the edges of the triangles. Thus, the combinatorics
is not the same, and so the results of the computations should be different.

Let us study now the actions HN ⊂ H+
N ⊂ S+

2N , where the computations are consider-
ably simpler. First, we have the following elementary result:

Proposition 8.3. The orbitals for HN ⊂ S2N are as follows:

(1) At k = 1 we have 1 orbit.

(2) At k = 2 we have 3 orbitals.

(3) At k = 3 we have 11 orbitals.

(4) At k = 4 we have 49 orbitals.

Proof. We recall that the action HN ⊂ S2N comes by permuting N segments. Thus the
k-orbitals for HN are obtained by decorating the 2N endpoints of these N segments with
k dots, and then by counting the multiplicity of each configuration.
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At small values of k, the situation is as follows:
(1) Here the action is clearly transitive, and the corresponding 1 orbital appears from

the only possible configuration, namely •— , appearing once.
(2) Here the possible configurations are ••— , •—• , •— •— , with each appearing

exactly once, and so we have 3 orbitals.
(3) Here the possible configurations, with multiplicities, are • • •— (×1), ••—• (×3),

••— •— (×3), •—• •— (×3), •— •— •— (×1), and we have 11 orbitals.
(4) Here the possible configurations, with multiplicities, are • • • •— (×1), • • •—•

(×4), ••—•• (×3) , • • •— •— (×4), ••—• •— (×12), ••— ••— (×3), ••— •—• (×6),
•—• •—• (×3), ••— •— •— (×6), •—• •— •— (×6), •— •— •— •— (×1), and so we
have a total of 49 orbitals. �

In order to deal now with H+
N ⊂ S+

2N , we recall from [5] that we have:

Proposition 8.4. When using the standard embeddings S+
N ⊂ H+

N ⊂ O+
N , the magic

matrix for the embedding H+
N ⊂ S+

2N comes from the “sudoku” matrix

v =

(
a b
b a

)

the connecting formulae between u, v being uij = aij − bij and aij = (u2
ij + uij)/2, bij =

(u2
ij − uij)/2. In addition, the matrix pij = u2

ij is magic, and we have p ∈ u⊗2.

Proof. The first assertion, which is similar with what happens in the classical case, where
we have uij ∈ {−1, 0, 1}, is explained in detail in [5]. Regarding now the second assertion,
which follows in fact from the general results in [10], observe that we have:

u⊗2(ei ⊗ ei) =
∑

kl

ukiuliek ⊗ el =
∑

k

u2
kiek ⊗ ek =

∑

k

pkiek ⊗ ek

Thus the linear space span(ei ⊗ ei) is left invariant by u⊗2, and the corresponding
subrepresentation of u⊗2 is the magic corepresentation p = (pij), as claimed. �

By using this description, we obtain the following result:

Proposition 8.5. The quantum groups HN ⊂ H+
N have the same number of 1, 2, 3-

orbitals, when regarded as subgroups of S+
2N , namely 1, 3, 11.

Proof. We use the formula in Proposition 8.4, which gives:

χv = 2
∑

i

aii =
∑

i

u2
ii + uii = χp + χu

With this formula in hand, the proof goes as follows:
(1) k = 1. Here there is nothing to prove, because since HN is transitive, so must be

H+
N . Observe that this follows as well from

∫
χp = 1,

∫
χu = 0.
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(2) k = 2. Here we can use once again an elementary argument. First, since HN has 3
orbitals, H+

N can have 2 or 3 orbitals. Now observe that we have:

v11vN+1,N+2 = a11a12 = 0

But this shows that we have (1, N + 1) 6∼ (1, N + 2), and so the action of H+
N is not

doubly transitive, and so we must have 3 orbitals, as claimed.
Note that this follows as well from the following computation:

∫
χ2
v =

∫
χ2
p + 2

∫
χpχu +

∫
χ2
u = 2 + 0 + 1 = 3

(3) k = 3. Here we cannot use direct algebraic arguments, because the algebraic
3-orbitals, even if they exist, are not nesessarily counted by the moments of the main
character. Thus, we must integrate characters. Since p is magic, we have:

∫
χ2
p ≥ 2 ,

∫
χ3
p ≥ 5

Indeed, this follows from the representation theory of S+
N , because 2, 5 are Bell numbers,

counting respectively the partitions in NC(2), NC(3). Now by using as well the fact that
we have p ∈ u⊗2, from Proposition 8.4 above, we obtain that we have:

∫
χ3
v =

∫
χ3
p + 3

∫
χ2
pχu + 3

∫
χpχ

2
u +

∫
χ3
u

≥
∫

χ3
p + 3

∫
χ2
pχu + 3

∫
χ2
p +

∫
χ3
u

≥ 5 + 3× 0 + 3× 2 + 0

= 11

On the other hand, we know from Proposition 8.3 above that for HN , the corresponding
integral is 11. Thus, by functoriality, we obtain 11, as claimed. �

Thus, we must use k = 4 in order to distinguish HN ⊂ H+
N . We have:

Theorem 8.6. The quantum groups HN ⊂ H+
N ⊂ S+

2N are not distinguished by their

1, 2, 3-orbitals, but have different numbers of 4-orbitals, namely 49 > 43.

Proof. By using the character formula χv = χp + χu from the proof of Proposition 8.3
above, and the trace property of the integration functional, we obtain:

∫
χ4
v =

∫
χ4
p + 4

∫
χ3
pχu +

(
4

∫
χ2
pχ

2
u + 2

∫
χuχpχuχp

)
+ 4

∫
χpχ

3
u +

∫
χ4
u

Our claim is that the difference between HN , H
+
N comes from the quantity in the middle,

which must decrease when χp, χu do not commute. Indeed:
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(1) Regarding HN , we know from Proposition 8.3 that the result holds indeed. This
can be recovered as well by using the above integral, as follows:∫

χ4
v = 15 + 4× 0 + (4 + 2)× 5 + 4× 0 + 4 = 49

Here we have used the fact that we have 1 ∈ p ∈ u⊗2, which gives:∫
χ2
pχ

2
u = #(1 ∈ u⊗2 ⊗ p⊗2) = #(1 ∈ p⊗3) = 5

(2) Regarding now H+
N , the point is that the quantity

∫
χ2
pχ

2
u can be computed as

above, but the quantity
∫
χuχpχuχp is no longer equal to it. In order to compute this

latter quantity, observe that by using p ∈ u⊗2, and then 1 ∈ p, we obtain:

p⊗2 ∈ u⊗2 ⊗ p

= u⊗ 1⊗ u⊗ p

∈ u⊗ p⊗ u⊗ p

We therefore obtain the following estimate:∫
(χuχp)

2 ≥
∫

χ2
p = 2

On the other hand, it follows from the fusion rules computed in [10] that the reverse
inequality holds as well. Thus, we have 2× 3 = 6 orbitals missing with respect to the HN

case, and so we have a total of 49− 6 = 43 orbitals for H+
N , as stated. �
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[25] M. Lupini, L. Mančinska and D.E. Roberson, Nonlocal games and quantum permutation groups,

preprint 2017.
[26] S. Malacarne, Woronowicz’s Tannaka-Krein duality and free orthogonal quantum groups, Math.

Scand. 122 (2018), 151–160.
[27] B. Musto, D.J. Reutter and D. Verdon, A compositional approach to quantum functions, preprint

2017.
[28] S. Neshveyev and L. Tuset, Compact quantum groups and their representation categories, SMF

(2013).
[29] S. Raum and M. Weber, The full classification of orthogonal easy quantum groups, Comm. Math.

Phys. 341 (2016), 751–779.
[30] P. Tarrago and M. Weber, Unitary easy quantum groups: the free case and the group case, Int.

Math. Res. Not. 18 (2017), 5710–5750.
[31] D.V. Voiculescu, K.J. Dykema and A. Nica, Free random variables, AMS (1992).
[32] S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671–692.
[33] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195–211.
[34] D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys.

19 (1978), 999–1001.
[35] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.
[36] S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups,

Invent. Math. 93 (1988), 35–76.

T.B.: Department of Mathematics, University of Cergy-Pontoise, F-95000 Cergy-

Pontoise, France. teo.banica@gmail.com


	Introduction
	1. Twisted orthogonality
	2. Representation theory
	3. Fourier transforms
	4. Magic actions
	5. Liberation theory
	6. Higher orbitals
	7. Analytic orbitals
	8. Reflection groups
	References

