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Evaluation of the Effectiveness of the Frobenius Primality Test

Sergei Khashin

Abstract

The Frobenius primality test is based on the properties of the Frobenius automorphism of the quadratic

extension of the residue field. Although it is probabilistic, we show that is “very rarely wrong”. To date

there are no counterexamples to this method and there are reasons to believe that they do not exist at all.

In this paper, we suggest a version of the Frobenius test and prove that it does not fail for numbers less than

264. We also show that a “Frobenius pseudoprime” will necessarily have a prime divisor greater than 3000.

Key words: Primality test, Miller-Rabin test, Frobenius test.

Introduction

The most of popular nowadays methods for primality testing are based on small Fermat theorem: Miller-Rabin
and Solovay-Strassen primality tests. However reliability of such methods is not high: for example in [10], 24-
and 25-digit numbers are found that pass twelve and thirteen Miller-Rabin tests, respectively. Therefore, even
a few dozen of positive tests applied to some particular number does not not guarantee the primality of that
number. This is important for applications and, for example, in the Java language another test for numbers
longer than 100 bits is also used, the Lucas test, see [1]. That test has a significantly higher reliability, but a
mathematical study of the combined use of these tests is difficult.

The Frobenius primarity test method is based on the Frobenius automorphism of the finite field of order p2,
GF (p2) for some prime p. It has been known for a long time, see for example, [3, 4, 6]. In [4, 9], even stronger
versions of this test were suggested. However over the years the Frobenius method was greatly underestimated.

The reason for this is twofold. First of all, it is a common belief that there are some small pseudo-primes
for this test. For example, in the book [3, p.146] it is stated that the number 5777 = 53 · 109 is a Frobenius
pseudo-prime (FPP) for c = 5. However, it is easy to verify that this is not the case. Apparently, at this point
in the book, the term “FPP” is used in a slightly different sense. Secondly, as it was established in [4], an
upper bound on the error probability of the Frobenius method is ≈ 1/1300. Although this is much less than
the estimate for the Miller-Rabin (1/4) method, still the probability error looks very significant.

In the present paper, beside other results, we show that Frobenius method does not fail on numbers less 264.
In fact, to date no single composite number is known to pass even the simplest version of the test, and it is our
hypothesis that FPP do not exist at all.

Frobenius test consists in checking some equality in quadratic extension of the integers modulo prime p.
The equality of the norms of the corresponding elements is equivalent to the Fermat test, and the equality of
the irrational parts is the Lukas test. That is, the Frobenius test is a natural union of these two tests.

The complexity of the Frobenius test is twice the complexity of the methods Fermat or Miller-Rabin, that
is equal to the complexity of two such tests.

The Miller-Rabin test for the number n begins with a choice of the base a, which is relatively prime to n. As
the base, one either takes the first prime numbers, 2, 3, 5, . . . , or makes a pseudo-random choice of the number
a that is relatively prime to n. In the usual definition of the Frobenius test (see, for example, [4]), it is also
suggested to make a pseudo-random choice of the “base” z = a+ b

√
c.

In our approach, we propose to restrict this choice to the forms 2+
√
c or 1+

√
c depending on c (for details

see Definition 2.1). This is much more convenient and, most importantly, sufficient. Nevertheless, most of the
theorems is given for arbitrary a and b.

The paper is organized as follows. In Sec. 1 we give the necessary information and fix the notation. In
Sec. 2 we introduce Frobenius method (Definition 2.1) and discover its properties. In Sec 3 we describe the
non-trivial approach that lead to an algorithm that will allow to show that the Frobenius method does not fail
on the numbers less 264. In Sec. 4 we show that an FPP necessarily has a prime divisor > 3000.
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The computational results of the paper were only possible due to our theoretical results on properties of
FPPs. This significantly simplified the number of cases to consider and thus allowed to run the computations
in some acceptable time. Statements that require only mathematical reasoning are called “Theorems”, and
statements that in part require some computer calculations are called “Propositions”. The main results of
the paper are Theorem 2.14, Theorem 2.17, Theorem 2.22, and Theorem 2.23, and also Proposition 3.14 and
Proposition 4.1.

1 Notations and preliminary information

1.1 Jacobi symbol

We refer the reader to [2] or [8] for the definition and main properties of the Jacobi symbol, which we denote by
J(a/n). Here is a list of the properties that we shall use. (By gcd(a, b) we denote the greatest common divisor.)

• J(a+ n/n) = J(a/n).

• If p is prime and gcd(a, p) = 1, then J(a/p) = a(p−1)/2 mod p.

• J(ab/n) = J(a/n)J(b/n).

• Let n is odd and n = n1n2. Then J(a/n) = J(a/n1)J(a/n2).

• Let p, q are odd. Then J(p/q) = (−1)
p−1

2

q−1

2 J(q/p).

Below we give the values of the J(a/n) for some a that we shall need in what follows.

J(−1/n) =

{

1, n ≡ 1 mod 4

−1, n ≡ 3 mod 4

J(2/n) =

{

1, n ≡ ±1 mod 8

−1, n ≡ ±3 mod 8

J(3/n) =

{

1, n ≡ ±1 mod 12

−1, n ≡ ±5 mod 12
(gcd(6, n) = 1)

J(5/n) = J(n/5) =

{

1, n ≡ ±1 mod 5

−1, n ≡ ±2 mod 5

1.2 Frobenius index

In number theory, the concept of the “least quadratic non-residue mod p” is widely used, that is, for the natural
number n find the smallest positive c such that J(c/n) = −1. In our case, a similar but slightly different value
is required.

Definition 1.1. Let n be an odd number and not a perfect square. Its Frobenius index indF (n) is the smallest
c among the numbers [−1, 2, 3, 4, 5, 6, . . . ] such that the Jacobi symbol J(c/n) 6= 1.

It follows from the multiplicativity of the Jacobi symbol that if a Frobenius index is positive, then it is
prime.

It is not difficult to find out when the Frobenius index c = indF (n) takes small values:
If n ≡ 3 mod 4 then c = −1.
If n ≡ 5 mod 8 then c = 2.
Now we assume that n is not divisible by 3.
If n ≡ 17 mod 24 then c = 3. If n ≡ 1 mod 24 then c ≥ 5.
Now we assume that n is not divisible by 3 and 5.
If n ≡ 73 or 97 mod 120 then c = 5. If n ≡ 1 or 49 mod 120 then c ≥ 7.
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1.3 Quadratic field

Let c be a square-free integer and z = a + b
√
c ∈ Z[

√
c ]. The number a is called the rational part of z,

a = Rat(z), and b is called the irrational part, b = Irr(z). The number N(z) = a2 − b2c is called the norm of
z, z = a− b

√
c is the conjugate of z. So N(z1z2) = N(z1)N(z2), N(z) = z · z.

If p is a prime and J(c/p) = −1 then the ring Zp[
√
c ] is isomorphic to the Galois field GF (p2). The map

z → zp mod p

is the Frobenius automorphism and zp ≡ z.
If J(c/p) = +1 then there exists d ∈ Zp : d2 = c mod p. The ring Zp[

√
c ] is isomorphic to the Zp × Zp and

the isomorphism is given by the formula:

a+ b
√
c → (a+ bd, a− bd) . (1)

In this case zp ≡ z mod p.

2 Frobenius primality test

2.1 Definition

Definition 2.1. Let n be an odd number and not a perfect square, and let c = IndF (c) be the Frobenius index.
Let

z =

{

2 +
√
c, c = −1, 2,

1 +
√
c, c ≥ 3.

We call n a Frobenius prime if
zn ≡ z mod n. (2)

Remark 2.2. If J(c/n) = 0, then n is divided by c. This is a trivial case. So we shall assume that J(c/n) = −1.

The equality (2) holds for any prime n with J(c/n) = −1.
If composite number n is a Frobenius prime, then we call it a Frobenius pseudoprime (FPP). More precisely,

if z = a + b
√
c and zn ≡ z mod n, then the number n will be called Frobenius pseudoprime with parameters

(a, b, c), or FPP (a, b, c).
In other words, the FPP numbers are those on which the Frobenius test is wrong.

Example 2.3. Let n = 19, so c = −1, z = 2 + i,

zn = −3565918+ 2521451 · i ≡ 2− i mod n.

Example 2.4. Let n = 33, so c = −1, z = 2 + i,

zn ≡ 2 + 22 · i mod n 6= z.

Example 2.5. Let n = 17, so c = 3, z = 1 +
√
3,

zn = 13160704+ 7598336
√
3 ≡ 1−

√
3 mod n.

Note that if n is FPP (a, b, c), then n is pseudoprime to a base N(z) = a2 − b2c, that is the Frobenius test
includes the Fermat test.

A comparison of the irrational part is actually a Lucas test. Thus, the Frobenius test is a combination of
the Fermat and Lucas tests.

Hypothesis. Frobenius pseudoprime numbers do not exist.

In other words, the Frobenius test is never wrong. It is also useless to seek a counterexample by a straight-
forward search. For as it will be proved in Proposition 3.14 it is not among the numbers less than 264. It is
more likely to find a FPP in the form of the product of primes.
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Remark 2.6. The choice with the base z = 2 +
√
c or z = 1 +

√
c is not random. For some n may exist “bad”

bases, or in the terminology of the work [4] “liars”. The smallest example is n = 7 · 19 · 43 = 5719. In this case
the base z = 4689 +

√
−1 is “liar” that is

zn = z mod n.

Definition 2.7. Let n be a Frobenius pseudoprime with parameters (a, b, c). The prime factor p of n we call
Φ-positive, if J(c/p) = +1 and Φ-negative, if J(c/p) = −1.

Each FPP has an odd number of Φ-negative factors and arbitrary number of Φ-positive.

2.2 First important theorem

The following statement (in slightly different formulations) is proved in [4, 9].

Theorem 2.8. Let n be an FPP (a, b, c), n = pq where p is prime. Then
a) if J(c/p) = −1, then zq ≡ z mod p.
b) if J(c/p) = +1, then zq ≡ z mod p.

Proof. Let J(c/p) = −1, then zp ≡ z mod p. The number n is FPP, that is zpq ≡ z mod pq, so

zpq ≡ (zp)q ≡ zq ≡ z mod p,

and
zq ≡ z mod p .

Let J(c/p) = +1, then zp ≡ z mod p. The number n is FPP, so zpq ≡ z mod pq and

zpq ≡ (zp)q ≡ zq ≡ z mod p .

Corollary 2.9. Let n be an FPP (a, b, c) and p be a Φ-negaive prime divisor, Q = ord(z mod p). Then

n/p ≡ 1 mod Q,

n ≡ p mod Q.

Corollary 2.10. Let z = a + b
√
c ∈ Z and zq = aq + bq

√
c ∈ Z and n be a FPP (a, b, c), n = pq, where p is

prime. Then
a) if J(c/q) = +1 then p is a prime factor of gcd(aq − a, bq − b);
b) if J(c/q) = −1 then p is a prime factor of gcd(aq − a, bq + b).

Example 2.11. Let q = 31, c = 5. Then J(c/q) = +1 and

(1 +
√
c)q = aq + bq

√
c = 3232337626136576+ 1445545331654656

√
c

and gcd(aq − a, bq − b) = 104005, so p is one of the prime factor of 104005: 5, 11, 31, 61.

Example 2.12. Let q = 37, c = 5. Then J(c/q) = −1 and

(1 +
√
c)q = 3712124497172627456+ 1660112543324045312

√
c

and gcd(aq − a, bq + b) = 37, so so p can be only 37.

Remark 2.13. Although the numbers aq, bq grow rather quickly, the corresponding common divisor are not too
large and can be factorized up to q equal to many millions.
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2.3 Multiple factors

Theorem 2.14. Let p be a prime, n = p2q for some q (q can be a multiple of p) and n be a FPP (a, b, c). Then

zp ≡ z mod p2 .

Proof. In the ring Zp2 [
√
c ]:

(a+ pb)p ≡ ap mod p2.

So
zp

2q ≡ z mod p2q ,

and therefore
zp

2q ≡ z mod p .

As zp
2 ≡ z mod p, so zq ≡ zp ≡ z mod p and

zp ≡ z + pu mod p2 ,

zq ≡ z + pv mod p2

for some u, v ∈ Zp[
√
c ]. Then

zpq ≡ (zq)p ≡ (z + pv)p ≡ zp ≡ z + p u mod p2 ,

zp
2q ≡ (zpq)p ≡ (z + pu)p ≡ z + pu mod p2 .

On the other hand zn ≡ z mod p2, that is u = 0 therefore zp ≡ z mod p2.

Corollary 2.15. If n = p2q is a FPP (a, b, c), then p2 is also FPP (a, b, c).

Corollary 2.16. If n = p2q is a FPP (a, b, c), then N(z)p−1 ≡ 1 mod p2, where N(z) is a norm of z.

2.4 Φ-positive factor

There are very few such numbers (see section 3.5), but they still exist.

Theorem 2.17. Let n be a Frobenius pseudoprime, z = a + b
√
c and p is a Φ-positive prime factor of n,

n = p · q, c ≡ d2 mod p. We introduce the notation:

z1 = a+ b · d mod p,

z2 = a− b · d mod p,

z1, z2 ∈ Zp. Then
zq1 ≡ z2 mod p, (3)

zq2 ≡ z1 mod p, (4)

Proof. By definition:
(a+ b

√
c)pq = a− b

√
c mod p .

If J(c/p) = +1 then zp = z, so
(a+ b

√
c)q = a− b

√
c mod p

Using isomorphism Zp[
√
c ] → Zp × Zp, we obtain the required.

Corollary 2.18. Let
N = z1z2 = a2 − b2 · c

and

w = z1/z2 =
(a+ bd)2

N
mod p.

Then
N q−1 = 1 ,

wq+1 = 1 .
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Proof. Multiplying equalities (3) and (4), we obtain

(z1z2)
q = z1z2 ,

or N q−1 = 1, and dividing them into each other

(z1/z2)
q = z2/z1 ,

or wq+1 = 1.

Corollary 2.19. Let α = ord(N mod p) and β = ord(w mod p). Then

gcd(α, β) ≤ 2.

Proof. We have
q − 1 = 0 mod α,

q + 1 = 0 mod β.

These two conditions can not be fulfilled simultaneously if α and β have a common factor > 2.

Corollary 2.20. Let n be a Frobenius pseudoprime, z = a + b
√
c, p be a Φ-positive prime factor of n and

q = n/p. Then
q ≡ Ap mod Mp,

where
Mp = lcm(ord(z1 mod p), ord(z2 mod p)).

Proof. If q is increased by a multiple of ord(z1 mod p) and ord(z2 mod p), then both sides of the equalities
(3) and (4) do not change.

Note that both ord(z1 mod p) and ord(z2 mod p) are divisors of p − 1, so their least common multiple is
also a divisor of p− 1.

2.5 Φ-negative factor

Theorem 2.21. Let p be a Φ-negative prime divisor of FPP n, that is J(N(z), p) = −1. Denote
Q = ord(z mod p). Then co-order (p2 − 1)/Q is odd. In particular, it follows that Q ≡ 0 mod 8.

Proof. As zp ≡ z mod p, then N(z) = z · z = zp+1, so z(p
2
−1)/2 = N(Z)(p−1)/2 = J(N(z), p). As z(p

2
−1)/2 6= 1,

then co-order is odd.

Theorem 2.22. Let n be an FPP, c = indF (n) be its Frobenius index and p be an Φ-negative prime divisor of
n.

a) If c = −1, then p ≡ 3 mod 4.
b) If c = 2, then p ≡ 5 mod 8 and the product of all Φ-negative prime divisors of n equals to 1 mod 8.
c) If c = 3, then p ≡ 17|19 mod 24. In this case, there must be an odd number of divisors equals 17 modulo

24 (therefore, at least one is required). There must be an even number of divisors pi which equals 19 modulo 24
and gcd(24, ord(z mod pi)) ≤ 2.

d) If c = 5, then p ≡ 1 mod 4.
e) If c = 7, then (p mod 24) < 12 (that is 1|5|7|11).
Denote ord(z mod p) by Q and gcd(Q, 24) by d.
f) If c ≥ 5, then p ≡ 1 mod d.
g) If c ≥ 5 and c′ is a primve divisor of Q, c′ < c, then J(p, c′) = 1 (not J(c′, p), but J(p, c′)).

Proof. Let n = pq and Q be an order of z modulo p.
a) by definition of Φ-negative divisor.
b) as indF (n) = 2, then n ≡ 5 mod 8 and z = 2 +

√
2, N(z) = z · z = 2.

By Thm. 2.8 we have q ≡ 1 mod Q. However according to Thm. 2.21 the number Q is divisible by 8 which
means q ≡ 1 mod 8. Therefore, n = pq ≡ p mod 8 = 5.
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Thus, the product of all Φ-negative prime divisors of n is 1 or 5 modulo 8. Each Φ-positive prime divisor
equals to ±1 mod 8, therefore their product ≡ ±1 mod 8. But −1 is impossible, since in this case condition
n ≡ 5 mod 8 fails.

c) In this case n ≡ 17 mod 24. Since J(3/p) = −1, p ≡ ±5 mod 12, that is p ≡ 5|7|17|19 mod 24. In this
case N(z) = N(1 +

√
3) = −2. If p ≡ 5|7 mod 24, then J(N(z), p) = −1. It follows from Thm. 2.21 that in

this case Q is divided by 8, that is q ≡ 1 mod 8. So n = pq ≡ p mod 8 = 5|7, which contradicts the fact that
n ≡ 17 mod 24.

Let p ≡ 19 mod 24. Then

• q ≡ 11 mod 24.

• q ≡ 1 mod ord(z, p).

Let d = gcd(ord(z, p), 24). Therefore, 10 ≡ 0 mod d, which is only possible if gcd(ord(z, p), 24) = 2 or 1.
The statement about the number of multipliers follows from the fact that n ≡ 17 mod 24 and g2 = 1 for

all g ∈ Z
∗

24.
d) If c = 5, then z = 1 +

√
5, N(z) = 1 − 5 = −4 and J(N(z), p) = J(−1, p). Assume that p ≡ 3 mod 4,

then J(N(z), p) = −1 and according to the theorem (2.21), Q = ord(z mod p) is divided by 8. Since q ≡ 1
mod Q, then n = pq ≡ 3 mod 4. But Frobenius index ≥ 5, so n ≡ 1 mod 24.

e) Since z = 1 +
√
7, then N(z) = 1 − 7 = −6. Therefore J(N(z), n) = 1 if n ≡ 1, 5, 7, 11 mod 24 and

J(N(z), n) = −1 if n ≡ 13, 17, 19, 23 mod 24.
In second case ord(z, p) is divided by 8 and congruence pq ≡ 1 mod 24 are impossible.
Thus, if c = 7, then all Φ-negitive prime divisors of an FPP must be congruenced 1, 5, 7 or 11 modulo 24.
f) All invertible residues k modulo 24 have a useful property: k2 ≡ 1 mod 24. So the congruence pq ≡ 1

mod 24 can be rewritten as q ≡ p mod 24. With the congruence q ≡ 1 mod Q we get what we need.
g) By definition Frobenius index J(c′, n) must be equals 1. Since n ≡ 1 mod 24 and

J(q, c′) = J(1 + αc′, c′) = 1.

J(c′, n) = J(n, c′) = J(pq, c′) = J(p, c′)J(q, c′) = J(p, c′) = +1.

2.6 z-consistent prime factors

Theorem 2.23. Let n be an FPP and p1, p2 its two Φ-negative divisors. If d = GCD(ord(z, p1), ord(z, p2)) > 1
then

p1 ≡ p2 mod d

Proof. From Corollary 2.9, it follows
n ≡ p1 mod ord(z, p2),

n ≡ p2 mod ord(z, p1).

Therefore
n ≡ p1 ≡ p2 mod d.

Theorem 2.24. Let n be an FPP (a, b, c), p is Φ-negative prime divisor and Q = ord(z mod p). Then Q and
n are coprime.

Proof. We need to prove that Q is not divisible by any prime divisor of n, including p. The number Q is a
divisor of p2 − 1 and, therefore, is not divisible by p.

According to Corollary 2.9 n/p ≡ 1 mod Q, so Q is coprime with n/p, hence Q is coprime with each of its
prime divisors.
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Definition 2.25. A pair of primes divisors (p1, p2) of FPP n is called z-consistent if:

J(c/p1) = −1
J(c/p2) = −1
ord(z, p1) 6= 0 mod p2
ord(z, p2) 6= 0 mod p1
p1 ≡ p2 mod GCD(ord(z, p1), ord(z, p2)).

Thus, all Φ-negative FPP divisors are pairwise consistent.
Let n be FPP and p its Φ-positive prime factors. Corollary 2.20 implies

n ≡ Dp mod Mp,

for some Dp,Mp.
If p is a Φ-negative prime factor n, according to the main Thm. 2.8

q ≡ 1 mod ord(z mod p)

or
n ≡ Dp mod Mp,

where Dp = p, Mp = ord(z mod p).
Let p1, p2 are two different prime factors of FPP n, Φ-positive of negative and n = p1p2q. So

n ≡ Dp1
mod Mp1

,

n ≡ Dp2
mod Mp2

.

From this it follows that in this case we have

Dp1
≡ Dp2

mod gcd(Mp1
,Mp2

). (5)

This relation does not depend on q, only on p1 and p2.

Definition 2.26. Given z ∈ Z[
√
c]. Two primes will be called z-consistent or simply consistent if the relation

(5) holds for them.

Theorem 2.27. Let n be a Frobenius pseudoprime. Then all its prime factors are pairwise consistent.

3 Results of calculations

The hypothesis asserting that there are no Frobenius pseudoprimes (FPP) can not yet be proved. Below are
related results that we were able to establish.

3.1 Search for small FPP

We considered all composite odd numbers that are not complete squares. All such numbers up to 350 · 109 were
checked on being a FPP. This computation took few days on a standard PC (Intel(R) Pentium(R) CPU G4500
@3.50GHz). As the result we have the following proposition.

Proposition 3.1. There is no FPP less than 350 billions.

3.2 Search for large FPP with a large Frobenius index

As it was mentioned above, if n ≡ 1 mod 24 then indF (n) ≥ 5. The Frobenius index can be arbitrarily large.
Among the numbers < 232, the largest value of the index is 101 and it is for the number 2805 44 681. In [7]
a complete list of 458 069 912 numbers less than 264, whose index of Frobenius > 128 is obtained. All these
numbers are not FPP. As the result we have the following proposition.

Proposition 3.2. [7] There is no FPP less than 264 with the Frobenius index larger than 128.
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3.3 Search for large FPP with multiple factors

Sec. 2.3 contains proofs of the properties that should be satisfied by multiple prime factors of FPP. A direct
calculation of these properties showed that FPP does not have multiple factors less than 232 with the Frobenius
index c < 128 (without restriction on the value of FPP). The total computation time (with 3.50GHz) is about
two days. As the result we have the following proposition.

Proposition 3.3. There are no FPPs smaller than 264 having multiple prime factors.

3.4 Estimation of the product of all factors except one (for FPP)

We propose the following idea to significantly simplify the search for FPP.
Let n be FPP (a, b, c) and p the prime factor of n, q = n/p. In this case z = a+b

√
c ∈ Z and zq = aq+bq

√
c.

Corollary 2.10 implies that for every q there is a small number of possible p, as p has to be a divisor of
D = gcd(aq − a, bq ± b), where the sign ”+” or ”−” is taken depending on the sign a J(c/q).

In practice it turned out that the number of possibilities for p is not just small but very small: about 1 to 3
different p.

Thus, for a fixed z = a+ b
√
c, for each positive q we perform the following steps:

1. calculate zq = aq + bq
√
c,

2. calculate D = gcd(aq − a, bq ± b),

3. prime factorization of D: D = p1 . . . ps,

4. for each pi check whether ni = q · pi is FPP.

If q is of the order of several million, then aq, bq will have a length of up to tens of millions of bits. However,
the number D in all cases will not be so large and, most importantly, is decomposed into small prime factors.

Within a reasonable time (hours) the result is as follows:

Proposition 3.4. Let n be an FPP (any size, not necessarily < 264) with an Frobenius index c = indF (n) < 128.
Then n has no prime factors p such that n/p < 221.

3.5 A complete list of Φ-positive prime factors less than 232 for a FPP

In Sec. 2.4 properties of the Φ-positive factors p of FPP n = pq are proved and an algorithm for finding numbers
possessing these properties is proposed. This algorithm gives us the possible Φ-positive prime factors p and
some congruence relation for q:

q ≡ qp mod Ap

for a given p. An additional constraint comes from the congruence relation implied by the Frobenius index:

n ≡ 3 mod 4, if indF (n) = −1,
n ≡ 5 mod 8, if indF (n) = 2,
n ≡ 17 mod 24, if indF (n) = 3,
n ≡ 1 mod 24, if indF (n) ≥ 5,

and if indF (n) ≥ 5 then J(c/n) = +1 for all c < indF (n).
There are few such numbers p. For c = indF (n) < 128 and p < 232 we have only 26 numbers:

c p c p c p c p
−1 2276629 11 98641 61 271 89 109000877
−1 30906409 17 125597 67 75011 89 136973443
−1 806361541 23 5966803 67 25742443 101 137
2 8191 29 12637 83 1931 103 6863
2 2147483647 31 3596719249 83 3278741 103 3523679801
7 31 43 329947 83 806898559 107 219920461
7 3923 127 713342911
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If we assume that n = pq < 264 then most of these n can be directly checked whether they are a FPP or
not. After this, only the following eight numbers remain, for which a direct verification is still difficult (too
time-consuming):

c p c p c p c p
2 8191 7 3923 29 12637 83 3278741
7 31 11 98641 61 271 101 137

Note that in the case of a large Frobenius index, the computation can be significantly reduced if you do not
iterate over all numbers that are multiples of p, but only over those for which the Frobenius index is equal to
the given c (as given in the table above). After that, only the following list of five Φ-positive divisors remains
unchecked:

c p c p c p
2 8191 7 3923 101 137
7 31 61 271

We see an FPP n such that n < 264 has two Φ-positive factors less than 232 only if its Frobenius index indF is 7.
That is z = 1+

√
7, and these factors are 31 and 3923. By direct verification within a reasonable time (several

hours), one can make sure that both factors can’t occur simultaneously. As the result we have the following
statement.

Proposition 3.5. Φ-positive prime factors less than 232 for FPPs smaller than 264 can be only 5 numbers
mentioned above, and two such factors can not meet simultaneously.

3.6 The main proposition: there are no FPP less than 264

Let n, n < 264 be an FPP. Below it a summary of what we have discovered so far for such numbers:
a) n > 350 · 109 (Proposition (3.1)).
b) Frobenius index c = indF (n) < 128 (Proposition (3.2)).
c) n does not have multiple factors (Proposition (3.3)).
d) The product of all prime factors except one is greater then 221 (Proposition (3.4)).
e) Φ-positive factors p may be only for c = 2 (p = 8191), c = 7 (p = 31, 3923), c = 61 (p = 271), c = 101 (p =

137)(Proposition (3.5)).
Later in this section, we assume that FPP n satisfies all these conditions.

Proposition 3.6. Let n < 264 be an FPP. Then n does not have prime factors from the interval (50159, 232).

Proof. The absence of Φ-positive factors of this size proved earlier. Therefore, we consider only Φ-negative
factors.

Let n < 264 be a FPP with z = a + b
√
c, c < 128 and p be a prime factor of n, J(c/p) = −1. We denote

n/p by q. According to Thm. 2.8
zq−1 ≡ 1 mod p,

that is
q ≡ 1 mod ord(z mod p).

or
q = 1 + kQp

for some k ≥ 1, where Qp = ord(z mod p). As n = pq < 264, then q < 264/p. Hence, we find the restriction on
k: k ≤ kmax. This means that the only valid candidates for the FPP will be in the numbers

p(1 +Qp), p(1 + 2Qp), . . . , p(1 + kmaxQp).

As a result, in a reasonable time (a few hours for a fixed Frobenius index) you can check all Φ-negative number
in the interval (217, 232).
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Example 3.7. Let z = 2 + i, p = 10 000 019. Then Qp = 1 666 730 000 060 = (p2 − 1)/6 and for any k ≥ 1 we
have n = pq > 264. That is for this p there is no suitable q.

Let p = 1 000 003. Then Qp = 1 000 006 000 008 = p2− 1 and inequality n = pq < 264 holds for k ≤ 18. That
is the only suitable values for q are

1 +Qp , 1 + 2Qp , . . . , 1 + 18Qp .

It is easy to check that for all these values of q, the number n = pq is not an FPP, that is p cannot be a divisor
of an FPP that is less than 264.

Let p = 100 003. Then Qp = 434 808 696 = (p2 − 1)/23 and inequality n = pq < 264 holds for k ≤ 424 236.
With the smaller p the computation time quickly increases. Verification of all eligible q in this case takes already
several minutes.

By a somewhat larger search, it is possible to construct for each index c < 128 a complete list of possible
Φ-negative prime factors of FPP. For example, for c = −1 (z = 2+ i) the list will consist of 350 prime numbers:

7, 11, 19, 23, 31, 43, 47, . . . , 39439, 50159.

indF The number max(pi) indF The number max(pi)
of primes of primes

−1 350 50159 53 39 21841
2 91 33461 59 40 5651
3 72 23057 61 39 17749
5 105 49477 67 31 5557
7 48 47791 71 30 34501
11 50 9437 73 34 6883
13 63 19141 79 32 9041
17 50 8681 83 33 38669
19 38 25939 89 26 7867
23 44 8069 97 32 6221
29 46 7687 101 46 9901
31 37 38917 103 30 14341
37 55 15289 107 21 8539
41 39 19447 109 38 13001
43 37 15277 113 37 13241
47 36 12109 127 22 4987

Corollary 3.8. Let n < 264 be an FPP. Then n has more then two prime factors.

Proof. If n has exactly two prime factors, then the smallest of them by the Proposition 3.6 should not be more
than 50159, which contradicts Proposition 3.5.

Proposition 3.9. Let n < 264 be an FPP and p1, p2 be its prime factors, both less 232. Then p1p2 < 217.
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Moreover, for each c < 128, we have a complete list of possible pairs (p1, p2):

indF The number max(p1p2) indF The number max(p1p2)
of pairs of pairs

−1 184 128929 53 2 53947
2 64 28345 59 2 29857
3 36 40681 61 0 −
5 56 58669 67 1 66667
7 11 24641 71 0 −

11 8 42127 73 0 −
13 31 42199 79 0 −
17 22 77981 83 0 −
19 0 − 89 1 58277
23 1 24461 97 1 29651
29 1 53947 101 0 −
31 5 34103 103 0 −
37 7 58969 107 0 −
41 0 − 109 0 −
43 0 − 113 0 −
47 4 103351 127 0 −

Proof. Suppose that an FPP n has two factors of p1 and p2 less than 232. Then both p1 and p2 should be
contained in a relatively small list which is constructed using Proposition 3.6.

Factors need to be z-consistent and for q = n/(p1p2) the following congruence relations should hold:

q ≡ Dp12
mod gcd(Mp1

,Mp2
)

for some Dp12
.

Taking into account that n = p1p2q < 264, it often turns out that for a given pair (p1, p2) all possible q are
small and all corresponding n can be thus easily checked whether they are an FPP or not. However, if (p1, p2)
are small in a sense then the number of possible qs is too large and we cannot check all of the corresponding n
on being an FPP, and these are listed in the table above. (These remaining pairs will be addressed below).

Remark 3.10. Among these pairs, there are none containing Φ-positive numbers. In particular, an FPP n does
not have Φ-positive factors less than 232.

Corollary 3.11. Let n < 264 be an FPP. Then n has more than three prime factors.

Proof. If n has exactly three prime factors, at least two of them are less 232 and according Proposition 3.9 their
product is less than 128929, which contradicts Proposition 3.5.

Proposition 3.12. Let n < 264 be an FPP and p1, p2, p3 be its prime factors less than 232. Then c = −1 and
triple (p1, p2, p3) is one of the following:

p1 p2 p3
199 19 7
191 127 31
191 71 11
79 31 19
79 19 7
71 47 11

Proof. Pairs (p1, p2), (p1, p3), (p2, p3) must be present in the list of valid pairs given in Proposition 3.9. There
are very few such triples. For almost all triples all their possible multiples n = p1p2p3q can be checked on being
an FPP in a short time (hours). Only those triplets that are specified in the statement of Proposition 3.12 are
remained as a possibility.

We have already established in Corollaries 3.8 and 3.11 that an FPP n, n < 264 has more than two and
than more than three prime factors.

12



Corollary 3.13. Let n < 264 be an FPP. Then n has more than four prime factors.

Proof. If n has exactly four prime factors, at least three of them are less 232 and by Proposition 3.5 their
product is greater than 221. However, then for all triplets in Proposition 3.12 the product p1p2p3 is less than
221.

Proposition 3.14. There are no FPP less than 264.

Proof. By Corollary 3.13, an FPP n has at least four prime factors < 232. Each triple of these four must be
present in the list of Proposition 3.12. But they are not there.

4 An FPP cannot be a product of small factors

Proposition 4.1. Let n be an FPP. Then n has a prime divisor larger than 3000.

To verify this statement, for each Frobenius index c < 3000 , we iterate over all subsets of valid prime factors,
and they must all be pairwise consistent.

Remark 4.2. In fact, the lower bound 3000 given in Proposition 4.1 can be improved for each c. Below is the
list of obtained lower bounds.

indF border indF border indF border indF border
−1 3067 53 4513 131 5897 223 6073
2 3109 59 4177 137 5209 227 5881
3 3089 61 4909 139 5881 229 5849
5 3793 67 5077 149 6217 233 5441
7 4177 71 5573 151 5113 239 6661
11 3637 73 4273 157 6829 241 5857
13 3049 79 5449 163 7057 251 6637
17 3361 83 5449 167 6449 ... ...
19 4649 89 5189 173 4937 2971 7537
23 3251 97 6003 179 6361 2999 9293
29 3361 101 4253 181 5209
31 3733 103 6217 191 6823
37 3169 107 6037 193 3469
41 3529 109 4657 197 5449
43 3677 113 4789 199 6361
47 4273 127 6569 211 6121

Remark 4.3. These lower bounds depends only on our computational capabilities (within a few hours of processor
time). Unfortunately, the volume of computations is growing exponentially, so it is not possible to significantly
improve these bounds, even with the increase of the computation time.

5 Conclusions

The FPP numbers are those on which the Frobenius test is fail.

Hypothesis. There are no Frobenius pseudoprime numbers.

Below are the facts about FPP that are known to date along with some new facts established in the present
paper.

• The complexity of the Frobenius test is about twice that of Fermat or Miller-Rabin.

• There are no examples of FPPs.

• There are no FPPs less than 264.

• Each FPP has a prime factor larger than 3000.

• Frobenius test is one of the most efficient primality tests to date!
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